Import 2.3.16
[davej-history.git] / arch / sh / mm / init.c
blob3a6bfc1a2ba50bcb315f28386469cf1c9d1a14e9
1 /*
2 * linux/arch/sh/mm/init.c
4 * Copyright (C) 1999 Niibe Yutaka
6 * Based on linux/arch/i386/mm/init.c:
7 * Copyright (C) 1995 Linus Torvalds
8 */
10 #include <linux/config.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/smp.h>
22 #include <linux/init.h>
23 #ifdef CONFIG_BLK_DEV_INITRD
24 #include <linux/blk.h>
25 #endif
27 #include <asm/processor.h>
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgtable.h>
31 #include <asm/mmu_context.h>
34 * Cache of MMU context last used.
36 unsigned long mmu_context_cache;
38 static unsigned long totalram = 0;
40 extern void show_net_buffers(void);
41 extern unsigned long init_smp_mappings(unsigned long);
43 void __bad_pte_kernel(pmd_t *pmd)
45 printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
46 pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
49 void __bad_pte(pmd_t *pmd)
51 printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
52 pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
55 pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long offset)
57 pte_t *pte;
59 pte = (pte_t *) __get_free_page(GFP_KERNEL);
60 if (pmd_none(*pmd)) {
61 if (pte) {
62 clear_page((unsigned long)pte);
63 pmd_val(*pmd) = _KERNPG_TABLE + __pa(pte);
64 return pte + offset;
66 pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
67 return NULL;
69 free_page((unsigned long)pte);
70 if (pmd_bad(*pmd)) {
71 __bad_pte_kernel(pmd);
72 return NULL;
74 return (pte_t *) pmd_page(*pmd) + offset;
77 pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
79 unsigned long pte;
81 pte = (unsigned long) __get_free_page(GFP_KERNEL);
82 if (pmd_none(*pmd)) {
83 if (pte) {
84 clear_page(pte);
85 pmd_val(*pmd) = _PAGE_TABLE + __pa(pte);
86 return (pte_t *)(pte + offset);
88 pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
89 return NULL;
91 free_page(pte);
92 if (pmd_bad(*pmd)) {
93 __bad_pte(pmd);
94 return NULL;
96 return (pte_t *) (pmd_page(*pmd) + offset);
99 int do_check_pgt_cache(int low, int high)
101 int freed = 0;
102 if(pgtable_cache_size > high) {
103 do {
104 if(pgd_quicklist)
105 free_pgd_slow(get_pgd_fast()), freed++;
106 if(pmd_quicklist)
107 free_pmd_slow(get_pmd_fast()), freed++;
108 if(pte_quicklist)
109 free_pte_slow(get_pte_fast()), freed++;
110 } while(pgtable_cache_size > low);
112 return freed;
116 * BAD_PAGE is the page that is used for page faults when linux
117 * is out-of-memory. Older versions of linux just did a
118 * do_exit(), but using this instead means there is less risk
119 * for a process dying in kernel mode, possibly leaving an inode
120 * unused etc..
122 * BAD_PAGETABLE is the accompanying page-table: it is initialized
123 * to point to BAD_PAGE entries.
125 * ZERO_PAGE is a special page that is used for zero-initialized
126 * data and COW.
128 pte_t * __bad_pagetable(void)
130 extern char empty_bad_page_table[PAGE_SIZE];
131 unsigned long page = (unsigned long)empty_bad_page_table;
133 clear_page(page);
134 return (pte_t *)empty_bad_page_table;
137 pte_t __bad_page(void)
139 extern char empty_bad_page[PAGE_SIZE];
140 unsigned long page = (unsigned long)empty_bad_page;
142 clear_page(page);
143 return pte_mkdirty(mk_pte(page, PAGE_SHARED));
146 void show_mem(void)
148 int i,free = 0,total = 0,reserved = 0;
149 int shared = 0, cached = 0;
151 printk("Mem-info:\n");
152 show_free_areas();
153 printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
154 i = max_mapnr;
155 while (i-- > 0) {
156 total++;
157 if (PageReserved(mem_map+i))
158 reserved++;
159 else if (PageSwapCache(mem_map+i))
160 cached++;
161 else if (!page_count(mem_map+i))
162 free++;
163 else
164 shared += page_count(mem_map+i) - 1;
166 printk("%d pages of RAM\n",total);
167 printk("%d reserved pages\n",reserved);
168 printk("%d pages shared\n",shared);
169 printk("%d pages swap cached\n",cached);
170 printk("%ld pages in page table cache\n",pgtable_cache_size);
171 #ifdef CONFIG_NET
172 show_net_buffers();
173 #endif
176 extern unsigned long free_area_init(unsigned long, unsigned long);
178 /* References to section boundaries */
180 extern char _text, _etext, _edata, __bss_start, _end;
181 extern char __init_begin, __init_end;
183 pgd_t swapper_pg_dir[1024];
186 * paging_init() sets up the page tables
188 * This routines also unmaps the page at virtual kernel address 0, so
189 * that we can trap those pesky NULL-reference errors in the kernel.
191 unsigned long __init
192 paging_init(unsigned long start_mem, unsigned long end_mem)
194 pgd_t * pg_dir;
196 start_mem = PAGE_ALIGN(start_mem);
198 /* We don't need kernel mapping as hardware support that. */
199 pg_dir = swapper_pg_dir;
201 /* Unmap the original low memory mappings to detect NULL reference */
202 pgd_val(pg_dir[0]) = 0;
204 /* Enable MMU */
205 __asm__ __volatile__ ("mov.l %0,%1"
206 : /* no output */
207 : "r" (MMU_CONTROL_INIT), "m" (__m(MMUCR)));
209 return free_area_init(start_mem, end_mem);
212 unsigned long empty_bad_page[1024];
213 unsigned long empty_bad_page_table[1024];
214 unsigned long empty_zero_page[1024];
216 void __init mem_init(unsigned long start_mem, unsigned long end_mem)
218 int codepages = 0;
219 int reservedpages = 0;
220 int datapages = 0;
221 int initpages = 0;
222 unsigned long tmp;
224 end_mem &= PAGE_MASK;
225 high_memory = (void *) end_mem;
226 max_mapnr = num_physpages = MAP_NR(end_mem);
228 /* clear the zero-page */
229 memset(empty_zero_page, 0, PAGE_SIZE);
231 /* Mark (clear "reserved" bit) usable pages in the mem_map[] */
232 /* Note that all are marked reserved already. */
233 tmp = start_mem = PAGE_ALIGN(start_mem);
234 while (tmp < end_mem) {
235 clear_bit(PG_reserved, &mem_map[MAP_NR(tmp)].flags);
236 clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags);
237 tmp += PAGE_SIZE;
240 for (tmp = PAGE_OFFSET; tmp < end_mem; tmp += PAGE_SIZE) {
241 if (PageReserved(mem_map+MAP_NR(tmp))) {
242 if (tmp >= (unsigned long) &_text && tmp < (unsigned long) &_edata) {
243 if (tmp < (unsigned long) &_etext)
244 codepages++;
245 else
246 datapages++;
247 } else if (tmp >= (unsigned long) &__init_begin
248 && tmp < (unsigned long) &__init_end)
249 initpages++;
250 else if (tmp >= (unsigned long) &__bss_start
251 && tmp < (unsigned long) start_mem)
252 datapages++;
253 else
254 reservedpages++;
255 continue;
257 set_page_count(mem_map+MAP_NR(tmp), 1);
258 totalram += PAGE_SIZE;
259 #ifdef CONFIG_BLK_DEV_INITRD
260 if (!initrd_start || (tmp < initrd_start || tmp >= initrd_end))
261 #endif
262 free_page(tmp);
264 printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
265 (unsigned long) nr_free_pages << (PAGE_SHIFT-10),
266 max_mapnr << (PAGE_SHIFT-10),
267 codepages << (PAGE_SHIFT-10),
268 reservedpages << (PAGE_SHIFT-10),
269 datapages << (PAGE_SHIFT-10),
270 initpages << (PAGE_SHIFT-10));
273 void free_initmem(void)
275 unsigned long addr;
277 addr = (unsigned long)(&__init_begin);
278 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
279 mem_map[MAP_NR(addr)].flags &= ~(1 << PG_reserved);
280 set_page_count(mem_map+MAP_NR(addr), 1);
281 free_page(addr);
282 totalram += PAGE_SIZE;
284 printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
287 void si_meminfo(struct sysinfo *val)
289 val->totalram = totalram;
290 val->sharedram = 0;
291 val->freeram = nr_free_pages << PAGE_SHIFT;
292 val->bufferram = atomic_read(&buffermem);
293 return;