Import 2.3.26pre2
[davej-history.git] / fs / hfs / bdelete.c
blobc968c74b70505d53141a6e726eec50d04b279c56
1 /*
2 * linux/fs/hfs/bdelete.c
4 * Copyright (C) 1995-1997 Paul H. Hargrove
5 * This file may be distributed under the terms of the GNU Public License.
7 * This file contains the code to delete records in a B-tree.
9 * "XXX" in a comment is a note to myself to consider changing something.
11 * In function preconditions the term "valid" applied to a pointer to
12 * a structure means that the pointer is non-NULL and the structure it
13 * points to has all fields initialized to consistent values.
16 #include "hfs_btree.h"
18 /*================ Variable-like macros ================*/
20 #define FULL (HFS_SECTOR_SIZE - sizeof(struct NodeDescriptor))
21 #define NO_SPACE (HFS_SECTOR_SIZE+1)
23 /*================ File-local functions ================*/
26 * bdelete_nonempty()
28 * Description:
29 * Deletes a record from a given bnode without regard to it becoming empty.
30 * Input Variable(s):
31 * struct hfs_brec* brec: pointer to the brec for the deletion
32 * struct hfs_belem* belem: which node in 'brec' to delete from
33 * Output Variable(s):
34 * NONE
35 * Returns:
36 * void
37 * Preconditions:
38 * 'brec' points to a valid (struct hfs_brec).
39 * 'belem' points to a valid (struct hfs_belem) in 'brec'.
40 * Postconditions:
41 * The record has been inserted in the position indicated by 'brec'.
43 static void bdelete_nonempty(struct hfs_brec *brec, struct hfs_belem *belem)
45 int i, rec, nrecs, tomove;
46 hfs_u16 size;
47 hfs_u8 *start;
48 struct hfs_bnode *bnode = belem->bnr.bn;
50 rec = belem->record;
51 nrecs = bnode->ndNRecs;
52 size = bnode_rsize(bnode, rec);
53 tomove = bnode_offset(bnode, nrecs+1) - bnode_offset(bnode, rec+1);
55 /* adjust the record table */
56 for (i = rec+1; i <= nrecs; ++i) {
57 hfs_put_hs(bnode_offset(bnode,i+1) - size, RECTBL(bnode,i));
60 /* move it down */
61 start = bnode_key(bnode, rec);
62 memmove(start, start + size, tomove);
64 /* update record count */
65 --bnode->ndNRecs;
69 * del_root()
71 * Description:
72 * Delete the current root bnode.
73 * Input Variable(s):
74 * struct hfs_bnode_ref *root: reference to the root bnode
75 * Output Variable(s):
76 * NONE
77 * Returns:
78 * int: 0 on success, error code on failure
79 * Preconditions:
80 * 'root' refers to the root bnode with HFS_LOCK_WRITE access.
81 * None of 'root's children are held with HFS_LOCK_WRITE access.
82 * Postconditions:
83 * The current 'root' node is removed from the tree and the depth
84 * of the tree is reduced by one.
85 * If 'root' is an index node with exactly one child, then that
86 * child becomes the new root of the tree.
87 * If 'root' is an empty leaf node the tree becomes empty.
88 * Upon return access to 'root' is relinquished.
90 static int del_root(struct hfs_bnode_ref *root)
92 struct hfs_btree *tree = root->bn->tree;
93 struct hfs_bnode_ref child;
94 hfs_u32 node;
96 if (root->bn->ndNRecs > 1) {
97 return 0;
98 } else if (root->bn->ndNRecs == 0) {
99 /* tree is empty */
100 tree->bthRoot = 0;
101 tree->root = NULL;
102 tree->bthRoot = 0;
103 tree->bthFNode = 0;
104 tree->bthLNode = 0;
105 --tree->bthDepth;
106 tree->dirt = 1;
107 if (tree->bthDepth) {
108 hfs_warn("hfs_bdelete: empty tree with bthDepth=%d\n",
109 tree->bthDepth);
110 goto bail;
112 return hfs_bnode_free(root);
113 } else if (root->bn->ndType == ndIndxNode) {
114 /* tree is non-empty */
115 node = hfs_get_hl(bkey_record(bnode_datastart(root->bn)));
117 child = hfs_bnode_find(tree, node, HFS_LOCK_READ);
118 if (!child.bn) {
119 hfs_warn("hfs_bdelete: can't read child node.\n");
120 goto bail;
123 child.bn->sticky = HFS_STICKY;
124 if (child.bn->next) {
125 child.bn->next->prev = child.bn->prev;
127 if (child.bn->prev) {
128 child.bn->prev->next = child.bn->next;
130 if (bhash(tree, child.bn->node) == child.bn) {
131 bhash(tree, child.bn->node) = child.bn->next;
133 child.bn->next = NULL;
134 child.bn->prev = NULL;
136 tree->bthRoot = child.bn->node;
137 tree->root = child.bn;
139 /* re-assign bthFNode and bthLNode if the new root is
140 a leaf node. */
141 if (child.bn->ndType == ndLeafNode) {
142 tree->bthFNode = node;
143 tree->bthLNode = node;
145 hfs_bnode_relse(&child);
147 tree->bthRoot = node;
148 --tree->bthDepth;
149 tree->dirt = 1;
150 if (!tree->bthDepth) {
151 hfs_warn("hfs_bdelete: non-empty tree with "
152 "bthDepth == 0\n");
153 goto bail;
155 return hfs_bnode_free(root); /* marks tree dirty */
157 hfs_bnode_relse(root);
158 return 0;
160 bail:
161 hfs_bnode_relse(root);
162 return -EIO;
167 * delete_empty_bnode()
169 * Description:
170 * Removes an empty non-root bnode from between 'left' and 'right'
171 * Input Variable(s):
172 * hfs_u32 left_node: node number of 'left' or zero if 'left' is invalid
173 * struct hfs_bnode_ref *left: reference to the left neighbor of the
174 * bnode to remove, or invalid if no such neighbor exists.
175 * struct hfs_bnode_ref *center: reference to the bnode to remove
176 * hfs_u32 right_node: node number of 'right' or zero if 'right' is invalid
177 * struct hfs_bnode_ref *right: reference to the right neighbor of the
178 * bnode to remove, or invalid if no such neighbor exists.
179 * Output Variable(s):
180 * NONE
181 * Returns:
182 * void
183 * Preconditions:
184 * 'left_node' is as described above.
185 * 'left' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
186 * access and referring to the left neighbor of 'center' if such a
187 * neighbor exists, or invalid if no such neighbor exists.
188 * 'center' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
189 * access and referring to the bnode to delete.
190 * 'right_node' is as described above.
191 * 'right' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
192 * access and referring to the right neighbor of 'center' if such a
193 * neighbor exists, or invalid if no such neighbor exists.
194 * Postconditions:
195 * If 'left' is valid its 'ndFLink' field becomes 'right_node'.
196 * If 'right' is valid its 'ndBLink' field becomes 'left_node'.
197 * If 'center' was the first leaf node then the tree's 'bthFNode'
198 * field becomes 'right_node'
199 * If 'center' was the last leaf node then the tree's 'bthLNode'
200 * field becomes 'left_node'
201 * 'center' is NOT freed and access to the nodes is NOT relinquished.
203 static void delete_empty_bnode(hfs_u32 left_node, struct hfs_bnode_ref *left,
204 struct hfs_bnode_ref *center,
205 hfs_u32 right_node, struct hfs_bnode_ref *right)
207 struct hfs_bnode *bnode = center->bn;
209 if (left_node) {
210 left->bn->ndFLink = right_node;
211 } else if (bnode->ndType == ndLeafNode) {
212 bnode->tree->bthFNode = right_node;
213 bnode->tree->dirt = 1;
216 if (right_node) {
217 right->bn->ndBLink = left_node;
218 } else if (bnode->ndType == ndLeafNode) {
219 bnode->tree->bthLNode = left_node;
220 bnode->tree->dirt = 1;
225 * balance()
227 * Description:
228 * Attempt to equalize space usage in neighboring bnodes.
229 * Input Variable(s):
230 * struct hfs_bnode *left: the left bnode.
231 * struct hfs_bnode *right: the right bnode.
232 * Output Variable(s):
233 * NONE
234 * Returns:
235 * void
236 * Preconditions:
237 * 'left' and 'right' point to valid (struct hfs_bnode)s obtained
238 * with HFS_LOCK_WRITE access, and are neighbors.
239 * Postconditions:
240 * Records are shifted either left or right to make the space usage
241 * nearly equal. When exact equality is not possible the break
242 * point is chosen to reduce data movement.
243 * The key corresponding to 'right' in its parent is NOT updated.
245 static void balance(struct hfs_bnode *left, struct hfs_bnode *right)
247 int index, left_free, right_free, half;
249 left_free = bnode_freespace(left);
250 right_free = bnode_freespace(right);
251 half = (left_free + right_free)/2;
253 if (left_free < right_free) {
254 /* shift right to balance */
255 index = left->ndNRecs + 1;
256 while (right_free >= half) {
257 --index;
258 right_free -= bnode_rsize(left,index)+sizeof(hfs_u16);
260 if (index < left->ndNRecs) {
261 #if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
262 hfs_warn("shifting %d of %d recs right to balance: ",
263 left->ndNRecs - index, left->ndNRecs);
264 #endif
265 hfs_bnode_shift_right(left, right, index+1);
266 #if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
267 hfs_warn("%d,%d\n", left->ndNRecs, right->ndNRecs);
268 #endif
270 } else {
271 /* shift left to balance */
272 index = 0;
273 while (left_free >= half) {
274 ++index;
275 left_free -= bnode_rsize(right,index)+sizeof(hfs_u16);
277 if (index > 1) {
278 #if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
279 hfs_warn("shifting %d of %d recs left to balance: ",
280 index-1, right->ndNRecs);
281 #endif
282 hfs_bnode_shift_left(left, right, index-1);
283 #if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
284 hfs_warn("%d,%d\n", left->ndNRecs, right->ndNRecs);
285 #endif
291 * bdelete()
293 * Delete the given record from a B-tree.
295 static int bdelete(struct hfs_brec *brec)
297 struct hfs_btree *tree = brec->tree;
298 struct hfs_belem *belem = brec->bottom;
299 struct hfs_belem *parent = (belem-1);
300 struct hfs_bnode *bnode;
301 hfs_u32 left_node, right_node;
302 struct hfs_bnode_ref left, right;
303 int left_space, right_space, min_space;
304 int fix_right_key;
305 int fix_key;
307 while ((belem > brec->top) &&
308 (belem->flags & (HFS_BPATH_UNDERFLOW | HFS_BPATH_FIRST))) {
309 bnode = belem->bnr.bn;
310 fix_key = belem->flags & HFS_BPATH_FIRST;
311 fix_right_key = 0;
313 bdelete_nonempty(brec, belem);
315 if (bnode->node == tree->root->node) {
316 del_root(&belem->bnr);
317 --brec->bottom;
318 goto done;
321 /* check for btree corruption which could lead to deadlock */
322 left_node = bnode->ndBLink;
323 right_node = bnode->ndFLink;
324 if ((left_node && hfs_bnode_in_brec(left_node, brec)) ||
325 (right_node && hfs_bnode_in_brec(right_node, brec)) ||
326 (left_node == right_node)) {
327 hfs_warn("hfs_bdelete: corrupt btree\n");
328 hfs_brec_relse(brec, NULL);
329 return -EIO;
332 /* grab the left neighbor if it exists */
333 if (left_node) {
334 hfs_bnode_lock(&belem->bnr, HFS_LOCK_RESRV);
335 left = hfs_bnode_find(tree,left_node,HFS_LOCK_WRITE);
336 if (!left.bn) {
337 hfs_warn("hfs_bdelete: unable to read left "
338 "neighbor.\n");
339 hfs_brec_relse(brec, NULL);
340 return -EIO;
342 hfs_bnode_lock(&belem->bnr, HFS_LOCK_WRITE);
343 if (parent->record != 1) {
344 left_space = bnode_freespace(left.bn);
345 } else {
346 left_space = NO_SPACE;
348 } else {
349 left.bn = NULL;
350 left_space = NO_SPACE;
353 /* grab the right neighbor if it exists */
354 if (right_node) {
355 right = hfs_bnode_find(tree,right_node,HFS_LOCK_WRITE);
356 if (!right.bn) {
357 hfs_warn("hfs_bdelete: unable to read right "
358 "neighbor.\n");
359 hfs_bnode_relse(&left);
360 hfs_brec_relse(brec, NULL);
361 return -EIO;
363 if (parent->record < parent->bnr.bn->ndNRecs) {
364 right_space = bnode_freespace(right.bn);
365 } else {
366 right_space = NO_SPACE;
368 } else {
369 right.bn = NULL;
370 right_space = NO_SPACE;
373 if (left_space < right_space) {
374 min_space = left_space;
375 } else {
376 min_space = right_space;
379 if (min_space == NO_SPACE) {
380 hfs_warn("hfs_bdelete: no siblings?\n");
381 hfs_brec_relse(brec, NULL);
382 return -EIO;
385 if (bnode->ndNRecs == 0) {
386 delete_empty_bnode(left_node, &left, &belem->bnr,
387 right_node, &right);
388 } else if (min_space + bnode_freespace(bnode) >= FULL) {
389 if ((right_space == NO_SPACE) ||
390 ((right_space == min_space) &&
391 (left_space != NO_SPACE))) {
392 hfs_bnode_shift_left(left.bn, bnode,
393 bnode->ndNRecs);
394 } else {
395 hfs_bnode_shift_right(bnode, right.bn, 1);
396 fix_right_key = 1;
398 delete_empty_bnode(left_node, &left, &belem->bnr,
399 right_node, &right);
400 } else if (min_space == right_space) {
401 balance(bnode, right.bn);
402 fix_right_key = 1;
403 } else {
404 balance(left.bn, bnode);
405 fix_key = 1;
408 if (fix_right_key) {
409 hfs_bnode_update_key(brec, belem, right.bn, 1);
412 hfs_bnode_relse(&left);
413 hfs_bnode_relse(&right);
415 if (bnode->ndNRecs) {
416 if (fix_key) {
417 hfs_bnode_update_key(brec, belem, bnode, 0);
419 goto done;
422 hfs_bnode_free(&belem->bnr);
423 --brec->bottom;
424 belem = parent;
425 --parent;
428 if (belem < brec->top) {
429 hfs_warn("hfs_bdelete: Missing parent.\n");
430 hfs_brec_relse(brec, NULL);
431 return -EIO;
434 bdelete_nonempty(brec, belem);
436 done:
437 hfs_brec_relse(brec, NULL);
438 return 0;
441 /*================ Global functions ================*/
444 * hfs_bdelete()
446 * Delete the requested record from a B-tree.
448 int hfs_bdelete(struct hfs_btree *tree, const struct hfs_bkey *key)
450 struct hfs_belem *belem;
451 struct hfs_bnode *bnode;
452 struct hfs_brec brec;
453 int retval;
455 if (!tree || (tree->magic != HFS_BTREE_MAGIC) || !key) {
456 hfs_warn("hfs_bdelete: invalid arguments.\n");
457 return -EINVAL;
460 retval = hfs_bfind(&brec, tree, key, HFS_BFIND_DELETE);
461 if (!retval) {
462 belem = brec.bottom;
463 bnode = belem->bnr.bn;
465 belem->flags = 0;
466 if ((bnode->ndNRecs * sizeof(hfs_u16) + bnode_end(bnode) -
467 bnode_rsize(bnode, belem->record)) < FULL/2) {
468 belem->flags |= HFS_BPATH_UNDERFLOW;
470 if (belem->record == 1) {
471 belem->flags |= HFS_BPATH_FIRST;
474 if (!belem->flags) {
475 hfs_brec_lock(&brec, brec.bottom);
476 } else {
477 hfs_brec_lock(&brec, NULL);
480 retval = bdelete(&brec);
481 if (!retval) {
482 --brec.tree->bthNRecs;
483 brec.tree->dirt = 1;
485 hfs_brec_relse(&brec, NULL);
487 return retval;