Import 2.1.116pre2
[davej-history.git] / kernel / sched.c
blob6861cc1717453264ab398c2b957dc5f2778df1f7
1 /*
2 * linux/kernel/sched.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1996-04-21 Modified by Ulrich Windl to make NTP work
7 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
8 * make semaphores SMP safe
9 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
13 * 'sched.c' is the main kernel file. It contains scheduling primitives
14 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
15 * call functions (type getpid()), which just extract a field from
16 * current-task
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/timer.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/fdreg.h>
25 #include <linux/errno.h>
26 #include <linux/time.h>
27 #include <linux/ptrace.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/tqueue.h>
31 #include <linux/resource.h>
32 #include <linux/mm.h>
33 #include <linux/smp.h>
34 #include <linux/smp_lock.h>
35 #include <linux/init.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spinlock.h>
44 #include <linux/timex.h>
47 * kernel variables
50 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
52 long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */
54 /* The current time */
55 volatile struct timeval xtime __attribute__ ((aligned (16)));
57 /* Don't completely fail for HZ > 500. */
58 int tickadj = 500/HZ ? : 1; /* microsecs */
60 DECLARE_TASK_QUEUE(tq_timer);
61 DECLARE_TASK_QUEUE(tq_immediate);
62 DECLARE_TASK_QUEUE(tq_scheduler);
65 * phase-lock loop variables
67 /* TIME_ERROR prevents overwriting the CMOS clock */
68 int time_state = TIME_ERROR; /* clock synchronization status */
69 int time_status = STA_UNSYNC; /* clock status bits */
70 long time_offset = 0; /* time adjustment (us) */
71 long time_constant = 2; /* pll time constant */
72 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
73 long time_precision = 1; /* clock precision (us) */
74 long time_maxerror = MAXPHASE; /* maximum error (us) */
75 long time_esterror = MAXPHASE; /* estimated error (us) */
76 long time_phase = 0; /* phase offset (scaled us) */
77 long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */
78 long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
79 long time_reftime = 0; /* time at last adjustment (s) */
81 long time_adjust = 0;
82 long time_adjust_step = 0;
84 unsigned long event = 0;
86 extern int do_setitimer(int, struct itimerval *, struct itimerval *);
87 unsigned int * prof_buffer = NULL;
88 unsigned long prof_len = 0;
89 unsigned long prof_shift = 0;
91 extern void mem_use(void);
93 unsigned long volatile jiffies=0;
96 * Init task must be ok at boot for the ix86 as we will check its signals
97 * via the SMP irq return path.
100 struct task_struct * task[NR_TASKS] = {&init_task, };
102 struct kernel_stat kstat = { 0 };
104 void scheduling_functions_start_here(void) { }
106 static inline void reschedule_idle(struct task_struct * p)
110 * For SMP, we try to see if the CPU the task used
111 * to run on is idle..
113 #if 0
115 * Disable this for now. Ingo has some interesting
116 * code that looks too complex, and I have some ideas,
117 * but in the meantime.. One problem is that "wakeup()"
118 * can be (and is) called before we've even initialized
119 * SMP completely, so..
121 #ifdef __SMP__
122 int want_cpu = p->processor;
125 * Don't even try to find another CPU for us if the task
126 * ran on this one before..
128 if (want_cpu != smp_processor_id()) {
129 struct task_struct **idle = task;
130 int i = smp_num_cpus;
132 do {
133 struct task_struct *tsk = *idle;
134 idle++;
135 /* Something like this.. */
136 if (tsk->has_cpu && tsk->processor == want_cpu) {
137 tsk->need_resched = 1;
138 smp_send_reschedule(want_cpu);
139 return;
141 } while (--i > 0);
143 #endif
144 #endif
145 if (p->policy != SCHED_OTHER || p->counter > current->counter + 3)
146 current->need_resched = 1;
150 * Careful!
152 * This has to add the process to the _beginning_ of the
153 * run-queue, not the end. See the comment about "This is
154 * subtle" in the scheduler proper..
156 static inline void add_to_runqueue(struct task_struct * p)
158 struct task_struct *next = init_task.next_run;
160 p->prev_run = &init_task;
161 init_task.next_run = p;
162 p->next_run = next;
163 next->prev_run = p;
166 static inline void del_from_runqueue(struct task_struct * p)
168 struct task_struct *next = p->next_run;
169 struct task_struct *prev = p->prev_run;
171 nr_running--;
172 next->prev_run = prev;
173 prev->next_run = next;
174 p->next_run = NULL;
175 p->prev_run = NULL;
178 static inline void move_last_runqueue(struct task_struct * p)
180 struct task_struct *next = p->next_run;
181 struct task_struct *prev = p->prev_run;
183 /* remove from list */
184 next->prev_run = prev;
185 prev->next_run = next;
186 /* add back to list */
187 p->next_run = &init_task;
188 prev = init_task.prev_run;
189 init_task.prev_run = p;
190 p->prev_run = prev;
191 prev->next_run = p;
194 static inline void move_first_runqueue(struct task_struct * p)
196 struct task_struct *next = p->next_run;
197 struct task_struct *prev = p->prev_run;
199 /* remove from list */
200 next->prev_run = prev;
201 prev->next_run = next;
202 /* add back to list */
203 p->prev_run = &init_task;
204 next = init_task.next_run;
205 init_task.next_run = p;
206 p->next_run = next;
207 next->prev_run = p;
211 * The tasklist_lock protects the linked list of processes.
213 * The scheduler lock is protecting against multiple entry
214 * into the scheduling code, and doesn't need to worry
215 * about interrupts (because interrupts cannot call the
216 * scheduler).
218 * The run-queue lock locks the parts that actually access
219 * and change the run-queues, and have to be interrupt-safe.
221 spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED; /* should be acquired first */
222 spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED; /* second */
223 rwlock_t tasklist_lock = RW_LOCK_UNLOCKED; /* third */
226 * Wake up a process. Put it on the run-queue if it's not
227 * already there. The "current" process is always on the
228 * run-queue (except when the actual re-schedule is in
229 * progress), and as such you're allowed to do the simpler
230 * "current->state = TASK_RUNNING" to mark yourself runnable
231 * without the overhead of this.
233 inline void wake_up_process(struct task_struct * p)
235 unsigned long flags;
237 spin_lock_irqsave(&runqueue_lock, flags);
238 p->state = TASK_RUNNING;
239 if (!p->next_run) {
240 add_to_runqueue(p);
241 reschedule_idle(p);
242 nr_running++;
244 spin_unlock_irqrestore(&runqueue_lock, flags);
247 static void process_timeout(unsigned long __data)
249 struct task_struct * p = (struct task_struct *) __data;
251 p->timeout = 0;
252 wake_up_process(p);
256 * This is the function that decides how desirable a process is..
257 * You can weigh different processes against each other depending
258 * on what CPU they've run on lately etc to try to handle cache
259 * and TLB miss penalties.
261 * Return values:
262 * -1000: never select this
263 * 0: out of time, recalculate counters (but it might still be
264 * selected)
265 * +ve: "goodness" value (the larger, the better)
266 * +1000: realtime process, select this.
268 static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu)
270 int policy = p->policy;
271 int weight;
273 if (policy & SCHED_YIELD) {
274 p->policy = policy & ~SCHED_YIELD;
275 return 0;
279 * Realtime process, select the first one on the
280 * runqueue (taking priorities within processes
281 * into account).
283 if (policy != SCHED_OTHER)
284 return 1000 + p->rt_priority;
287 * Give the process a first-approximation goodness value
288 * according to the number of clock-ticks it has left.
290 * Don't do any other calculations if the time slice is
291 * over..
293 weight = p->counter;
294 if (weight) {
296 #ifdef __SMP__
297 /* Give a largish advantage to the same processor... */
298 /* (this is equivalent to penalizing other processors) */
299 if (p->processor == this_cpu)
300 weight += PROC_CHANGE_PENALTY;
301 #endif
303 /* .. and a slight advantage to the current thread */
304 if (p->mm == prev->mm)
305 weight += 1;
306 weight += p->priority;
309 return weight;
313 * Event timer code
315 #define TVN_BITS 6
316 #define TVR_BITS 8
317 #define TVN_SIZE (1 << TVN_BITS)
318 #define TVR_SIZE (1 << TVR_BITS)
319 #define TVN_MASK (TVN_SIZE - 1)
320 #define TVR_MASK (TVR_SIZE - 1)
322 struct timer_vec {
323 int index;
324 struct timer_list *vec[TVN_SIZE];
327 struct timer_vec_root {
328 int index;
329 struct timer_list *vec[TVR_SIZE];
332 static struct timer_vec tv5 = { 0 };
333 static struct timer_vec tv4 = { 0 };
334 static struct timer_vec tv3 = { 0 };
335 static struct timer_vec tv2 = { 0 };
336 static struct timer_vec_root tv1 = { 0 };
338 static struct timer_vec * const tvecs[] = {
339 (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
342 #define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
344 static unsigned long timer_jiffies = 0;
346 static inline void insert_timer(struct timer_list *timer,
347 struct timer_list **vec, int idx)
349 if ((timer->next = vec[idx]))
350 vec[idx]->prev = timer;
351 vec[idx] = timer;
352 timer->prev = (struct timer_list *)&vec[idx];
355 static inline void internal_add_timer(struct timer_list *timer)
358 * must be cli-ed when calling this
360 unsigned long expires = timer->expires;
361 unsigned long idx = expires - timer_jiffies;
363 if (idx < TVR_SIZE) {
364 int i = expires & TVR_MASK;
365 insert_timer(timer, tv1.vec, i);
366 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
367 int i = (expires >> TVR_BITS) & TVN_MASK;
368 insert_timer(timer, tv2.vec, i);
369 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
370 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
371 insert_timer(timer, tv3.vec, i);
372 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
373 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
374 insert_timer(timer, tv4.vec, i);
375 } else if (expires < timer_jiffies) {
376 /* can happen if you add a timer with expires == jiffies,
377 * or you set a timer to go off in the past
379 insert_timer(timer, tv1.vec, tv1.index);
380 } else if (idx < 0xffffffffUL) {
381 int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
382 insert_timer(timer, tv5.vec, i);
383 } else {
384 /* Can only get here on architectures with 64-bit jiffies */
385 timer->next = timer->prev = timer;
389 spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
391 void add_timer(struct timer_list *timer)
393 unsigned long flags;
395 spin_lock_irqsave(&timerlist_lock, flags);
396 internal_add_timer(timer);
397 spin_unlock_irqrestore(&timerlist_lock, flags);
400 static inline int detach_timer(struct timer_list *timer)
402 struct timer_list *prev = timer->prev;
403 if (prev) {
404 struct timer_list *next = timer->next;
405 prev->next = next;
406 if (next)
407 next->prev = prev;
408 return 1;
410 return 0;
413 void mod_timer(struct timer_list *timer, unsigned long expires)
415 unsigned long flags;
417 spin_lock_irqsave(&timerlist_lock, flags);
418 timer->expires = expires;
419 detach_timer(timer);
420 internal_add_timer(timer);
421 spin_unlock_irqrestore(&timerlist_lock, flags);
424 int del_timer(struct timer_list * timer)
426 int ret;
427 unsigned long flags;
429 spin_lock_irqsave(&timerlist_lock, flags);
430 ret = detach_timer(timer);
431 timer->next = timer->prev = 0;
432 spin_unlock_irqrestore(&timerlist_lock, flags);
434 /* Make sure the timer isn't running in parallell.. */
435 synchronize_bh();
436 return ret;
439 #ifdef __SMP__
441 #define idle_task (task[cpu_number_map[this_cpu]])
442 #define can_schedule(p) (!(p)->has_cpu)
444 #else
446 #define idle_task (&init_task)
447 #define can_schedule(p) (1)
449 #endif
452 * 'schedule()' is the scheduler function. It's a very simple and nice
453 * scheduler: it's not perfect, but certainly works for most things.
455 * The goto is "interesting".
457 * NOTE!! Task 0 is the 'idle' task, which gets called when no other
458 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
459 * information in task[0] is never used.
461 asmlinkage void schedule(void)
463 struct task_struct * prev, * next;
464 unsigned long timeout;
465 int this_cpu;
467 prev = current;
468 this_cpu = prev->processor;
469 if (in_interrupt())
470 goto scheduling_in_interrupt;
471 release_kernel_lock(prev, this_cpu);
473 __check_locks(1);
475 /* Do "administrative" work here while we don't hold any locks */
476 if (bh_active & bh_mask)
477 do_bottom_half();
478 run_task_queue(&tq_scheduler);
480 spin_lock(&scheduler_lock);
481 spin_lock_irq(&runqueue_lock);
483 /* move an exhausted RR process to be last.. */
484 prev->need_resched = 0;
485 if (!prev->counter && prev->policy == SCHED_RR) {
486 prev->counter = prev->priority;
487 move_last_runqueue(prev);
489 timeout = 0;
490 switch (prev->state) {
491 case TASK_INTERRUPTIBLE:
492 if (signal_pending(prev))
493 goto makerunnable;
494 timeout = prev->timeout;
495 if (timeout && (timeout <= jiffies)) {
496 prev->timeout = 0;
497 timeout = 0;
498 makerunnable:
499 prev->state = TASK_RUNNING;
500 break;
502 default:
503 del_from_runqueue(prev);
504 case TASK_RUNNING:
507 struct task_struct * p = init_task.next_run;
509 * This is subtle.
510 * Note how we can enable interrupts here, even
511 * though interrupts can add processes to the run-
512 * queue. This is because any new processes will
513 * be added to the front of the queue, so "p" above
514 * is a safe starting point.
515 * run-queue deletion and re-ordering is protected by
516 * the scheduler lock
518 spin_unlock_irq(&runqueue_lock);
519 #ifdef __SMP__
520 prev->has_cpu = 0;
521 #endif
524 * Note! there may appear new tasks on the run-queue during this, as
525 * interrupts are enabled. However, they will be put on front of the
526 * list, so our list starting at "p" is essentially fixed.
528 /* this is the scheduler proper: */
530 int c = -1000;
531 next = idle_task;
532 while (p != &init_task) {
533 if (can_schedule(p)) {
534 int weight = goodness(p, prev, this_cpu);
535 if (weight > c)
536 c = weight, next = p;
538 p = p->next_run;
541 /* Do we need to re-calculate counters? */
542 if (!c) {
543 struct task_struct *p;
544 read_lock(&tasklist_lock);
545 for_each_task(p)
546 p->counter = (p->counter >> 1) + p->priority;
547 read_unlock(&tasklist_lock);
552 #ifdef __SMP__
553 next->has_cpu = 1;
554 next->processor = this_cpu;
555 #endif
557 if (prev != next) {
558 struct timer_list timer;
560 kstat.context_swtch++;
561 if (timeout) {
562 init_timer(&timer);
563 timer.expires = timeout;
564 timer.data = (unsigned long) prev;
565 timer.function = process_timeout;
566 add_timer(&timer);
568 get_mmu_context(next);
569 switch_to(prev,next);
571 if (timeout)
572 del_timer(&timer);
575 spin_unlock(&scheduler_lock);
578 * At this point "prev" is "current", as we just
579 * switched into it (from an even more "previous"
580 * prev)
582 reacquire_kernel_lock(prev);
583 return;
585 scheduling_in_interrupt:
586 printk("Scheduling in interrupt\n");
587 *(int *)0 = 0;
591 rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;
594 * wake_up doesn't wake up stopped processes - they have to be awakened
595 * with signals or similar.
597 * Note that we only need a read lock for the wait queue (and thus do not
598 * have to protect against interrupts), as the actual removal from the
599 * queue is handled by the process itself.
601 void __wake_up(struct wait_queue **q, unsigned int mode)
603 struct wait_queue *next;
605 read_lock(&waitqueue_lock);
606 if (q && (next = *q)) {
607 struct wait_queue *head;
609 head = WAIT_QUEUE_HEAD(q);
610 while (next != head) {
611 struct task_struct *p = next->task;
612 next = next->next;
613 if (p->state & mode)
614 wake_up_process(p);
617 read_unlock(&waitqueue_lock);
621 * Semaphores are implemented using a two-way counter:
622 * The "count" variable is decremented for each process
623 * that tries to sleep, while the "waking" variable is
624 * incremented when the "up()" code goes to wake up waiting
625 * processes.
627 * Notably, the inline "up()" and "down()" functions can
628 * efficiently test if they need to do any extra work (up
629 * needs to do something only if count was negative before
630 * the increment operation.
632 * waking_non_zero() (from asm/semaphore.h) must execute
633 * atomically.
635 * When __up() is called, the count was negative before
636 * incrementing it, and we need to wake up somebody.
638 * This routine adds one to the count of processes that need to
639 * wake up and exit. ALL waiting processes actually wake up but
640 * only the one that gets to the "waking" field first will gate
641 * through and acquire the semaphore. The others will go back
642 * to sleep.
644 * Note that these functions are only called when there is
645 * contention on the lock, and as such all this is the
646 * "non-critical" part of the whole semaphore business. The
647 * critical part is the inline stuff in <asm/semaphore.h>
648 * where we want to avoid any extra jumps and calls.
650 void __up(struct semaphore *sem)
652 wake_one_more(sem);
653 wake_up(&sem->wait);
657 * Perform the "down" function. Return zero for semaphore acquired,
658 * return negative for signalled out of the function.
660 * If called from __down, the return is ignored and the wait loop is
661 * not interruptible. This means that a task waiting on a semaphore
662 * using "down()" cannot be killed until someone does an "up()" on
663 * the semaphore.
665 * If called from __down_interruptible, the return value gets checked
666 * upon return. If the return value is negative then the task continues
667 * with the negative value in the return register (it can be tested by
668 * the caller).
670 * Either form may be used in conjunction with "up()".
673 static inline int __do_down(struct semaphore * sem, int task_state)
675 struct task_struct *tsk = current;
676 struct wait_queue wait = { tsk, NULL };
677 int ret = 0;
679 tsk->state = task_state;
680 add_wait_queue(&sem->wait, &wait);
683 * Ok, we're set up. sem->count is known to be less than zero
684 * so we must wait.
686 * We can let go the lock for purposes of waiting.
687 * We re-acquire it after awaking so as to protect
688 * all semaphore operations.
690 * If "up()" is called before we call waking_non_zero() then
691 * we will catch it right away. If it is called later then
692 * we will have to go through a wakeup cycle to catch it.
694 * Multiple waiters contend for the semaphore lock to see
695 * who gets to gate through and who has to wait some more.
697 for (;;) {
698 if (waking_non_zero(sem)) /* are we waking up? */
699 break; /* yes, exit loop */
701 if (task_state == TASK_INTERRUPTIBLE && signal_pending(tsk)) {
702 ret = -EINTR; /* interrupted */
703 atomic_inc(&sem->count); /* give up on down operation */
704 break;
707 schedule();
708 tsk->state = task_state;
711 tsk->state = TASK_RUNNING;
712 remove_wait_queue(&sem->wait, &wait);
713 return ret;
716 void __down(struct semaphore * sem)
718 __do_down(sem,TASK_UNINTERRUPTIBLE);
721 int __down_interruptible(struct semaphore * sem)
723 return __do_down(sem,TASK_INTERRUPTIBLE);
727 static void FASTCALL(__sleep_on(struct wait_queue **p, int state));
728 static void __sleep_on(struct wait_queue **p, int state)
730 unsigned long flags;
731 struct wait_queue wait;
733 current->state = state;
734 wait.task = current;
735 write_lock_irqsave(&waitqueue_lock, flags);
736 __add_wait_queue(p, &wait);
737 write_unlock(&waitqueue_lock);
738 schedule();
739 write_lock_irq(&waitqueue_lock);
740 __remove_wait_queue(p, &wait);
741 write_unlock_irqrestore(&waitqueue_lock, flags);
744 void interruptible_sleep_on(struct wait_queue **p)
746 __sleep_on(p,TASK_INTERRUPTIBLE);
749 void sleep_on(struct wait_queue **p)
751 __sleep_on(p,TASK_UNINTERRUPTIBLE);
754 void scheduling_functions_end_here(void) { }
756 static inline void cascade_timers(struct timer_vec *tv)
758 /* cascade all the timers from tv up one level */
759 struct timer_list *timer;
760 timer = tv->vec[tv->index];
762 * We are removing _all_ timers from the list, so we don't have to
763 * detach them individually, just clear the list afterwards.
765 while (timer) {
766 struct timer_list *tmp = timer;
767 timer = timer->next;
768 internal_add_timer(tmp);
770 tv->vec[tv->index] = NULL;
771 tv->index = (tv->index + 1) & TVN_MASK;
774 static inline void run_timer_list(void)
776 spin_lock_irq(&timerlist_lock);
777 while ((long)(jiffies - timer_jiffies) >= 0) {
778 struct timer_list *timer;
779 if (!tv1.index) {
780 int n = 1;
781 do {
782 cascade_timers(tvecs[n]);
783 } while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
785 while ((timer = tv1.vec[tv1.index])) {
786 void (*fn)(unsigned long) = timer->function;
787 unsigned long data = timer->data;
788 detach_timer(timer);
789 timer->next = timer->prev = NULL;
790 spin_unlock_irq(&timerlist_lock);
791 fn(data);
792 spin_lock_irq(&timerlist_lock);
794 ++timer_jiffies;
795 tv1.index = (tv1.index + 1) & TVR_MASK;
797 spin_unlock_irq(&timerlist_lock);
801 static inline void run_old_timers(void)
803 struct timer_struct *tp;
804 unsigned long mask;
806 for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
807 if (mask > timer_active)
808 break;
809 if (!(mask & timer_active))
810 continue;
811 if (tp->expires > jiffies)
812 continue;
813 timer_active &= ~mask;
814 tp->fn();
815 sti();
819 spinlock_t tqueue_lock;
821 void tqueue_bh(void)
823 run_task_queue(&tq_timer);
826 void immediate_bh(void)
828 run_task_queue(&tq_immediate);
831 unsigned long timer_active = 0;
832 struct timer_struct timer_table[32];
835 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
836 * imply that avenrun[] is the standard name for this kind of thing.
837 * Nothing else seems to be standardized: the fractional size etc
838 * all seem to differ on different machines.
840 unsigned long avenrun[3] = { 0,0,0 };
843 * Nr of active tasks - counted in fixed-point numbers
845 static unsigned long count_active_tasks(void)
847 struct task_struct *p;
848 unsigned long nr = 0;
850 read_lock(&tasklist_lock);
851 for_each_task(p) {
852 if (p->pid &&
853 (p->state == TASK_RUNNING ||
854 p->state == TASK_UNINTERRUPTIBLE ||
855 p->state == TASK_SWAPPING))
856 nr += FIXED_1;
858 read_unlock(&tasklist_lock);
859 return nr;
862 static inline void calc_load(unsigned long ticks)
864 unsigned long active_tasks; /* fixed-point */
865 static int count = LOAD_FREQ;
867 count -= ticks;
868 if (count < 0) {
869 count += LOAD_FREQ;
870 active_tasks = count_active_tasks();
871 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
872 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
873 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
878 * this routine handles the overflow of the microsecond field
880 * The tricky bits of code to handle the accurate clock support
881 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
882 * They were originally developed for SUN and DEC kernels.
883 * All the kudos should go to Dave for this stuff.
886 static void second_overflow(void)
888 long ltemp;
890 /* Bump the maxerror field */
891 time_maxerror += time_tolerance >> SHIFT_USEC;
892 if ( time_maxerror > MAXPHASE )
893 time_maxerror = MAXPHASE;
896 * Leap second processing. If in leap-insert state at
897 * the end of the day, the system clock is set back one
898 * second; if in leap-delete state, the system clock is
899 * set ahead one second. The microtime() routine or
900 * external clock driver will insure that reported time
901 * is always monotonic. The ugly divides should be
902 * replaced.
904 switch (time_state) {
906 case TIME_OK:
907 if (time_status & STA_INS)
908 time_state = TIME_INS;
909 else if (time_status & STA_DEL)
910 time_state = TIME_DEL;
911 break;
913 case TIME_INS:
914 if (xtime.tv_sec % 86400 == 0) {
915 xtime.tv_sec--;
916 time_state = TIME_OOP;
917 printk("Clock: inserting leap second 23:59:60 UTC\n");
919 break;
921 case TIME_DEL:
922 if ((xtime.tv_sec + 1) % 86400 == 0) {
923 xtime.tv_sec++;
924 time_state = TIME_WAIT;
925 printk("Clock: deleting leap second 23:59:59 UTC\n");
927 break;
929 case TIME_OOP:
930 time_state = TIME_WAIT;
931 break;
933 case TIME_WAIT:
934 if (!(time_status & (STA_INS | STA_DEL)))
935 time_state = TIME_OK;
939 * Compute the phase adjustment for the next second. In
940 * PLL mode, the offset is reduced by a fixed factor
941 * times the time constant. In FLL mode the offset is
942 * used directly. In either mode, the maximum phase
943 * adjustment for each second is clamped so as to spread
944 * the adjustment over not more than the number of
945 * seconds between updates.
947 if (time_offset < 0) {
948 ltemp = -time_offset;
949 if (!(time_status & STA_FLL))
950 ltemp >>= SHIFT_KG + time_constant;
951 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
952 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
953 time_offset += ltemp;
954 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
955 } else {
956 ltemp = time_offset;
957 if (!(time_status & STA_FLL))
958 ltemp >>= SHIFT_KG + time_constant;
959 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
960 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
961 time_offset -= ltemp;
962 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
966 * Compute the frequency estimate and additional phase
967 * adjustment due to frequency error for the next
968 * second. When the PPS signal is engaged, gnaw on the
969 * watchdog counter and update the frequency computed by
970 * the pll and the PPS signal.
972 pps_valid++;
973 if (pps_valid == PPS_VALID) {
974 pps_jitter = MAXTIME;
975 pps_stabil = MAXFREQ;
976 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
977 STA_PPSWANDER | STA_PPSERROR);
979 ltemp = time_freq + pps_freq;
980 if (ltemp < 0)
981 time_adj -= -ltemp >>
982 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
983 else
984 time_adj += ltemp >>
985 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
987 #if HZ == 100
988 /* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */
989 if (time_adj < 0)
990 time_adj -= -time_adj >> 2;
991 else
992 time_adj += time_adj >> 2;
993 #endif
996 /* in the NTP reference this is called "hardclock()" */
997 static void update_wall_time_one_tick(void)
1000 * Advance the phase, once it gets to one microsecond, then
1001 * advance the tick more.
1003 time_phase += time_adj;
1004 if (time_phase <= -FINEUSEC) {
1005 long ltemp = -time_phase >> SHIFT_SCALE;
1006 time_phase += ltemp << SHIFT_SCALE;
1007 xtime.tv_usec += tick + time_adjust_step - ltemp;
1009 else if (time_phase >= FINEUSEC) {
1010 long ltemp = time_phase >> SHIFT_SCALE;
1011 time_phase -= ltemp << SHIFT_SCALE;
1012 xtime.tv_usec += tick + time_adjust_step + ltemp;
1013 } else
1014 xtime.tv_usec += tick + time_adjust_step;
1016 if (time_adjust) {
1017 /* We are doing an adjtime thing.
1019 * Modify the value of the tick for next time.
1020 * Note that a positive delta means we want the clock
1021 * to run fast. This means that the tick should be bigger
1023 * Limit the amount of the step for *next* tick to be
1024 * in the range -tickadj .. +tickadj
1026 if (time_adjust > tickadj)
1027 time_adjust_step = tickadj;
1028 else if (time_adjust < -tickadj)
1029 time_adjust_step = -tickadj;
1030 else
1031 time_adjust_step = time_adjust;
1033 /* Reduce by this step the amount of time left */
1034 time_adjust -= time_adjust_step;
1036 else
1037 time_adjust_step = 0;
1041 * Using a loop looks inefficient, but "ticks" is
1042 * usually just one (we shouldn't be losing ticks,
1043 * we're doing this this way mainly for interrupt
1044 * latency reasons, not because we think we'll
1045 * have lots of lost timer ticks
1047 static void update_wall_time(unsigned long ticks)
1049 do {
1050 ticks--;
1051 update_wall_time_one_tick();
1052 } while (ticks);
1054 if (xtime.tv_usec >= 1000000) {
1055 xtime.tv_usec -= 1000000;
1056 xtime.tv_sec++;
1057 second_overflow();
1061 static inline void do_process_times(struct task_struct *p,
1062 unsigned long user, unsigned long system)
1064 long psecs;
1066 psecs = (p->times.tms_utime += user);
1067 psecs += (p->times.tms_stime += system);
1068 if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
1069 /* Send SIGXCPU every second.. */
1070 if (!(psecs % HZ))
1071 send_sig(SIGXCPU, p, 1);
1072 /* and SIGKILL when we go over max.. */
1073 if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
1074 send_sig(SIGKILL, p, 1);
1078 static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
1080 unsigned long it_virt = p->it_virt_value;
1082 if (it_virt) {
1083 if (it_virt <= ticks) {
1084 it_virt = ticks + p->it_virt_incr;
1085 send_sig(SIGVTALRM, p, 1);
1087 p->it_virt_value = it_virt - ticks;
1091 static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
1093 unsigned long it_prof = p->it_prof_value;
1095 if (it_prof) {
1096 if (it_prof <= ticks) {
1097 it_prof = ticks + p->it_prof_incr;
1098 send_sig(SIGPROF, p, 1);
1100 p->it_prof_value = it_prof - ticks;
1104 void update_one_process(struct task_struct *p,
1105 unsigned long ticks, unsigned long user, unsigned long system, int cpu)
1107 p->per_cpu_utime[cpu] += user;
1108 p->per_cpu_stime[cpu] += system;
1109 do_process_times(p, user, system);
1110 do_it_virt(p, user);
1111 do_it_prof(p, ticks);
1114 static void update_process_times(unsigned long ticks, unsigned long system)
1117 * SMP does this on a per-CPU basis elsewhere
1119 #ifndef __SMP__
1120 struct task_struct * p = current;
1121 unsigned long user = ticks - system;
1122 if (p->pid) {
1123 p->counter -= ticks;
1124 if (p->counter < 0) {
1125 p->counter = 0;
1126 p->need_resched = 1;
1128 if (p->priority < DEF_PRIORITY)
1129 kstat.cpu_nice += user;
1130 else
1131 kstat.cpu_user += user;
1132 kstat.cpu_system += system;
1134 update_one_process(p, ticks, user, system, 0);
1135 #endif
1138 volatile unsigned long lost_ticks = 0;
1139 static unsigned long lost_ticks_system = 0;
1141 static inline void update_times(void)
1143 unsigned long ticks;
1144 unsigned long flags;
1146 save_flags(flags);
1147 cli();
1149 ticks = lost_ticks;
1150 lost_ticks = 0;
1152 if (ticks) {
1153 unsigned long system;
1154 system = xchg(&lost_ticks_system, 0);
1156 calc_load(ticks);
1157 update_wall_time(ticks);
1158 restore_flags(flags);
1160 update_process_times(ticks, system);
1162 } else
1163 restore_flags(flags);
1166 static void timer_bh(void)
1168 update_times();
1169 run_old_timers();
1170 run_timer_list();
1173 void do_timer(struct pt_regs * regs)
1175 (*(unsigned long *)&jiffies)++;
1176 lost_ticks++;
1177 mark_bh(TIMER_BH);
1178 if (!user_mode(regs))
1179 lost_ticks_system++;
1180 if (tq_timer)
1181 mark_bh(TQUEUE_BH);
1184 #ifndef __alpha__
1187 * For backwards compatibility? This can be done in libc so Alpha
1188 * and all newer ports shouldn't need it.
1190 asmlinkage unsigned int sys_alarm(unsigned int seconds)
1192 struct itimerval it_new, it_old;
1193 unsigned int oldalarm;
1195 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
1196 it_new.it_value.tv_sec = seconds;
1197 it_new.it_value.tv_usec = 0;
1198 do_setitimer(ITIMER_REAL, &it_new, &it_old);
1199 oldalarm = it_old.it_value.tv_sec;
1200 /* ehhh.. We can't return 0 if we have an alarm pending.. */
1201 /* And we'd better return too much than too little anyway */
1202 if (it_old.it_value.tv_usec)
1203 oldalarm++;
1204 return oldalarm;
1208 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1209 * should be moved into arch/i386 instead?
1212 asmlinkage int sys_getpid(void)
1214 /* This is SMP safe - current->pid doesn't change */
1215 return current->pid;
1219 * This is not strictly SMP safe: p_opptr could change
1220 * from under us. However, rather than getting any lock
1221 * we can use an optimistic algorithm: get the parent
1222 * pid, and go back and check that the parent is still
1223 * the same. If it has changed (which is extremely unlikely
1224 * indeed), we just try again..
1226 * NOTE! This depends on the fact that even if we _do_
1227 * get an old value of "parent", we can happily dereference
1228 * the pointer: we just can't necessarily trust the result
1229 * until we know that the parent pointer is valid.
1231 * The "mb()" macro is a memory barrier - a synchronizing
1232 * event. It also makes sure that gcc doesn't optimize
1233 * away the necessary memory references.. The barrier doesn't
1234 * have to have all that strong semantics: on x86 we don't
1235 * really require a synchronizing instruction, for example.
1236 * The barrier is more important for code generation than
1237 * for any real memory ordering semantics (even if there is
1238 * a small window for a race, using the old pointer is
1239 * harmless for a while).
1241 asmlinkage int sys_getppid(void)
1243 int pid;
1244 struct task_struct * me = current;
1245 struct task_struct * parent;
1247 parent = me->p_opptr;
1248 for (;;) {
1249 pid = parent->pid;
1250 #if __SMP__
1252 struct task_struct *old = parent;
1253 mb();
1254 parent = me->p_opptr;
1255 if (old != parent)
1256 continue;
1258 #endif
1259 break;
1261 return pid;
1264 asmlinkage int sys_getuid(void)
1266 /* Only we change this so SMP safe */
1267 return current->uid;
1270 asmlinkage int sys_geteuid(void)
1272 /* Only we change this so SMP safe */
1273 return current->euid;
1276 asmlinkage int sys_getgid(void)
1278 /* Only we change this so SMP safe */
1279 return current->gid;
1282 asmlinkage int sys_getegid(void)
1284 /* Only we change this so SMP safe */
1285 return current->egid;
1289 * This has been replaced by sys_setpriority. Maybe it should be
1290 * moved into the arch dependent tree for those ports that require
1291 * it for backward compatibility?
1294 asmlinkage int sys_nice(int increment)
1296 unsigned long newprio;
1297 int increase = 0;
1300 * Setpriority might change our priority at the same moment.
1301 * We don't have to worry. Conceptually one call occurs first
1302 * and we have a single winner.
1305 newprio = increment;
1306 if (increment < 0) {
1307 if (!capable(CAP_SYS_NICE))
1308 return -EPERM;
1309 newprio = -increment;
1310 increase = 1;
1313 if (newprio > 40)
1314 newprio = 40;
1316 * do a "normalization" of the priority (traditionally
1317 * Unix nice values are -20 to 20; Linux doesn't really
1318 * use that kind of thing, but uses the length of the
1319 * timeslice instead (default 150 ms). The rounding is
1320 * why we want to avoid negative values.
1322 newprio = (newprio * DEF_PRIORITY + 10) / 20;
1323 increment = newprio;
1324 if (increase)
1325 increment = -increment;
1327 * Current->priority can change between this point
1328 * and the assignment. We are assigning not doing add/subs
1329 * so thats ok. Conceptually a process might just instantaneously
1330 * read the value we stomp over. I don't think that is an issue
1331 * unless posix makes it one. If so we can loop on changes
1332 * to current->priority.
1334 newprio = current->priority - increment;
1335 if ((signed) newprio < 1)
1336 newprio = 1;
1337 if (newprio > DEF_PRIORITY*2)
1338 newprio = DEF_PRIORITY*2;
1339 current->priority = newprio;
1340 return 0;
1343 #endif
1345 static inline struct task_struct *find_process_by_pid(pid_t pid)
1347 struct task_struct *tsk = current;
1349 if (pid)
1350 tsk = find_task_by_pid(pid);
1351 return tsk;
1354 static int setscheduler(pid_t pid, int policy,
1355 struct sched_param *param)
1357 struct sched_param lp;
1358 struct task_struct *p;
1359 int retval;
1361 retval = -EINVAL;
1362 if (!param || pid < 0)
1363 goto out_nounlock;
1365 retval = -EFAULT;
1366 if (copy_from_user(&lp, param, sizeof(struct sched_param)))
1367 goto out_nounlock;
1370 * We play safe to avoid deadlocks.
1372 spin_lock(&scheduler_lock);
1373 spin_lock_irq(&runqueue_lock);
1374 read_lock(&tasklist_lock);
1376 p = find_process_by_pid(pid);
1378 retval = -ESRCH;
1379 if (!p)
1380 goto out_unlock;
1382 if (policy < 0)
1383 policy = p->policy;
1384 else {
1385 retval = -EINVAL;
1386 if (policy != SCHED_FIFO && policy != SCHED_RR &&
1387 policy != SCHED_OTHER)
1388 goto out_unlock;
1392 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
1393 * priority for SCHED_OTHER is 0.
1395 retval = -EINVAL;
1396 if (lp.sched_priority < 0 || lp.sched_priority > 99)
1397 goto out_unlock;
1398 if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
1399 goto out_unlock;
1401 retval = -EPERM;
1402 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
1403 !capable(CAP_SYS_NICE))
1404 goto out_unlock;
1405 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1406 !capable(CAP_SYS_NICE))
1407 goto out_unlock;
1409 retval = 0;
1410 p->policy = policy;
1411 p->rt_priority = lp.sched_priority;
1412 if (p->next_run)
1413 move_first_runqueue(p);
1415 current->need_resched = 1;
1417 out_unlock:
1418 read_unlock(&tasklist_lock);
1419 spin_unlock_irq(&runqueue_lock);
1420 spin_unlock(&scheduler_lock);
1422 out_nounlock:
1423 return retval;
1426 asmlinkage int sys_sched_setscheduler(pid_t pid, int policy,
1427 struct sched_param *param)
1429 return setscheduler(pid, policy, param);
1432 asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
1434 return setscheduler(pid, -1, param);
1437 asmlinkage int sys_sched_getscheduler(pid_t pid)
1439 struct task_struct *p;
1440 int retval;
1442 retval = -EINVAL;
1443 if (pid < 0)
1444 goto out_nounlock;
1446 read_lock(&tasklist_lock);
1448 retval = -ESRCH;
1449 p = find_process_by_pid(pid);
1450 if (!p)
1451 goto out_unlock;
1453 retval = p->policy;
1455 out_unlock:
1456 read_unlock(&tasklist_lock);
1458 out_nounlock:
1459 return retval;
1462 asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
1464 struct task_struct *p;
1465 struct sched_param lp;
1466 int retval;
1468 retval = -EINVAL;
1469 if (!param || pid < 0)
1470 goto out_nounlock;
1472 read_lock(&tasklist_lock);
1473 p = find_process_by_pid(pid);
1474 retval = -ESRCH;
1475 if (!p)
1476 goto out_unlock;
1477 lp.sched_priority = p->rt_priority;
1478 read_unlock(&tasklist_lock);
1481 * This one might sleep, we cannot do it with a spinlock held ...
1483 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1485 out_nounlock:
1486 return retval;
1488 out_unlock:
1489 read_unlock(&tasklist_lock);
1490 return retval;
1493 asmlinkage int sys_sched_yield(void)
1495 spin_lock(&scheduler_lock);
1496 spin_lock_irq(&runqueue_lock);
1497 current->policy |= SCHED_YIELD;
1498 current->need_resched = 1;
1499 move_last_runqueue(current);
1500 spin_unlock_irq(&runqueue_lock);
1501 spin_unlock(&scheduler_lock);
1502 return 0;
1505 asmlinkage int sys_sched_get_priority_max(int policy)
1507 int ret = -EINVAL;
1509 switch (policy) {
1510 case SCHED_FIFO:
1511 case SCHED_RR:
1512 ret = 99;
1513 break;
1514 case SCHED_OTHER:
1515 ret = 0;
1516 break;
1518 return ret;
1521 asmlinkage int sys_sched_get_priority_min(int policy)
1523 int ret = -EINVAL;
1525 switch (policy) {
1526 case SCHED_FIFO:
1527 case SCHED_RR:
1528 ret = 1;
1529 break;
1530 case SCHED_OTHER:
1531 ret = 0;
1533 return ret;
1536 asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
1538 struct timespec t;
1540 t.tv_sec = 0;
1541 t.tv_nsec = 150000;
1542 if (copy_to_user(interval, &t, sizeof(struct timespec)))
1543 return -EFAULT;
1544 return 0;
1547 asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
1549 struct timespec t;
1550 unsigned long expire;
1552 if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
1553 return -EFAULT;
1555 if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
1556 return -EINVAL;
1559 if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
1560 current->policy != SCHED_OTHER)
1563 * Short delay requests up to 2 ms will be handled with
1564 * high precision by a busy wait for all real-time processes.
1566 * Its important on SMP not to do this holding locks.
1568 udelay((t.tv_nsec + 999) / 1000);
1569 return 0;
1572 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec) + jiffies;
1574 current->timeout = expire;
1575 current->state = TASK_INTERRUPTIBLE;
1576 schedule();
1578 if (expire > jiffies) {
1579 if (rmtp) {
1580 jiffies_to_timespec(expire - jiffies -
1581 (expire > jiffies + 1), &t);
1582 if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
1583 return -EFAULT;
1585 return -EINTR;
1587 return 0;
1590 static void show_task(int nr,struct task_struct * p)
1592 unsigned long free = 0;
1593 static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
1595 printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
1596 if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))
1597 printk(stat_nam[p->state]);
1598 else
1599 printk(" ");
1600 #if (BITS_PER_LONG == 32)
1601 if (p == current)
1602 printk(" current ");
1603 else
1604 printk(" %08lX ", thread_saved_pc(&p->tss));
1605 #else
1606 if (p == current)
1607 printk(" current task ");
1608 else
1609 printk(" %016lx ", thread_saved_pc(&p->tss));
1610 #endif
1612 unsigned long * n = (unsigned long *) (p+1);
1613 while (!*n)
1614 n++;
1615 free = (unsigned long) n - (unsigned long)(p+1);
1617 printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
1618 if (p->p_cptr)
1619 printk("%5d ", p->p_cptr->pid);
1620 else
1621 printk(" ");
1622 if (p->p_ysptr)
1623 printk("%7d", p->p_ysptr->pid);
1624 else
1625 printk(" ");
1626 if (p->p_osptr)
1627 printk(" %5d\n", p->p_osptr->pid);
1628 else
1629 printk("\n");
1632 struct signal_queue *q;
1633 char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
1635 render_sigset_t(&p->signal, s);
1636 render_sigset_t(&p->blocked, b);
1637 printk(" sig: %d %s %s :", signal_pending(p), s, b);
1638 for (q = p->sigqueue; q ; q = q->next)
1639 printk(" %d", q->info.si_signo);
1640 printk(" X\n");
1644 char * render_sigset_t(sigset_t *set, char *buffer)
1646 int i = _NSIG, x;
1647 do {
1648 i -= 4, x = 0;
1649 if (sigismember(set, i+1)) x |= 1;
1650 if (sigismember(set, i+2)) x |= 2;
1651 if (sigismember(set, i+3)) x |= 4;
1652 if (sigismember(set, i+4)) x |= 8;
1653 *buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
1654 } while (i >= 4);
1655 *buffer = 0;
1656 return buffer;
1659 void show_state(void)
1661 struct task_struct *p;
1663 #if (BITS_PER_LONG == 32)
1664 printk("\n"
1665 " free sibling\n");
1666 printk(" task PC stack pid father child younger older\n");
1667 #else
1668 printk("\n"
1669 " free sibling\n");
1670 printk(" task PC stack pid father child younger older\n");
1671 #endif
1672 read_lock(&tasklist_lock);
1673 for_each_task(p)
1674 show_task((p->tarray_ptr - &task[0]),p);
1675 read_unlock(&tasklist_lock);
1678 __initfunc(void sched_init(void))
1681 * We have to do a little magic to get the first
1682 * process right in SMP mode.
1684 int cpu=hard_smp_processor_id();
1685 int nr = NR_TASKS;
1687 init_task.processor=cpu;
1689 /* Init task array free list and pidhash table. */
1690 while(--nr > 0)
1691 add_free_taskslot(&task[nr]);
1693 for(nr = 0; nr < PIDHASH_SZ; nr++)
1694 pidhash[nr] = NULL;
1696 init_bh(TIMER_BH, timer_bh);
1697 init_bh(TQUEUE_BH, tqueue_bh);
1698 init_bh(IMMEDIATE_BH, immediate_bh);