2 * Intel MP v1.1/v1.4 specification support routines for multi-pentium
5 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
6 * Supported by Caldera http://www.caldera.com.
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
10 * Thanks to Intel for making available several different Pentium and
11 * Pentium Pro MP machines.
13 * This code is released under the GNU public license version 2 or
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIP report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
28 * Alan Cox : Added EBDA scanning
31 #include <linux/config.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/timer.h>
35 #include <linux/sched.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/delay.h>
39 #include <linux/mc146818rtc.h>
40 #include <asm/i82489.h>
41 #include <linux/smp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/interrupt.h>
44 #include <linux/init.h>
45 #include <asm/pgtable.h>
46 #include <asm/bitops.h>
47 #include <asm/pgtable.h>
52 # include <asm/mtrr.h>
55 #define __KERNEL_SYSCALLS__
56 #include <linux/unistd.h>
60 extern unsigned long start_kernel
, _etext
;
61 extern void update_one_process( struct task_struct
*p
,
62 unsigned long ticks
, unsigned long user
,
63 unsigned long system
, int cpu
);
65 * Some notes on processor bugs:
67 * Pentium and Pentium Pro (and all CPUs) have bugs. The Linux issues
68 * for SMP are handled as follows.
71 * Occasional delivery of 'spurious interrupt' as trap #16. This
72 * is very rare. The kernel logs the event and recovers
75 * There is a marginal case where REP MOVS on 100MHz SMP
76 * machines with B stepping processors can fail. XXX should provide
77 * an L1cache=Writethrough or L1cache=off option.
79 * B stepping CPUs may hang. There are hardware work arounds
80 * for this. We warn about it in case your board doesnt have the work
81 * arounds. Basically thats so I can tell anyone with a B stepping
82 * CPU and SMP problems "tough".
84 * Specific items [From Pentium Processor Specification Update]
86 * 1AP. Linux doesn't use remote read
87 * 2AP. Linux doesn't trust APIC errors
88 * 3AP. We work around this
89 * 4AP. Linux never generated 3 interrupts of the same priority
90 * to cause a lost local interrupt.
91 * 5AP. Remote read is never used
92 * 9AP. XXX NEED TO CHECK WE HANDLE THIS XXX
93 * 10AP. XXX NEED TO CHECK WE HANDLE THIS XXX
94 * 11AP. Linux reads the APIC between writes to avoid this, as per
95 * the documentation. Make sure you preserve this as it affects
96 * the C stepping chips too.
98 * If this sounds worrying believe me these bugs are ___RARE___ and
99 * there's about nothing of note with C stepping upwards.
103 /* Kernel spinlock */
104 spinlock_t kernel_flag
= SPIN_LOCK_UNLOCKED
;
107 * Why isn't this somewhere standard ??
109 * Maybe because this procedure is horribly buggy, and does
110 * not deserve to live. Think about signedness issues for five
111 * seconds to see why. - Linus
114 extern __inline
int max(int a
,int b
)
121 static int smp_b_stepping
= 0; /* Set if we find a B stepping CPU */
123 static int max_cpus
= -1; /* Setup configured maximum number of CPUs to activate */
124 int smp_found_config
=0; /* Have we found an SMP box */
126 unsigned long cpu_present_map
= 0; /* Bitmask of existing CPUs */
127 int smp_num_cpus
= 1; /* Total count of live CPUs */
128 int smp_threads_ready
=0; /* Set when the idlers are all forked */
129 volatile int cpu_number_map
[NR_CPUS
]; /* which CPU maps to which logical number */
130 volatile int __cpu_logical_map
[NR_CPUS
]; /* which logical number maps to which CPU */
131 volatile unsigned long cpu_callin_map
[NR_CPUS
] = {0,}; /* We always use 0 the rest is ready for parallel delivery */
132 volatile unsigned long smp_invalidate_needed
; /* Used for the invalidate map that's also checked in the spinlock */
133 volatile unsigned long kstack_ptr
; /* Stack vector for booting CPUs */
134 struct cpuinfo_x86 cpu_data
[NR_CPUS
]; /* Per CPU bogomips and other parameters */
135 static unsigned int num_processors
= 1; /* Internal processor count */
136 unsigned long mp_ioapic_addr
= 0xFEC00000; /* Address of the I/O apic (not yet used) */
137 unsigned char boot_cpu_id
= 0; /* Processor that is doing the boot up */
138 static int smp_activated
= 0; /* Tripped once we need to start cross invalidating */
139 int apic_version
[NR_CPUS
]; /* APIC version number */
140 static volatile int smp_commenced
=0; /* Tripped when we start scheduling */
141 unsigned long apic_retval
; /* Just debugging the assembler.. */
143 static volatile unsigned char smp_cpu_in_msg
[NR_CPUS
]; /* True if this processor is sending an IPI */
145 volatile unsigned long kernel_counter
=0; /* Number of times the processor holds the lock */
146 volatile unsigned long syscall_count
=0; /* Number of times the processor holds the syscall lock */
148 volatile unsigned long ipi_count
; /* Number of IPIs delivered */
150 volatile unsigned long smp_proc_in_lock
[NR_CPUS
] = {0,};/* for computing process time */
151 volatile int smp_process_available
=0;
153 const char lk_lockmsg
[] = "lock from interrupt context at %p\n";
155 int mp_bus_id_to_type
[MAX_MP_BUSSES
] = { -1, };
156 extern int mp_irq_entries
;
157 extern struct mpc_config_intsrc mp_irqs
[MAX_IRQ_SOURCES
];
158 extern int mpc_default_type
;
159 int mp_bus_id_to_pci_bus
[MAX_MP_BUSSES
] = { -1, };
160 int mp_current_pci_id
= 0;
161 unsigned long mp_lapic_addr
= 0;
163 /* #define SMP_DEBUG */
166 #define SMP_PRINTK(x) printk x
168 #define SMP_PRINTK(x)
172 * Setup routine for controlling SMP activation
174 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
175 * activation entirely (the MPS table probe still happens, though).
177 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
178 * greater than 0, limits the maximum number of CPUs activated in
182 __initfunc(void smp_setup(char *str
, int *ints
))
184 if (ints
&& ints
[0] > 0)
190 void ack_APIC_irq (void)
195 apic_read(APIC_SPIV
);
197 /* Docs say use 0 for future compatibility */
198 apic_write(APIC_EOI
, 0);
202 * Checksum an MP configuration block.
205 static int mpf_checksum(unsigned char *mp
, int len
)
214 * Processor encoding in an MP configuration block
217 static char *mpc_family(int family
,int model
)
220 static char *model_defs
[]=
223 "80486SX","80486DX/2 or 80487",
224 "80486SL","Intel5X2(tm)",
229 return("Pentium(tm) Pro");
231 return("Pentium(tm)");
232 if(family
==0x0F && model
==0x0F)
233 return("Special controller");
234 if(family
==0x04 && model
<9)
235 return model_defs
[model
];
236 sprintf(n
,"Unknown CPU [%d:%d]",family
, model
);
244 __initfunc(static int smp_read_mpc(struct mp_config_table
*mpc
))
247 int count
=sizeof(*mpc
);
249 unsigned char *mpt
=((unsigned char *)mpc
)+count
;
251 if(memcmp(mpc
->mpc_signature
,MPC_SIGNATURE
,4))
253 printk("Bad signature [%c%c%c%c].\n",
254 mpc
->mpc_signature
[0],
255 mpc
->mpc_signature
[1],
256 mpc
->mpc_signature
[2],
257 mpc
->mpc_signature
[3]);
260 if(mpf_checksum((unsigned char *)mpc
,mpc
->mpc_length
))
262 printk("Checksum error.\n");
265 if(mpc
->mpc_spec
!=0x01 && mpc
->mpc_spec
!=0x04)
267 printk("Bad Config Table version (%d)!!\n",mpc
->mpc_spec
);
270 memcpy(str
,mpc
->mpc_oem
,8);
272 memcpy(ioapic_OEM_ID
,str
,9);
273 printk("OEM ID: %s ",str
);
275 memcpy(str
,mpc
->mpc_productid
,12);
277 memcpy(ioapic_Product_ID
,str
,13);
278 printk("Product ID: %s ",str
);
280 printk("APIC at: 0x%lX\n",mpc
->mpc_lapic
);
282 /* save the local APIC address, it might be non-default */
283 mp_lapic_addr
= mpc
->mpc_lapic
;
286 * Now process the configuration blocks.
289 while(count
<mpc
->mpc_length
)
295 struct mpc_config_processor
*m
=
296 (struct mpc_config_processor
*)mpt
;
297 if(m
->mpc_cpuflag
&CPU_ENABLED
)
299 printk("Processor #%d %s APIC version %d\n",
301 mpc_family((m
->mpc_cpufeature
&
307 if(m
->mpc_featureflag
&(1<<0))
308 printk(" Floating point unit present.\n");
309 if(m
->mpc_featureflag
&(1<<7))
310 printk(" Machine Exception supported.\n");
311 if(m
->mpc_featureflag
&(1<<8))
312 printk(" 64 bit compare & exchange supported.\n");
313 if(m
->mpc_featureflag
&(1<<9))
314 printk(" Internal APIC present.\n");
316 if(m
->mpc_cpuflag
&CPU_BOOTPROCESSOR
)
318 SMP_PRINTK((" Bootup CPU\n"));
319 boot_cpu_id
=m
->mpc_apicid
;
321 else /* Boot CPU already counted */
324 if(m
->mpc_apicid
>NR_CPUS
)
325 printk("Processor #%d unused. (Max %d processors).\n",m
->mpc_apicid
, NR_CPUS
);
328 cpu_present_map
|=(1<<m
->mpc_apicid
);
329 apic_version
[m
->mpc_apicid
]=m
->mpc_apicver
;
338 struct mpc_config_bus
*m
=
339 (struct mpc_config_bus
*)mpt
;
340 memcpy(str
,m
->mpc_bustype
,6);
342 SMP_PRINTK(("Bus #%d is %s\n",
345 if ((strncmp(m
->mpc_bustype
,"ISA",3) == 0) ||
346 (strncmp(m
->mpc_bustype
,"EISA",4) == 0))
347 mp_bus_id_to_type
[m
->mpc_busid
] =
350 if (strncmp(m
->mpc_bustype
,"PCI",3) == 0) {
351 mp_bus_id_to_type
[m
->mpc_busid
] =
353 mp_bus_id_to_pci_bus
[m
->mpc_busid
] =
363 struct mpc_config_ioapic
*m
=
364 (struct mpc_config_ioapic
*)mpt
;
365 if(m
->mpc_flags
&MPC_APIC_USABLE
)
368 printk("I/O APIC #%d Version %d at 0x%lX.\n",
369 m
->mpc_apicid
,m
->mpc_apicver
,
371 mp_ioapic_addr
= m
->mpc_apicaddr
;
379 struct mpc_config_intsrc
*m
=
380 (struct mpc_config_intsrc
*)mpt
;
382 mp_irqs
[mp_irq_entries
] = *m
;
383 if (++mp_irq_entries
== MAX_IRQ_SOURCES
) {
384 printk("Max irq sources exceeded!!\n");
385 printk("Skipping remaining sources.\n");
395 struct mpc_config_intlocal
*m
=
396 (struct mpc_config_intlocal
*)mpt
;
404 printk("Warning: Multiple APICs not supported.\n");
405 return num_processors
;
409 * Scan the memory blocks for an SMP configuration block.
412 __initfunc(int smp_scan_config(unsigned long base
, unsigned long length
))
414 unsigned long *bp
=phys_to_virt(base
);
415 struct intel_mp_floating
*mpf
;
417 SMP_PRINTK(("Scan SMP from %p for %ld bytes.\n",
420 printk("Error: MPF size\n");
424 if(*bp
==SMP_MAGIC_IDENT
)
426 mpf
=(struct intel_mp_floating
*)bp
;
427 if(mpf
->mpf_length
==1 &&
428 !mpf_checksum((unsigned char *)bp
,16) &&
429 (mpf
->mpf_specification
== 1
430 || mpf
->mpf_specification
== 4) )
432 printk("Intel MultiProcessor Specification v1.%d\n", mpf
->mpf_specification
);
433 if(mpf
->mpf_feature2
&(1<<7))
434 printk(" IMCR and PIC compatibility mode.\n");
436 printk(" Virtual Wire compatibility mode.\n");
439 * Now see if we need to read further.
441 if(mpf
->mpf_feature1
!=0)
445 /* local APIC has default address */
446 mp_lapic_addr
= 0xFEE00000;
448 * We need to know what the local
449 * APIC id of the boot CPU is!
454 * HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK
456 * It's not just a crazy hack. ;-)
459 * Standard page mapping
460 * functions don't work yet.
461 * We know that page 0 is not
462 * used. Steal it for now!
466 pg0
[0] = (mp_lapic_addr
| 7);
469 boot_cpu_id
= GET_APIC_ID(*((volatile unsigned long *) APIC_ID
));
480 * END OF HACK END OF HACK END OF HACK END OF HACK END OF HACK
484 * 2 CPUs, numbered 0 & 1.
488 printk("I/O APIC at 0xFEC00000.\n");
491 * Save the default type number, we
492 * need it later to set the IO-APIC
495 mpc_default_type
= mpf
->mpf_feature1
;
497 printk("Bus #0 is ");
499 switch(mpf
->mpf_feature1
)
506 printk("EISA with no IRQ8 chaining\n");
519 printk("???\nUnknown standard configuration %d\n",
523 if(mpf
->mpf_feature1
>4)
525 printk("Bus #1 is PCI\n");
528 * Set local APIC version to
529 * the integrated form.
530 * It's initialized to zero
531 * otherwise, representing
532 * a discrete 82489DX.
534 apic_version
[0] = 0x10;
535 apic_version
[1] = 0x10;
538 * Read the physical hardware table.
539 * Anything here will override the
543 smp_read_mpc((void *)mpf
->mpf_physptr
);
545 __cpu_logical_map
[0] = boot_cpu_id
;
546 global_irq_holder
= boot_cpu_id
;
547 current
->processor
= boot_cpu_id
;
549 printk("Processors: %d\n", num_processors
);
551 * Only use the first configuration found.
564 * Trampoline 80x86 program as an array.
567 extern unsigned char trampoline_data
[];
568 extern unsigned char trampoline_end
[];
569 static unsigned char *trampoline_base
;
572 * Currently trivial. Write the real->protected mode
573 * bootstrap into the page concerned. The caller
574 * has made sure it's suitably aligned.
577 __initfunc(static unsigned long setup_trampoline(void))
579 memcpy(trampoline_base
, trampoline_data
, trampoline_end
- trampoline_data
);
580 return virt_to_phys(trampoline_base
);
584 * We are called very early to get the low memory for the
585 * SMP bootup trampoline page.
587 __initfunc(unsigned long smp_alloc_memory(unsigned long mem_base
))
589 if (virt_to_phys((void *)mem_base
) >= 0x9F000)
590 panic("smp_alloc_memory: Insufficient low memory for kernel trampoline 0x%lx.", mem_base
);
591 trampoline_base
= (void *)mem_base
;
592 return mem_base
+ PAGE_SIZE
;
596 * The bootstrap kernel entry code has set these up. Save them for
600 __initfunc(void smp_store_cpu_info(int id
))
602 struct cpuinfo_x86
*c
=&cpu_data
[id
];
607 c
->pgtable_cache_sz
= 0;
610 * Mask B, Pentium, but not Pentium MMX
612 if (c
->x86_vendor
== X86_VENDOR_INTEL
&&
614 c
->x86_mask
>= 1 && c
->x86_mask
<= 4 &&
616 smp_b_stepping
=1; /* Remember we have B step Pentia with bugs */
620 * Architecture specific routine called by the kernel just before init is
621 * fired off. This allows the BP to have everything in order [we hope].
622 * At the end of this all the APs will hit the system scheduling and off
623 * we go. Each AP will load the system gdt's and jump through the kernel
624 * init into idle(). At this point the scheduler will one day take over
625 * and give them jobs to do. smp_callin is a standard routine
626 * we use to track CPUs as they power up.
629 __initfunc(void smp_commence(void))
632 * Lets the callins below out of their loop.
634 SMP_PRINTK(("Setting commenced=1, go go go\n"));
638 __initfunc(void enable_local_APIC(void))
642 value
= apic_read(APIC_SPIV
);
643 value
|= (1<<8); /* Enable APIC (bit==1) */
644 value
&= ~(1<<9); /* Enable focus processor (bit==0) */
645 value
|= 0xff; /* Set spurious IRQ vector to 0xff */
646 apic_write(APIC_SPIV
,value
);
648 value
= apic_read(APIC_TASKPRI
);
649 value
&= ~APIC_TPRI_MASK
; /* Set Task Priority to 'accept all' */
650 apic_write(APIC_TASKPRI
,value
);
652 udelay(100); /* B safe */
657 __initfunc(unsigned long init_smp_mappings(unsigned long memory_start
))
659 unsigned long apic_phys
, ioapic_phys
;
661 memory_start
= PAGE_ALIGN(memory_start
);
662 if (smp_found_config
) {
663 apic_phys
= mp_lapic_addr
;
664 ioapic_phys
= mp_ioapic_addr
;
667 * set up a fake all zeroes page to simulate the
668 * local APIC and another one for the IO-APIC. We
669 * could use the real zero-page, but it's safer
670 * this way if some buggy code writes to this page ...
672 apic_phys
= __pa(memory_start
);
673 ioapic_phys
= __pa(memory_start
+PAGE_SIZE
);
674 memset((void *)memory_start
, 0, 2*PAGE_SIZE
);
675 memory_start
+= 2*PAGE_SIZE
;
678 set_fixmap(FIX_APIC_BASE
,apic_phys
);
679 set_fixmap(FIX_IO_APIC_BASE
,ioapic_phys
);
681 printk("mapped APIC to %08lx (%08lx)\n", APIC_BASE
, apic_phys
);
682 printk("mapped IOAPIC to %08lx (%08lx)\n", fix_to_virt(FIX_IO_APIC_BASE
), ioapic_phys
);
687 __initfunc(void smp_callin(void))
689 extern void calibrate_delay(void);
690 int cpuid
=GET_APIC_ID(apic_read(APIC_ID
));
696 SMP_PRINTK(("CALLIN %d %d\n",hard_smp_processor_id(), smp_processor_id()));
700 * Set up our APIC timer.
709 SMP_PRINTK(("Stack at about %p\n",&cpuid
));
712 * Save our processor parameters
714 smp_store_cpu_info(cpuid
);
717 * Allow the master to continue.
719 set_bit(cpuid
, (unsigned long *)&cpu_callin_map
[0]);
724 extern int cpu_idle(void * unused
);
727 * Activate a secondary processor.
729 __initfunc(int start_secondary(void *unused
))
732 /* Must be done before calibration delay is computed */
733 mtrr_init_secondary_cpu ();
736 while (!smp_commenced
)
738 return cpu_idle(NULL
);
742 * Everything has been set up for the secondary
743 * CPUs - they just need to reload everything
744 * from the task structure
746 __initfunc(void initialize_secondary(void))
748 struct thread_struct
* p
= ¤t
->tss
;
751 * We don't actually need to load the full TSS,
752 * basically just the stack pointer and the eip.
754 * Get the scheduler lock, because we're going
755 * to release it as part of the "reschedule" return.
757 spin_lock(&scheduler_lock
);
758 asm volatile("lldt %%ax": :"a" (p
->ldt
));
759 asm volatile("ltr %%ax": :"a" (p
->tr
));
764 :"r" (p
->esp
),"r" (p
->eip
));
772 __initfunc(static void do_boot_cpu(int i
))
776 struct task_struct
*idle
;
777 unsigned long send_status
, accept_status
;
778 int timeout
, num_starts
, j
;
779 unsigned long start_eip
;
782 * We need an idle process for each processor.
785 kernel_thread(start_secondary
, NULL
, CLONE_PID
);
788 idle
= task
[cpucount
];
790 panic("No idle process for CPU %d", i
);
793 __cpu_logical_map
[cpucount
] = i
;
794 cpu_number_map
[i
] = cpucount
;
796 /* start_eip had better be page-aligned! */
797 start_eip
= setup_trampoline();
799 printk("Booting processor %d eip %lx\n", i
, start_eip
); /* So we see what's up */
800 stack_start
.esp
= (void *) (1024 + PAGE_SIZE
+ (char *)idle
);
803 * This grunge runs the startup process for
804 * the targeted processor.
807 SMP_PRINTK(("Setting warm reset code and vector.\n"));
809 CMOS_WRITE(0xa, 0xf);
811 SMP_PRINTK(("1.\n"));
812 *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip
>> 4;
813 SMP_PRINTK(("2.\n"));
814 *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip
& 0xf;
815 SMP_PRINTK(("3.\n"));
817 maincfg
=swapper_pg_dir
[0];
818 ((unsigned long *)swapper_pg_dir
)[0]=0x102007;
821 * Be paranoid about clearing APIC errors.
824 if ( apic_version
[i
] & 0xF0 )
826 apic_write(APIC_ESR
, 0);
827 accept_status
= (apic_read(APIC_ESR
) & 0xEF);
831 * Status is now clean
838 * Starting actual IPI sequence...
841 SMP_PRINTK(("Asserting INIT.\n"));
847 cfg
=apic_read(APIC_ICR2
);
849 apic_write(APIC_ICR2
, cfg
|SET_APIC_DEST_FIELD(i
)); /* Target chip */
850 cfg
=apic_read(APIC_ICR
);
851 cfg
&=~0xCDFFF; /* Clear bits */
852 cfg
|= (APIC_DEST_FIELD
| APIC_DEST_LEVELTRIG
853 | APIC_DEST_ASSERT
| APIC_DEST_DM_INIT
);
854 apic_write(APIC_ICR
, cfg
); /* Send IPI */
857 SMP_PRINTK(("Deasserting INIT.\n"));
859 cfg
=apic_read(APIC_ICR2
);
861 apic_write(APIC_ICR2
, cfg
|SET_APIC_DEST_FIELD(i
)); /* Target chip */
862 cfg
=apic_read(APIC_ICR
);
863 cfg
&=~0xCDFFF; /* Clear bits */
864 cfg
|= (APIC_DEST_FIELD
| APIC_DEST_LEVELTRIG
865 | APIC_DEST_DM_INIT
);
866 apic_write(APIC_ICR
, cfg
); /* Send IPI */
869 * Should we send STARTUP IPIs ?
871 * Determine this based on the APIC version.
872 * If we don't have an integrated APIC, don't
873 * send the STARTUP IPIs.
876 if ( apic_version
[i
] & 0xF0 )
882 * Run STARTUP IPI loop.
885 for (j
= 1; !(send_status
|| accept_status
)
886 && (j
<= num_starts
) ; j
++)
888 SMP_PRINTK(("Sending STARTUP #%d.\n",j
));
889 apic_write(APIC_ESR
, 0);
890 SMP_PRINTK(("After apic_write.\n"));
896 cfg
=apic_read(APIC_ICR2
);
898 apic_write(APIC_ICR2
, cfg
|SET_APIC_DEST_FIELD(i
)); /* Target chip */
899 cfg
=apic_read(APIC_ICR
);
900 cfg
&=~0xCDFFF; /* Clear bits */
901 cfg
|= (APIC_DEST_FIELD
902 | APIC_DEST_DM_STARTUP
903 | (start_eip
>> 12)); /* Boot on the stack */
904 SMP_PRINTK(("Before start apic_write.\n"));
905 apic_write(APIC_ICR
, cfg
); /* Kick the second */
907 SMP_PRINTK(("Startup point 1.\n"));
910 SMP_PRINTK(("Sleeping.\n")); mdelay(1000);
912 } while ( (send_status
= (apic_read(APIC_ICR
) & 0x1000))
913 && (timeout
++ < 1000));
915 accept_status
= (apic_read(APIC_ESR
) & 0xEF);
917 SMP_PRINTK(("After Startup.\n"));
919 if (send_status
) /* APIC never delivered?? */
920 printk("APIC never delivered???\n");
921 if (accept_status
) /* Send accept error */
922 printk("APIC delivery error (%lx).\n", accept_status
);
924 if( !(send_status
|| accept_status
) )
926 for(timeout
=0;timeout
<50000;timeout
++)
928 if(cpu_callin_map
[0]&(1<<i
))
929 break; /* It has booted */
930 udelay(100); /* Wait 5s total for a response */
932 if(cpu_callin_map
[0]&(1<<i
))
934 /* number CPUs logically, starting from 1 (BSP is 0) */
936 cpu_number_map
[i
] = cpucount
;
937 __cpu_logical_map
[cpucount
] = i
;
940 printk("CPU%d: ", i
);
941 print_cpu_info(&cpu_data
[i
]);
945 if(*((volatile unsigned char *)phys_to_virt(8192))==0xA5)
946 printk("Stuck ??\n");
948 printk("Not responding.\n");
950 SMP_PRINTK(("CPU has booted.\n"));
954 __cpu_logical_map
[cpucount
] = -1;
955 cpu_number_map
[i
] = -1;
959 swapper_pg_dir
[0]=maincfg
;
962 /* mark "stuck" area as not stuck */
963 *((volatile unsigned long *)phys_to_virt(8192)) = 0;
966 unsigned int prof_multiplier
[NR_CPUS
];
967 unsigned int prof_counter
[NR_CPUS
];
970 * Cycle through the processors sending APIC IPIs to boot each.
973 __initfunc(void smp_boot_cpus(void))
979 /* Must be done before other processors booted */
980 mtrr_init_boot_cpu ();
983 * Initialize the logical to physical CPU number mapping
984 * and the per-CPU profiling counter/multiplier
987 for (i
= 0; i
< NR_CPUS
; i
++) {
988 cpu_number_map
[i
] = -1;
990 prof_multiplier
[i
] = 1;
994 * Setup boot CPU information
997 smp_store_cpu_info(boot_cpu_id
); /* Final full version of the data */
998 printk("CPU%d: ", boot_cpu_id
);
999 print_cpu_info(&cpu_data
[boot_cpu_id
]);
1001 cpu_present_map
|= (1 << hard_smp_processor_id());
1002 cpu_number_map
[boot_cpu_id
] = 0;
1005 * If we don't conform to the Intel MPS standard, get out
1009 if (!smp_found_config
)
1011 printk(KERN_NOTICE
"SMP motherboard not detected. Using dummy APIC emulation.\n");
1017 * If SMP should be disabled, then really disable it!
1022 smp_found_config
= 0;
1023 printk(KERN_INFO
"SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1031 * This is to verify that we're looking at
1032 * a real local APIC. Check these against
1033 * your board if the CPUs aren't getting
1034 * started for no apparent reason.
1037 reg
= apic_read(APIC_VERSION
);
1038 SMP_PRINTK(("Getting VERSION: %x\n", reg
));
1040 apic_write(APIC_VERSION
, 0);
1041 reg
= apic_read(APIC_VERSION
);
1042 SMP_PRINTK(("Getting VERSION: %x\n", reg
));
1045 * The two version reads above should print the same
1046 * NON-ZERO!!! numbers. If the second one is zero,
1047 * there is a problem with the APIC write/read
1050 * The next two are just to see if we have sane values.
1051 * They're only really relevant if we're in Virtual Wire
1052 * compatibility mode, but most boxes are anymore.
1056 reg
= apic_read(APIC_LVT0
);
1057 SMP_PRINTK(("Getting LVT0: %x\n", reg
));
1059 reg
= apic_read(APIC_LVT1
);
1060 SMP_PRINTK(("Getting LVT1: %x\n", reg
));
1064 enable_local_APIC();
1067 * Set up our local APIC timer:
1069 setup_APIC_clock ();
1072 * Now scan the CPU present map and fire up the other CPUs.
1075 SMP_PRINTK(("CPU map: %lx\n", cpu_present_map
));
1077 for(i
=0;i
<NR_CPUS
;i
++)
1080 * Don't even attempt to start the boot CPU!
1082 if (i
== boot_cpu_id
)
1085 if ((cpu_present_map
& (1 << i
))
1086 && (max_cpus
< 0 || max_cpus
> cpucount
+1))
1092 * Make sure we unmap all failed CPUs
1095 if (cpu_number_map
[i
] == -1 && (cpu_present_map
& (1 << i
))) {
1096 printk("CPU #%d not responding. Removing from cpu_present_map.\n",i
);
1097 cpu_present_map
&= ~(1 << i
);
1102 * Cleanup possible dangling ends...
1106 * Install writable page 0 entry.
1110 pg0
[0] = 3; /* writeable, present, addr 0 */
1114 * Paranoid: Set warm reset code and vector here back
1115 * to default values.
1120 *((volatile long *) phys_to_virt(0x467)) = 0;
1123 * Restore old page 0 entry.
1130 * Allow the user to impress friends.
1133 SMP_PRINTK(("Before bogomips.\n"));
1136 printk(KERN_ERR
"Error: only one processor found.\n");
1137 cpu_present_map
=(1<<hard_smp_processor_id());
1141 unsigned long bogosum
=0;
1144 if(cpu_present_map
&(1<<i
))
1145 bogosum
+=cpu_data
[i
].loops_per_sec
;
1147 printk(KERN_INFO
"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1149 (bogosum
+2500)/500000,
1150 ((bogosum
+2500)/5000)%100);
1151 SMP_PRINTK(("Before bogocount - setting activated=1.\n"));
1153 smp_num_cpus
=cpucount
+1;
1156 printk(KERN_WARNING
"WARNING: SMP operation may be unreliable with B stepping processors.\n");
1157 SMP_PRINTK(("Boot done.\n"));
1160 * Here we can be sure that there is an IO-APIC in the system. Let's
1169 void send_IPI (int dest
, int vector
)
1172 unsigned long flags
;
1174 __save_flags(flags
);
1178 * prepare target chip field
1181 cfg
= apic_read(APIC_ICR2
) & 0x00FFFFFF;
1182 apic_write(APIC_ICR2
, cfg
|SET_APIC_DEST_FIELD(dest
));
1184 cfg
= apic_read(APIC_ICR
);
1186 cfg
|= APIC_DEST_FIELD
|APIC_DEST_DM_FIXED
|vector
;
1190 * Send the IPI. The write to APIC_ICR fires this off.
1193 apic_write(APIC_ICR
, cfg
);
1194 __restore_flags(flags
);
1198 * A non wait message cannot pass data or CPU source info. This current setup
1199 * is only safe because the kernel lock owner is the only person who can send
1202 * Wrapping this whole block in a spinlock is not the safe answer either. A
1203 * processor may get stuck with IRQs off waiting to send a message and thus
1204 * not replying to the person spinning for a reply.
1206 * In the end flush tlb ought to be the NMI and a very short function
1207 * (to avoid the old IDE disk problems), and other messages sent with IRQs
1208 * enabled in a civilised fashion. That will also boost performance.
1211 void smp_message_pass(int target
, int msg
, unsigned long data
, int wait
)
1214 unsigned long dest
= 0;
1215 unsigned long target_map
;
1216 int p
=smp_processor_id();
1221 * During boot up send no messages
1224 if(!smp_activated
|| !smp_commenced
)
1229 * Skip the reschedule if we are waiting to clear a
1230 * message at this time. The reschedule cannot wait
1231 * but is not critical.
1235 case MSG_RESCHEDULE
:
1237 if (smp_cpu_in_msg
[p
])
1241 case MSG_INVALIDATE_TLB
:
1242 /* make this a NMI some day */
1250 case MSG_MTRR_CHANGE
:
1255 printk("Unknown SMP message %d\n", msg
);
1260 * Sanity check we don't re-enter this across CPUs. Only the kernel
1261 * lock holder may send messages. For a STOP_CPU we are bringing the
1262 * entire box to the fastest halt we can. A reschedule carries
1263 * no data and can occur during a flush. Guess what panic
1264 * I got to notice this bug.
1271 smp_cpu_in_msg
[p
]++;
1273 /* printk("SMP message pass #%d to %d of %d\n",
1277 * Wait for the APIC to become ready - this should never occur. It's
1278 * a debugging check really.
1283 cfg
=apic_read(APIC_ICR
);
1291 * Just pray... there is nothing more we can do
1295 printk("CPU #%d: previous IPI still not cleared after 10mS\n", p
);
1298 * Set the target requirement
1301 if(target
==MSG_ALL_BUT_SELF
)
1303 dest
=APIC_DEST_ALLBUT
;
1304 target_map
=cpu_present_map
;
1305 cpu_callin_map
[0]=(1<<p
);
1307 else if(target
==MSG_ALL
)
1309 dest
=APIC_DEST_ALLINC
;
1310 target_map
=cpu_present_map
;
1311 cpu_callin_map
[0]=0;
1316 target_map
=(1<<target
);
1317 cpu_callin_map
[0]=0;
1321 * Program the APIC to deliver the IPI
1327 * Spin waiting for completion
1335 while(cpu_callin_map
[0]!=target_map
) {
1338 printk("stuck on target_map IPI wait\n");
1345 /* Wait for invalidate map to clear */
1346 while (smp_invalidate_needed
) {
1347 /* Take care of "crossing" invalidates */
1348 if (test_bit(p
, &smp_invalidate_needed
))
1349 clear_bit(p
, &smp_invalidate_needed
);
1352 printk("stuck on smp_invalidate_needed IPI wait (CPU#%d)\n",p
);
1360 * Record our completion
1363 smp_cpu_in_msg
[p
]--;
1367 * This is fraught with deadlocks. Linus does a flush tlb at a whim
1368 * even with IRQs off. We have to avoid a pair of crossing flushes
1369 * or we are doomed. See the notes about smp_message_pass.
1372 void smp_flush_tlb(void)
1374 unsigned long flags
;
1376 /* printk("SMI-");*/
1379 * The assignment is safe because it's volatile so the compiler cannot reorder it,
1380 * because the i586 has strict memory ordering and because only the kernel lock holder
1381 * may issue a tlb flush. If you break any one of those three change this to an atomic
1385 smp_invalidate_needed
=cpu_present_map
;
1388 * Processors spinning on the lock will see this IRQ late. The smp_invalidate_needed map will
1389 * ensure they don't do a spurious flush tlb or miss one.
1392 __save_flags(flags
);
1394 smp_message_pass(MSG_ALL_BUT_SELF
, MSG_INVALIDATE_TLB
, 0L, 2);
1397 * Flush the local TLB
1402 __restore_flags(flags
);
1408 /* printk("SMID\n");*/
1412 void smp_send_reschedule(int cpu
)
1414 unsigned long flags
;
1416 __save_flags(flags
);
1418 smp_message_pass(cpu
, MSG_RESCHEDULE
, 0L, 0);
1419 __restore_flags(flags
);
1423 * Local timer interrupt handler. It does both profiling and
1424 * process statistics/rescheduling.
1426 * We do profiling in every local tick, statistics/rescheduling
1427 * happen only every 'profiling multiplier' ticks. The default
1428 * multiplier is 1 and it can be changed by writing the new multiplier
1429 * value into /proc/profile.
1432 void smp_local_timer_interrupt(struct pt_regs
* regs
)
1434 int cpu
= smp_processor_id();
1437 * The profiling function is SMP safe. (nothing can mess
1438 * around with "current", and the profiling counters are
1439 * updated with atomic operations). This is especially
1440 * useful with a profiling multiplier != 1
1442 if (!user_mode(regs
))
1443 x86_do_profile (regs
->eip
);
1445 if (!--prof_counter
[cpu
]) {
1446 int user
=0,system
=0;
1447 struct task_struct
* p
= current
;
1450 * After doing the above, we need to make like
1451 * a normal interrupt - otherwise timer interrupts
1452 * ignore the global interrupt lock, which is the
1453 * WrongThing (tm) to do.
1456 if (user_mode(regs
))
1463 update_one_process(p
, 1, user
, system
, cpu
);
1466 if (p
->counter
< 0) {
1468 p
->need_resched
= 1;
1470 if (p
->priority
< DEF_PRIORITY
) {
1471 kstat
.cpu_nice
+= user
;
1472 kstat
.per_cpu_nice
[cpu
] += user
;
1474 kstat
.cpu_user
+= user
;
1475 kstat
.per_cpu_user
[cpu
] += user
;
1478 kstat
.cpu_system
+= system
;
1479 kstat
.per_cpu_system
[cpu
] += system
;
1482 prof_counter
[cpu
]=prof_multiplier
[cpu
];
1487 * We take the 'long' return path, and there every subsystem
1488 * grabs the apropriate locks (kernel lock/ irq lock).
1490 * we might want to decouple profiling from the 'long path',
1491 * and do the profiling totally in assembly.
1493 * Currently this isn't too much of an issue (performance wise),
1494 * we can take more than 100K local irqs per second on a 100 MHz P5.
1499 * Local APIC timer interrupt. This is the most natural way for doing
1500 * local interrupts, but local timer interrupts can be emulated by
1501 * broadcast interrupts too. [in case the hw doesnt support APIC timers]
1503 * [ if a single-CPU system runs an SMP kernel then we call the local
1504 * interrupt as well. Thus we cannot inline the local irq ... ]
1506 void smp_apic_timer_interrupt(struct pt_regs
* regs
)
1509 * NOTE! We'd better ACK the irq immediately,
1510 * because timer handling can be slow, and we
1511 * want to be able to accept NMI tlb invalidates
1515 smp_local_timer_interrupt(regs
);
1519 * Reschedule call back. Nothing to do,
1520 * all the work is done automatically when
1521 * we return from the interrupt.
1523 asmlinkage
void smp_reschedule_interrupt(void)
1529 * Invalidate call-back
1531 asmlinkage
void smp_invalidate_interrupt(void)
1533 if (test_and_clear_bit(smp_processor_id(), &smp_invalidate_needed
))
1540 * CPU halt call-back
1542 asmlinkage
void smp_stop_cpu_interrupt(void)
1544 if (cpu_data
[smp_processor_id()].hlt_works_ok
)
1545 for(;;) __asm__("hlt");
1549 void (*mtrr_hook
) (void) = NULL
;
1551 asmlinkage
void smp_mtrr_interrupt(void)
1554 if (mtrr_hook
) (*mtrr_hook
) ();
1558 * This interrupt should _never_ happen with our APIC/SMP architecture
1560 asmlinkage
void smp_spurious_interrupt(void)
1562 /* ack_APIC_irq (); see sw-dev-man vol 3, chapter 7.4.13.5 */
1563 printk("spurious APIC interrupt, ayiee, should never happen.\n");
1567 * This part sets up the APIC 32 bit clock in LVTT1, with HZ interrupts
1568 * per second. We assume that the caller has already set up the local
1571 * The APIC timer is not exactly sync with the external timer chip, it
1572 * closely follows bus clocks.
1575 #define RDTSC(x) __asm__ __volatile__ ( "rdtsc" \
1576 :"=a" (((unsigned long*)&x)[0]), \
1577 "=d" (((unsigned long*)&x)[1]))
1580 * The timer chip is already set up at HZ interrupts per second here,
1581 * but we do not accept timer interrupts yet. We only allow the BP
1584 __initfunc(static unsigned int get_8254_timer_count (void))
1589 count
= inb_p(0x40);
1590 count
|= inb_p(0x40) << 8;
1596 * This function sets up the local APIC timer, with a timeout of
1597 * 'clocks' APIC bus clock. During calibration we actually call
1598 * this function twice, once with a bogus timeout value, second
1599 * time for real. The other (noncalibrating) CPUs call this
1600 * function only once, with the real value.
1602 * We are strictly in irqs off mode here, as we do not want to
1603 * get an APIC interrupt go off accidentally.
1605 * We do reads before writes even if unnecessary, to get around the
1606 * APIC double write bug.
1609 #define APIC_DIVISOR 16
1611 void setup_APIC_timer (unsigned int clocks
)
1613 unsigned long lvtt1_value
;
1614 unsigned int tmp_value
;
1617 * Unfortunately the local APIC timer cannot be set up into NMI
1618 * mode. With the IO APIC we can re-route the external timer
1619 * interrupt and broadcast it as an NMI to all CPUs, so no pain.
1621 * NOTE: this trap vector (0x41) and the gate in
1622 * BUILD_SMP_TIMER_INTERRUPT should be the same ;)
1624 tmp_value
= apic_read(APIC_LVTT
);
1625 lvtt1_value
= APIC_LVT_TIMER_PERIODIC
| 0x41;
1626 apic_write(APIC_LVTT
, lvtt1_value
);
1629 * Divide PICLK by 16
1631 tmp_value
= apic_read(APIC_TDCR
);
1632 apic_write(APIC_TDCR
, (tmp_value
& ~APIC_TDR_DIV_1
)
1635 tmp_value
= apic_read(APIC_TMICT
);
1636 apic_write(APIC_TMICT
, clocks
/APIC_DIVISOR
);
1639 __initfunc(void wait_8254_wraparound (void))
1641 unsigned int curr_count
, prev_count
=~0;
1644 curr_count
= get_8254_timer_count();
1647 prev_count
= curr_count
;
1648 curr_count
= get_8254_timer_count();
1649 delta
= curr_count
-prev_count
;
1652 * This limit for delta seems arbitrary, but it isn't, it's
1653 * slightly above the level of error a buggy Mercury/Neptune
1654 * chipset timer can cause.
1657 } while (delta
<300);
1661 * In this function we calibrate APIC bus clocks to the external
1662 * timer. Unfortunately we cannot use jiffies and the timer irq
1663 * to calibrate, since some later bootup code depends on getting
1664 * the first irq? Ugh.
1666 * We want to do the calibration only once since we
1667 * want to have local timer irqs syncron. CPUs connected
1668 * by the same APIC bus have the very same bus frequency.
1669 * And we want to have irqs off anyways, no accidental
1670 * APIC irq that way.
1673 __initfunc(int calibrate_APIC_clock (void))
1675 unsigned long long t1
,t2
;
1677 long calibration_result
;
1680 printk("calibrating APIC timer ... ");
1683 * Put whatever arbitrary (but long enough) timeout
1684 * value into the APIC clock, we just want to get the
1685 * counter running for calibration.
1687 setup_APIC_timer(1000000000);
1690 * The timer chip counts down to zero. Let's wait
1691 * for a wraparound to start exact measurement:
1692 * (the current tick might have been already half done)
1695 wait_8254_wraparound ();
1698 * We wrapped around just now. Let's start:
1701 tt1
=apic_read(APIC_TMCCT
);
1703 #define LOOPS (HZ/10)
1705 * Let's wait LOOPS wraprounds:
1707 for (i
=0; i
<LOOPS
; i
++)
1708 wait_8254_wraparound ();
1710 tt2
=apic_read(APIC_TMCCT
);
1714 * The APIC bus clock counter is 32 bits only, it
1715 * might have overflown, but note that we use signed
1716 * longs, thus no extra care needed.
1718 * underflown to be exact, as the timer counts down ;)
1721 calibration_result
= (tt1
-tt2
)*APIC_DIVISOR
/LOOPS
;
1723 SMP_PRINTK(("\n..... %ld CPU clocks in 1 timer chip tick.",
1724 (unsigned long)(t2
-t1
)/LOOPS
));
1726 SMP_PRINTK(("\n..... %ld APIC bus clocks in 1 timer chip tick.",
1727 calibration_result
));
1730 printk("\n..... CPU clock speed is %ld.%04ld MHz.\n",
1731 ((long)(t2
-t1
)/LOOPS
)/(1000000/HZ
),
1732 ((long)(t2
-t1
)/LOOPS
)%(1000000/HZ
) );
1734 printk("..... APIC bus clock speed is %ld.%04ld MHz.\n",
1735 calibration_result
/(1000000/HZ
),
1736 calibration_result
%(1000000/HZ
) );
1739 return calibration_result
;
1742 static unsigned int calibration_result
;
1744 __initfunc(void setup_APIC_clock (void))
1746 unsigned long flags
;
1748 static volatile int calibration_lock
;
1753 SMP_PRINTK(("setup_APIC_clock() called.\n"));
1756 * [ setup_APIC_clock() is called from all CPUs, but we want
1757 * to do this part of the setup only once ... and it fits
1760 if (!test_and_set_bit(0,&calibration_lock
)) {
1762 calibration_result
=calibrate_APIC_clock();
1764 * Signal completion to the other CPU[s]:
1766 calibration_lock
= 3;
1770 * Other CPU is calibrating, wait for finish:
1772 SMP_PRINTK(("waiting for other CPU calibrating APIC ... "));
1773 while (calibration_lock
== 1);
1774 SMP_PRINTK(("done, continuing.\n"));
1778 * Now set up the timer for real.
1781 setup_APIC_timer (calibration_result
);
1784 * We ACK the APIC, just in case there is something pending.
1790 restore_flags(flags
);
1794 * the frequency of the profiling timer can be changed
1795 * by writing a multiplier value into /proc/profile.
1797 * usually you want to run this on all CPUs ;)
1799 int setup_profiling_timer (unsigned int multiplier
)
1801 int cpu
= smp_processor_id();
1802 unsigned long flags
;
1805 * Sanity check. [at least 500 APIC cycles should be
1806 * between APIC interrupts as a rule of thumb, to avoid
1809 if ( (!multiplier
) || (calibration_result
/multiplier
< 500))
1814 setup_APIC_timer (calibration_result
/multiplier
);
1815 prof_multiplier
[cpu
]=multiplier
;
1816 restore_flags(flags
);