Linux 2.1.127
[davej-history.git] / kernel / sched.c
blob08bc754ae351ce33b7d9f325fa182d81cf1d5266
1 /*
2 * linux/kernel/sched.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1996-04-21 Modified by Ulrich Windl to make NTP work
7 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
8 * make semaphores SMP safe
9 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
13 * 'sched.c' is the main kernel file. It contains scheduling primitives
14 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
15 * call functions (type getpid()), which just extract a field from
16 * current-task
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/timer.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/fdreg.h>
25 #include <linux/errno.h>
26 #include <linux/time.h>
27 #include <linux/ptrace.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/tqueue.h>
31 #include <linux/resource.h>
32 #include <linux/mm.h>
33 #include <linux/smp.h>
34 #include <linux/smp_lock.h>
35 #include <linux/init.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spinlock.h>
44 #include <linux/timex.h>
47 * kernel variables
50 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
52 long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */
54 /* The current time */
55 volatile struct timeval xtime __attribute__ ((aligned (16)));
57 /* Don't completely fail for HZ > 500. */
58 int tickadj = 500/HZ ? : 1; /* microsecs */
60 DECLARE_TASK_QUEUE(tq_timer);
61 DECLARE_TASK_QUEUE(tq_immediate);
62 DECLARE_TASK_QUEUE(tq_scheduler);
65 * phase-lock loop variables
67 /* TIME_ERROR prevents overwriting the CMOS clock */
68 int time_state = TIME_ERROR; /* clock synchronization status */
69 int time_status = STA_UNSYNC; /* clock status bits */
70 long time_offset = 0; /* time adjustment (us) */
71 long time_constant = 2; /* pll time constant */
72 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
73 long time_precision = 1; /* clock precision (us) */
74 long time_maxerror = MAXPHASE; /* maximum error (us) */
75 long time_esterror = MAXPHASE; /* estimated error (us) */
76 long time_phase = 0; /* phase offset (scaled us) */
77 long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */
78 long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
79 long time_reftime = 0; /* time at last adjustment (s) */
81 long time_adjust = 0;
82 long time_adjust_step = 0;
84 unsigned long event = 0;
86 extern int do_setitimer(int, struct itimerval *, struct itimerval *);
87 unsigned int * prof_buffer = NULL;
88 unsigned long prof_len = 0;
89 unsigned long prof_shift = 0;
91 extern void mem_use(void);
93 unsigned long volatile jiffies=0;
96 * Init task must be ok at boot for the ix86 as we will check its signals
97 * via the SMP irq return path.
100 struct task_struct * task[NR_TASKS] = {&init_task, };
102 struct kernel_stat kstat = { 0 };
104 void scheduling_functions_start_here(void) { }
106 static inline void reschedule_idle(struct task_struct * p)
110 * For SMP, we try to see if the CPU the task used
111 * to run on is idle..
113 #if 0
115 * Disable this for now. Ingo has some interesting
116 * code that looks too complex, and I have some ideas,
117 * but in the meantime.. One problem is that "wakeup()"
118 * can be (and is) called before we've even initialized
119 * SMP completely, so..
121 #ifdef __SMP__
122 int want_cpu = p->processor;
125 * Don't even try to find another CPU for us if the task
126 * ran on this one before..
128 if (want_cpu != smp_processor_id()) {
129 struct task_struct **idle = task;
130 int i = smp_num_cpus;
132 do {
133 struct task_struct *tsk = *idle;
134 idle++;
135 /* Something like this.. */
136 if (tsk->has_cpu && tsk->processor == want_cpu) {
137 tsk->need_resched = 1;
138 smp_send_reschedule(want_cpu);
139 return;
141 } while (--i > 0);
143 #endif
144 #endif
145 if (p->policy != SCHED_OTHER || p->counter > current->counter + 3)
146 current->need_resched = 1;
150 * Careful!
152 * This has to add the process to the _beginning_ of the
153 * run-queue, not the end. See the comment about "This is
154 * subtle" in the scheduler proper..
156 static inline void add_to_runqueue(struct task_struct * p)
158 struct task_struct *next = init_task.next_run;
160 p->prev_run = &init_task;
161 init_task.next_run = p;
162 p->next_run = next;
163 next->prev_run = p;
166 static inline void del_from_runqueue(struct task_struct * p)
168 struct task_struct *next = p->next_run;
169 struct task_struct *prev = p->prev_run;
171 nr_running--;
172 next->prev_run = prev;
173 prev->next_run = next;
174 p->next_run = NULL;
175 p->prev_run = NULL;
178 static inline void move_last_runqueue(struct task_struct * p)
180 struct task_struct *next = p->next_run;
181 struct task_struct *prev = p->prev_run;
183 /* remove from list */
184 next->prev_run = prev;
185 prev->next_run = next;
186 /* add back to list */
187 p->next_run = &init_task;
188 prev = init_task.prev_run;
189 init_task.prev_run = p;
190 p->prev_run = prev;
191 prev->next_run = p;
194 static inline void move_first_runqueue(struct task_struct * p)
196 struct task_struct *next = p->next_run;
197 struct task_struct *prev = p->prev_run;
199 /* remove from list */
200 next->prev_run = prev;
201 prev->next_run = next;
202 /* add back to list */
203 p->prev_run = &init_task;
204 next = init_task.next_run;
205 init_task.next_run = p;
206 p->next_run = next;
207 next->prev_run = p;
211 * The tasklist_lock protects the linked list of processes.
213 * The scheduler lock is protecting against multiple entry
214 * into the scheduling code, and doesn't need to worry
215 * about interrupts (because interrupts cannot call the
216 * scheduler).
218 * The run-queue lock locks the parts that actually access
219 * and change the run-queues, and have to be interrupt-safe.
221 spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED; /* should be acquired first */
222 spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED; /* second */
223 rwlock_t tasklist_lock = RW_LOCK_UNLOCKED; /* third */
226 * Wake up a process. Put it on the run-queue if it's not
227 * already there. The "current" process is always on the
228 * run-queue (except when the actual re-schedule is in
229 * progress), and as such you're allowed to do the simpler
230 * "current->state = TASK_RUNNING" to mark yourself runnable
231 * without the overhead of this.
233 void wake_up_process(struct task_struct * p)
235 unsigned long flags;
237 spin_lock_irqsave(&runqueue_lock, flags);
238 p->state = TASK_RUNNING;
239 if (!p->next_run) {
240 add_to_runqueue(p);
241 reschedule_idle(p);
242 nr_running++;
244 spin_unlock_irqrestore(&runqueue_lock, flags);
247 static void process_timeout(unsigned long __data)
249 struct task_struct * p = (struct task_struct *) __data;
251 wake_up_process(p);
255 * This is the function that decides how desirable a process is..
256 * You can weigh different processes against each other depending
257 * on what CPU they've run on lately etc to try to handle cache
258 * and TLB miss penalties.
260 * Return values:
261 * -1000: never select this
262 * 0: out of time, recalculate counters (but it might still be
263 * selected)
264 * +ve: "goodness" value (the larger, the better)
265 * +1000: realtime process, select this.
267 static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu)
269 int policy = p->policy;
270 int weight;
272 if (policy & SCHED_YIELD) {
273 p->policy = policy & ~SCHED_YIELD;
274 return 0;
278 * Realtime process, select the first one on the
279 * runqueue (taking priorities within processes
280 * into account).
282 if (policy != SCHED_OTHER)
283 return 1000 + p->rt_priority;
286 * Give the process a first-approximation goodness value
287 * according to the number of clock-ticks it has left.
289 * Don't do any other calculations if the time slice is
290 * over..
292 weight = p->counter;
293 if (weight) {
295 #ifdef __SMP__
296 /* Give a largish advantage to the same processor... */
297 /* (this is equivalent to penalizing other processors) */
298 if (p->processor == this_cpu)
299 weight += PROC_CHANGE_PENALTY;
300 #endif
302 /* .. and a slight advantage to the current thread */
303 if (p->mm == prev->mm)
304 weight += 1;
305 weight += p->priority;
308 return weight;
312 * Event timer code
314 #define TVN_BITS 6
315 #define TVR_BITS 8
316 #define TVN_SIZE (1 << TVN_BITS)
317 #define TVR_SIZE (1 << TVR_BITS)
318 #define TVN_MASK (TVN_SIZE - 1)
319 #define TVR_MASK (TVR_SIZE - 1)
321 struct timer_vec {
322 int index;
323 struct timer_list *vec[TVN_SIZE];
326 struct timer_vec_root {
327 int index;
328 struct timer_list *vec[TVR_SIZE];
331 static struct timer_vec tv5 = { 0 };
332 static struct timer_vec tv4 = { 0 };
333 static struct timer_vec tv3 = { 0 };
334 static struct timer_vec tv2 = { 0 };
335 static struct timer_vec_root tv1 = { 0 };
337 static struct timer_vec * const tvecs[] = {
338 (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
341 #define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
343 static unsigned long timer_jiffies = 0;
345 static inline void insert_timer(struct timer_list *timer,
346 struct timer_list **vec, int idx)
348 if ((timer->next = vec[idx]))
349 vec[idx]->prev = timer;
350 vec[idx] = timer;
351 timer->prev = (struct timer_list *)&vec[idx];
354 static inline void internal_add_timer(struct timer_list *timer)
357 * must be cli-ed when calling this
359 unsigned long expires = timer->expires;
360 unsigned long idx = expires - timer_jiffies;
362 if (idx < TVR_SIZE) {
363 int i = expires & TVR_MASK;
364 insert_timer(timer, tv1.vec, i);
365 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
366 int i = (expires >> TVR_BITS) & TVN_MASK;
367 insert_timer(timer, tv2.vec, i);
368 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
369 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
370 insert_timer(timer, tv3.vec, i);
371 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
372 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
373 insert_timer(timer, tv4.vec, i);
374 } else if ((signed long) idx < 0) {
375 /* can happen if you add a timer with expires == jiffies,
376 * or you set a timer to go off in the past
378 insert_timer(timer, tv1.vec, tv1.index);
379 } else if (idx <= 0xffffffffUL) {
380 int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
381 insert_timer(timer, tv5.vec, i);
382 } else {
383 /* Can only get here on architectures with 64-bit jiffies */
384 timer->next = timer->prev = timer;
388 spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
390 void add_timer(struct timer_list *timer)
392 unsigned long flags;
394 spin_lock_irqsave(&timerlist_lock, flags);
395 internal_add_timer(timer);
396 spin_unlock_irqrestore(&timerlist_lock, flags);
399 static inline int detach_timer(struct timer_list *timer)
401 struct timer_list *prev = timer->prev;
402 if (prev) {
403 struct timer_list *next = timer->next;
404 prev->next = next;
405 if (next)
406 next->prev = prev;
407 return 1;
409 return 0;
412 void mod_timer(struct timer_list *timer, unsigned long expires)
414 unsigned long flags;
416 spin_lock_irqsave(&timerlist_lock, flags);
417 timer->expires = expires;
418 detach_timer(timer);
419 internal_add_timer(timer);
420 spin_unlock_irqrestore(&timerlist_lock, flags);
423 int del_timer(struct timer_list * timer)
425 int ret;
426 unsigned long flags;
428 spin_lock_irqsave(&timerlist_lock, flags);
429 ret = detach_timer(timer);
430 timer->next = timer->prev = 0;
431 spin_unlock_irqrestore(&timerlist_lock, flags);
432 return ret;
435 #ifdef __SMP__
437 #define idle_task (task[cpu_number_map[this_cpu]])
438 #define can_schedule(p) (!(p)->has_cpu)
440 #else
442 #define idle_task (&init_task)
443 #define can_schedule(p) (1)
445 #endif
447 signed long schedule_timeout(signed long timeout)
449 struct timer_list timer;
450 unsigned long expire;
453 * PARANOID.
455 if (current->state == TASK_UNINTERRUPTIBLE)
457 printk(KERN_WARNING "schedule_timeout: task not interrutible "
458 "from %p\n", __builtin_return_address(0));
460 * We don' t want to interrupt a not interruptible task
461 * risking to cause corruption. Better a a deadlock ;-).
463 timeout = MAX_SCHEDULE_TIMEOUT;
467 * Here we start for real.
469 switch (timeout)
471 case MAX_SCHEDULE_TIMEOUT:
473 * These two special cases are useful to be comfortable
474 * in the caller. Nothing more. We could take
475 * MAX_SCHEDULE_TIMEOUT from one of the negative value
476 * but I' d like to return a valid offset (>=0) to allow
477 * the caller to do everything it want with the retval.
479 schedule();
480 goto out;
481 default:
483 * Another bit of PARANOID. Note that the retval will be
484 * 0 since no piece of kernel is supposed to do a check
485 * for a negative retval of schedule_timeout() (since it
486 * should never happens anyway). You just have the printk()
487 * that will tell you if something is gone wrong and where.
489 if (timeout < 0)
491 printk(KERN_ERR "schedule_timeout: wrong timeout "
492 "value %lx from %p\n", timeout,
493 __builtin_return_address(0));
494 goto out;
498 expire = timeout + jiffies;
500 init_timer(&timer);
501 timer.expires = expire;
502 timer.data = (unsigned long) current;
503 timer.function = process_timeout;
505 add_timer(&timer);
506 schedule();
507 del_timer(&timer);
509 timeout = expire - jiffies;
511 out:
512 return timeout < 0 ? 0 : timeout;
516 * 'schedule()' is the scheduler function. It's a very simple and nice
517 * scheduler: it's not perfect, but certainly works for most things.
519 * The goto is "interesting".
521 * NOTE!! Task 0 is the 'idle' task, which gets called when no other
522 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
523 * information in task[0] is never used.
525 asmlinkage void schedule(void)
527 struct task_struct * prev, * next;
528 int this_cpu;
530 prev = current;
531 this_cpu = prev->processor;
532 if (in_interrupt())
533 goto scheduling_in_interrupt;
534 release_kernel_lock(prev, this_cpu);
536 /* Do "administrative" work here while we don't hold any locks */
537 if (bh_active & bh_mask)
538 do_bottom_half();
539 run_task_queue(&tq_scheduler);
541 spin_lock(&scheduler_lock);
542 spin_lock_irq(&runqueue_lock);
544 /* move an exhausted RR process to be last.. */
545 prev->need_resched = 0;
546 if (!prev->counter && prev->policy == SCHED_RR) {
547 prev->counter = prev->priority;
548 move_last_runqueue(prev);
551 switch (prev->state) {
552 case TASK_INTERRUPTIBLE:
553 if (signal_pending(prev)) {
554 prev->state = TASK_RUNNING;
555 break;
557 default:
558 del_from_runqueue(prev);
559 case TASK_RUNNING:
562 struct task_struct * p = init_task.next_run;
564 * This is subtle.
565 * Note how we can enable interrupts here, even
566 * though interrupts can add processes to the run-
567 * queue. This is because any new processes will
568 * be added to the front of the queue, so "p" above
569 * is a safe starting point.
570 * run-queue deletion and re-ordering is protected by
571 * the scheduler lock
573 spin_unlock_irq(&runqueue_lock);
574 #ifdef __SMP__
575 prev->has_cpu = 0;
576 #endif
579 * Note! there may appear new tasks on the run-queue during this, as
580 * interrupts are enabled. However, they will be put on front of the
581 * list, so our list starting at "p" is essentially fixed.
583 /* this is the scheduler proper: */
585 int c = -1000;
586 next = idle_task;
587 while (p != &init_task) {
588 if (can_schedule(p)) {
589 int weight = goodness(p, prev, this_cpu);
590 if (weight > c)
591 c = weight, next = p;
593 p = p->next_run;
596 /* Do we need to re-calculate counters? */
597 if (!c) {
598 struct task_struct *p;
599 read_lock(&tasklist_lock);
600 for_each_task(p)
601 p->counter = (p->counter >> 1) + p->priority;
602 read_unlock(&tasklist_lock);
607 #ifdef __SMP__
608 next->has_cpu = 1;
609 next->processor = this_cpu;
610 #endif
612 if (prev != next) {
613 kstat.context_swtch++;
614 get_mmu_context(next);
615 switch_to(prev,next);
618 spin_unlock(&scheduler_lock);
621 * At this point "prev" is "current", as we just
622 * switched into it (from an even more "previous"
623 * prev)
625 reacquire_kernel_lock(prev);
626 return;
628 scheduling_in_interrupt:
629 printk("Scheduling in interrupt\n");
630 *(int *)0 = 0;
634 rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;
637 * wake_up doesn't wake up stopped processes - they have to be awakened
638 * with signals or similar.
640 * Note that we only need a read lock for the wait queue (and thus do not
641 * have to protect against interrupts), as the actual removal from the
642 * queue is handled by the process itself.
644 void __wake_up(struct wait_queue **q, unsigned int mode)
646 struct wait_queue *next;
648 read_lock(&waitqueue_lock);
649 if (q && (next = *q)) {
650 struct wait_queue *head;
652 head = WAIT_QUEUE_HEAD(q);
653 while (next != head) {
654 struct task_struct *p = next->task;
655 next = next->next;
656 if (p->state & mode)
657 wake_up_process(p);
660 read_unlock(&waitqueue_lock);
664 * Semaphores are implemented using a two-way counter:
665 * The "count" variable is decremented for each process
666 * that tries to sleep, while the "waking" variable is
667 * incremented when the "up()" code goes to wake up waiting
668 * processes.
670 * Notably, the inline "up()" and "down()" functions can
671 * efficiently test if they need to do any extra work (up
672 * needs to do something only if count was negative before
673 * the increment operation.
675 * waking_non_zero() (from asm/semaphore.h) must execute
676 * atomically.
678 * When __up() is called, the count was negative before
679 * incrementing it, and we need to wake up somebody.
681 * This routine adds one to the count of processes that need to
682 * wake up and exit. ALL waiting processes actually wake up but
683 * only the one that gets to the "waking" field first will gate
684 * through and acquire the semaphore. The others will go back
685 * to sleep.
687 * Note that these functions are only called when there is
688 * contention on the lock, and as such all this is the
689 * "non-critical" part of the whole semaphore business. The
690 * critical part is the inline stuff in <asm/semaphore.h>
691 * where we want to avoid any extra jumps and calls.
693 void __up(struct semaphore *sem)
695 wake_one_more(sem);
696 wake_up(&sem->wait);
700 * Perform the "down" function. Return zero for semaphore acquired,
701 * return negative for signalled out of the function.
703 * If called from __down, the return is ignored and the wait loop is
704 * not interruptible. This means that a task waiting on a semaphore
705 * using "down()" cannot be killed until someone does an "up()" on
706 * the semaphore.
708 * If called from __down_interruptible, the return value gets checked
709 * upon return. If the return value is negative then the task continues
710 * with the negative value in the return register (it can be tested by
711 * the caller).
713 * Either form may be used in conjunction with "up()".
716 static inline int __do_down(struct semaphore * sem, int task_state)
718 struct task_struct *tsk = current;
719 struct wait_queue wait = { tsk, NULL };
720 int ret = 0;
722 tsk->state = task_state;
723 add_wait_queue(&sem->wait, &wait);
726 * Ok, we're set up. sem->count is known to be less than zero
727 * so we must wait.
729 * We can let go the lock for purposes of waiting.
730 * We re-acquire it after awaking so as to protect
731 * all semaphore operations.
733 * If "up()" is called before we call waking_non_zero() then
734 * we will catch it right away. If it is called later then
735 * we will have to go through a wakeup cycle to catch it.
737 * Multiple waiters contend for the semaphore lock to see
738 * who gets to gate through and who has to wait some more.
740 for (;;) {
741 if (waking_non_zero(sem)) /* are we waking up? */
742 break; /* yes, exit loop */
744 if (task_state == TASK_INTERRUPTIBLE && signal_pending(tsk)) {
745 ret = -EINTR; /* interrupted */
746 atomic_inc(&sem->count); /* give up on down operation */
747 break;
750 schedule();
751 tsk->state = task_state;
753 tsk->state = TASK_RUNNING;
754 remove_wait_queue(&sem->wait, &wait);
755 return ret;
758 void __down(struct semaphore * sem)
760 __do_down(sem,TASK_UNINTERRUPTIBLE);
763 int __down_interruptible(struct semaphore * sem)
765 return __do_down(sem,TASK_INTERRUPTIBLE);
768 #define SLEEP_ON_VAR \
769 unsigned long flags; \
770 struct wait_queue wait;
772 #define SLEEP_ON_HEAD \
773 wait.task = current; \
774 write_lock_irqsave(&waitqueue_lock, flags); \
775 __add_wait_queue(p, &wait); \
776 write_unlock(&waitqueue_lock);
778 #define SLEEP_ON_TAIL \
779 write_lock_irq(&waitqueue_lock); \
780 __remove_wait_queue(p, &wait); \
781 write_unlock_irqrestore(&waitqueue_lock, flags);
783 void interruptible_sleep_on(struct wait_queue **p)
785 SLEEP_ON_VAR
787 current->state = TASK_INTERRUPTIBLE;
789 SLEEP_ON_HEAD
790 schedule();
791 SLEEP_ON_TAIL
794 long interruptible_sleep_on_timeout(struct wait_queue **p, long timeout)
796 SLEEP_ON_VAR
798 current->state = TASK_INTERRUPTIBLE;
800 SLEEP_ON_HEAD
801 timeout = schedule_timeout(timeout);
802 SLEEP_ON_TAIL
804 return timeout;
807 void sleep_on(struct wait_queue **p)
809 SLEEP_ON_VAR
811 current->state = TASK_UNINTERRUPTIBLE;
813 SLEEP_ON_HEAD
814 schedule();
815 SLEEP_ON_TAIL
818 void scheduling_functions_end_here(void) { }
820 static inline void cascade_timers(struct timer_vec *tv)
822 /* cascade all the timers from tv up one level */
823 struct timer_list *timer;
824 timer = tv->vec[tv->index];
826 * We are removing _all_ timers from the list, so we don't have to
827 * detach them individually, just clear the list afterwards.
829 while (timer) {
830 struct timer_list *tmp = timer;
831 timer = timer->next;
832 internal_add_timer(tmp);
834 tv->vec[tv->index] = NULL;
835 tv->index = (tv->index + 1) & TVN_MASK;
838 static inline void run_timer_list(void)
840 spin_lock_irq(&timerlist_lock);
841 while ((long)(jiffies - timer_jiffies) >= 0) {
842 struct timer_list *timer;
843 if (!tv1.index) {
844 int n = 1;
845 do {
846 cascade_timers(tvecs[n]);
847 } while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
849 while ((timer = tv1.vec[tv1.index])) {
850 void (*fn)(unsigned long) = timer->function;
851 unsigned long data = timer->data;
852 detach_timer(timer);
853 timer->next = timer->prev = NULL;
854 spin_unlock_irq(&timerlist_lock);
855 fn(data);
856 spin_lock_irq(&timerlist_lock);
858 ++timer_jiffies;
859 tv1.index = (tv1.index + 1) & TVR_MASK;
861 spin_unlock_irq(&timerlist_lock);
865 static inline void run_old_timers(void)
867 struct timer_struct *tp;
868 unsigned long mask;
870 for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
871 if (mask > timer_active)
872 break;
873 if (!(mask & timer_active))
874 continue;
875 if (time_after(tp->expires, jiffies))
876 continue;
877 timer_active &= ~mask;
878 tp->fn();
879 sti();
883 spinlock_t tqueue_lock;
885 void tqueue_bh(void)
887 run_task_queue(&tq_timer);
890 void immediate_bh(void)
892 run_task_queue(&tq_immediate);
895 unsigned long timer_active = 0;
896 struct timer_struct timer_table[32];
899 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
900 * imply that avenrun[] is the standard name for this kind of thing.
901 * Nothing else seems to be standardized: the fractional size etc
902 * all seem to differ on different machines.
904 unsigned long avenrun[3] = { 0,0,0 };
907 * Nr of active tasks - counted in fixed-point numbers
909 static unsigned long count_active_tasks(void)
911 struct task_struct *p;
912 unsigned long nr = 0;
914 read_lock(&tasklist_lock);
915 for_each_task(p) {
916 if ((p->state == TASK_RUNNING ||
917 p->state == TASK_UNINTERRUPTIBLE ||
918 p->state == TASK_SWAPPING))
919 nr += FIXED_1;
921 read_unlock(&tasklist_lock);
922 return nr;
925 static inline void calc_load(unsigned long ticks)
927 unsigned long active_tasks; /* fixed-point */
928 static int count = LOAD_FREQ;
930 count -= ticks;
931 if (count < 0) {
932 count += LOAD_FREQ;
933 active_tasks = count_active_tasks();
934 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
935 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
936 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
941 * this routine handles the overflow of the microsecond field
943 * The tricky bits of code to handle the accurate clock support
944 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
945 * They were originally developed for SUN and DEC kernels.
946 * All the kudos should go to Dave for this stuff.
949 static void second_overflow(void)
951 long ltemp;
953 /* Bump the maxerror field */
954 time_maxerror += time_tolerance >> SHIFT_USEC;
955 if ( time_maxerror > MAXPHASE )
956 time_maxerror = MAXPHASE;
959 * Leap second processing. If in leap-insert state at
960 * the end of the day, the system clock is set back one
961 * second; if in leap-delete state, the system clock is
962 * set ahead one second. The microtime() routine or
963 * external clock driver will insure that reported time
964 * is always monotonic. The ugly divides should be
965 * replaced.
967 switch (time_state) {
969 case TIME_OK:
970 if (time_status & STA_INS)
971 time_state = TIME_INS;
972 else if (time_status & STA_DEL)
973 time_state = TIME_DEL;
974 break;
976 case TIME_INS:
977 if (xtime.tv_sec % 86400 == 0) {
978 xtime.tv_sec--;
979 time_state = TIME_OOP;
980 printk("Clock: inserting leap second 23:59:60 UTC\n");
982 break;
984 case TIME_DEL:
985 if ((xtime.tv_sec + 1) % 86400 == 0) {
986 xtime.tv_sec++;
987 time_state = TIME_WAIT;
988 printk("Clock: deleting leap second 23:59:59 UTC\n");
990 break;
992 case TIME_OOP:
993 time_state = TIME_WAIT;
994 break;
996 case TIME_WAIT:
997 if (!(time_status & (STA_INS | STA_DEL)))
998 time_state = TIME_OK;
1002 * Compute the phase adjustment for the next second. In
1003 * PLL mode, the offset is reduced by a fixed factor
1004 * times the time constant. In FLL mode the offset is
1005 * used directly. In either mode, the maximum phase
1006 * adjustment for each second is clamped so as to spread
1007 * the adjustment over not more than the number of
1008 * seconds between updates.
1010 if (time_offset < 0) {
1011 ltemp = -time_offset;
1012 if (!(time_status & STA_FLL))
1013 ltemp >>= SHIFT_KG + time_constant;
1014 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
1015 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
1016 time_offset += ltemp;
1017 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
1018 } else {
1019 ltemp = time_offset;
1020 if (!(time_status & STA_FLL))
1021 ltemp >>= SHIFT_KG + time_constant;
1022 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
1023 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
1024 time_offset -= ltemp;
1025 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
1029 * Compute the frequency estimate and additional phase
1030 * adjustment due to frequency error for the next
1031 * second. When the PPS signal is engaged, gnaw on the
1032 * watchdog counter and update the frequency computed by
1033 * the pll and the PPS signal.
1035 pps_valid++;
1036 if (pps_valid == PPS_VALID) {
1037 pps_jitter = MAXTIME;
1038 pps_stabil = MAXFREQ;
1039 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
1040 STA_PPSWANDER | STA_PPSERROR);
1042 ltemp = time_freq + pps_freq;
1043 if (ltemp < 0)
1044 time_adj -= -ltemp >>
1045 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
1046 else
1047 time_adj += ltemp >>
1048 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
1050 #if HZ == 100
1051 /* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */
1052 if (time_adj < 0)
1053 time_adj -= -time_adj >> 2;
1054 else
1055 time_adj += time_adj >> 2;
1056 #endif
1059 /* in the NTP reference this is called "hardclock()" */
1060 static void update_wall_time_one_tick(void)
1063 * Advance the phase, once it gets to one microsecond, then
1064 * advance the tick more.
1066 time_phase += time_adj;
1067 if (time_phase <= -FINEUSEC) {
1068 long ltemp = -time_phase >> SHIFT_SCALE;
1069 time_phase += ltemp << SHIFT_SCALE;
1070 xtime.tv_usec += tick + time_adjust_step - ltemp;
1072 else if (time_phase >= FINEUSEC) {
1073 long ltemp = time_phase >> SHIFT_SCALE;
1074 time_phase -= ltemp << SHIFT_SCALE;
1075 xtime.tv_usec += tick + time_adjust_step + ltemp;
1076 } else
1077 xtime.tv_usec += tick + time_adjust_step;
1079 if (time_adjust) {
1080 /* We are doing an adjtime thing.
1082 * Modify the value of the tick for next time.
1083 * Note that a positive delta means we want the clock
1084 * to run fast. This means that the tick should be bigger
1086 * Limit the amount of the step for *next* tick to be
1087 * in the range -tickadj .. +tickadj
1089 if (time_adjust > tickadj)
1090 time_adjust_step = tickadj;
1091 else if (time_adjust < -tickadj)
1092 time_adjust_step = -tickadj;
1093 else
1094 time_adjust_step = time_adjust;
1096 /* Reduce by this step the amount of time left */
1097 time_adjust -= time_adjust_step;
1099 else
1100 time_adjust_step = 0;
1104 * Using a loop looks inefficient, but "ticks" is
1105 * usually just one (we shouldn't be losing ticks,
1106 * we're doing this this way mainly for interrupt
1107 * latency reasons, not because we think we'll
1108 * have lots of lost timer ticks
1110 static void update_wall_time(unsigned long ticks)
1112 do {
1113 ticks--;
1114 update_wall_time_one_tick();
1115 } while (ticks);
1117 if (xtime.tv_usec >= 1000000) {
1118 xtime.tv_usec -= 1000000;
1119 xtime.tv_sec++;
1120 second_overflow();
1124 static inline void do_process_times(struct task_struct *p,
1125 unsigned long user, unsigned long system)
1127 long psecs;
1129 psecs = (p->times.tms_utime += user);
1130 psecs += (p->times.tms_stime += system);
1131 if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
1132 /* Send SIGXCPU every second.. */
1133 if (!(psecs % HZ))
1134 send_sig(SIGXCPU, p, 1);
1135 /* and SIGKILL when we go over max.. */
1136 if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
1137 send_sig(SIGKILL, p, 1);
1141 static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
1143 unsigned long it_virt = p->it_virt_value;
1145 if (it_virt) {
1146 if (it_virt <= ticks) {
1147 it_virt = ticks + p->it_virt_incr;
1148 send_sig(SIGVTALRM, p, 1);
1150 p->it_virt_value = it_virt - ticks;
1154 static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
1156 unsigned long it_prof = p->it_prof_value;
1158 if (it_prof) {
1159 if (it_prof <= ticks) {
1160 it_prof = ticks + p->it_prof_incr;
1161 send_sig(SIGPROF, p, 1);
1163 p->it_prof_value = it_prof - ticks;
1167 void update_one_process(struct task_struct *p,
1168 unsigned long ticks, unsigned long user, unsigned long system, int cpu)
1170 p->per_cpu_utime[cpu] += user;
1171 p->per_cpu_stime[cpu] += system;
1172 do_process_times(p, user, system);
1173 do_it_virt(p, user);
1174 do_it_prof(p, ticks);
1177 static void update_process_times(unsigned long ticks, unsigned long system)
1180 * SMP does this on a per-CPU basis elsewhere
1182 #ifndef __SMP__
1183 struct task_struct * p = current;
1184 unsigned long user = ticks - system;
1185 if (p->pid) {
1186 p->counter -= ticks;
1187 if (p->counter < 0) {
1188 p->counter = 0;
1189 p->need_resched = 1;
1191 if (p->priority < DEF_PRIORITY)
1192 kstat.cpu_nice += user;
1193 else
1194 kstat.cpu_user += user;
1195 kstat.cpu_system += system;
1197 update_one_process(p, ticks, user, system, 0);
1198 #endif
1201 volatile unsigned long lost_ticks = 0;
1202 static unsigned long lost_ticks_system = 0;
1204 static inline void update_times(void)
1206 unsigned long ticks;
1207 unsigned long flags;
1209 save_flags(flags);
1210 cli();
1212 ticks = lost_ticks;
1213 lost_ticks = 0;
1215 if (ticks) {
1216 unsigned long system;
1217 system = xchg(&lost_ticks_system, 0);
1219 calc_load(ticks);
1220 update_wall_time(ticks);
1221 restore_flags(flags);
1223 update_process_times(ticks, system);
1225 } else
1226 restore_flags(flags);
1229 static void timer_bh(void)
1231 update_times();
1232 run_old_timers();
1233 run_timer_list();
1236 void do_timer(struct pt_regs * regs)
1238 (*(unsigned long *)&jiffies)++;
1239 lost_ticks++;
1240 mark_bh(TIMER_BH);
1241 if (!user_mode(regs))
1242 lost_ticks_system++;
1243 if (tq_timer)
1244 mark_bh(TQUEUE_BH);
1247 #ifndef __alpha__
1250 * For backwards compatibility? This can be done in libc so Alpha
1251 * and all newer ports shouldn't need it.
1253 asmlinkage unsigned int sys_alarm(unsigned int seconds)
1255 struct itimerval it_new, it_old;
1256 unsigned int oldalarm;
1258 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
1259 it_new.it_value.tv_sec = seconds;
1260 it_new.it_value.tv_usec = 0;
1261 do_setitimer(ITIMER_REAL, &it_new, &it_old);
1262 oldalarm = it_old.it_value.tv_sec;
1263 /* ehhh.. We can't return 0 if we have an alarm pending.. */
1264 /* And we'd better return too much than too little anyway */
1265 if (it_old.it_value.tv_usec)
1266 oldalarm++;
1267 return oldalarm;
1271 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1272 * should be moved into arch/i386 instead?
1275 asmlinkage int sys_getpid(void)
1277 /* This is SMP safe - current->pid doesn't change */
1278 return current->pid;
1282 * This is not strictly SMP safe: p_opptr could change
1283 * from under us. However, rather than getting any lock
1284 * we can use an optimistic algorithm: get the parent
1285 * pid, and go back and check that the parent is still
1286 * the same. If it has changed (which is extremely unlikely
1287 * indeed), we just try again..
1289 * NOTE! This depends on the fact that even if we _do_
1290 * get an old value of "parent", we can happily dereference
1291 * the pointer: we just can't necessarily trust the result
1292 * until we know that the parent pointer is valid.
1294 * The "mb()" macro is a memory barrier - a synchronizing
1295 * event. It also makes sure that gcc doesn't optimize
1296 * away the necessary memory references.. The barrier doesn't
1297 * have to have all that strong semantics: on x86 we don't
1298 * really require a synchronizing instruction, for example.
1299 * The barrier is more important for code generation than
1300 * for any real memory ordering semantics (even if there is
1301 * a small window for a race, using the old pointer is
1302 * harmless for a while).
1304 asmlinkage int sys_getppid(void)
1306 int pid;
1307 struct task_struct * me = current;
1308 struct task_struct * parent;
1310 parent = me->p_opptr;
1311 for (;;) {
1312 pid = parent->pid;
1313 #if __SMP__
1315 struct task_struct *old = parent;
1316 mb();
1317 parent = me->p_opptr;
1318 if (old != parent)
1319 continue;
1321 #endif
1322 break;
1324 return pid;
1327 asmlinkage int sys_getuid(void)
1329 /* Only we change this so SMP safe */
1330 return current->uid;
1333 asmlinkage int sys_geteuid(void)
1335 /* Only we change this so SMP safe */
1336 return current->euid;
1339 asmlinkage int sys_getgid(void)
1341 /* Only we change this so SMP safe */
1342 return current->gid;
1345 asmlinkage int sys_getegid(void)
1347 /* Only we change this so SMP safe */
1348 return current->egid;
1352 * This has been replaced by sys_setpriority. Maybe it should be
1353 * moved into the arch dependent tree for those ports that require
1354 * it for backward compatibility?
1357 asmlinkage int sys_nice(int increment)
1359 unsigned long newprio;
1360 int increase = 0;
1363 * Setpriority might change our priority at the same moment.
1364 * We don't have to worry. Conceptually one call occurs first
1365 * and we have a single winner.
1368 newprio = increment;
1369 if (increment < 0) {
1370 if (!capable(CAP_SYS_NICE))
1371 return -EPERM;
1372 newprio = -increment;
1373 increase = 1;
1376 if (newprio > 40)
1377 newprio = 40;
1379 * do a "normalization" of the priority (traditionally
1380 * Unix nice values are -20 to 20; Linux doesn't really
1381 * use that kind of thing, but uses the length of the
1382 * timeslice instead (default 150 ms). The rounding is
1383 * why we want to avoid negative values.
1385 newprio = (newprio * DEF_PRIORITY + 10) / 20;
1386 increment = newprio;
1387 if (increase)
1388 increment = -increment;
1390 * Current->priority can change between this point
1391 * and the assignment. We are assigning not doing add/subs
1392 * so thats ok. Conceptually a process might just instantaneously
1393 * read the value we stomp over. I don't think that is an issue
1394 * unless posix makes it one. If so we can loop on changes
1395 * to current->priority.
1397 newprio = current->priority - increment;
1398 if ((signed) newprio < 1)
1399 newprio = 1;
1400 if (newprio > DEF_PRIORITY*2)
1401 newprio = DEF_PRIORITY*2;
1402 current->priority = newprio;
1403 return 0;
1406 #endif
1408 static inline struct task_struct *find_process_by_pid(pid_t pid)
1410 struct task_struct *tsk = current;
1412 if (pid)
1413 tsk = find_task_by_pid(pid);
1414 return tsk;
1417 static int setscheduler(pid_t pid, int policy,
1418 struct sched_param *param)
1420 struct sched_param lp;
1421 struct task_struct *p;
1422 int retval;
1424 retval = -EINVAL;
1425 if (!param || pid < 0)
1426 goto out_nounlock;
1428 retval = -EFAULT;
1429 if (copy_from_user(&lp, param, sizeof(struct sched_param)))
1430 goto out_nounlock;
1433 * We play safe to avoid deadlocks.
1435 spin_lock(&scheduler_lock);
1436 spin_lock_irq(&runqueue_lock);
1437 read_lock(&tasklist_lock);
1439 p = find_process_by_pid(pid);
1441 retval = -ESRCH;
1442 if (!p)
1443 goto out_unlock;
1445 if (policy < 0)
1446 policy = p->policy;
1447 else {
1448 retval = -EINVAL;
1449 if (policy != SCHED_FIFO && policy != SCHED_RR &&
1450 policy != SCHED_OTHER)
1451 goto out_unlock;
1455 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
1456 * priority for SCHED_OTHER is 0.
1458 retval = -EINVAL;
1459 if (lp.sched_priority < 0 || lp.sched_priority > 99)
1460 goto out_unlock;
1461 if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
1462 goto out_unlock;
1464 retval = -EPERM;
1465 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
1466 !capable(CAP_SYS_NICE))
1467 goto out_unlock;
1468 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1469 !capable(CAP_SYS_NICE))
1470 goto out_unlock;
1472 retval = 0;
1473 p->policy = policy;
1474 p->rt_priority = lp.sched_priority;
1475 if (p->next_run)
1476 move_first_runqueue(p);
1478 current->need_resched = 1;
1480 out_unlock:
1481 read_unlock(&tasklist_lock);
1482 spin_unlock_irq(&runqueue_lock);
1483 spin_unlock(&scheduler_lock);
1485 out_nounlock:
1486 return retval;
1489 asmlinkage int sys_sched_setscheduler(pid_t pid, int policy,
1490 struct sched_param *param)
1492 return setscheduler(pid, policy, param);
1495 asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
1497 return setscheduler(pid, -1, param);
1500 asmlinkage int sys_sched_getscheduler(pid_t pid)
1502 struct task_struct *p;
1503 int retval;
1505 retval = -EINVAL;
1506 if (pid < 0)
1507 goto out_nounlock;
1509 read_lock(&tasklist_lock);
1511 retval = -ESRCH;
1512 p = find_process_by_pid(pid);
1513 if (!p)
1514 goto out_unlock;
1516 retval = p->policy;
1518 out_unlock:
1519 read_unlock(&tasklist_lock);
1521 out_nounlock:
1522 return retval;
1525 asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
1527 struct task_struct *p;
1528 struct sched_param lp;
1529 int retval;
1531 retval = -EINVAL;
1532 if (!param || pid < 0)
1533 goto out_nounlock;
1535 read_lock(&tasklist_lock);
1536 p = find_process_by_pid(pid);
1537 retval = -ESRCH;
1538 if (!p)
1539 goto out_unlock;
1540 lp.sched_priority = p->rt_priority;
1541 read_unlock(&tasklist_lock);
1544 * This one might sleep, we cannot do it with a spinlock held ...
1546 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1548 out_nounlock:
1549 return retval;
1551 out_unlock:
1552 read_unlock(&tasklist_lock);
1553 return retval;
1556 asmlinkage int sys_sched_yield(void)
1558 spin_lock(&scheduler_lock);
1559 spin_lock_irq(&runqueue_lock);
1560 if (current->policy == SCHED_OTHER)
1561 current->policy |= SCHED_YIELD;
1562 current->need_resched = 1;
1563 move_last_runqueue(current);
1564 spin_unlock_irq(&runqueue_lock);
1565 spin_unlock(&scheduler_lock);
1566 return 0;
1569 asmlinkage int sys_sched_get_priority_max(int policy)
1571 int ret = -EINVAL;
1573 switch (policy) {
1574 case SCHED_FIFO:
1575 case SCHED_RR:
1576 ret = 99;
1577 break;
1578 case SCHED_OTHER:
1579 ret = 0;
1580 break;
1582 return ret;
1585 asmlinkage int sys_sched_get_priority_min(int policy)
1587 int ret = -EINVAL;
1589 switch (policy) {
1590 case SCHED_FIFO:
1591 case SCHED_RR:
1592 ret = 1;
1593 break;
1594 case SCHED_OTHER:
1595 ret = 0;
1597 return ret;
1600 asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
1602 struct timespec t;
1604 t.tv_sec = 0;
1605 t.tv_nsec = 150000;
1606 if (copy_to_user(interval, &t, sizeof(struct timespec)))
1607 return -EFAULT;
1608 return 0;
1611 asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
1613 struct timespec t;
1614 unsigned long expire;
1616 if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
1617 return -EFAULT;
1619 if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
1620 return -EINVAL;
1623 if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
1624 current->policy != SCHED_OTHER)
1627 * Short delay requests up to 2 ms will be handled with
1628 * high precision by a busy wait for all real-time processes.
1630 * Its important on SMP not to do this holding locks.
1632 udelay((t.tv_nsec + 999) / 1000);
1633 return 0;
1636 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
1638 current->state = TASK_INTERRUPTIBLE;
1639 expire = schedule_timeout(expire);
1641 if (expire) {
1642 if (rmtp) {
1643 jiffies_to_timespec(expire, &t);
1644 if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
1645 return -EFAULT;
1647 return -EINTR;
1649 return 0;
1652 static void show_task(int nr,struct task_struct * p)
1654 unsigned long free = 0;
1655 int state;
1656 static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
1658 printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
1659 state = p->state ? ffz(~p->state) + 1 : 0;
1660 if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
1661 printk(stat_nam[state]);
1662 else
1663 printk(" ");
1664 #if (BITS_PER_LONG == 32)
1665 if (p == current)
1666 printk(" current ");
1667 else
1668 printk(" %08lX ", thread_saved_pc(&p->tss));
1669 #else
1670 if (p == current)
1671 printk(" current task ");
1672 else
1673 printk(" %016lx ", thread_saved_pc(&p->tss));
1674 #endif
1676 unsigned long * n = (unsigned long *) (p+1);
1677 while (!*n)
1678 n++;
1679 free = (unsigned long) n - (unsigned long)(p+1);
1681 printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
1682 if (p->p_cptr)
1683 printk("%5d ", p->p_cptr->pid);
1684 else
1685 printk(" ");
1686 if (p->p_ysptr)
1687 printk("%7d", p->p_ysptr->pid);
1688 else
1689 printk(" ");
1690 if (p->p_osptr)
1691 printk(" %5d\n", p->p_osptr->pid);
1692 else
1693 printk("\n");
1696 struct signal_queue *q;
1697 char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
1699 render_sigset_t(&p->signal, s);
1700 render_sigset_t(&p->blocked, b);
1701 printk(" sig: %d %s %s :", signal_pending(p), s, b);
1702 for (q = p->sigqueue; q ; q = q->next)
1703 printk(" %d", q->info.si_signo);
1704 printk(" X\n");
1708 char * render_sigset_t(sigset_t *set, char *buffer)
1710 int i = _NSIG, x;
1711 do {
1712 i -= 4, x = 0;
1713 if (sigismember(set, i+1)) x |= 1;
1714 if (sigismember(set, i+2)) x |= 2;
1715 if (sigismember(set, i+3)) x |= 4;
1716 if (sigismember(set, i+4)) x |= 8;
1717 *buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
1718 } while (i >= 4);
1719 *buffer = 0;
1720 return buffer;
1723 void show_state(void)
1725 struct task_struct *p;
1727 #if (BITS_PER_LONG == 32)
1728 printk("\n"
1729 " free sibling\n");
1730 printk(" task PC stack pid father child younger older\n");
1731 #else
1732 printk("\n"
1733 " free sibling\n");
1734 printk(" task PC stack pid father child younger older\n");
1735 #endif
1736 read_lock(&tasklist_lock);
1737 for_each_task(p)
1738 show_task((p->tarray_ptr - &task[0]),p);
1739 read_unlock(&tasklist_lock);
1742 void __init sched_init(void)
1745 * We have to do a little magic to get the first
1746 * process right in SMP mode.
1748 int cpu=hard_smp_processor_id();
1749 int nr = NR_TASKS;
1751 init_task.processor=cpu;
1753 /* Init task array free list and pidhash table. */
1754 while(--nr > 0)
1755 add_free_taskslot(&task[nr]);
1757 for(nr = 0; nr < PIDHASH_SZ; nr++)
1758 pidhash[nr] = NULL;
1760 init_bh(TIMER_BH, timer_bh);
1761 init_bh(TQUEUE_BH, tqueue_bh);
1762 init_bh(IMMEDIATE_BH, immediate_bh);