1 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 |MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
3 |M68000 Hi-Performance Microprocessor Division
4 |M68060 Software Package
5 |Production Release P1.00 -- October 10, 1994
7 |M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
9 |THE SOFTWARE is provided on an "AS IS" basis and without warranty.
10 |To the maximum extent permitted by applicable law,
11 |MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
12 |INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
13 |and any warranty against infringement with regard to the SOFTWARE
14 |(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
16 |To the maximum extent permitted by applicable law,
17 |IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
18 |(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
19 |BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
20 |ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
21 |Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
23 |You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
24 |so long as this entire notice is retained without alteration in any modified and/or
25 |redistributed versions, and that such modified versions are clearly identified as such.
26 |No licenses are granted by implication, estoppel or otherwise under any patents
27 |or trademarks of Motorola, Inc.
28 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32 | (1) example "Call-out"s
33 | (2) example package entry code
34 | (3) example "Call-out" table
37 #include <linux/linkage.h>
39 |################################
40 | (1) EXAMPLE CALL-OUTS #
51 | _060_real_fpu_disabled() #
53 |################################
58 | This is the main exit point for the 68060 Floating-Point
59 | Software Package. For a normal exit, all 060FPSP routines call this
60 | routine. The operating system can do system dependent clean-up or
61 | simply execute an "rte" as with the sample code below.
63 .global _060_fpsp_done
65 bral _060_isp_done | do the same as isp_done
70 | This is the exit point for the 060FPSP when an enabled overflow exception
71 | is present. The routine below should point to the operating system handler
72 | for enabled overflow conditions. The exception stack frame is an overflow
73 | stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
75 | The sample routine below simply clears the exception status bit and
78 .global _060_real_ovfl
81 move.w #0x6000,0x2(%sp)
83 bral SYMBOL_NAME(trap) | jump to trap handler
89 | This is the exit point for the 060FPSP when an enabled underflow exception
90 | is present. The routine below should point to the operating system handler
91 | for enabled underflow conditions. The exception stack frame is an underflow
92 | stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
94 | The sample routine below simply clears the exception status bit and
97 .global _060_real_unfl
100 move.w #0x6000,0x2(%sp)
102 bral SYMBOL_NAME(trap) | jump to trap handler
107 | This is the exit point for the 060FPSP when an enabled operand error exception
108 | is present. The routine below should point to the operating system handler
109 | for enabled operand error exceptions. The exception stack frame is an operand error
110 | stack frame. The FP state frame holds the source operand of the faulting
113 | The sample routine below simply clears the exception status bit and
116 .global _060_real_operr
119 move.w #0x6000,0x2(%sp)
121 bral SYMBOL_NAME(trap) | jump to trap handler
126 | This is the exit point for the 060FPSP when an enabled signalling NaN exception
127 | is present. The routine below should point to the operating system handler
128 | for enabled signalling NaN exceptions. The exception stack frame is a signalling NaN
129 | stack frame. The FP state frame holds the source operand of the faulting
132 | The sample routine below simply clears the exception status bit and
135 .global _060_real_snan
138 move.w #0x6000,0x2(%sp)
140 bral SYMBOL_NAME(trap) | jump to trap handler
145 | This is the exit point for the 060FPSP when an enabled divide-by-zero exception
146 | is present. The routine below should point to the operating system handler
147 | for enabled divide-by-zero exceptions. The exception stack frame is a divide-by-zero
148 | stack frame. The FP state frame holds the source operand of the faulting
151 | The sample routine below simply clears the exception status bit and
157 move.w #0x6000,0x2(%sp)
159 bral SYMBOL_NAME(trap) | jump to trap handler
164 | This is the exit point for the 060FPSP when an enabled inexact exception
165 | is present. The routine below should point to the operating system handler
166 | for enabled inexact exceptions. The exception stack frame is an inexact
167 | stack frame. The FP state frame holds the source operand of the faulting
170 | The sample routine below simply clears the exception status bit and
173 .global _060_real_inex
176 move.w #0x6000,0x2(%sp)
178 bral SYMBOL_NAME(trap) | jump to trap handler
183 | This is the exit point for the 060FPSP when an enabled bsun exception
184 | is present. The routine below should point to the operating system handler
185 | for enabled bsun exceptions. The exception stack frame is a bsun
188 | The sample routine below clears the exception status bit, clears the NaN
189 | bit in the FPSR, and does an "rte". The instruction that caused the
190 | bsun will now be re-executed but with the NaN FPSR bit cleared.
192 .global _060_real_bsun
200 bral SYMBOL_NAME(trap) | jump to trap handler
205 | This is the exit point for the 060FPSP when an F-Line Illegal exception is
206 | encountered. Three different types of exceptions can enter the F-Line exception
207 | vector number 11: FP Unimplemented Instructions, FP implemented instructions when
208 | the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
209 | _fpsp_fline() distinguishes between the three and acts appropriately. F-Line
210 | Illegals branch here.
212 .global _060_real_fline
214 bral SYMBOL_NAME(trap) | jump to trap handler
217 | _060_real_fpu_disabled():
219 | This is the exit point for the 060FPSP when an FPU disabled exception is
220 | encountered. Three different types of exceptions can enter the F-Line exception
221 | vector number 11: FP Unimplemented Instructions, FP implemented instructions when
222 | the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
223 | _fpsp_fline() distinguishes between the three and acts appropriately. FPU disabled
224 | exceptions branch here.
226 | The sample code below enables the FPU, sets the PC field in the exception stack
227 | frame to the PC of the instruction causing the exception, and does an "rte".
228 | The execution of the instruction then proceeds with an enabled floating-point
231 .global _060_real_fpu_disabled
232 _060_real_fpu_disabled:
233 move.l %d0,-(%sp) | enabled the fpu
234 .long 0x4E7A0808 |movec pcr,%d0
236 .long 0x4E7B0808 |movec %d0,pcr
239 move.l 0xc(%sp),0x2(%sp) | set "Current PC"
245 | This is the exit point for the 060FPSP when an emulated "ftrapcc" instruction
246 | discovers that the trap condition is true and it should branch to the operating
247 | system handler for the trap exception vector number 7.
249 | The sample code below simply executes an "rte".
251 .global _060_real_trap
253 bral SYMBOL_NAME(trap) | jump to trap handler
255 |############################################################################
257 |#################################
258 | (2) EXAMPLE PACKAGE ENTRY CODE #
259 |#################################
261 .global _060_fpsp_snan
263 bra.l _FP_CALL_TOP+0x80+0x00
265 .global _060_fpsp_operr
267 bra.l _FP_CALL_TOP+0x80+0x08
269 .global _060_fpsp_ovfl
271 bra.l _FP_CALL_TOP+0x80+0x10
273 .global _060_fpsp_unfl
275 bra.l _FP_CALL_TOP+0x80+0x18
279 bra.l _FP_CALL_TOP+0x80+0x20
281 .global _060_fpsp_inex
283 bra.l _FP_CALL_TOP+0x80+0x28
285 .global _060_fpsp_fline
287 bra.l _FP_CALL_TOP+0x80+0x30
289 .global _060_fpsp_unsupp
291 bra.l _FP_CALL_TOP+0x80+0x38
293 .global _060_fpsp_effadd
295 bra.l _FP_CALL_TOP+0x80+0x40
297 |############################################################################
299 |###############################
300 | (3) EXAMPLE CALL-OUT SECTION #
301 |###############################
303 | The size of this section MUST be 128 bytes!!!
307 .long _060_real_bsun - _FP_CALL_TOP
308 .long _060_real_snan - _FP_CALL_TOP
309 .long _060_real_operr - _FP_CALL_TOP
310 .long _060_real_ovfl - _FP_CALL_TOP
311 .long _060_real_unfl - _FP_CALL_TOP
312 .long _060_real_dz - _FP_CALL_TOP
313 .long _060_real_inex - _FP_CALL_TOP
314 .long _060_real_fline - _FP_CALL_TOP
315 .long _060_real_fpu_disabled - _FP_CALL_TOP
316 .long _060_real_trap - _FP_CALL_TOP
317 .long _060_real_trace - _FP_CALL_TOP
318 .long _060_real_access - _FP_CALL_TOP
319 .long _060_fpsp_done - _FP_CALL_TOP
321 .long 0x00000000, 0x00000000, 0x00000000
323 .long _060_imem_read - _FP_CALL_TOP
324 .long _060_dmem_read - _FP_CALL_TOP
325 .long _060_dmem_write - _FP_CALL_TOP
326 .long _060_imem_read_word - _FP_CALL_TOP
327 .long _060_imem_read_long - _FP_CALL_TOP
328 .long _060_dmem_read_byte - _FP_CALL_TOP
329 .long _060_dmem_read_word - _FP_CALL_TOP
330 .long _060_dmem_read_long - _FP_CALL_TOP
331 .long _060_dmem_write_byte - _FP_CALL_TOP
332 .long _060_dmem_write_word - _FP_CALL_TOP
333 .long _060_dmem_write_long - _FP_CALL_TOP
337 .long 0x00000000, 0x00000000, 0x00000000, 0x00000000
339 |############################################################################
341 | 060 FPSP KERNEL PACKAGE NEEDS TO GO HERE!!!