- Stephen Rothwell: APM updates
[davej-history.git] / arch / i386 / kernel / traps.c
blobf2077f2f274d909721eb3c39ee8be7d716eefbef
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/config.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
27 #ifdef CONFIG_MCA
28 #include <linux/mca.h>
29 #include <asm/processor.h>
30 #endif
32 #include <asm/system.h>
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/atomic.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/i387.h>
40 #include <asm/smp.h>
41 #include <asm/pgalloc.h>
43 #ifdef CONFIG_X86_VISWS_APIC
44 #include <asm/fixmap.h>
45 #include <asm/cobalt.h>
46 #include <asm/lithium.h>
47 #endif
49 #include <linux/irq.h>
51 asmlinkage int system_call(void);
52 asmlinkage void lcall7(void);
53 asmlinkage void lcall27(void);
55 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
56 { 0, 0 }, { 0, 0 } };
59 * The IDT has to be page-aligned to simplify the Pentium
60 * F0 0F bug workaround.. We have a special link segment
61 * for this.
63 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
65 extern void bust_spinlocks(void);
67 asmlinkage void divide_error(void);
68 asmlinkage void debug(void);
69 asmlinkage void nmi(void);
70 asmlinkage void int3(void);
71 asmlinkage void overflow(void);
72 asmlinkage void bounds(void);
73 asmlinkage void invalid_op(void);
74 asmlinkage void device_not_available(void);
75 asmlinkage void double_fault(void);
76 asmlinkage void coprocessor_segment_overrun(void);
77 asmlinkage void invalid_TSS(void);
78 asmlinkage void segment_not_present(void);
79 asmlinkage void stack_segment(void);
80 asmlinkage void general_protection(void);
81 asmlinkage void page_fault(void);
82 asmlinkage void coprocessor_error(void);
83 asmlinkage void simd_coprocessor_error(void);
84 asmlinkage void alignment_check(void);
85 asmlinkage void spurious_interrupt_bug(void);
86 asmlinkage void machine_check(void);
88 int kstack_depth_to_print = 24;
91 * These constants are for searching for possible module text
92 * segments. MODULE_RANGE is a guess of how much space is likely
93 * to be vmalloced.
95 #define MODULE_RANGE (8*1024*1024)
97 void show_stack(unsigned long * esp)
99 unsigned long *stack, addr, module_start, module_end;
100 int i;
102 // debugging aid: "show_stack(NULL);" prints the
103 // back trace for this cpu.
105 if(esp==NULL)
106 esp=(unsigned long*)&esp;
108 stack = esp;
109 for(i=0; i < kstack_depth_to_print; i++) {
110 if (((long) stack & (THREAD_SIZE-1)) == 0)
111 break;
112 if (i && ((i % 8) == 0))
113 printk("\n ");
114 printk("%08lx ", *stack++);
117 printk("\nCall Trace: ");
118 stack = esp;
119 i = 1;
120 module_start = VMALLOC_START;
121 module_end = VMALLOC_END;
122 while (((long) stack & (THREAD_SIZE-1)) != 0) {
123 addr = *stack++;
125 * If the address is either in the text segment of the
126 * kernel, or in the region which contains vmalloc'ed
127 * memory, it *may* be the address of a calling
128 * routine; if so, print it so that someone tracing
129 * down the cause of the crash will be able to figure
130 * out the call path that was taken.
132 if (((addr >= (unsigned long) &_stext) &&
133 (addr <= (unsigned long) &_etext)) ||
134 ((addr >= module_start) && (addr <= module_end))) {
135 if (i && ((i % 8) == 0))
136 printk("\n ");
137 printk("[<%08lx>] ", addr);
138 i++;
143 static void show_registers(struct pt_regs *regs)
145 int i;
146 int in_kernel = 1;
147 unsigned long esp;
148 unsigned short ss;
150 esp = (unsigned long) (&regs->esp);
151 ss = __KERNEL_DS;
152 if (regs->xcs & 3) {
153 in_kernel = 0;
154 esp = regs->esp;
155 ss = regs->xss & 0xffff;
157 printk("CPU: %d\nEIP: %04x:[<%08lx>]\nEFLAGS: %08lx\n",
158 smp_processor_id(), 0xffff & regs->xcs, regs->eip, regs->eflags);
159 printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
160 regs->eax, regs->ebx, regs->ecx, regs->edx);
161 printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
162 regs->esi, regs->edi, regs->ebp, esp);
163 printk("ds: %04x es: %04x ss: %04x\n",
164 regs->xds & 0xffff, regs->xes & 0xffff, ss);
165 printk("Process %s (pid: %d, stackpage=%08lx)",
166 current->comm, current->pid, 4096+(unsigned long)current);
168 * When in-kernel, we also print out the stack and code at the
169 * time of the fault..
171 if (in_kernel) {
173 printk("\nStack: ");
174 show_stack((unsigned long*)esp);
176 printk("\nCode: ");
177 if(regs->eip < PAGE_OFFSET)
178 goto bad;
180 for(i=0;i<20;i++)
182 unsigned char c;
183 if(__get_user(c, &((unsigned char*)regs->eip)[i])) {
184 bad:
185 printk(" Bad EIP value.");
186 break;
188 printk("%02x ", c);
191 printk("\n");
194 spinlock_t die_lock = SPIN_LOCK_UNLOCKED;
196 void die(const char * str, struct pt_regs * regs, long err)
198 console_verbose();
199 spin_lock_irq(&die_lock);
200 printk("%s: %04lx\n", str, err & 0xffff);
201 show_registers(regs);
203 spin_unlock_irq(&die_lock);
204 do_exit(SIGSEGV);
207 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
209 if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs))
210 die(str, regs, err);
213 static inline unsigned long get_cr2(void)
215 unsigned long address;
217 /* get the address */
218 __asm__("movl %%cr2,%0":"=r" (address));
219 return address;
222 static void inline do_trap(int trapnr, int signr, char *str, int vm86,
223 struct pt_regs * regs, long error_code, siginfo_t *info)
225 if (vm86 && regs->eflags & VM_MASK)
226 goto vm86_trap;
227 if (!(regs->xcs & 3))
228 goto kernel_trap;
230 trap_signal: {
231 struct task_struct *tsk = current;
232 tsk->thread.error_code = error_code;
233 tsk->thread.trap_no = trapnr;
234 if (info)
235 force_sig_info(signr, info, tsk);
236 else
237 force_sig(signr, tsk);
238 return;
241 kernel_trap: {
242 unsigned long fixup = search_exception_table(regs->eip);
243 if (fixup)
244 regs->eip = fixup;
245 else
246 die(str, regs, error_code);
247 return;
250 vm86_trap: {
251 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
252 if (ret) goto trap_signal;
253 return;
257 #define DO_ERROR(trapnr, signr, str, name) \
258 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
260 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
263 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
264 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
266 siginfo_t info; \
267 info.si_signo = signr; \
268 info.si_errno = 0; \
269 info.si_code = sicode; \
270 info.si_addr = (void *)siaddr; \
271 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
274 #define DO_VM86_ERROR(trapnr, signr, str, name) \
275 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
277 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
280 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
281 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
283 siginfo_t info; \
284 info.si_signo = signr; \
285 info.si_errno = 0; \
286 info.si_code = sicode; \
287 info.si_addr = (void *)siaddr; \
288 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
291 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
292 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
293 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
294 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
295 DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
296 DO_VM86_ERROR( 7, SIGSEGV, "device not available", device_not_available)
297 DO_ERROR( 8, SIGSEGV, "double fault", double_fault)
298 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
299 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
300 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
301 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
302 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, get_cr2())
304 asmlinkage void do_general_protection(struct pt_regs * regs, long error_code)
306 if (regs->eflags & VM_MASK)
307 goto gp_in_vm86;
309 if (!(regs->xcs & 3))
310 goto gp_in_kernel;
312 current->thread.error_code = error_code;
313 current->thread.trap_no = 13;
314 force_sig(SIGSEGV, current);
315 return;
317 gp_in_vm86:
318 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
319 return;
321 gp_in_kernel:
323 unsigned long fixup;
324 fixup = search_exception_table(regs->eip);
325 if (fixup) {
326 regs->eip = fixup;
327 return;
329 die("general protection fault", regs, error_code);
333 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
335 printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
336 printk("You probably have a hardware problem with your RAM chips\n");
338 /* Clear and disable the memory parity error line. */
339 reason = (reason & 0xf) | 4;
340 outb(reason, 0x61);
343 static void io_check_error(unsigned char reason, struct pt_regs * regs)
345 unsigned long i;
347 printk("NMI: IOCK error (debug interrupt?)\n");
348 show_registers(regs);
350 /* Re-enable the IOCK line, wait for a few seconds */
351 reason = (reason & 0xf) | 8;
352 outb(reason, 0x61);
353 i = 2000;
354 while (--i) udelay(1000);
355 reason &= ~8;
356 outb(reason, 0x61);
359 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
361 #ifdef CONFIG_MCA
362 /* Might actually be able to figure out what the guilty party
363 * is. */
364 if( MCA_bus ) {
365 mca_handle_nmi();
366 return;
368 #endif
369 printk("Uhhuh. NMI received for unknown reason %02x.\n", reason);
370 printk("Dazed and confused, but trying to continue\n");
371 printk("Do you have a strange power saving mode enabled?\n");
374 #if CONFIG_X86_IO_APIC
376 int nmi_watchdog = 1;
378 static int __init setup_nmi_watchdog(char *str)
380 get_option(&str, &nmi_watchdog);
381 return 1;
384 __setup("nmi_watchdog=", setup_nmi_watchdog);
386 static spinlock_t nmi_print_lock = SPIN_LOCK_UNLOCKED;
388 inline void nmi_watchdog_tick(struct pt_regs * regs)
391 * the best way to detect wether a CPU has a 'hard lockup' problem
392 * is to check it's local APIC timer IRQ counts. If they are not
393 * changing then that CPU has some problem.
395 * as these watchdog NMI IRQs are broadcasted to every CPU, here
396 * we only have to check the current processor.
398 * since NMIs dont listen to _any_ locks, we have to be extremely
399 * careful not to rely on unsafe variables. The printk might lock
400 * up though, so we have to break up console_lock first ...
401 * [when there will be more tty-related locks, break them up
402 * here too!]
405 static unsigned int last_irq_sums [NR_CPUS],
406 alert_counter [NR_CPUS];
409 * Since current-> is always on the stack, and we always switch
410 * the stack NMI-atomically, it's safe to use smp_processor_id().
412 int sum, cpu = smp_processor_id();
414 sum = apic_timer_irqs[cpu];
416 if (last_irq_sums[cpu] == sum) {
418 * Ayiee, looks like this CPU is stuck ...
419 * wait a few IRQs (5 seconds) before doing the oops ...
421 alert_counter[cpu]++;
422 if (alert_counter[cpu] == 5*HZ) {
423 spin_lock(&nmi_print_lock);
425 * We are in trouble anyway, lets at least try
426 * to get a message out.
428 bust_spinlocks();
429 printk("NMI Watchdog detected LOCKUP on CPU%d, registers:\n", cpu);
430 show_registers(regs);
431 printk("console shuts up ...\n");
432 console_silent();
433 spin_unlock(&nmi_print_lock);
434 do_exit(SIGSEGV);
436 } else {
437 last_irq_sums[cpu] = sum;
438 alert_counter[cpu] = 0;
441 #endif
443 asmlinkage void do_nmi(struct pt_regs * regs, long error_code)
445 unsigned char reason = inb(0x61);
448 ++nmi_count(smp_processor_id());
449 if (!(reason & 0xc0)) {
450 #if CONFIG_X86_IO_APIC
452 * Ok, so this is none of the documented NMI sources,
453 * so it must be the NMI watchdog.
455 if (nmi_watchdog) {
456 nmi_watchdog_tick(regs);
457 return;
458 } else
459 unknown_nmi_error(reason, regs);
460 #else
461 unknown_nmi_error(reason, regs);
462 #endif
463 return;
465 if (reason & 0x80)
466 mem_parity_error(reason, regs);
467 if (reason & 0x40)
468 io_check_error(reason, regs);
470 * Reassert NMI in case it became active meanwhile
471 * as it's edge-triggered.
473 outb(0x8f, 0x70);
474 inb(0x71); /* dummy */
475 outb(0x0f, 0x70);
476 inb(0x71); /* dummy */
480 * Our handling of the processor debug registers is non-trivial.
481 * We do not clear them on entry and exit from the kernel. Therefore
482 * it is possible to get a watchpoint trap here from inside the kernel.
483 * However, the code in ./ptrace.c has ensured that the user can
484 * only set watchpoints on userspace addresses. Therefore the in-kernel
485 * watchpoint trap can only occur in code which is reading/writing
486 * from user space. Such code must not hold kernel locks (since it
487 * can equally take a page fault), therefore it is safe to call
488 * force_sig_info even though that claims and releases locks.
490 * Code in ./signal.c ensures that the debug control register
491 * is restored before we deliver any signal, and therefore that
492 * user code runs with the correct debug control register even though
493 * we clear it here.
495 * Being careful here means that we don't have to be as careful in a
496 * lot of more complicated places (task switching can be a bit lazy
497 * about restoring all the debug state, and ptrace doesn't have to
498 * find every occurrence of the TF bit that could be saved away even
499 * by user code)
501 asmlinkage void do_debug(struct pt_regs * regs, long error_code)
503 unsigned int condition;
504 struct task_struct *tsk = current;
505 siginfo_t info;
507 __asm__ __volatile__("movl %%db6,%0" : "=r" (condition));
509 /* Mask out spurious debug traps due to lazy DR7 setting */
510 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
511 if (!tsk->thread.debugreg[7])
512 goto clear_dr7;
515 if (regs->eflags & VM_MASK)
516 goto debug_vm86;
518 /* Save debug status register where ptrace can see it */
519 tsk->thread.debugreg[6] = condition;
521 /* Mask out spurious TF errors due to lazy TF clearing */
522 if (condition & DR_STEP) {
524 * The TF error should be masked out only if the current
525 * process is not traced and if the TRAP flag has been set
526 * previously by a tracing process (condition detected by
527 * the PT_DTRACE flag); remember that the i386 TRAP flag
528 * can be modified by the process itself in user mode,
529 * allowing programs to debug themselves without the ptrace()
530 * interface.
532 if ((tsk->ptrace & (PT_DTRACE|PT_PTRACED)) == PT_DTRACE)
533 goto clear_TF;
536 /* Ok, finally something we can handle */
537 tsk->thread.trap_no = 1;
538 tsk->thread.error_code = error_code;
539 info.si_signo = SIGTRAP;
540 info.si_errno = 0;
541 info.si_code = TRAP_BRKPT;
543 /* If this is a kernel mode trap, save the user PC on entry to
544 * the kernel, that's what the debugger can make sense of.
546 info.si_addr = ((regs->xcs & 3) == 0) ? (void *)tsk->thread.eip :
547 (void *)regs->eip;
548 force_sig_info(SIGTRAP, &info, tsk);
550 /* Disable additional traps. They'll be re-enabled when
551 * the signal is delivered.
553 clear_dr7:
554 __asm__("movl %0,%%db7"
555 : /* no output */
556 : "r" (0));
557 return;
559 debug_vm86:
560 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
561 return;
563 clear_TF:
564 regs->eflags &= ~TF_MASK;
565 return;
569 * Note that we play around with the 'TS' bit in an attempt to get
570 * the correct behaviour even in the presence of the asynchronous
571 * IRQ13 behaviour
573 void math_error(void *eip)
575 struct task_struct * task;
576 siginfo_t info;
577 unsigned short cwd, swd;
580 * Save the info for the exception handler and clear the error.
582 task = current;
583 save_init_fpu(task);
584 task->thread.trap_no = 16;
585 task->thread.error_code = 0;
586 info.si_signo = SIGFPE;
587 info.si_errno = 0;
588 info.si_code = __SI_FAULT;
589 info.si_addr = eip;
591 * (~cwd & swd) will mask out exceptions that are not set to unmasked
592 * status. 0x3f is the exception bits in these regs, 0x200 is the
593 * C1 reg you need in case of a stack fault, 0x040 is the stack
594 * fault bit. We should only be taking one exception at a time,
595 * so if this combination doesn't produce any single exception,
596 * then we have a bad program that isn't syncronizing its FPU usage
597 * and it will suffer the consequences since we won't be able to
598 * fully reproduce the context of the exception
600 cwd = get_fpu_cwd(task);
601 swd = get_fpu_swd(task);
602 switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
603 case 0x000:
604 default:
605 break;
606 case 0x001: /* Invalid Op */
607 case 0x040: /* Stack Fault */
608 case 0x240: /* Stack Fault | Direction */
609 info.si_code = FPE_FLTINV;
610 break;
611 case 0x002: /* Denormalize */
612 case 0x010: /* Underflow */
613 info.si_code = FPE_FLTUND;
614 break;
615 case 0x004: /* Zero Divide */
616 info.si_code = FPE_FLTDIV;
617 break;
618 case 0x008: /* Overflow */
619 info.si_code = FPE_FLTOVF;
620 break;
621 case 0x020: /* Precision */
622 info.si_code = FPE_FLTRES;
623 break;
625 force_sig_info(SIGFPE, &info, task);
628 asmlinkage void do_coprocessor_error(struct pt_regs * regs, long error_code)
630 ignore_irq13 = 1;
631 math_error((void *)regs->eip);
634 void simd_math_error(void *eip)
636 struct task_struct * task;
637 siginfo_t info;
638 unsigned short mxcsr;
641 * Save the info for the exception handler and clear the error.
643 task = current;
644 save_init_fpu(task);
645 task->thread.trap_no = 19;
646 task->thread.error_code = 0;
647 info.si_signo = SIGFPE;
648 info.si_errno = 0;
649 info.si_code = __SI_FAULT;
650 info.si_addr = eip;
652 * The SIMD FPU exceptions are handled a little differently, as there
653 * is only a single status/control register. Thus, to determine which
654 * unmasked exception was caught we must mask the exception mask bits
655 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
657 mxcsr = get_fpu_mxcsr(task);
658 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
659 case 0x000:
660 default:
661 break;
662 case 0x001: /* Invalid Op */
663 info.si_code = FPE_FLTINV;
664 break;
665 case 0x002: /* Denormalize */
666 case 0x010: /* Underflow */
667 info.si_code = FPE_FLTUND;
668 break;
669 case 0x004: /* Zero Divide */
670 info.si_code = FPE_FLTDIV;
671 break;
672 case 0x008: /* Overflow */
673 info.si_code = FPE_FLTOVF;
674 break;
675 case 0x020: /* Precision */
676 info.si_code = FPE_FLTRES;
677 break;
679 force_sig_info(SIGFPE, &info, task);
682 asmlinkage void do_simd_coprocessor_error(struct pt_regs * regs,
683 long error_code)
685 if (cpu_has_xmm) {
686 /* Handle SIMD FPU exceptions on PIII+ processors. */
687 ignore_irq13 = 1;
688 simd_math_error((void *)regs->eip);
689 } else {
691 * Handle strange cache flush from user space exception
692 * in all other cases. This is undocumented behaviour.
694 if (regs->eflags & VM_MASK) {
695 handle_vm86_fault((struct kernel_vm86_regs *)regs,
696 error_code);
697 return;
699 die_if_kernel("cache flush denied", regs, error_code);
700 current->thread.trap_no = 19;
701 current->thread.error_code = error_code;
702 force_sig(SIGSEGV, current);
706 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs,
707 long error_code)
709 #if 0
710 /* No need to warn about this any longer. */
711 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
712 #endif
716 * 'math_state_restore()' saves the current math information in the
717 * old math state array, and gets the new ones from the current task
719 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
720 * Don't touch unless you *really* know how it works.
722 asmlinkage void math_state_restore(struct pt_regs regs)
724 __asm__ __volatile__("clts"); /* Allow maths ops (or we recurse) */
726 if (current->used_math) {
727 restore_fpu(current);
728 } else {
729 init_fpu();
731 current->flags |= PF_USEDFPU; /* So we fnsave on switch_to() */
734 #ifndef CONFIG_MATH_EMULATION
736 asmlinkage void math_emulate(long arg)
738 printk("math-emulation not enabled and no coprocessor found.\n");
739 printk("killing %s.\n",current->comm);
740 force_sig(SIGFPE,current);
741 schedule();
744 #endif /* CONFIG_MATH_EMULATION */
746 #ifndef CONFIG_M686
747 void __init trap_init_f00f_bug(void)
749 unsigned long page;
750 pgd_t * pgd;
751 pmd_t * pmd;
752 pte_t * pte;
755 * Allocate a new page in virtual address space,
756 * move the IDT into it and write protect this page.
758 page = (unsigned long) vmalloc(PAGE_SIZE);
759 pgd = pgd_offset(&init_mm, page);
760 pmd = pmd_offset(pgd, page);
761 pte = pte_offset(pmd, page);
762 __free_page(pte_page(*pte));
763 *pte = mk_pte_phys(__pa(&idt_table), PAGE_KERNEL_RO);
765 * Not that any PGE-capable kernel should have the f00f bug ...
767 __flush_tlb_all();
770 * "idt" is magic - it overlaps the idt_descr
771 * variable so that updating idt will automatically
772 * update the idt descriptor..
774 idt = (struct desc_struct *)page;
775 __asm__ __volatile__("lidt %0": "=m" (idt_descr));
777 #endif
779 #define _set_gate(gate_addr,type,dpl,addr) \
780 do { \
781 int __d0, __d1; \
782 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
783 "movw %4,%%dx\n\t" \
784 "movl %%eax,%0\n\t" \
785 "movl %%edx,%1" \
786 :"=m" (*((long *) (gate_addr))), \
787 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
788 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
789 "3" ((char *) (addr)),"2" (__KERNEL_CS << 16)); \
790 } while (0)
794 * This needs to use 'idt_table' rather than 'idt', and
795 * thus use the _nonmapped_ version of the IDT, as the
796 * Pentium F0 0F bugfix can have resulted in the mapped
797 * IDT being write-protected.
799 void set_intr_gate(unsigned int n, void *addr)
801 _set_gate(idt_table+n,14,0,addr);
804 static void __init set_trap_gate(unsigned int n, void *addr)
806 _set_gate(idt_table+n,15,0,addr);
809 static void __init set_system_gate(unsigned int n, void *addr)
811 _set_gate(idt_table+n,15,3,addr);
814 static void __init set_call_gate(void *a, void *addr)
816 _set_gate(a,12,3,addr);
819 #define _set_seg_desc(gate_addr,type,dpl,base,limit) {\
820 *((gate_addr)+1) = ((base) & 0xff000000) | \
821 (((base) & 0x00ff0000)>>16) | \
822 ((limit) & 0xf0000) | \
823 ((dpl)<<13) | \
824 (0x00408000) | \
825 ((type)<<8); \
826 *(gate_addr) = (((base) & 0x0000ffff)<<16) | \
827 ((limit) & 0x0ffff); }
829 #define _set_tssldt_desc(n,addr,limit,type) \
830 __asm__ __volatile__ ("movw %w3,0(%2)\n\t" \
831 "movw %%ax,2(%2)\n\t" \
832 "rorl $16,%%eax\n\t" \
833 "movb %%al,4(%2)\n\t" \
834 "movb %4,5(%2)\n\t" \
835 "movb $0,6(%2)\n\t" \
836 "movb %%ah,7(%2)\n\t" \
837 "rorl $16,%%eax" \
838 : "=m"(*(n)) : "a" (addr), "r"(n), "ir"(limit), "i"(type))
840 void set_tss_desc(unsigned int n, void *addr)
842 _set_tssldt_desc(gdt_table+__TSS(n), (int)addr, 235, 0x89);
845 void set_ldt_desc(unsigned int n, void *addr, unsigned int size)
847 _set_tssldt_desc(gdt_table+__LDT(n), (int)addr, ((size << 3)-1), 0x82);
850 #ifdef CONFIG_X86_VISWS_APIC
853 * On Rev 005 motherboards legacy device interrupt lines are wired directly
854 * to Lithium from the 307. But the PROM leaves the interrupt type of each
855 * 307 logical device set appropriate for the 8259. Later we'll actually use
856 * the 8259, but for now we have to flip the interrupt types to
857 * level triggered, active lo as required by Lithium.
860 #define REG 0x2e /* The register to read/write */
861 #define DEV 0x07 /* Register: Logical device select */
862 #define VAL 0x2f /* The value to read/write */
864 static void
865 superio_outb(int dev, int reg, int val)
867 outb(DEV, REG);
868 outb(dev, VAL);
869 outb(reg, REG);
870 outb(val, VAL);
873 static int __attribute__ ((unused))
874 superio_inb(int dev, int reg)
876 outb(DEV, REG);
877 outb(dev, VAL);
878 outb(reg, REG);
879 return inb(VAL);
882 #define FLOP 3 /* floppy logical device */
883 #define PPORT 4 /* parallel logical device */
884 #define UART5 5 /* uart2 logical device (not wired up) */
885 #define UART6 6 /* uart1 logical device (THIS is the serial port!) */
886 #define IDEST 0x70 /* int. destination (which 307 IRQ line) reg. */
887 #define ITYPE 0x71 /* interrupt type register */
889 /* interrupt type bits */
890 #define LEVEL 0x01 /* bit 0, 0 == edge triggered */
891 #define ACTHI 0x02 /* bit 1, 0 == active lo */
893 static void
894 superio_init(void)
896 if (visws_board_type == VISWS_320 && visws_board_rev == 5) {
897 superio_outb(UART6, IDEST, 0); /* 0 means no intr propagated */
898 printk("SGI 320 rev 5: disabling 307 uart1 interrupt\n");
902 static void
903 lithium_init(void)
905 set_fixmap(FIX_LI_PCIA, LI_PCI_A_PHYS);
906 printk("Lithium PCI Bridge A, Bus Number: %d\n",
907 li_pcia_read16(LI_PCI_BUSNUM) & 0xff);
908 set_fixmap(FIX_LI_PCIB, LI_PCI_B_PHYS);
909 printk("Lithium PCI Bridge B (PIIX4), Bus Number: %d\n",
910 li_pcib_read16(LI_PCI_BUSNUM) & 0xff);
912 /* XXX blindly enables all interrupts */
913 li_pcia_write16(LI_PCI_INTEN, 0xffff);
914 li_pcib_write16(LI_PCI_INTEN, 0xffff);
917 static void
918 cobalt_init(void)
921 * On normal SMP PC this is used only with SMP, but we have to
922 * use it and set it up here to start the Cobalt clock
924 set_fixmap(FIX_APIC_BASE, APIC_DEFAULT_PHYS_BASE);
925 printk("Local APIC ID %lx\n", apic_read(APIC_ID));
926 printk("Local APIC Version %lx\n", apic_read(APIC_LVR));
928 set_fixmap(FIX_CO_CPU, CO_CPU_PHYS);
929 printk("Cobalt Revision %lx\n", co_cpu_read(CO_CPU_REV));
931 set_fixmap(FIX_CO_APIC, CO_APIC_PHYS);
932 printk("Cobalt APIC ID %lx\n", co_apic_read(CO_APIC_ID));
934 /* Enable Cobalt APIC being careful to NOT change the ID! */
935 co_apic_write(CO_APIC_ID, co_apic_read(CO_APIC_ID)|CO_APIC_ENABLE);
937 printk("Cobalt APIC enabled: ID reg %lx\n", co_apic_read(CO_APIC_ID));
939 #endif
940 void __init trap_init(void)
942 #ifdef CONFIG_EISA
943 if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24))
944 EISA_bus = 1;
945 #endif
947 set_trap_gate(0,&divide_error);
948 set_trap_gate(1,&debug);
949 set_intr_gate(2,&nmi);
950 set_system_gate(3,&int3); /* int3-5 can be called from all */
951 set_system_gate(4,&overflow);
952 set_system_gate(5,&bounds);
953 set_trap_gate(6,&invalid_op);
954 set_trap_gate(7,&device_not_available);
955 set_trap_gate(8,&double_fault);
956 set_trap_gate(9,&coprocessor_segment_overrun);
957 set_trap_gate(10,&invalid_TSS);
958 set_trap_gate(11,&segment_not_present);
959 set_trap_gate(12,&stack_segment);
960 set_trap_gate(13,&general_protection);
961 set_trap_gate(14,&page_fault);
962 set_trap_gate(15,&spurious_interrupt_bug);
963 set_trap_gate(16,&coprocessor_error);
964 set_trap_gate(17,&alignment_check);
965 set_trap_gate(18,&machine_check);
966 set_trap_gate(19,&simd_coprocessor_error);
968 set_system_gate(SYSCALL_VECTOR,&system_call);
971 * default LDT is a single-entry callgate to lcall7 for iBCS
972 * and a callgate to lcall27 for Solaris/x86 binaries
974 set_call_gate(&default_ldt[0],lcall7);
975 set_call_gate(&default_ldt[4],lcall27);
978 * Should be a barrier for any external CPU state.
980 cpu_init();
982 #ifdef CONFIG_X86_VISWS_APIC
983 superio_init();
984 lithium_init();
985 cobalt_init();
986 #endif