Import 2.1.36
[davej-history.git] / include / linux / mm.h
blob9572b3415de965e01dfbc81e3c7146ccc056553a
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
8 #ifdef __KERNEL__
10 #include <linux/string.h>
12 extern unsigned long max_mapnr;
13 extern unsigned long num_physpages;
14 extern void * high_memory;
16 #include <asm/page.h>
17 #include <asm/atomic.h>
20 * Linux kernel virtual memory manager primitives.
21 * The idea being to have a "virtual" mm in the same way
22 * we have a virtual fs - giving a cleaner interface to the
23 * mm details, and allowing different kinds of memory mappings
24 * (from shared memory to executable loading to arbitrary
25 * mmap() functions).
29 * This struct defines a memory VMM memory area. There is one of these
30 * per VM-area/task. A VM area is any part of the process virtual memory
31 * space that has a special rule for the page-fault handlers (ie a shared
32 * library, the executable area etc).
34 struct vm_area_struct {
35 struct mm_struct * vm_mm; /* VM area parameters */
36 unsigned long vm_start;
37 unsigned long vm_end;
38 pgprot_t vm_page_prot;
39 unsigned short vm_flags;
40 /* AVL tree of VM areas per task, sorted by address */
41 short vm_avl_height;
42 struct vm_area_struct * vm_avl_left;
43 struct vm_area_struct * vm_avl_right;
44 /* linked list of VM areas per task, sorted by address */
45 struct vm_area_struct * vm_next;
46 /* for areas with inode, the circular list inode->i_mmap */
47 /* for shm areas, the circular list of attaches */
48 /* otherwise unused */
49 struct vm_area_struct * vm_next_share;
50 struct vm_area_struct * vm_prev_share;
51 /* more */
52 struct vm_operations_struct * vm_ops;
53 unsigned long vm_offset;
54 struct inode * vm_inode;
55 unsigned long vm_pte; /* shared mem */
59 * vm_flags..
61 #define VM_READ 0x0001 /* currently active flags */
62 #define VM_WRITE 0x0002
63 #define VM_EXEC 0x0004
64 #define VM_SHARED 0x0008
66 #define VM_MAYREAD 0x0010 /* limits for mprotect() etc */
67 #define VM_MAYWRITE 0x0020
68 #define VM_MAYEXEC 0x0040
69 #define VM_MAYSHARE 0x0080
71 #define VM_GROWSDOWN 0x0100 /* general info on the segment */
72 #define VM_GROWSUP 0x0200
73 #define VM_SHM 0x0400 /* shared memory area, don't swap out */
74 #define VM_DENYWRITE 0x0800 /* ETXTBSY on write attempts.. */
76 #define VM_EXECUTABLE 0x1000
77 #define VM_LOCKED 0x2000
78 #define VM_IO 0x4000 /* Memory mapped I/O or similar */
80 #define VM_STACK_FLAGS 0x0177
83 * mapping from the currently active vm_flags protection bits (the
84 * low four bits) to a page protection mask..
86 extern pgprot_t protection_map[16];
90 * These are the virtual MM functions - opening of an area, closing and
91 * unmapping it (needed to keep files on disk up-to-date etc), pointer
92 * to the functions called when a no-page or a wp-page exception occurs.
94 struct vm_operations_struct {
95 void (*open)(struct vm_area_struct * area);
96 void (*close)(struct vm_area_struct * area);
97 void (*unmap)(struct vm_area_struct *area, unsigned long, size_t);
98 void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot);
99 int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags);
100 void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise);
101 unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);
102 unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address,
103 unsigned long page);
104 int (*swapout)(struct vm_area_struct *, unsigned long, pte_t *);
105 pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long);
109 * Try to keep the most commonly accessed fields in single cache lines
110 * here (16 bytes or greater). This ordering should be particularly
111 * beneficial on 32-bit processors.
113 * The first line is data used in page cache lookup, the second line
114 * is used for linear searches (eg. clock algorithm scans).
116 typedef struct page {
117 /* these must be first (free area handling) */
118 struct page *next;
119 struct page *prev;
120 struct inode *inode;
121 unsigned long offset;
122 struct page *next_hash;
123 atomic_t count;
124 unsigned flags; /* atomic flags, some possibly updated asynchronously */
125 unsigned dirty:16,
126 age:8;
127 struct wait_queue *wait;
128 struct page **pprev_hash;
129 struct buffer_head * buffers;
130 unsigned long swap_unlock_entry;
131 unsigned long map_nr; /* page->map_nr == page - mem_map */
132 } mem_map_t;
134 /* Page flag bit values */
135 #define PG_locked 0
136 #define PG_error 1
137 #define PG_referenced 2
138 #define PG_uptodate 3
139 #define PG_free_after 4
140 #define PG_decr_after 5
141 #define PG_swap_unlock_after 6
142 #define PG_DMA 7
143 #define PG_reserved 31
145 /* Make it prettier to test the above... */
146 #define PageLocked(page) (test_bit(PG_locked, &(page)->flags))
147 #define PageError(page) (test_bit(PG_error, &(page)->flags))
148 #define PageReferenced(page) (test_bit(PG_referenced, &(page)->flags))
149 #define PageDirty(page) (test_bit(PG_dirty, &(page)->flags))
150 #define PageUptodate(page) (test_bit(PG_uptodate, &(page)->flags))
151 #define PageFreeAfter(page) (test_bit(PG_free_after, &(page)->flags))
152 #define PageDecrAfter(page) (test_bit(PG_decr_after, &(page)->flags))
153 #define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags))
154 #define PageDMA(page) (test_bit(PG_DMA, &(page)->flags))
155 #define PageReserved(page) (test_bit(PG_reserved, &(page)->flags))
158 * page->reserved denotes a page which must never be accessed (which
159 * may not even be present).
161 * page->dma is set for those pages which lie in the range of
162 * physical addresses capable of carrying DMA transfers.
164 * Multiple processes may "see" the same page. E.g. for untouched
165 * mappings of /dev/null, all processes see the same page full of
166 * zeroes, and text pages of executables and shared libraries have
167 * only one copy in memory, at most, normally.
169 * For the non-reserved pages, page->count denotes a reference count.
170 * page->count == 0 means the page is free.
171 * page->count == 1 means the page is used for exactly one purpose
172 * (e.g. a private data page of one process).
174 * A page may be used for kmalloc() or anyone else who does a
175 * get_free_page(). In this case the page->count is at least 1, and
176 * all other fields are unused but should be 0 or NULL. The
177 * management of this page is the responsibility of the one who uses
178 * it.
180 * The other pages (we may call them "process pages") are completely
181 * managed by the Linux memory manager: I/O, buffers, swapping etc.
182 * The following discussion applies only to them.
184 * A page may belong to an inode's memory mapping. In this case,
185 * page->inode is the inode, and page->offset is the file offset
186 * of the page (not necessarily a multiple of PAGE_SIZE).
188 * A page may have buffers allocated to it. In this case,
189 * page->buffers is a circular list of these buffer heads. Else,
190 * page->buffers == NULL.
192 * For pages belonging to inodes, the page->count is the number of
193 * attaches, plus 1 if buffers are allocated to the page.
195 * All pages belonging to an inode make up a doubly linked list
196 * inode->i_pages, using the fields page->next and page->prev. (These
197 * fields are also used for freelist management when page->count==0.)
198 * There is also a hash table mapping (inode,offset) to the page
199 * in memory if present. The lists for this hash table use the fields
200 * page->next_hash and page->prev_hash.
202 * All process pages can do I/O:
203 * - inode pages may need to be read from disk,
204 * - inode pages which have been modified and are MAP_SHARED may need
205 * to be written to disk,
206 * - private pages which have been modified may need to be swapped out
207 * to swap space and (later) to be read back into memory.
208 * During disk I/O, page->locked is true. This bit is set before I/O
209 * and reset when I/O completes. page->wait is a wait queue of all
210 * tasks waiting for the I/O on this page to complete.
211 * page->uptodate tells whether the page's contents is valid.
212 * When a read completes, the page becomes uptodate, unless a disk I/O
213 * error happened.
214 * When a write completes, and page->free_after is true, the page is
215 * freed without any further delay.
217 * For choosing which pages to swap out, inode pages carry a
218 * page->referenced bit, which is set any time the system accesses
219 * that page through the (inode,offset) hash table.
220 * There is also the page->age counter, which implements a linear
221 * decay (why not an exponential decay?), see swapctl.h.
224 extern mem_map_t * mem_map;
227 * This is timing-critical - most of the time in getting a new page
228 * goes to clearing the page. If you want a page without the clearing
229 * overhead, just use __get_free_page() directly..
231 #define __get_free_page(priority) __get_free_pages((priority),0,0)
232 #define __get_dma_pages(priority, order) __get_free_pages((priority),(order),1)
233 extern unsigned long __get_free_pages(int priority, unsigned long gfporder, int dma);
235 extern inline unsigned long get_free_page(int priority)
237 unsigned long page;
239 page = __get_free_page(priority);
240 if (page)
241 clear_page(page);
242 return page;
245 /* memory.c & swap.c*/
247 #define free_page(addr) free_pages((addr),0)
248 extern void free_pages(unsigned long addr, unsigned long order);
249 extern void __free_page(struct page *);
251 extern void show_free_areas(void);
252 extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page,
253 unsigned long address);
255 extern void free_page_tables(struct mm_struct * mm);
256 extern void clear_page_tables(struct task_struct * tsk);
257 extern int new_page_tables(struct task_struct * tsk);
258 extern int copy_page_tables(struct task_struct * to);
260 extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
261 extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
262 extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
263 extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
265 extern void vmtruncate(struct inode * inode, unsigned long offset);
266 extern void handle_mm_fault(struct vm_area_struct *vma, unsigned long address, int write_access);
267 extern void do_wp_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned long address, int write_access);
268 extern void do_no_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned long address, int write_access);
270 extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem);
271 extern void mem_init(unsigned long start_mem, unsigned long end_mem);
272 extern void show_mem(void);
273 extern void oom(struct task_struct * tsk);
274 extern void si_meminfo(struct sysinfo * val);
276 /* mmap.c */
277 extern void vma_init(void);
278 extern unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len,
279 unsigned long prot, unsigned long flags, unsigned long off);
280 extern void merge_segments(struct mm_struct *, unsigned long, unsigned long);
281 extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
282 extern void remove_shared_vm_struct(struct vm_area_struct *);
283 extern void build_mmap_avl(struct mm_struct *);
284 extern void exit_mmap(struct mm_struct *);
285 extern int do_munmap(unsigned long, size_t);
286 extern unsigned long get_unmapped_area(unsigned long, unsigned long);
288 /* filemap.c */
289 extern unsigned long page_unuse(unsigned long);
290 extern int shrink_mmap(int, int);
291 extern void truncate_inode_pages(struct inode *, unsigned long);
293 #define GFP_BUFFER 0x00
294 #define GFP_ATOMIC 0x01
295 #define GFP_USER 0x02
296 #define GFP_KERNEL 0x03
297 #define GFP_NOBUFFER 0x04
298 #define GFP_NFS 0x05
300 /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
301 platforms, used as appropriate on others */
303 #define GFP_DMA 0x80
305 #define GFP_LEVEL_MASK 0xf
307 /* vma is the first one with address < vma->vm_end,
308 * and even address < vma->vm_start. Have to extend vma. */
309 static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
311 unsigned long grow;
313 address &= PAGE_MASK;
314 grow = vma->vm_start - address;
315 if (vma->vm_end - address
316 > (unsigned long) current->rlim[RLIMIT_STACK].rlim_cur ||
317 (vma->vm_mm->total_vm << PAGE_SHIFT) + grow
318 > (unsigned long) current->rlim[RLIMIT_AS].rlim_cur)
319 return -ENOMEM;
320 vma->vm_start = address;
321 vma->vm_offset -= grow;
322 vma->vm_mm->total_vm += grow >> PAGE_SHIFT;
323 if (vma->vm_flags & VM_LOCKED)
324 vma->vm_mm->locked_vm += grow >> PAGE_SHIFT;
325 return 0;
328 #define avl_empty (struct vm_area_struct *) NULL
330 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
331 static inline struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
333 struct vm_area_struct * result = NULL;
335 if (mm) {
336 struct vm_area_struct ** next = &mm->mmap_avl;
337 for (;;) {
338 struct vm_area_struct *tree = *next;
339 if (tree == avl_empty)
340 break;
341 next = &tree->vm_avl_right;
342 if (tree->vm_end <= addr)
343 continue;
344 next = &tree->vm_avl_left;
345 result = tree;
346 if (tree->vm_start <= addr)
347 break;
350 return result;
353 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
354 NULL if none. Assume start_addr < end_addr. */
355 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
357 struct vm_area_struct * vma;
359 vma = find_vma(mm,start_addr);
360 if (vma && end_addr <= vma->vm_start)
361 vma = NULL;
362 return vma;
365 #endif /* __KERNEL__ */
367 #endif