Some header changes to fix the build with other compilers.
[darwin-xtools.git] / ld64 / src / ld / parsers / macho_relocatable_file.cpp
blob1ffde58a5b2c21323a573f1baf84f72ae743edf6
1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
3 * Copyright (c) 2009-2010 Apple Inc. All rights reserved.
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
22 * @APPLE_LICENSE_HEADER_END@
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <math.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <sys/param.h>
32 #include <sys/stat.h>
33 #include <sys/mman.h>
35 #include "MachOFileAbstraction.hpp"
37 #include "libunwind/DwarfInstructions.hpp"
38 #include "libunwind/AddressSpace.hpp"
39 #include "libunwind/Registers.hpp"
41 #include <vector>
42 #include <set>
43 #include <map>
44 #include <algorithm>
45 #include <type_traits>
46 #include <memory>
48 #include "dwarf2.h"
49 #include "debugline.h"
51 #include "Architectures.hpp"
52 #include "Bitcode.hpp"
53 #include "ld.hpp"
54 #include "macho_relocatable_file.h"
58 extern void throwf(const char* format, ...) __attribute__ ((noreturn,format(printf, 1, 2)));
59 extern void warning(const char* format, ...) __attribute__((format(printf, 1, 2)));
61 namespace mach_o {
62 namespace relocatable {
65 // forward reference
66 template <typename A> class Parser;
67 template <typename A> class Atom;
68 template <typename A> class Section;
69 template <typename A> class CFISection;
70 template <typename A> class CUSection;
72 template <typename A>
73 class File : public ld::relocatable::File
75 public:
76 File(const char* p, time_t mTime, const uint8_t* content, ld::File::Ordinal ord) :
77 ld::relocatable::File(p,mTime,ord), _fileContent(content),
78 _sectionsArray(NULL), _atomsArray(NULL),
79 _sectionsArrayCount(0), _atomsArrayCount(0), _aliasAtomsArrayCount(0),
80 _debugInfoKind(ld::relocatable::File::kDebugInfoNone),
81 _dwarfTranslationUnitPath(NULL),
82 _dwarfDebugInfoSect(NULL), _dwarfDebugAbbrevSect(NULL),
83 _dwarfDebugLineSect(NULL), _dwarfDebugStringSect(NULL),
84 _objConstraint(ld::File::objcConstraintNone),
85 _swiftVersion(0),
86 _cpuSubType(0),
87 _minOSVersion(0),
88 _platform(0),
89 _canScatterAtoms(false),
90 _objcHasCategoryClassPropertiesField(false),
91 _srcKind(kSourceUnknown) { }
92 virtual ~File();
94 // overrides of ld::File
95 virtual bool forEachAtom(ld::File::AtomHandler&) const;
96 virtual bool justInTimeforEachAtom(const char* name, ld::File::AtomHandler&) const
97 { return false; }
98 virtual uint32_t minOSVersion() const { return _minOSVersion; }
99 virtual uint32_t platformLoadCommand() const { return _platform; }
101 // overrides of ld::relocatable::File
102 virtual ObjcConstraint objCConstraint() const { return _objConstraint; }
103 virtual bool objcHasCategoryClassPropertiesField() const
104 { return _objcHasCategoryClassPropertiesField; }
105 virtual uint32_t cpuSubType() const { return _cpuSubType; }
106 virtual DebugInfoKind debugInfo() const { return _debugInfoKind; }
107 virtual const std::vector<ld::relocatable::File::Stab>* stabs() const { return &_stabs; }
108 virtual bool canScatterAtoms() const { return _canScatterAtoms; }
109 virtual const char* translationUnitSource() const;
110 virtual LinkerOptionsList* linkerOptions() const { return &_linkerOptions; }
111 virtual uint8_t swiftVersion() const { return _swiftVersion; }
112 virtual ld::Bitcode* getBitcode() const { return _bitcode.get(); }
113 virtual SourceKind sourceKind() const { return _srcKind; }
115 const uint8_t* fileContent() { return _fileContent; }
116 private:
117 friend class Atom<A>;
118 friend class Section<A>;
119 friend class Parser<A>;
120 friend class CFISection<A>::OAS;
122 typedef typename A::P P;
124 const uint8_t* _fileContent;
125 Section<A>** _sectionsArray;
126 uint8_t* _atomsArray;
127 uint8_t* _aliasAtomsArray;
128 uint32_t _sectionsArrayCount;
129 uint32_t _atomsArrayCount;
130 uint32_t _aliasAtomsArrayCount;
131 std::vector<ld::Fixup> _fixups;
132 std::vector<ld::Atom::UnwindInfo> _unwindInfos;
133 std::vector<ld::Atom::LineInfo> _lineInfos;
134 std::vector<ld::relocatable::File::Stab>_stabs;
135 ld::relocatable::File::DebugInfoKind _debugInfoKind;
136 const char* _dwarfTranslationUnitPath;
137 const macho_section<P>* _dwarfDebugInfoSect;
138 const macho_section<P>* _dwarfDebugAbbrevSect;
139 const macho_section<P>* _dwarfDebugLineSect;
140 const macho_section<P>* _dwarfDebugStringSect;
141 ld::File::ObjcConstraint _objConstraint;
142 uint8_t _swiftVersion;
143 uint32_t _cpuSubType;
144 uint32_t _minOSVersion;
145 uint32_t _platform;
146 bool _canScatterAtoms;
147 bool _objcHasCategoryClassPropertiesField;
148 std::vector<std::vector<const char*> > _linkerOptions;
149 std::unique_ptr<ld::Bitcode> _bitcode;
150 SourceKind _srcKind;
154 template <typename A>
155 class Section : public ld::Section
157 public:
158 typedef typename A::P::uint_t pint_t;
159 typedef typename A::P P;
160 typedef typename A::P::E E;
162 virtual ~Section() { }
163 class File<A>& file() const { return _file; }
164 const macho_section<P>* machoSection() const { return _machOSection; }
165 uint32_t sectionNum(class Parser<A>&) const;
166 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr);
167 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeUnclassified; }
168 virtual bool dontDeadStrip() { return (this->_machOSection->flags() & S_ATTR_NO_DEAD_STRIP); }
169 virtual bool dontDeadStripIfReferencesLive() { return ( (this->_machOSection != NULL) && (this->_machOSection->flags() & S_ATTR_LIVE_SUPPORT) ); }
170 virtual Atom<A>* findAtomByAddress(pint_t addr) { return this->findContentAtomByAddress(addr, this->_beginAtoms, this->_endAtoms); }
171 virtual bool addFollowOnFixups() const { return ! _file.canScatterAtoms(); }
172 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
173 struct Parser<A>::LabelAndCFIBreakIterator& it,
174 const struct Parser<A>::CFI_CU_InfoArrays&) = 0;
175 virtual uint32_t computeAtomCount(class Parser<A>& parser,
176 struct Parser<A>::LabelAndCFIBreakIterator& it,
177 const struct Parser<A>::CFI_CU_InfoArrays&) = 0;
178 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
179 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
180 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const { return 0; }
181 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
182 const ld::IndirectBindingTable& ind) const { return false; }
183 virtual bool ignoreLabel(const char* label) const { return false; }
184 static const char* makeSectionName(const macho_section<typename A::P>* s);
186 protected:
187 Section(File<A>& f, const macho_section<typename A::P>* s)
188 : ld::Section(makeSegmentName(s), makeSectionName(s), sectionType(s)),
189 _file(f), _machOSection(s), _beginAtoms(NULL), _endAtoms(NULL), _hasAliases(false) { }
190 Section(File<A>& f, const char* segName, const char* sectName, ld::Section::Type t, bool hidden=false)
191 : ld::Section(segName, sectName, t, hidden), _file(f), _machOSection(NULL),
192 _beginAtoms(NULL), _endAtoms(NULL), _hasAliases(false) { }
195 Atom<A>* findContentAtomByAddress(pint_t addr, class Atom<A>* start, class Atom<A>* end);
196 uint32_t x86_64PcRelOffset(uint8_t r_type);
197 void addLOH(class Parser<A>& parser, int kind, int count, const uint64_t addrs[]);
198 static const char* makeSegmentName(const macho_section<typename A::P>* s);
199 static bool readable(const macho_section<typename A::P>* s);
200 static bool writable(const macho_section<typename A::P>* s);
201 static bool exectuable(const macho_section<typename A::P>* s);
202 static ld::Section::Type sectionType(const macho_section<typename A::P>* s);
204 File<A>& _file;
205 const macho_section<P>* _machOSection;
206 class Atom<A>* _beginAtoms;
207 class Atom<A>* _endAtoms;
208 bool _hasAliases;
209 std::set<const class Atom<A>*> _altEntries;
213 template <typename A>
214 class CFISection : public Section<A>
216 public:
217 CFISection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
218 : Section<A>(f, s) { }
219 uint32_t cfiCount(Parser<A>& parser);
221 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeCFI; }
222 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
223 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
224 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
225 virtual bool addFollowOnFixups() const { return false; }
229 /// ObjectFileAddressSpace is used as a template parameter to UnwindCursor for parsing
230 /// dwarf CFI information in an object file.
232 class OAS
234 public:
235 typedef typename A::P::uint_t pint_t;
236 typedef typename A::P P;
237 typedef typename A::P::E E;
238 typedef typename A::P::uint_t sint_t;
240 OAS(CFISection<A>& ehFrameSection, const uint8_t* ehFrameBuffer) :
241 _ehFrameSection(ehFrameSection),
242 _ehFrameContent(ehFrameBuffer),
243 _ehFrameStartAddr(ehFrameSection.machoSection()->addr()),
244 _ehFrameEndAddr(ehFrameSection.machoSection()->addr()+ehFrameSection.machoSection()->size()) {}
246 uint8_t get8(pint_t addr) { return *((uint8_t*)mappedAddress(addr)); }
247 uint16_t get16(pint_t addr) { return E::get16(*((uint16_t*)mappedAddress(addr))); }
248 uint32_t get32(pint_t addr) { return E::get32(*((uint32_t*)mappedAddress(addr))); }
249 uint64_t get64(pint_t addr) { return E::get64(*((uint64_t*)mappedAddress(addr))); }
250 pint_t getP(pint_t addr) { return P::getP(*((pint_t*)mappedAddress(addr))); }
251 uint64_t getULEB128(pint_t& addr, pint_t end);
252 int64_t getSLEB128(pint_t& addr, pint_t end);
253 pint_t getEncodedP(pint_t& addr, pint_t end, uint8_t encoding);
254 private:
255 const void* mappedAddress(pint_t addr);
257 CFISection<A>& _ehFrameSection;
258 const uint8_t* _ehFrameContent;
259 pint_t _ehFrameStartAddr;
260 pint_t _ehFrameEndAddr;
264 typedef typename A::P::uint_t pint_t;
265 typedef libunwind::CFI_Atom_Info<OAS> CFI_Atom_Info;
267 void cfiParse(class Parser<A>& parser, uint8_t* buffer, CFI_Atom_Info cfiArray[], uint32_t& cfiCount, const pint_t cuStarts[], uint32_t cuCount);
268 bool needsRelocating();
270 static bool bigEndian();
271 private:
272 void addCiePersonalityFixups(class Parser<A>& parser, const CFI_Atom_Info* cieInfo);
273 static void warnFunc(void* ref, uint64_t funcAddr, const char* msg);
277 template <typename A>
278 class CUSection : public Section<A>
280 public:
281 CUSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
282 : Section<A>(f, s) { }
284 typedef typename A::P::uint_t pint_t;
285 typedef typename A::P P;
286 typedef typename A::P::E E;
288 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&) { return 0; }
289 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&) { return 0; }
290 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
291 virtual bool addFollowOnFixups() const { return false; }
293 struct Info {
294 pint_t functionStartAddress;
295 uint32_t functionSymbolIndex;
296 uint32_t rangeLength;
297 uint32_t compactUnwindInfo;
298 const char* personality;
299 pint_t lsdaAddress;
300 Atom<A>* function;
301 Atom<A>* lsda;
304 uint32_t count();
305 void parse(class Parser<A>& parser, uint32_t cnt, Info array[]);
306 static bool encodingMeansUseDwarf(compact_unwind_encoding_t enc);
309 private:
311 const char* personalityName(class Parser<A>& parser, const macho_relocation_info<P>* reloc);
313 static int infoSorter(const void* l, const void* r);
318 template <typename A>
319 class TentativeDefinitionSection : public Section<A>
321 public:
322 TentativeDefinitionSection(Parser<A>& parser, File<A>& f)
323 : Section<A>(f, "__DATA", "__comm/tent", ld::Section::typeTentativeDefs) {}
325 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeZeroFill; }
326 virtual bool addFollowOnFixups() const { return false; }
327 virtual Atom<A>* findAtomByAddress(typename A::P::uint_t addr) { throw "TentativeDefinitionSection::findAtomByAddress() should never be called"; }
328 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
329 const struct Parser<A>::CFI_CU_InfoArrays&);
330 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
331 struct Parser<A>::LabelAndCFIBreakIterator& it,
332 const struct Parser<A>::CFI_CU_InfoArrays&);
333 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&) {}
334 private:
335 typedef typename A::P::uint_t pint_t;
336 typedef typename A::P P;
340 template <typename A>
341 class AbsoluteSymbolSection : public Section<A>
343 public:
344 AbsoluteSymbolSection(Parser<A>& parser, File<A>& f)
345 : Section<A>(f, "__DATA", "__abs", ld::Section::typeAbsoluteSymbols, true) {}
347 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeUnclassified; }
348 virtual bool dontDeadStrip() { return false; }
349 virtual ld::Atom::Alignment alignmentForAddress(typename A::P::uint_t addr) { return ld::Atom::Alignment(0); }
350 virtual bool addFollowOnFixups() const { return false; }
351 virtual Atom<A>* findAtomByAddress(typename A::P::uint_t addr) { throw "AbsoluteSymbolSection::findAtomByAddress() should never be called"; }
352 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
353 const struct Parser<A>::CFI_CU_InfoArrays&);
354 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
355 struct Parser<A>::LabelAndCFIBreakIterator& it,
356 const struct Parser<A>::CFI_CU_InfoArrays&);
357 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&) {}
358 virtual Atom<A>* findAbsAtomForValue(typename A::P::uint_t);
360 private:
361 typedef typename A::P::uint_t pint_t;
362 typedef typename A::P P;
366 template <typename A>
367 class SymboledSection : public Section<A>
369 public:
370 SymboledSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s);
371 virtual ld::Atom::ContentType contentType() { return _type; }
372 virtual bool dontDeadStrip();
373 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
374 const struct Parser<A>::CFI_CU_InfoArrays&);
375 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
376 struct Parser<A>::LabelAndCFIBreakIterator& it,
377 const struct Parser<A>::CFI_CU_InfoArrays&);
378 protected:
379 typedef typename A::P::uint_t pint_t;
380 typedef typename A::P P;
382 ld::Atom::ContentType _type;
386 template <typename A>
387 class TLVDefsSection : public SymboledSection<A>
389 public:
390 TLVDefsSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s) :
391 SymboledSection<A>(parser, f, s) { }
393 typedef typename A::P::uint_t pint_t;
395 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
397 private:
402 template <typename A>
403 class ImplicitSizeSection : public Section<A>
405 public:
406 ImplicitSizeSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
407 : Section<A>(f, s) { }
408 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
409 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
410 protected:
411 typedef typename A::P::uint_t pint_t;
412 typedef typename A::P P;
414 virtual bool addFollowOnFixups() const { return false; }
415 virtual const char* unlabeledAtomName(Parser<A>& parser, pint_t addr) = 0;
416 virtual ld::Atom::SymbolTableInclusion symbolTableInclusion();
417 virtual pint_t elementSizeAtAddress(pint_t addr) = 0;
418 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr) { return ld::Atom::scopeLinkageUnit; }
419 virtual bool useElementAt(Parser<A>& parser,
420 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr) = 0;
421 virtual ld::Atom::Definition definition() { return ld::Atom::definitionRegular; }
422 virtual ld::Atom::Combine combine(Parser<A>& parser, pint_t addr) = 0;
423 virtual bool ignoreLabel(const char* label) const { return (label[0] == 'L'); }
427 template <typename A>
428 class FixedSizeSection : public ImplicitSizeSection<A>
430 public:
431 FixedSizeSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
432 : ImplicitSizeSection<A>(parser, f, s) { }
433 protected:
434 typedef typename A::P::uint_t pint_t;
435 typedef typename A::P P;
436 typedef typename A::P::E E;
438 virtual bool useElementAt(Parser<A>& parser,
439 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr)
440 { return true; }
444 template <typename A>
445 class Literal4Section : public FixedSizeSection<A>
447 public:
448 Literal4Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
449 : FixedSizeSection<A>(parser, f, s) {}
450 protected:
451 typedef typename A::P::uint_t pint_t;
452 typedef typename A::P P;
454 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(2); }
455 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "4-byte-literal"; }
456 virtual pint_t elementSizeAtAddress(pint_t addr) { return 4; }
457 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
458 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
459 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
460 const ld::IndirectBindingTable& ind) const;
461 virtual bool ignoreLabel(const char* label) const;
464 template <typename A>
465 class Literal8Section : public FixedSizeSection<A>
467 public:
468 Literal8Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
469 : FixedSizeSection<A>(parser, f, s) {}
470 protected:
471 typedef typename A::P::uint_t pint_t;
472 typedef typename A::P P;
474 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(3); }
475 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "8-byte-literal"; }
476 virtual pint_t elementSizeAtAddress(pint_t addr) { return 8; }
477 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
478 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
479 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
480 const ld::IndirectBindingTable& ind) const;
481 virtual bool ignoreLabel(const char* label) const;
484 template <typename A>
485 class Literal16Section : public FixedSizeSection<A>
487 public:
488 Literal16Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
489 : FixedSizeSection<A>(parser, f, s) {}
490 protected:
491 typedef typename A::P::uint_t pint_t;
492 typedef typename A::P P;
494 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(4); }
495 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "16-byte-literal"; }
496 virtual pint_t elementSizeAtAddress(pint_t addr) { return 16; }
497 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
498 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
499 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
500 const ld::IndirectBindingTable& ind) const;
501 virtual bool ignoreLabel(const char* label) const;
505 template <typename A>
506 class NonLazyPointerSection : public FixedSizeSection<A>
508 public:
509 NonLazyPointerSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
510 : FixedSizeSection<A>(parser, f, s) {}
511 protected:
512 typedef typename A::P::uint_t pint_t;
513 typedef typename A::P P;
515 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
516 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeNonLazyPointer; }
517 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
518 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "non_lazy_ptr"; }
519 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
520 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr);
521 virtual ld::Atom::Combine combine(Parser<A>&, pint_t);
522 virtual bool ignoreLabel(const char* label) const { return true; }
523 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
524 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
525 const ld::IndirectBindingTable& ind) const;
527 private:
528 static const char* targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind);
529 static ld::Fixup::Kind fixupKind();
532 template <typename A>
533 class TLVPointerSection : public FixedSizeSection<A>
535 public:
536 TLVPointerSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
537 : FixedSizeSection<A>(parser, f, s) {}
538 protected:
539 typedef typename A::P::uint_t pint_t;
540 typedef typename A::P P;
542 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
543 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeTLVPointer; }
544 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
545 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "tlv_lazy_ptr"; }
546 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
547 virtual ld::Atom::Combine combine(Parser<A>&, pint_t);
548 virtual bool ignoreLabel(const char* label) const { return true; }
549 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
550 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
551 const ld::IndirectBindingTable& ind) const;
553 private:
554 static const char* targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind, bool* isStatic);
558 template <typename A>
559 class CFStringSection : public FixedSizeSection<A>
561 public:
562 CFStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
563 : FixedSizeSection<A>(parser, f, s) {}
564 protected:
565 typedef typename A::P::uint_t pint_t;
567 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
568 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "CFString"; }
569 virtual pint_t elementSizeAtAddress(pint_t addr) { return 4*sizeof(pint_t); }
570 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
571 virtual bool ignoreLabel(const char* label) const { return true; }
572 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
573 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
574 const ld::IndirectBindingTable& ind) const;
575 private:
576 enum ContentType { contentUTF8, contentUTF16, contentUnknown };
577 static const uint8_t* targetContent(const class Atom<A>* atom, const ld::IndirectBindingTable& ind,
578 ContentType* ct, unsigned int* count);
582 template <typename A>
583 class ObjC1ClassSection : public FixedSizeSection<A>
585 public:
586 ObjC1ClassSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
587 : FixedSizeSection<A>(parser, f, s) {}
588 protected:
589 typedef typename A::P::uint_t pint_t;
590 typedef typename A::P P;
591 typedef typename A::P::E E;
593 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& , pint_t ) { return ld::Atom::scopeGlobal; }
594 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(2); }
595 virtual const char* unlabeledAtomName(Parser<A>&, pint_t);
596 virtual ld::Atom::SymbolTableInclusion symbolTableInclusion() { return ld::Atom::symbolTableIn; }
597 virtual pint_t elementSizeAtAddress(pint_t addr);
598 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineNever; }
599 virtual bool ignoreLabel(const char* label) const { return true; }
600 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
601 { return 0; }
602 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
603 const ld::IndirectBindingTable& ind) const { return false; }
604 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
608 template <typename A>
609 class ObjC2ClassRefsSection : public FixedSizeSection<A>
611 public:
612 ObjC2ClassRefsSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
613 : FixedSizeSection<A>(parser, f, s) {}
614 protected:
615 typedef typename A::P::uint_t pint_t;
617 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
618 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "objc-class-ref"; }
619 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
620 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
621 virtual bool ignoreLabel(const char* label) const { return true; }
622 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
623 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
624 const ld::IndirectBindingTable& ind) const;
625 private:
626 const char* targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
630 template <typename A>
631 class ObjC2CategoryListSection : public FixedSizeSection<A>
633 public:
634 ObjC2CategoryListSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
635 : FixedSizeSection<A>(parser, f, s) {}
636 protected:
637 typedef typename A::P::uint_t pint_t;
639 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
640 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr) { return ld::Atom::scopeTranslationUnit; }
641 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "objc-cat-list"; }
642 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
643 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineNever; }
644 virtual bool ignoreLabel(const char* label) const { return true; }
645 private:
646 const char* targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
650 template <typename A>
651 class PointerToCStringSection : public FixedSizeSection<A>
653 public:
654 PointerToCStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
655 : FixedSizeSection<A>(parser, f, s) {}
656 protected:
657 typedef typename A::P::uint_t pint_t;
659 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
660 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "pointer-to-literal-cstring"; }
661 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
662 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
663 virtual bool ignoreLabel(const char* label) const { return true; }
664 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
665 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
666 const ld::IndirectBindingTable& ind) const;
667 virtual const char* targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
671 template <typename A>
672 class Objc1ClassReferences : public PointerToCStringSection<A>
674 public:
675 Objc1ClassReferences(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
676 : PointerToCStringSection<A>(parser, f, s) {}
678 typedef typename A::P::uint_t pint_t;
679 typedef typename A::P P;
681 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "pointer-to-literal-objc-class-name"; }
682 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
683 virtual const char* targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
687 template <typename A>
688 class CStringSection : public ImplicitSizeSection<A>
690 public:
691 CStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
692 : ImplicitSizeSection<A>(parser, f, s) {}
693 protected:
694 typedef typename A::P::uint_t pint_t;
695 typedef typename A::P P;
697 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeCString; }
698 virtual Atom<A>* findAtomByAddress(pint_t addr);
699 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "cstring"; }
700 virtual pint_t elementSizeAtAddress(pint_t addr);
701 virtual bool ignoreLabel(const char* label) const;
702 virtual bool useElementAt(Parser<A>& parser,
703 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr);
704 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
705 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
706 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
707 const ld::IndirectBindingTable& ind) const;
712 template <typename A>
713 class UTF16StringSection : public SymboledSection<A>
715 public:
716 UTF16StringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
717 : SymboledSection<A>(parser, f, s) {}
718 protected:
719 typedef typename A::P::uint_t pint_t;
720 typedef typename A::P P;
722 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
723 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
724 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
725 const ld::IndirectBindingTable& ind) const;
730 // Atoms in mach-o files
732 template <typename A>
733 class Atom : public ld::Atom
735 public:
736 // overrides of ld::Atom
737 virtual const ld::File* file() const;
738 virtual const char* translationUnitSource() const
739 { return sect().file().translationUnitSource(); }
740 virtual const char* name() const { return _name; }
741 virtual uint64_t size() const { return _size; }
742 virtual uint64_t objectAddress() const { return _objAddress; }
743 virtual void copyRawContent(uint8_t buffer[]) const;
744 virtual const uint8_t* rawContentPointer() const { return contentPointer(); }
745 virtual unsigned long contentHash(const ld::IndirectBindingTable& ind) const
746 { if ( _hash == 0 ) _hash = sect().contentHash(this, ind); return _hash; }
747 virtual bool canCoalesceWith(const ld::Atom& rhs, const ld::IndirectBindingTable& ind) const
748 { return sect().canCoalesceWith(this, rhs, ind); }
749 virtual ld::Fixup::iterator fixupsBegin() const { return &machofile()._fixups[_fixupsStartIndex]; }
750 virtual ld::Fixup::iterator fixupsEnd() const { return &machofile()._fixups[_fixupsStartIndex+_fixupsCount]; }
751 virtual ld::Atom::UnwindInfo::iterator beginUnwind() const { return &machofile()._unwindInfos[_unwindInfoStartIndex]; }
752 virtual ld::Atom::UnwindInfo::iterator endUnwind() const { return &machofile()._unwindInfos[_unwindInfoStartIndex+_unwindInfoCount]; }
753 virtual ld::Atom::LineInfo::iterator beginLineInfo() const{ return &machofile()._lineInfos[_lineInfoStartIndex]; }
754 virtual ld::Atom::LineInfo::iterator endLineInfo() const { return &machofile()._lineInfos[_lineInfoStartIndex+_lineInfoCount]; }
755 virtual void setFile(const ld::File* f);
757 private:
759 enum { kFixupStartIndexBits = 32,
760 kLineInfoStartIndexBits = 32,
761 kUnwindInfoStartIndexBits = 24,
762 kFixupCountBits = 24,
763 kLineInfoCountBits = 12,
764 kUnwindInfoCountBits = 4
765 }; // must sum to 128
767 public:
768 // methods for all atoms from mach-o object file
769 Section<A>& sect() const { return (Section<A>&)section(); }
770 File<A>& machofile() const { return ((Section<A>*)(this->_section))->file(); }
771 void setFixupsRange(uint32_t s, uint32_t c);
772 void setUnwindInfoRange(uint32_t s, uint32_t c);
773 void extendUnwindInfoRange();
774 void setLineInfoRange(uint32_t s, uint32_t c);
775 bool roomForMoreLineInfoCount() { return (_lineInfoCount < ((1<<kLineInfoCountBits)-1)); }
776 void incrementLineInfoCount() { assert(roomForMoreLineInfoCount()); ++_lineInfoCount; }
777 void incrementFixupCount() { if (_fixupsCount == ((1 << kFixupCountBits)-1))
778 throwf("too may fixups in %s", name()); ++_fixupsCount; }
779 const uint8_t* contentPointer() const;
780 uint32_t fixupCount() const { return _fixupsCount; }
781 void verifyAlignment(const macho_section<typename A::P>&) const;
783 typedef typename A::P P;
784 typedef typename A::P::E E;
785 typedef typename A::P::uint_t pint_t;
786 // constuct via all attributes
787 Atom(Section<A>& sct, const char* nm, pint_t addr, uint64_t sz,
788 ld::Atom::Definition d, ld::Atom::Combine c, ld::Atom::Scope s,
789 ld::Atom::ContentType ct, ld::Atom::SymbolTableInclusion i,
790 bool dds, bool thumb, bool al, ld::Atom::Alignment a)
791 : ld::Atom((ld::Section&)sct, d, c, s, ct, i, dds, thumb, al, a),
792 _size(sz), _objAddress(addr), _name(nm), _hash(0),
793 _fixupsStartIndex(0), _lineInfoStartIndex(0),
794 _unwindInfoStartIndex(0), _fixupsCount(0),
795 _lineInfoCount(0), _unwindInfoCount(0) { }
796 // construct via symbol table entry
797 Atom(Section<A>& sct, Parser<A>& parser, const macho_nlist<P>& sym,
798 uint64_t sz, bool alias=false)
799 : ld::Atom((ld::Section&)sct, parser.definitionFromSymbol(sym),
800 parser.combineFromSymbol(sym), parser.scopeFromSymbol(sym),
801 parser.resolverFromSymbol(sym) ? ld::Atom::typeResolver : sct.contentType(),
802 parser.inclusionFromSymbol(sym),
803 (parser.dontDeadStripFromSymbol(sym) && !sct.dontDeadStripIfReferencesLive()) || sct.dontDeadStrip(),
804 parser.isThumbFromSymbol(sym), alias,
805 sct.alignmentForAddress(sym.n_value())),
806 _size(sz), _objAddress(sym.n_value()),
807 _name(parser.nameFromSymbol(sym)), _hash(0),
808 _fixupsStartIndex(0), _lineInfoStartIndex(0),
809 _unwindInfoStartIndex(0), _fixupsCount(0),
810 _lineInfoCount(0), _unwindInfoCount(0) {
811 // <rdar://problem/6783167> support auto-hidden weak symbols
812 if ( _scope == ld::Atom::scopeGlobal &&
813 (sym.n_desc() & (N_WEAK_DEF|N_WEAK_REF)) == (N_WEAK_DEF|N_WEAK_REF) )
814 this->setAutoHide();
815 this->verifyAlignment(*sct.machoSection());
816 if ( sct.dontDeadStripIfReferencesLive() )
817 this->setDontDeadStripIfReferencesLive();
820 private:
821 friend class Parser<A>;
822 friend class Section<A>;
823 friend class CStringSection<A>;
824 friend class AbsoluteSymbolSection<A>;
826 pint_t _size;
827 pint_t _objAddress;
828 const char* _name;
829 mutable unsigned long _hash;
831 uint64_t _fixupsStartIndex : kFixupStartIndexBits,
832 _lineInfoStartIndex : kLineInfoStartIndexBits,
833 _unwindInfoStartIndex : kUnwindInfoStartIndexBits,
834 _fixupsCount : kFixupCountBits,
835 _lineInfoCount : kLineInfoCountBits,
836 _unwindInfoCount : kUnwindInfoCountBits;
838 static std::map<const ld::Atom*, const ld::File*> _s_fileOverride;
841 template <typename A>
842 std::map<const ld::Atom*, const ld::File*> Atom<A>::_s_fileOverride;
844 template <typename A>
845 void Atom<A>::setFile(const ld::File* f) {
846 _s_fileOverride[this] = f;
849 template <typename A>
850 const ld::File* Atom<A>::file() const
852 std::map<const ld::Atom*, const ld::File*>::iterator pos = _s_fileOverride.find(this);
853 if ( pos != _s_fileOverride.end() )
854 return pos->second;
856 return &sect().file();
859 template <typename A>
860 void Atom<A>::setFixupsRange(uint32_t startIndex, uint32_t count)
862 if ( count >= (1 << kFixupCountBits) )
863 throwf("too many fixups in function %s", this->name());
864 if ( startIndex >= (1 << kFixupStartIndexBits) )
865 throwf("too many fixups in file");
866 assert(((startIndex+count) <= sect().file()._fixups.size()) && "fixup index out of range");
867 _fixupsStartIndex = startIndex;
868 _fixupsCount = count;
871 template <typename A>
872 void Atom<A>::setUnwindInfoRange(uint32_t startIndex, uint32_t count)
874 if ( count >= (1 << kUnwindInfoCountBits) )
875 throwf("too many compact unwind infos in function %s", this->name());
876 if ( startIndex >= (1 << kUnwindInfoStartIndexBits) )
877 throwf("too many compact unwind infos (%d) in file", startIndex);
878 assert((startIndex+count) <= sect().file()._unwindInfos.size() && "unwindinfo index out of range");
879 _unwindInfoStartIndex = startIndex;
880 _unwindInfoCount = count;
883 template <typename A>
884 void Atom<A>::extendUnwindInfoRange()
886 if ( _unwindInfoCount+1 >= (1 << kUnwindInfoCountBits) )
887 throwf("too many compact unwind infos in function %s", this->name());
888 _unwindInfoCount += 1;
891 template <typename A>
892 void Atom<A>::setLineInfoRange(uint32_t startIndex, uint32_t count)
894 assert((count < (1 << kLineInfoCountBits)) && "too many line infos");
895 assert((startIndex+count) < sect().file()._lineInfos.size() && "line info index out of range");
896 _lineInfoStartIndex = startIndex;
897 _lineInfoCount = count;
900 template <typename A>
901 const uint8_t* Atom<A>::contentPointer() const
903 const macho_section<P>* sct = this->sect().machoSection();
904 if ( this->_objAddress > sct->addr() + sct->size() )
905 throwf("malformed .o file, symbol has address 0x%0llX which is outside range of its section", (uint64_t)this->_objAddress);
906 uint32_t fileOffset = sct->offset() - sct->addr() + this->_objAddress;
907 return this->sect().file().fileContent()+fileOffset;
911 template <typename A>
912 void Atom<A>::copyRawContent(uint8_t buffer[]) const
914 // copy base bytes
915 if ( this->contentType() == ld::Atom::typeZeroFill ) {
916 bzero(buffer, _size);
918 else if ( _size != 0 ) {
919 memcpy(buffer, this->contentPointer(), _size);
923 template <>
924 void Atom<arm>::verifyAlignment(const macho_section<P>&) const
926 if ( (this->section().type() == ld::Section::typeCode) && ! isThumb() ) {
927 if ( ((_objAddress % 4) != 0) || (this->alignment().powerOf2 < 2) )
928 warning("ARM function not 4-byte aligned: %s from %s", this->name(), this->file()->path());
932 #if SUPPORT_ARCH_arm64
933 template <>
934 void Atom<arm64>::verifyAlignment(const macho_section<P>& sect) const
936 if ( (this->section().type() == ld::Section::typeCode) && (sect.size() != 0) ) {
937 if ( ((_objAddress % 4) != 0) || (this->alignment().powerOf2 < 2) )
938 warning("arm64 function not 4-byte aligned: %s from %s", this->name(), this->file()->path());
941 #endif
944 template <typename A>
945 void Atom<A>::verifyAlignment(const macho_section<P>&) const
950 class AliasAtom : public ld::Atom
952 public:
953 AliasAtom(const char* name, bool hidden, const ld::File* file, const char* aliasOfName) :
954 ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever,
955 (hidden ? ld::Atom::scopeLinkageUnit : ld::Atom::scopeGlobal),
956 ld::Atom::typeUnclassified, ld::Atom::symbolTableIn,
957 false, false, true, 0),
958 _file(file),
959 _name(name),
960 _fixup(0, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, ld::Fixup::bindingByNameUnbound, aliasOfName) { }
962 virtual const ld::File* file() const { return _file; }
963 virtual const char* translationUnitSource() const
964 { return NULL; }
965 virtual const char* name() const { return _name; }
966 virtual uint64_t size() const { return 0; }
967 virtual uint64_t objectAddress() const { return 0; }
968 virtual void copyRawContent(uint8_t buffer[]) const { }
969 virtual ld::Fixup::iterator fixupsBegin() const { return &((ld::Fixup*)&_fixup)[0]; }
970 virtual ld::Fixup::iterator fixupsEnd() const { return &((ld::Fixup*)&_fixup)[1]; }
972 private:
973 static ld::Section _s_section;
975 const ld::File* _file;
976 const char* _name;
977 ld::Fixup _fixup;
980 ld::Section AliasAtom::_s_section("__LD", "__aliases", ld::Section::typeTempAlias, true);
983 template <typename A>
984 class Parser
986 public:
987 static bool validFile(const uint8_t* fileContent, bool subtypeMustMatch=false,
988 cpu_subtype_t subtype=0);
989 static const char* fileKind(const uint8_t* fileContent);
990 static Options::Platform findPlatform(const macho_header<typename A::P>* header);
991 static bool hasObjC2Categories(const uint8_t* fileContent);
992 static bool hasObjC1Categories(const uint8_t* fileContent);
993 static bool getNonLocalSymbols(const uint8_t* fileContnet, std::vector<const char*> &syms);
994 static ld::relocatable::File* parse(const uint8_t* fileContent, uint64_t fileLength,
995 const char* path, time_t modTime, ld::File::Ordinal ordinal,
996 const ParserOptions& opts) {
997 Parser p(fileContent, fileLength, path, modTime,
998 ordinal, opts.warnUnwindConversionProblems,
999 opts.keepDwarfUnwind, opts.forceDwarfConversion,
1000 opts.neverConvertDwarf, opts.verboseOptimizationHints,
1001 opts.ignoreMismatchPlatform);
1002 return p.parse(opts);
1005 typedef typename A::P P;
1006 typedef typename A::P::E E;
1007 typedef typename A::P::uint_t pint_t;
1009 struct SourceLocation {
1010 SourceLocation() {}
1011 SourceLocation(Atom<A>* a, uint32_t o) : atom(a), offsetInAtom(o) {}
1012 Atom<A>* atom;
1013 uint32_t offsetInAtom;
1016 struct TargetDesc {
1017 Atom<A>* atom;
1018 const char* name; // only used if targetAtom is NULL
1019 int64_t addend;
1020 bool weakImport; // only used if targetAtom is NULL
1023 struct FixupInAtom {
1024 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, Atom<A>* target) :
1025 fixup(src.offsetInAtom, c, k, target), atom(src.atom) { src.atom->incrementFixupCount(); }
1027 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, Atom<A>* target) :
1028 fixup(src.offsetInAtom, c, k, b, target), atom(src.atom) { src.atom->incrementFixupCount(); }
1030 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, bool wi, const char* name) :
1031 fixup(src.offsetInAtom, c, k, wi, name), atom(src.atom) { src.atom->incrementFixupCount(); }
1033 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, const char* name) :
1034 fixup(src.offsetInAtom, c, k, b, name), atom(src.atom) { src.atom->incrementFixupCount(); }
1036 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, uint64_t addend) :
1037 fixup(src.offsetInAtom, c, k, addend), atom(src.atom) { src.atom->incrementFixupCount(); }
1039 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k) :
1040 fixup(src.offsetInAtom, c, k, (uint64_t)0), atom(src.atom) { src.atom->incrementFixupCount(); }
1042 ld::Fixup fixup;
1043 Atom<A>* atom;
1046 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, Atom<A>* target) {
1047 _allFixups.push_back(FixupInAtom(src, c, k, target));
1050 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, Atom<A>* target) {
1051 _allFixups.push_back(FixupInAtom(src, c, k, b, target));
1054 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, bool wi, const char* name) {
1055 _allFixups.push_back(FixupInAtom(src, c, k, wi, name));
1058 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, const char* name) {
1059 _allFixups.push_back(FixupInAtom(src, c, k, b, name));
1062 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, uint64_t addend) {
1063 _allFixups.push_back(FixupInAtom(src, c, k, addend));
1066 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k) {
1067 _allFixups.push_back(FixupInAtom(src, c, k));
1070 const char* path() { return _path; }
1071 uint32_t symbolCount() { return _symbolCount; }
1072 uint32_t indirectSymbol(uint32_t indirectIndex);
1073 const macho_nlist<P>& symbolFromIndex(uint32_t index);
1074 const char* nameFromSymbol(const macho_nlist<P>& sym);
1075 ld::Atom::Scope scopeFromSymbol(const macho_nlist<P>& sym);
1076 static ld::Atom::Definition definitionFromSymbol(const macho_nlist<P>& sym);
1077 static ld::Atom::Combine combineFromSymbol(const macho_nlist<P>& sym);
1078 ld::Atom::SymbolTableInclusion inclusionFromSymbol(const macho_nlist<P>& sym);
1079 static bool dontDeadStripFromSymbol(const macho_nlist<P>& sym);
1080 static bool isThumbFromSymbol(const macho_nlist<P>& sym);
1081 static bool weakImportFromSymbol(const macho_nlist<P>& sym);
1082 static bool resolverFromSymbol(const macho_nlist<P>& sym);
1083 static bool altEntryFromSymbol(const macho_nlist<P>& sym);
1084 uint32_t symbolIndexFromIndirectSectionAddress(pint_t,const macho_section<P>*);
1085 const macho_section<P>* firstMachOSection() { return _sectionsStart; }
1086 const macho_section<P>* machOSectionFromSectionIndex(uint32_t index);
1087 uint32_t machOSectionCount() { return _machOSectionsCount; }
1088 uint32_t undefinedStartIndex() { return _undefinedStartIndex; }
1089 uint32_t undefinedEndIndex() { return _undefinedEndIndex; }
1090 void addFixup(FixupInAtom f) { _allFixups.push_back(f); }
1091 Section<A>* sectionForNum(unsigned int sectNum);
1092 Section<A>* sectionForAddress(pint_t addr);
1093 Atom<A>* findAtomByAddress(pint_t addr);
1094 Atom<A>* findAtomByAddressOrNullIfStub(pint_t addr);
1095 Atom<A>* findAtomByAddressOrLocalTargetOfStub(pint_t addr, uint32_t* offsetInAtom);
1096 Atom<A>* findAtomByName(const char* name); // slow!
1097 void findTargetFromAddress(pint_t addr, TargetDesc& target);
1098 void findTargetFromAddress(pint_t baseAddr, pint_t addr, TargetDesc& target);
1099 void findTargetFromAddressAndSectionNum(pint_t addr, unsigned int sectNum,
1100 TargetDesc& target);
1101 uint32_t tentativeDefinitionCount() { return _tentativeDefinitionCount; }
1102 uint32_t absoluteSymbolCount() { return _absoluteSymbolCount; }
1104 uint32_t fileLength() const { return _fileLength; }
1105 bool hasStubsSection() { return (_stubsSectionNum != 0); }
1106 unsigned int stubsSectionNum() { return _stubsSectionNum; }
1107 void addDtraceExtraInfos(const SourceLocation& src, const char* provider);
1108 const char* scanSymbolTableForAddress(uint64_t addr);
1109 bool warnUnwindConversionProblems() { return _warnUnwindConversionProblems; }
1110 bool hasDataInCodeLabels() { return _hasDataInCodeLabels; }
1111 bool keepDwarfUnwind() { return _keepDwarfUnwind; }
1112 bool forceDwarfConversion() { return _forceDwarfConversion; }
1113 bool verboseOptimizationHints() { return _verboseOptimizationHints; }
1114 bool neverConvertDwarf() { return _neverConvertDwarf; }
1115 bool armUsesZeroCostExceptions() { return _armUsesZeroCostExceptions; }
1116 uint8_t maxDefaultCommonAlignment() { return _maxDefaultCommonAlignment; }
1119 macho_data_in_code_entry<P>* dataInCodeStart() { return _dataInCodeStart; }
1120 macho_data_in_code_entry<P>* dataInCodeEnd() { return _dataInCodeEnd; }
1121 const uint8_t* optimizationHintsStart() { return _lohStart; }
1122 const uint8_t* optimizationHintsEnd() { return _lohEnd; }
1123 bool hasOptimizationHints() { return _lohStart != _lohEnd; }
1126 void addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target);
1127 void addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target, const TargetDesc& picBase);
1131 struct LabelAndCFIBreakIterator {
1132 typedef typename CFISection<A>::CFI_Atom_Info CFI_Atom_Info;
1133 LabelAndCFIBreakIterator(const uint32_t* ssa, uint32_t ssc, const pint_t* cfisa,
1134 uint32_t cfisc, bool ols)
1135 : sortedSymbolIndexes(ssa), sortedSymbolCount(ssc), cfiStartsArray(cfisa),
1136 cfiStartsCount(cfisc), fileHasOverlappingSymbols(ols),
1137 newSection(false), cfiIndex(0), symIndex(0) {}
1138 bool next(Parser<A>& parser, const Section<A>& sect, uint32_t sectNum, pint_t startAddr, pint_t endAddr,
1139 pint_t* addr, pint_t* size, const macho_nlist<P>** sym);
1140 pint_t peek(Parser<A>& parser, pint_t startAddr, pint_t endAddr);
1141 void beginSection() { newSection = true; symIndex = 0; }
1143 const uint32_t* const sortedSymbolIndexes;
1144 const uint32_t sortedSymbolCount;
1145 const pint_t* cfiStartsArray;
1146 const uint32_t cfiStartsCount;
1147 const bool fileHasOverlappingSymbols;
1148 bool newSection;
1149 uint32_t cfiIndex;
1150 uint32_t symIndex;
1153 struct CFI_CU_InfoArrays {
1154 typedef typename CFISection<A>::CFI_Atom_Info CFI_Atom_Info;
1155 typedef typename CUSection<A>::Info CU_Info;
1156 CFI_CU_InfoArrays(const CFI_Atom_Info* cfiAr, uint32_t cfiC, CU_Info* cuAr, uint32_t cuC)
1157 : cfiArray(cfiAr), cuArray(cuAr), cfiCount(cfiC), cuCount(cuC) {}
1158 const CFI_Atom_Info* const cfiArray;
1159 CU_Info* const cuArray;
1160 const uint32_t cfiCount;
1161 const uint32_t cuCount;
1166 private:
1167 friend class Section<A>;
1169 enum SectionType { sectionTypeIgnore, sectionTypeLiteral4, sectionTypeLiteral8, sectionTypeLiteral16,
1170 sectionTypeNonLazy, sectionTypeCFI, sectionTypeCString, sectionTypeCStringPointer,
1171 sectionTypeUTF16Strings, sectionTypeCFString, sectionTypeObjC2ClassRefs, typeObjC2CategoryList,
1172 sectionTypeObjC1Classes, sectionTypeSymboled, sectionTypeObjC1ClassRefs,
1173 sectionTypeTentativeDefinitions, sectionTypeAbsoluteSymbols, sectionTypeTLVDefs,
1174 sectionTypeCompactUnwind, sectionTypeTLVPointers};
1176 template <typename P>
1177 struct MachOSectionAndSectionClass
1179 const macho_section<P>* sect;
1180 SectionType type;
1182 static int sorter(const void* l, const void* r) {
1183 const MachOSectionAndSectionClass<P>* left = (MachOSectionAndSectionClass<P>*)l;
1184 const MachOSectionAndSectionClass<P>* right = (MachOSectionAndSectionClass<P>*)r;
1185 int64_t diff = left->sect->addr() - right->sect->addr();
1186 if ( diff == 0 )
1187 return 0;
1188 if ( diff < 0 )
1189 return -1;
1190 else
1191 return 1;
1195 struct ParserAndSectionsArray { Parser* parser; const uint32_t* sortedSectionsArray; };
1198 Parser(const uint8_t* fileContent, uint64_t fileLength,
1199 const char* path, time_t modTime, ld::File::Ordinal ordinal,
1200 bool warnUnwindConversionProblems, bool keepDwarfUnwind,
1201 bool forceDwarfConversion, bool neverConvertDwarf,
1202 bool verboseOptimizationHints, bool ignoreMismatchPlatform);
1203 ld::relocatable::File* parse(const ParserOptions& opts);
1204 static uint8_t loadCommandSizeMask();
1205 bool parseLoadCommands(Options::Platform platform, uint32_t minOSVersion, bool simulator, bool ignoreMismatchPlatform);
1206 void makeSections();
1207 void prescanSymbolTable();
1208 void makeSortedSymbolsArray(uint32_t symArray[], const uint32_t sectionArray[]);
1209 void makeSortedSectionsArray(uint32_t array[]);
1210 static int pointerSorter(const void* l, const void* r);
1211 static int symbolIndexSorter(void* extra, const void* l, const void* r);
1212 static int sectionIndexSorter(void* extra, const void* l, const void* r);
1214 void parseDebugInfo();
1215 void parseStabs();
1216 void appendAliasAtoms(uint8_t* atomBuffer);
1217 static bool isConstFunStabs(const char *stabStr);
1218 bool read_comp_unit(const char ** name, const char ** comp_dir,
1219 uint64_t *stmt_list);
1220 pint_t realAddr(pint_t addr);
1221 const char* getDwarfString(uint64_t form, const uint8_t*& p);
1222 uint64_t getDwarfOffset(uint64_t form, const uint8_t*& di, bool dwarf64);
1223 bool skip_form(const uint8_t ** offset, const uint8_t * end,
1224 uint64_t form, uint8_t addr_size, bool dwarf64);
1227 // filled in by constructor
1228 const uint8_t* _fileContent;
1229 uint32_t _fileLength;
1230 const char* _path;
1231 time_t _modTime;
1232 ld::File::Ordinal _ordinal;
1234 // filled in by parseLoadCommands()
1235 File<A>* _file;
1236 const macho_nlist<P>* _symbols;
1237 uint32_t _symbolCount;
1238 uint32_t _indirectSymbolCount;
1239 const char* _strings;
1240 uint32_t _stringsSize;
1241 const uint32_t* _indirectTable;
1242 uint32_t _indirectTableCount;
1243 uint32_t _undefinedStartIndex;
1244 uint32_t _undefinedEndIndex;
1245 const macho_section<P>* _sectionsStart;
1246 uint32_t _machOSectionsCount;
1247 bool _hasUUID;
1248 macho_data_in_code_entry<P>* _dataInCodeStart;
1249 macho_data_in_code_entry<P>* _dataInCodeEnd;
1250 const uint8_t* _lohStart;
1251 const uint8_t* _lohEnd;
1253 // filled in by parse()
1254 CFISection<A>* _EHFrameSection;
1255 CUSection<A>* _compactUnwindSection;
1256 AbsoluteSymbolSection<A>* _absoluteSection;
1257 uint32_t _tentativeDefinitionCount;
1258 uint32_t _absoluteSymbolCount;
1259 uint32_t _symbolsInSections;
1260 bool _hasLongBranchStubs;
1261 bool _AppleObjc; // FSF has objc that uses different data layout
1262 bool _overlappingSymbols;
1263 bool _warnUnwindConversionProblems;
1264 bool _hasDataInCodeLabels;
1265 bool _keepDwarfUnwind;
1266 bool _forceDwarfConversion;
1267 bool _neverConvertDwarf;
1268 bool _verboseOptimizationHints;
1269 bool _armUsesZeroCostExceptions;
1270 bool _ignoreMismatchPlatform;
1271 bool _treateBitcodeAsData;
1272 bool _usingBitcode;
1273 uint8_t _maxDefaultCommonAlignment;
1274 unsigned int _stubsSectionNum;
1275 const macho_section<P>* _stubsMachOSection;
1276 std::vector<const char*> _dtraceProviderInfo;
1277 std::vector<FixupInAtom> _allFixups;
1282 template <typename A>
1283 Parser<A>::Parser(const uint8_t* fileContent, uint64_t fileLength, const char* path, time_t modTime,
1284 ld::File::Ordinal ordinal, bool convertDUI, bool keepDwarfUnwind, bool forceDwarfConversion,
1285 bool neverConvertDwarf, bool verboseOptimizationHints, bool ignoreMismatchPlatform)
1286 : _fileContent(fileContent), _fileLength(fileLength), _path(path), _modTime(modTime),
1287 _ordinal(ordinal), _file(NULL),
1288 _symbols(NULL), _symbolCount(0), _indirectSymbolCount(0), _strings(NULL), _stringsSize(0),
1289 _indirectTable(NULL), _indirectTableCount(0),
1290 _undefinedStartIndex(0), _undefinedEndIndex(0),
1291 _sectionsStart(NULL), _machOSectionsCount(0), _hasUUID(false),
1292 _dataInCodeStart(NULL), _dataInCodeEnd(NULL),
1293 _lohStart(NULL), _lohEnd(NULL),
1294 _EHFrameSection(NULL), _compactUnwindSection(NULL), _absoluteSection(NULL),
1295 _tentativeDefinitionCount(0), _absoluteSymbolCount(0),
1296 _symbolsInSections(0), _hasLongBranchStubs(false), _AppleObjc(false),
1297 _overlappingSymbols(false), _warnUnwindConversionProblems(convertDUI), _hasDataInCodeLabels(false),
1298 _keepDwarfUnwind(keepDwarfUnwind), _forceDwarfConversion(forceDwarfConversion),
1299 _neverConvertDwarf(neverConvertDwarf),
1300 _verboseOptimizationHints(verboseOptimizationHints),
1301 _ignoreMismatchPlatform(ignoreMismatchPlatform),
1302 _stubsSectionNum(0), _stubsMachOSection(NULL)
1307 template <>
1308 bool Parser<x86>::validFile(const uint8_t* fileContent, bool, cpu_subtype_t)
1310 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1311 if ( header->magic() != MH_MAGIC )
1312 return false;
1313 if ( header->cputype() != CPU_TYPE_I386 )
1314 return false;
1315 if ( header->filetype() != MH_OBJECT )
1316 return false;
1317 return true;
1320 template <>
1321 bool Parser<x86_64>::validFile(const uint8_t* fileContent, bool, cpu_subtype_t)
1323 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1324 if ( header->magic() != MH_MAGIC_64 )
1325 return false;
1326 if ( header->cputype() != CPU_TYPE_X86_64 )
1327 return false;
1328 if ( header->filetype() != MH_OBJECT )
1329 return false;
1330 return true;
1333 template <>
1334 bool Parser<arm>::validFile(const uint8_t* fileContent, bool subtypeMustMatch, cpu_subtype_t subtype)
1336 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1337 if ( header->magic() != MH_MAGIC )
1338 return false;
1339 if ( header->cputype() != CPU_TYPE_ARM )
1340 return false;
1341 if ( header->filetype() != MH_OBJECT )
1342 return false;
1343 if ( subtypeMustMatch ) {
1344 if ( (cpu_subtype_t)header->cpusubtype() == subtype )
1345 return true;
1346 // hack until libcc_kext.a is made fat
1347 if ( header->cpusubtype() == CPU_SUBTYPE_ARM_ALL )
1348 return true;
1349 return false;
1351 return true;
1355 template <>
1356 bool Parser<arm64>::validFile(const uint8_t* fileContent, bool subtypeMustMatch, cpu_subtype_t subtype)
1358 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1359 if ( header->magic() != MH_MAGIC_64 )
1360 return false;
1361 if ( header->cputype() != CPU_TYPE_ARM64 )
1362 return false;
1363 if ( header->filetype() != MH_OBJECT )
1364 return false;
1365 return true;
1369 template <>
1370 const char* Parser<x86>::fileKind(const uint8_t* fileContent)
1372 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1373 if ( header->magic() != MH_MAGIC )
1374 return NULL;
1375 if ( header->cputype() != CPU_TYPE_I386 )
1376 return NULL;
1377 return "i386";
1380 template <>
1381 const char* Parser<x86_64>::fileKind(const uint8_t* fileContent)
1383 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1384 if ( header->magic() != MH_MAGIC_64 )
1385 return NULL;
1386 if ( header->cputype() != CPU_TYPE_X86_64 )
1387 return NULL;
1388 return "x86_64";
1391 template <>
1392 const char* Parser<arm>::fileKind(const uint8_t* fileContent)
1394 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1395 if ( header->magic() != MH_MAGIC )
1396 return NULL;
1397 if ( header->cputype() != CPU_TYPE_ARM )
1398 return NULL;
1399 for (const ArchInfo* t=archInfoArray; t->archName != NULL; ++t) {
1400 if ( (t->cpuType == CPU_TYPE_ARM) && ((cpu_subtype_t)header->cpusubtype() == t->cpuSubType) ) {
1401 return t->archName;
1404 return "arm???";
1407 #if SUPPORT_ARCH_arm64
1408 template <>
1409 const char* Parser<arm64>::fileKind(const uint8_t* fileContent)
1411 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1412 if ( header->magic() != MH_MAGIC_64 )
1413 return NULL;
1414 if ( header->cputype() != CPU_TYPE_ARM64 )
1415 return NULL;
1416 return "arm64";
1418 #endif
1421 template <typename A>
1422 bool Parser<A>::hasObjC2Categories(const uint8_t* fileContent)
1424 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1425 const uint32_t cmd_count = header->ncmds();
1426 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1427 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1428 const macho_load_command<P>* cmd = cmds;
1429 for (uint32_t i = 0; i < cmd_count; ++i) {
1430 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
1431 const macho_segment_command<P>* segment = (macho_segment_command<P>*)cmd;
1432 const macho_section<P>* sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
1433 for (uint32_t si=0; si < segment->nsects(); ++si) {
1434 const macho_section<P>* sect = &sectionsStart[si];
1435 if ( (sect->size() > 0)
1436 && (strcmp(sect->sectname(), "__objc_catlist") == 0)
1437 && (strcmp(sect->segname(), "__DATA") == 0) ) {
1438 return true;
1442 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1443 if ( cmd > cmdsEnd )
1444 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1446 return false;
1450 template <typename A>
1451 bool Parser<A>::hasObjC1Categories(const uint8_t* fileContent)
1453 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1454 const uint32_t cmd_count = header->ncmds();
1455 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1456 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1457 const macho_load_command<P>* cmd = cmds;
1458 for (uint32_t i = 0; i < cmd_count; ++i) {
1459 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
1460 const macho_segment_command<P>* segment = (macho_segment_command<P>*)cmd;
1461 const macho_section<P>* sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
1462 for (uint32_t si=0; si < segment->nsects(); ++si) {
1463 const macho_section<P>* sect = &sectionsStart[si];
1464 if ( (sect->size() > 0)
1465 && (strcmp(sect->sectname(), "__category") == 0)
1466 && (strcmp(sect->segname(), "__OBJC") == 0) ) {
1467 return true;
1471 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1472 if ( cmd > cmdsEnd )
1473 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1475 return false;
1479 template <typename A>
1480 bool Parser<A>::getNonLocalSymbols(const uint8_t* fileContent, std::vector<const char*> &syms)
1482 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1483 const uint32_t cmd_count = header->ncmds();
1484 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1485 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1486 const macho_load_command<P>* cmd = cmds;
1487 for (uint32_t i = 0; i < cmd_count; ++i) {
1488 if ( cmd->cmd() == LC_SYMTAB ) {
1489 const macho_symtab_command<P>* symtab = (macho_symtab_command<P>*)cmd;
1490 uint32_t symbolCount = symtab->nsyms();
1491 const macho_nlist<P>* symbols = (const macho_nlist<P>*)(fileContent + symtab->symoff());
1492 const char* strings = (char*)fileContent + symtab->stroff();
1493 for (uint32_t j = 0; j < symbolCount; ++j) {
1494 // ignore stabs and count only ext symbols
1495 if ( (symbols[j].n_type() & N_STAB) == 0 &&
1496 (symbols[j].n_type() & N_EXT) != 0 ) {
1497 const char* symName = &strings[symbols[j].n_strx()];
1498 syms.push_back(symName);
1501 return true;
1503 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1504 if ( cmd > cmdsEnd )
1505 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1507 return false;
1511 template <typename A>
1512 int Parser<A>::pointerSorter(const void* l, const void* r)
1514 // sort references by address
1515 const pint_t* left = (pint_t*)l;
1516 const pint_t* right = (pint_t*)r;
1517 return (*left - *right);
1520 template <typename A>
1521 typename A::P::uint_t Parser<A>::LabelAndCFIBreakIterator::peek(Parser<A>& parser, pint_t startAddr, pint_t endAddr)
1523 pint_t symbolAddr;
1524 if ( symIndex < sortedSymbolCount )
1525 symbolAddr = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]).n_value();
1526 else
1527 symbolAddr = endAddr;
1528 pint_t cfiAddr;
1529 if ( cfiIndex < cfiStartsCount )
1530 cfiAddr = cfiStartsArray[cfiIndex];
1531 else
1532 cfiAddr = endAddr;
1533 if ( (cfiAddr < symbolAddr) && (cfiAddr >= startAddr) ) {
1534 if ( cfiAddr < endAddr )
1535 return cfiAddr;
1536 else
1537 return endAddr;
1539 else {
1540 if ( symbolAddr < endAddr )
1541 return symbolAddr;
1542 else
1543 return endAddr;
1548 // Parses up a section into chunks based on labels and CFI information.
1549 // Each call returns the next chunk address and size, and (if the break
1550 // was becuase of a label, the symbol). Returns false when no more chunks.
1552 template <typename A>
1553 bool Parser<A>::LabelAndCFIBreakIterator::next(Parser<A>& parser, const Section<A>& sect, uint32_t sectNum, pint_t startAddr, pint_t endAddr,
1554 pint_t* addr, pint_t* size, const macho_nlist<P>** symbol)
1556 // may not be a label on start of section, but need atom demarcation there
1557 if ( newSection ) {
1558 newSection = false;
1559 // advance symIndex until we get to the first label at or past the start of this section
1560 while ( symIndex < sortedSymbolCount ) {
1561 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1562 if ( ! sect.ignoreLabel(parser.nameFromSymbol(sym)) ) {
1563 pint_t nextSymbolAddr = sym.n_value();
1564 //fprintf(stderr, "sectNum=%d, nextSymbolAddr=0x%08llX, name=%s\n", sectNum, (uint64_t)nextSymbolAddr, parser.nameFromSymbol(sym));
1565 if ( (nextSymbolAddr > startAddr) || ((nextSymbolAddr == startAddr) && (sym.n_sect() == sectNum)) )
1566 break;
1568 ++symIndex;
1570 if ( symIndex < sortedSymbolCount ) {
1571 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1572 pint_t nextSymbolAddr = sym.n_value();
1573 // if next symbol found is not in this section
1574 if ( sym.n_sect() != sectNum ) {
1575 // check for CFI break instead of symbol break
1576 if ( cfiIndex < cfiStartsCount ) {
1577 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1578 if ( nextCfiAddr < endAddr ) {
1579 // use cfi
1580 ++cfiIndex;
1581 *addr = nextCfiAddr;
1582 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1583 *symbol = NULL;
1584 return true;
1587 *addr = startAddr;
1588 *size = endAddr - startAddr;
1589 *symbol = NULL;
1590 if ( startAddr == endAddr )
1591 return false; // zero size section
1592 else
1593 return true; // whole section is one atom with no label
1595 // if also CFI break here, eat it
1596 if ( cfiIndex < cfiStartsCount ) {
1597 if ( cfiStartsArray[cfiIndex] == nextSymbolAddr )
1598 ++cfiIndex;
1600 if ( nextSymbolAddr == startAddr ) {
1601 // label at start of section, return it as chunk
1602 ++symIndex;
1603 *addr = startAddr;
1604 *size = peek(parser, startAddr, endAddr) - startAddr;
1605 *symbol = &sym;
1606 return true;
1608 // return chunk before first symbol
1609 *addr = startAddr;
1610 *size = nextSymbolAddr - startAddr;
1611 *symbol = NULL;
1612 return true;
1614 // no symbols in section, check CFI
1615 if ( cfiIndex < cfiStartsCount ) {
1616 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1617 if ( nextCfiAddr < endAddr ) {
1618 // use cfi
1619 ++cfiIndex;
1620 *addr = nextCfiAddr;
1621 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1622 *symbol = NULL;
1623 return true;
1626 // no cfi, so whole section is one chunk
1627 *addr = startAddr;
1628 *size = endAddr - startAddr;
1629 *symbol = NULL;
1630 if ( startAddr == endAddr )
1631 return false; // zero size section
1632 else
1633 return true; // whole section is one atom with no label
1636 while ( (symIndex < sortedSymbolCount) && (cfiIndex < cfiStartsCount) ) {
1637 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1638 pint_t nextSymbolAddr = sym.n_value();
1639 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1640 if ( nextSymbolAddr < nextCfiAddr ) {
1641 if ( nextSymbolAddr >= endAddr )
1642 return false;
1643 ++symIndex;
1644 if ( nextSymbolAddr < startAddr )
1645 continue;
1646 *addr = nextSymbolAddr;
1647 *size = peek(parser, startAddr, endAddr) - nextSymbolAddr;
1648 *symbol = &sym;
1649 return true;
1651 else if ( nextCfiAddr < nextSymbolAddr ) {
1652 if ( nextCfiAddr >= endAddr )
1653 return false;
1654 ++cfiIndex;
1655 if ( nextCfiAddr < startAddr )
1656 continue;
1657 *addr = nextCfiAddr;
1658 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1659 *symbol = NULL;
1660 return true;
1662 else {
1663 if ( nextCfiAddr >= endAddr )
1664 return false;
1665 ++symIndex;
1666 ++cfiIndex;
1667 if ( nextCfiAddr < startAddr )
1668 continue;
1669 *addr = nextCfiAddr;
1670 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1671 *symbol = &sym;
1672 return true;
1675 while ( symIndex < sortedSymbolCount ) {
1676 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1677 pint_t nextSymbolAddr = sym.n_value();
1678 // if next symbol found is not in this section, then done with iteration
1679 if ( sym.n_sect() != sectNum )
1680 return false;
1681 ++symIndex;
1682 if ( nextSymbolAddr < startAddr )
1683 continue;
1684 *addr = nextSymbolAddr;
1685 *size = peek(parser, startAddr, endAddr) - nextSymbolAddr;
1686 *symbol = &sym;
1687 return true;
1689 while ( cfiIndex < cfiStartsCount ) {
1690 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1691 if ( nextCfiAddr >= endAddr )
1692 return false;
1693 ++cfiIndex;
1694 if ( nextCfiAddr < startAddr )
1695 continue;
1696 *addr = nextCfiAddr;
1697 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1698 *symbol = NULL;
1699 return true;
1701 return false;
1704 template <>
1705 typename arm::P::uint_t Parser<arm>::realAddr(typename arm::P::uint_t addr)
1707 return addr & (-2);
1710 template <typename A>
1711 typename A::P::uint_t Parser<A>::realAddr(typename A::P::uint_t addr)
1713 return addr;
1716 #define STACK_ALLOC_IF_SMALL(_type, _name, _actual_count, _maxCount) \
1717 _type* _name = NULL; \
1718 uint32_t _name##_count = 1; \
1719 if ( _actual_count > _maxCount ) \
1720 _name = (_type*)malloc(sizeof(_type) * _actual_count); \
1721 else \
1722 _name##_count = _actual_count; \
1723 _type _name##_buffer[_name##_count]; \
1724 if ( _name == NULL ) \
1725 _name = _name##_buffer;
1728 template <typename A>
1729 ld::relocatable::File* Parser<A>::parse(const ParserOptions& opts)
1731 // create file object
1732 _file = new File<A>(_path, _modTime, _fileContent, _ordinal);
1734 // set sourceKind
1735 _file->_srcKind = opts.srcKind;
1736 // set treatBitcodeAsData
1737 _treateBitcodeAsData = opts.treateBitcodeAsData;
1738 _usingBitcode = opts.usingBitcode;
1740 // respond to -t option
1741 if ( opts.logAllFiles )
1742 printf("%s\n", _path);
1744 _armUsesZeroCostExceptions = opts.armUsesZeroCostExceptions;
1745 _maxDefaultCommonAlignment = opts.maxDefaultCommonAlignment;
1747 // parse start of mach-o file
1748 if ( ! parseLoadCommands(opts.platform, opts.minOSVersion, opts.simulator, opts.ignoreMismatchPlatform) )
1749 return _file;
1751 // make array of
1752 uint32_t sortedSectionIndexes[_machOSectionsCount];
1753 this->makeSortedSectionsArray(sortedSectionIndexes);
1755 // make symbol table sorted by address
1756 this->prescanSymbolTable();
1757 uint32_t sortedSymbolIndexes[_symbolsInSections];
1758 this->makeSortedSymbolsArray(sortedSymbolIndexes, sortedSectionIndexes);
1760 // allocate Section<A> object for each mach-o section
1761 makeSections();
1763 // if it exists, do special early parsing of __compact_unwind section
1764 uint32_t countOfCUs = 0;
1765 if ( _compactUnwindSection != NULL )
1766 countOfCUs = _compactUnwindSection->count();
1767 // stack allocate (if not too large) cuInfoBuffer
1768 STACK_ALLOC_IF_SMALL(typename CUSection<A>::Info, cuInfoArray, countOfCUs, 1024);
1769 if ( countOfCUs != 0 )
1770 _compactUnwindSection->parse(*this, countOfCUs, cuInfoArray);
1772 // create lists of address that already have compact unwind and thus don't need the dwarf parsed
1773 unsigned cuLsdaCount = 0;
1774 pint_t cuStarts[countOfCUs];
1775 for (uint32_t i=0; i < countOfCUs; ++i) {
1776 if ( CUSection<A>::encodingMeansUseDwarf(cuInfoArray[i].compactUnwindInfo) )
1777 cuStarts[i] = -1;
1778 else
1779 cuStarts[i] = cuInfoArray[i].functionStartAddress;
1780 if ( cuInfoArray[i].lsdaAddress != 0 )
1781 ++cuLsdaCount;
1785 // if it exists, do special early parsing of __eh_frame section
1786 // stack allocate (if not too large) array of CFI_Atom_Info
1787 uint32_t countOfCFIs = 0;
1788 if ( _EHFrameSection != NULL )
1789 countOfCFIs = _EHFrameSection->cfiCount(*this);
1790 STACK_ALLOC_IF_SMALL(typename CFISection<A>::CFI_Atom_Info, cfiArray, countOfCFIs, 1024);
1792 // stack allocate (if not too large) a copy of __eh_frame to apply relocations to
1793 uint32_t sectSize = 4;
1794 if ( (countOfCFIs != 0) && _EHFrameSection->needsRelocating() )
1795 sectSize = _EHFrameSection->machoSection()->size()+4;
1796 STACK_ALLOC_IF_SMALL(uint8_t, ehBuffer, sectSize, 50*1024);
1797 uint32_t cfiStartsCount = 0;
1798 if ( countOfCFIs != 0 ) {
1799 _EHFrameSection->cfiParse(*this, ehBuffer, cfiArray, countOfCFIs, cuStarts, countOfCUs);
1800 // count functions and lsdas
1801 for(uint32_t i=0; i < countOfCFIs; ++i) {
1802 if ( cfiArray[i].isCIE )
1803 continue;
1804 //fprintf(stderr, "cfiArray[i].func = 0x%08llX, cfiArray[i].lsda = 0x%08llX, encoding=0x%08X\n",
1805 // (uint64_t)cfiArray[i].u.fdeInfo.function.targetAddress,
1806 // (uint64_t)cfiArray[i].u.fdeInfo.lsda.targetAddress,
1807 // cfiArray[i].u.fdeInfo.compactUnwindInfo);
1808 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS )
1809 ++cfiStartsCount;
1810 if ( cfiArray[i].u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS )
1811 ++cfiStartsCount;
1814 CFI_CU_InfoArrays cfis(cfiArray, countOfCFIs, cuInfoArray, countOfCUs);
1816 // create sorted array of function starts and lsda starts
1817 pint_t cfiStartsArray[cfiStartsCount+cuLsdaCount];
1818 uint32_t countOfFDEs = 0;
1819 uint32_t cfiStartsArrayCount = 0;
1820 if ( countOfCFIs != 0 ) {
1821 for(uint32_t i=0; i < countOfCFIs; ++i) {
1822 if ( cfiArray[i].isCIE )
1823 continue;
1824 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS )
1825 cfiStartsArray[cfiStartsArrayCount++] = realAddr(cfiArray[i].u.fdeInfo.function.targetAddress);
1826 if ( cfiArray[i].u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS )
1827 cfiStartsArray[cfiStartsArrayCount++] = cfiArray[i].u.fdeInfo.lsda.targetAddress;
1828 ++countOfFDEs;
1831 if ( cuLsdaCount != 0 ) {
1832 // merge in an lsda info from compact unwind
1833 for (uint32_t i=0; i < countOfCUs; ++i) {
1834 if ( cuInfoArray[i].lsdaAddress == 0 )
1835 continue;
1836 // append to cfiStartsArray if not already in that list
1837 bool found = false;
1838 for(uint32_t j=0; j < cfiStartsArrayCount; ++j) {
1839 if ( cfiStartsArray[j] == cuInfoArray[i].lsdaAddress )
1840 found = true;
1842 if ( ! found ) {
1843 cfiStartsArray[cfiStartsArrayCount++] = cuInfoArray[i].lsdaAddress;
1847 if ( cfiStartsArrayCount != 0 ) {
1848 ::qsort(cfiStartsArray, cfiStartsArrayCount, sizeof(pint_t), pointerSorter);
1849 #ifndef NDEBUG
1850 // scan for FDEs claming the same function
1851 for(uint32_t i=1; i < cfiStartsArrayCount; ++i) {
1852 assert( cfiStartsArray[i] != cfiStartsArray[i-1] );
1854 #endif
1857 Section<A>** sections = _file->_sectionsArray;
1858 uint32_t sectionsCount = _file->_sectionsArrayCount;
1860 // figure out how many atoms will be allocated and allocate
1861 LabelAndCFIBreakIterator breakIterator(sortedSymbolIndexes, _symbolsInSections, cfiStartsArray,
1862 cfiStartsArrayCount, _overlappingSymbols);
1863 uint32_t computedAtomCount = 0;
1864 for (uint32_t i=0; i < sectionsCount; ++i ) {
1865 breakIterator.beginSection();
1866 uint32_t count = sections[i]->computeAtomCount(*this, breakIterator, cfis);
1867 //const macho_section<P>* sect = sections[i]->machoSection();
1868 //fprintf(stderr, "computed count=%u for section %s size=%llu\n", count, sect->sectname(), (sect != NULL) ? sect->size() : 0);
1869 computedAtomCount += count;
1871 //fprintf(stderr, "allocating %d atoms * sizeof(Atom<A>)=%ld, sizeof(ld::Atom)=%ld\n", computedAtomCount, sizeof(Atom<A>), sizeof(ld::Atom));
1872 _file->_atomsArray = new uint8_t[computedAtomCount*sizeof(Atom<A>)];
1873 _file->_atomsArrayCount = 0;
1875 // have each section append atoms to _atomsArray
1876 LabelAndCFIBreakIterator breakIterator2(sortedSymbolIndexes, _symbolsInSections, cfiStartsArray,
1877 cfiStartsArrayCount, _overlappingSymbols);
1878 for (uint32_t i=0; i < sectionsCount; ++i ) {
1879 uint8_t* atoms = _file->_atomsArray + _file->_atomsArrayCount*sizeof(Atom<A>);
1880 breakIterator2.beginSection();
1881 uint32_t count = sections[i]->appendAtoms(*this, atoms, breakIterator2, cfis);
1882 //fprintf(stderr, "append count=%u for section %s/%s\n", count, sections[i]->machoSection()->segname(), sections[i]->machoSection()->sectname());
1883 _file->_atomsArrayCount += count;
1885 assert( _file->_atomsArrayCount == computedAtomCount && "more atoms allocated than expected");
1888 // have each section add all fix-ups for its atoms
1889 _allFixups.reserve(computedAtomCount*5);
1890 for (uint32_t i=0; i < sectionsCount; ++i )
1891 sections[i]->makeFixups(*this, cfis);
1893 // assign fixups start offset for each atom
1894 uint8_t* p = _file->_atomsArray;
1895 uint32_t fixupOffset = 0;
1896 for(int i=_file->_atomsArrayCount; i > 0; --i) {
1897 Atom<A>* atom = (Atom<A>*)p;
1898 atom->_fixupsStartIndex = fixupOffset;
1899 fixupOffset += atom->_fixupsCount;
1900 atom->_fixupsCount = 0;
1901 p += sizeof(Atom<A>);
1903 assert(fixupOffset == _allFixups.size());
1904 _file->_fixups.resize(fixupOffset);
1906 // copy each fixup for each atom
1907 for(typename std::vector<FixupInAtom>::iterator it=_allFixups.begin(); it != _allFixups.end(); ++it) {
1908 uint32_t slot = it->atom->_fixupsStartIndex + it->atom->_fixupsCount;
1909 _file->_fixups[slot] = it->fixup;
1910 it->atom->_fixupsCount++;
1913 // done with temp vector
1914 _allFixups.clear();
1916 // add unwind info
1917 _file->_unwindInfos.reserve(countOfFDEs+countOfCUs);
1918 for(uint32_t i=0; i < countOfCFIs; ++i) {
1919 if ( cfiArray[i].isCIE )
1920 continue;
1921 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS ) {
1922 ld::Atom::UnwindInfo info;
1923 info.startOffset = 0;
1924 info.unwindInfo = cfiArray[i].u.fdeInfo.compactUnwindInfo;
1925 _file->_unwindInfos.push_back(info);
1926 Atom<A>* func = findAtomByAddress(cfiArray[i].u.fdeInfo.function.targetAddress);
1927 func->setUnwindInfoRange(_file->_unwindInfos.size()-1, 1);
1928 //fprintf(stderr, "cu from dwarf =0x%08X, atom=%s\n", info.unwindInfo, func->name());
1931 // apply compact infos in __LD,__compact_unwind section to each function
1932 // if function also has dwarf unwind, CU will override it
1933 Atom<A>* lastFunc = NULL;
1934 uint32_t lastEnd = 0;
1935 for(uint32_t i=0; i < countOfCUs; ++i) {
1936 typename CUSection<A>::Info* info = &cuInfoArray[i];
1937 assert(info->function != NULL);
1938 ld::Atom::UnwindInfo ui;
1939 ui.startOffset = info->functionStartAddress - info->function->objectAddress();
1940 ui.unwindInfo = info->compactUnwindInfo;
1941 _file->_unwindInfos.push_back(ui);
1942 // don't override with converted cu with "use dwarf" cu, if forcing dwarf conversion
1943 if ( !_forceDwarfConversion || !CUSection<A>::encodingMeansUseDwarf(info->compactUnwindInfo) ) {
1944 //fprintf(stderr, "cu=0x%08X, atom=%s\n", ui.unwindInfo, info->function->name());
1945 // if previous is for same function, extend range
1946 if ( info->function == lastFunc ) {
1947 if ( lastEnd != ui.startOffset ) {
1948 if ( lastEnd < ui.startOffset )
1949 warning("__LD,__compact_unwind entries for %s have a gap at offset 0x%0X", info->function->name(), lastEnd);
1950 else
1951 warning("__LD,__compact_unwind entries for %s overlap at offset 0x%0X", info->function->name(), lastEnd);
1953 lastFunc->extendUnwindInfoRange();
1955 else
1956 info->function->setUnwindInfoRange(_file->_unwindInfos.size()-1, 1);
1957 lastFunc = info->function;
1958 lastEnd = ui.startOffset + info->rangeLength;
1962 // process indirect symbols which become AliasAtoms
1963 _file->_aliasAtomsArray = NULL;
1964 _file->_aliasAtomsArrayCount = 0;
1965 if ( _indirectSymbolCount != 0 ) {
1966 _file->_aliasAtomsArrayCount = _indirectSymbolCount;
1967 _file->_aliasAtomsArray = new uint8_t[_file->_aliasAtomsArrayCount*sizeof(AliasAtom)];
1968 this->appendAliasAtoms(_file->_aliasAtomsArray);
1972 // parse dwarf debug info to get line info
1973 this->parseDebugInfo();
1975 return _file;
1978 static void versionToString(uint32_t value, char buffer[32])
1980 if ( value & 0xFF )
1981 sprintf(buffer, "%d.%d.%d", value >> 16, (value >> 8) & 0xFF, value & 0xFF);
1982 else
1983 sprintf(buffer, "%d.%d", value >> 16, (value >> 8) & 0xFF);
1986 template <> uint8_t Parser<x86>::loadCommandSizeMask() { return 0x03; }
1987 template <> uint8_t Parser<x86_64>::loadCommandSizeMask() { return 0x07; }
1988 template <> uint8_t Parser<arm>::loadCommandSizeMask() { return 0x03; }
1989 template <> uint8_t Parser<arm64>::loadCommandSizeMask() { return 0x07; }
1991 template <typename A>
1992 bool Parser<A>::parseLoadCommands(Options::Platform platform, uint32_t linkMinOSVersion, bool simulator, bool ignoreMismatchPlatform)
1994 const macho_header<P>* header = (const macho_header<P>*)_fileContent;
1996 // set File attributes
1997 _file->_canScatterAtoms = (header->flags() & MH_SUBSECTIONS_VIA_SYMBOLS);
1998 _file->_cpuSubType = header->cpusubtype();
2000 const macho_segment_command<P>* segment = NULL;
2001 const uint8_t* const endOfFile = _fileContent + _fileLength;
2002 const uint32_t cmd_count = header->ncmds();
2003 // <rdar://problem/5394172> an empty .o file with zero load commands will crash linker
2004 if ( cmd_count == 0 )
2005 return false;
2006 Options::Platform lcPlatform = Options::kPlatformUnknown;
2007 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
2008 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
2009 const macho_load_command<P>* cmd = cmds;
2010 for (uint32_t i = 0; i < cmd_count; ++i) {
2011 uint32_t size = cmd->cmdsize();
2012 if ( (size & this->loadCommandSizeMask()) != 0 )
2013 throwf("load command #%d has a unaligned size", i);
2014 const uint8_t* endOfCmd = ((uint8_t*)cmd)+cmd->cmdsize();
2015 if ( endOfCmd > (uint8_t*)cmdsEnd )
2016 throwf("load command #%d extends beyond the end of the load commands", i);
2017 if ( endOfCmd > endOfFile )
2018 throwf("load command #%d extends beyond the end of the file", i);
2019 switch (cmd->cmd()) {
2020 case LC_SYMTAB:
2022 const macho_symtab_command<P>* symtab = (macho_symtab_command<P>*)cmd;
2023 _symbolCount = symtab->nsyms();
2024 _symbols = (const macho_nlist<P>*)(_fileContent + symtab->symoff());
2025 _strings = (char*)_fileContent + symtab->stroff();
2026 _stringsSize = symtab->strsize();
2027 if ( (symtab->symoff() + _symbolCount*sizeof(macho_nlist<P>)) > _fileLength )
2028 throw "mach-o symbol table extends beyond end of file";
2029 if ( (_strings + _stringsSize) > (char*)endOfFile )
2030 throw "mach-o string pool extends beyond end of file";
2031 if ( _indirectTable == NULL ) {
2032 if ( _undefinedEndIndex == 0 ) {
2033 _undefinedStartIndex = 0;
2034 _undefinedEndIndex = symtab->nsyms();
2038 break;
2039 case LC_DYSYMTAB:
2041 const macho_dysymtab_command<P>* dsymtab = (macho_dysymtab_command<P>*)cmd;
2042 _indirectTable = (uint32_t*)(_fileContent + dsymtab->indirectsymoff());
2043 _indirectTableCount = dsymtab->nindirectsyms();
2044 if ( &_indirectTable[_indirectTableCount] > (uint32_t*)endOfFile )
2045 throw "indirect symbol table extends beyond end of file";
2046 _undefinedStartIndex = dsymtab->iundefsym();
2047 _undefinedEndIndex = _undefinedStartIndex + dsymtab->nundefsym();
2049 break;
2050 case LC_UUID:
2051 _hasUUID = true;
2052 break;
2053 case LC_DATA_IN_CODE:
2055 const macho_linkedit_data_command<P>* dc = (macho_linkedit_data_command<P>*)cmd;
2056 _dataInCodeStart = (macho_data_in_code_entry<P>*)(_fileContent + dc->dataoff());
2057 _dataInCodeEnd = (macho_data_in_code_entry<P>*)(_fileContent + dc->dataoff() + dc->datasize());
2058 if ( _dataInCodeEnd > (macho_data_in_code_entry<P>*)endOfFile )
2059 throw "LC_DATA_IN_CODE table extends beyond end of file";
2061 break;
2062 case LC_LINKER_OPTION:
2064 const macho_linker_option_command<P>* loc = (macho_linker_option_command<P>*)cmd;
2065 const char* buffer = loc->buffer();
2066 _file->_linkerOptions.resize(_file->_linkerOptions.size() + 1);
2067 std::vector<const char*>& vec = _file->_linkerOptions.back();
2068 for (uint32_t j=0; j < loc->count(); ++j) {
2069 vec.push_back(buffer);
2070 buffer += strlen(buffer) + 1;
2072 if ( buffer > ((char*)cmd + loc->cmdsize()) )
2073 throw "malformed LC_LINKER_OPTION";
2075 break;
2076 case LC_LINKER_OPTIMIZATION_HINTS:
2078 const macho_linkedit_data_command<P>* loh = (macho_linkedit_data_command<P>*)cmd;
2079 _lohStart = _fileContent + loh->dataoff();
2080 _lohEnd = _fileContent + loh->dataoff() + loh->datasize();
2081 if ( _lohEnd > endOfFile )
2082 throw "LC_LINKER_OPTIMIZATION_HINTS table extends beyond end of file";
2084 break;
2085 case LC_VERSION_MIN_MACOSX:
2086 case LC_VERSION_MIN_IPHONEOS:
2087 case LC_VERSION_MIN_WATCHOS:
2088 #if SUPPORT_APPLE_TV
2089 case LC_VERSION_MIN_TVOS:
2090 #endif
2091 if ( ignoreMismatchPlatform )
2092 break;
2093 _file->_platform = cmd->cmd();
2094 lcPlatform = Options::platformForLoadCommand(cmd->cmd());
2095 _file->_minOSVersion = ((macho_version_min_command<P>*)cmd)->version();
2096 break;
2097 case macho_segment_command<P>::CMD:
2098 if ( segment != NULL )
2099 throw "more than one LC_SEGMENT found in object file";
2100 segment = (macho_segment_command<P>*)cmd;
2101 break;
2102 default:
2103 // ignore unknown load commands
2104 break;
2106 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
2107 if ( cmd > cmdsEnd )
2108 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
2110 // arm/arm64 objects are default to ios platform if not set.
2111 // rdar://problem/21746314
2112 if (lcPlatform == Options::kPlatformUnknown &&
2113 (std::is_same<A, arm>::value || std::is_same<A, arm64>::value))
2114 lcPlatform = Options::kPlatformiOS;
2116 // Check platform cross-linking.
2117 if ( !ignoreMismatchPlatform ) {
2118 if ( lcPlatform != platform ) {
2119 switch (platform) {
2120 case Options::kPlatformOSX:
2121 case Options::kPlatformiOS:
2122 if ( lcPlatform == Options::kPlatformUnknown )
2123 break;
2124 // fall through if the Platform is not Unknown
2125 case Options::kPlatformWatchOS:
2126 // Error when using bitcocde, warning otherwise.
2127 if (_usingBitcode)
2128 throwf("building for %s%s, but linking in object file built for %s,",
2129 Options::platformName(platform), (simulator ? " simulator" : ""),
2130 Options::platformName(lcPlatform));
2131 else
2132 warning("URGENT: building for %s%s, but linking in object file (%s) built for %s. "
2133 "Note: This will be an error in the future.",
2134 Options::platformName(platform), (simulator ? " simulator" : ""), path(),
2135 Options::platformName(lcPlatform));
2136 break;
2137 #if SUPPORT_APPLE_TV
2138 case Options::kPlatform_tvOS:
2139 // Error when using bitcocde, warning otherwise.
2140 if (_usingBitcode)
2141 throwf("building for %s%s, but linking in object file built for %s,",
2142 Options::platformName(platform), (simulator ? " simulator" : ""),
2143 Options::platformName(lcPlatform));
2144 else
2145 warning("URGENT: building for %s%s, but linking in object file (%s) built for %s. "
2146 "Note: This will be an error in the future.",
2147 Options::platformName(platform), (simulator ? " simulator" : ""), path(),
2148 Options::platformName(lcPlatform));
2149 break;
2150 #endif
2151 case Options::kPlatformUnknown:
2152 // skip if the target platform is unknown
2153 break;
2156 if ( linkMinOSVersion && (_file->_minOSVersion > linkMinOSVersion) ) {
2157 char t1[32];
2158 char t2[32];
2159 versionToString(_file->_minOSVersion, t1);
2160 versionToString(linkMinOSVersion, t2);
2161 warning("object file (%s) was built for newer %s version (%s) than being linked (%s)",
2162 _path, Options::platformName(lcPlatform), t1, t2);
2167 // record range of sections
2168 if ( segment == NULL )
2169 throw "missing LC_SEGMENT";
2170 _sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
2171 _machOSectionsCount = segment->nsects();
2172 if ( (sizeof(macho_segment_command<P>) + _machOSectionsCount * sizeof(macho_section<P>)) > segment->cmdsize() )
2173 throw "too many sections for size of LC_SEGMENT command";
2174 return true;
2177 template <typename A>
2178 Options::Platform Parser<A>::findPlatform(const macho_header<P>* header)
2180 const uint32_t cmd_count = header->ncmds();
2181 if ( cmd_count == 0 )
2182 return Options::kPlatformUnknown;
2183 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
2184 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
2185 const macho_load_command<P>* cmd = cmds;
2186 for (uint32_t i = 0; i < cmd_count; ++i) {
2187 uint32_t size = cmd->cmdsize();
2188 if ( (size & loadCommandSizeMask()) != 0 )
2189 throwf("load command #%d has a unaligned size", i);
2190 const uint8_t* endOfCmd = ((uint8_t*)cmd)+cmd->cmdsize();
2191 if ( endOfCmd > (uint8_t*)cmdsEnd )
2192 throwf("load command #%d extends beyond the end of the load commands", i);
2193 switch (cmd->cmd()) {
2194 case LC_VERSION_MIN_MACOSX:
2195 return Options::kPlatformOSX;
2196 case LC_VERSION_MIN_IPHONEOS:
2197 return Options::kPlatformiOS;
2199 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
2200 if ( cmd > cmdsEnd )
2201 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
2203 return Options::kPlatformUnknown;
2207 template <typename A>
2208 void Parser<A>::prescanSymbolTable()
2210 _tentativeDefinitionCount = 0;
2211 _absoluteSymbolCount = 0;
2212 _symbolsInSections = 0;
2213 _hasDataInCodeLabels = false;
2214 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2215 const macho_nlist<P>& sym = symbolFromIndex(i);
2216 // ignore stabs
2217 if ( (sym.n_type() & N_STAB) != 0 )
2218 continue;
2220 // look at undefines
2221 const char* symbolName = this->nameFromSymbol(sym);
2222 if ( (sym.n_type() & N_TYPE) == N_UNDF ) {
2223 if ( sym.n_value() != 0 ) {
2224 // count tentative definitions
2225 ++_tentativeDefinitionCount;
2227 else if ( strncmp(symbolName, "___dtrace_", 10) == 0 ) {
2228 // any undefined starting with __dtrace_*$ that is not ___dtrace_probe$* or ___dtrace_isenabled$*
2229 // is extra provider info
2230 if ( (strncmp(&symbolName[10], "probe$", 6) != 0) && (strncmp(&symbolName[10], "isenabled$", 10) != 0) ) {
2231 _dtraceProviderInfo.push_back(symbolName);
2234 continue;
2236 else if ( ((sym.n_type() & N_TYPE) == N_INDR) && ((sym.n_type() & N_EXT) != 0) ) {
2237 _indirectSymbolCount++;
2238 continue;
2241 // count absolute symbols
2242 if ( (sym.n_type() & N_TYPE) == N_ABS ) {
2243 const char* absName = this->nameFromSymbol(sym);
2244 // ignore .objc_class_name_* symbols
2245 if ( strncmp(absName, ".objc_class_name_", 17) == 0 ) {
2246 _AppleObjc = true;
2247 continue;
2249 // ignore .objc_class_name_* symbols
2250 if ( strncmp(absName, ".objc_category_name_", 20) == 0 )
2251 continue;
2252 // ignore empty *.eh symbols
2253 if ( strcmp(&absName[strlen(absName)-3], ".eh") == 0 )
2254 continue;
2255 ++_absoluteSymbolCount;
2258 // only look at definitions
2259 if ( (sym.n_type() & N_TYPE) != N_SECT )
2260 continue;
2262 // 'L' labels do not denote atom breaks
2263 if ( symbolName[0] == 'L' ) {
2264 // <rdar://problem/9218847> Formalize data in code with L$start$ labels
2265 if ( strncmp(symbolName, "L$start$", 8) == 0 )
2266 _hasDataInCodeLabels = true;
2267 continue;
2269 // how many def syms in each section
2270 if ( sym.n_sect() > _machOSectionsCount )
2271 throw "bad n_sect in symbol table";
2273 _symbolsInSections++;
2277 template <typename A>
2278 void Parser<A>::appendAliasAtoms(uint8_t* p)
2280 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2281 const macho_nlist<P>& sym = symbolFromIndex(i);
2282 // ignore stabs
2283 if ( (sym.n_type() & N_STAB) != 0 )
2284 continue;
2286 // only look at N_INDR symbols
2287 if ( (sym.n_type() & N_TYPE) != N_INDR )
2288 continue;
2290 // skip non-external aliases
2291 if ( (sym.n_type() & N_EXT) == 0 )
2292 continue;
2294 const char* symbolName = this->nameFromSymbol(sym);
2295 const char* aliasOfName = &_strings[sym.n_value()];
2296 bool isHiddenVisibility = (sym.n_type() & N_PEXT);
2297 AliasAtom* allocatedSpace = (AliasAtom*)p;
2298 new (allocatedSpace) AliasAtom(symbolName, isHiddenVisibility, _file, aliasOfName);
2299 p += sizeof(AliasAtom);
2305 template <typename A>
2306 int Parser<A>::sectionIndexSorter(void* extra, const void* l, const void* r)
2308 Parser<A>* parser = (Parser<A>*)extra;
2309 const uint32_t* left = (uint32_t*)l;
2310 const uint32_t* right = (uint32_t*)r;
2311 const macho_section<P>* leftSect = parser->machOSectionFromSectionIndex(*left);
2312 const macho_section<P>* rightSect = parser->machOSectionFromSectionIndex(*right);
2314 // can't just return difference because 64-bit diff does not fit in 32-bit return type
2315 int64_t result = leftSect->addr() - rightSect->addr();
2316 if ( result == 0 ) {
2317 // two sections with same start address
2318 // one with zero size goes first
2319 bool leftEmpty = ( leftSect->size() == 0 );
2320 bool rightEmpty = ( rightSect->size() == 0 );
2321 if ( leftEmpty != rightEmpty ) {
2322 return ( rightEmpty ? 1 : -1 );
2324 if ( !leftEmpty && !rightEmpty )
2325 throwf("overlapping sections");
2326 // both empty, so chose file order
2327 return ( rightSect - leftSect );
2329 else if ( result < 0 )
2330 return -1;
2331 else
2332 return 1;
2335 template <typename A>
2336 void Parser<A>::makeSortedSectionsArray(uint32_t array[])
2338 const bool log = false;
2340 if ( log ) {
2341 fprintf(stderr, "unsorted sections:\n");
2342 for(unsigned int i=0; i < _machOSectionsCount; ++i )
2343 fprintf(stderr, "0x%08llX %s %s\n", _sectionsStart[i].addr(), _sectionsStart[i].segname(), _sectionsStart[i].sectname());
2346 // sort by symbol table address
2347 for (uint32_t i=0; i < _machOSectionsCount; ++i)
2348 array[i] = i;
2349 ::qsort_r(array, _machOSectionsCount, sizeof(uint32_t), this, &sectionIndexSorter);
2351 if ( log ) {
2352 fprintf(stderr, "sorted sections:\n");
2353 for(unsigned int i=0; i < _machOSectionsCount; ++i )
2354 fprintf(stderr, "0x%08llX %s %s\n", _sectionsStart[array[i]].addr(), _sectionsStart[array[i]].segname(), _sectionsStart[array[i]].sectname());
2360 template <typename A>
2361 int Parser<A>::symbolIndexSorter(void* extra, const void* l, const void* r)
2363 ParserAndSectionsArray* extraInfo = (ParserAndSectionsArray*)extra;
2364 Parser<A>* parser = extraInfo->parser;
2365 const uint32_t* sortedSectionsArray = extraInfo->sortedSectionsArray;
2366 const uint32_t* left = (uint32_t*)l;
2367 const uint32_t* right = (uint32_t*)r;
2368 const macho_nlist<P>& leftSym = parser->symbolFromIndex(*left);
2369 const macho_nlist<P>& rightSym = parser->symbolFromIndex(*right);
2370 // can't just return difference because 64-bit diff does not fit in 32-bit return type
2371 int64_t result = leftSym.n_value() - rightSym.n_value();
2372 if ( result == 0 ) {
2373 // two symbols with same address
2374 // if in different sections, sort earlier section first
2375 if ( leftSym.n_sect() != rightSym.n_sect() ) {
2376 for (uint32_t i=0; i < parser->machOSectionCount(); ++i) {
2377 if ( sortedSectionsArray[i]+1 == leftSym.n_sect() )
2378 return -1;
2379 if ( sortedSectionsArray[i]+1 == rightSym.n_sect() )
2380 return 1;
2383 // two symbols in same section, means one is an alias
2384 // if one is ltmp*, make it an alias (sort first)
2385 const char* leftName = parser->nameFromSymbol(leftSym);
2386 const char* rightName = parser->nameFromSymbol(rightSym);
2387 bool leftIsTmp = strncmp(leftName, "ltmp", 4);
2388 bool rightIsTmp = strncmp(rightName, "ltmp", 4);
2389 if ( leftIsTmp != rightIsTmp ) {
2390 return (rightIsTmp ? -1 : 1);
2393 // if only one is global, make the other an alias (sort first)
2394 if ( (leftSym.n_type() & N_EXT) != (rightSym.n_type() & N_EXT) ) {
2395 if ( (rightSym.n_type() & N_EXT) != 0 )
2396 return -1;
2397 else
2398 return 1;
2400 // if both are global, sort alphabetically. earlier one will be the alias
2401 return ( strcmp(rightName, leftName) );
2403 else if ( result < 0 )
2404 return -1;
2405 else
2406 return 1;
2410 template <typename A>
2411 void Parser<A>::makeSortedSymbolsArray(uint32_t array[], const uint32_t sectionArray[])
2413 const bool log = false;
2415 uint32_t* p = array;
2416 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2417 const macho_nlist<P>& sym = symbolFromIndex(i);
2418 // ignore stabs
2419 if ( (sym.n_type() & N_STAB) != 0 )
2420 continue;
2422 // only look at definitions
2423 if ( (sym.n_type() & N_TYPE) != N_SECT )
2424 continue;
2426 // 'L' labels do not denote atom breaks
2427 const char* symbolName = this->nameFromSymbol(sym);
2428 if ( symbolName[0] == 'L' )
2429 continue;
2431 // how many def syms in each section
2432 if ( sym.n_sect() > _machOSectionsCount )
2433 throw "bad n_sect in symbol table";
2435 // append to array
2436 *p++ = i;
2438 assert(p == &array[_symbolsInSections] && "second pass over symbol table yield a different number of symbols");
2440 // sort by symbol table address
2441 ParserAndSectionsArray extra = { this, sectionArray };
2442 ::qsort_r(array, _symbolsInSections, sizeof(uint32_t), &extra, &symbolIndexSorter);
2445 // look for two symbols at same address
2446 _overlappingSymbols = false;
2447 for (unsigned int i=1; i < _symbolsInSections; ++i) {
2448 if ( symbolFromIndex(array[i-1]).n_value() == symbolFromIndex(array[i]).n_value() ) {
2449 //fprintf(stderr, "overlapping symbols at 0x%08llX\n", symbolFromIndex(array[i-1]).n_value());
2450 _overlappingSymbols = true;
2451 break;
2455 if ( log ) {
2456 fprintf(stderr, "sorted symbols:\n");
2457 for(unsigned int i=0; i < _symbolsInSections; ++i )
2458 fprintf(stderr, "0x%09llX symIndex=%d sectNum=%2d, %s\n", symbolFromIndex(array[i]).n_value(), array[i], symbolFromIndex(array[i]).n_sect(), nameFromSymbol(symbolFromIndex(array[i])) );
2462 template <typename A>
2463 void Parser<A>::makeSections()
2465 // classify each section by type
2466 // compute how many Section objects will be needed and total size for all
2467 unsigned int totalSectionsSize = 0;
2468 uint8_t machOSectsStorage[sizeof(MachOSectionAndSectionClass<P>)*(_machOSectionsCount+2)]; // also room for tentative-defs and absolute symbols
2469 // allocate raw storage for all section objects on stack
2470 MachOSectionAndSectionClass<P>* machOSects = (MachOSectionAndSectionClass<P>*)machOSectsStorage;
2471 unsigned int count = 0;
2472 // local variable for bitcode parsing
2473 const macho_section<P>* bitcodeSect = NULL;
2474 const macho_section<P>* cmdlineSect = NULL;
2475 const macho_section<P>* swiftCmdlineSect = NULL;
2476 const macho_section<P>* bundleSect = NULL;
2477 bool bitcodeAsm = false;
2479 for (uint32_t i=0; i < _machOSectionsCount; ++i) {
2480 const macho_section<P>* sect = &_sectionsStart[i];
2481 uint8_t sectionType = (sect->flags() & SECTION_TYPE);
2482 if ( (sect->offset() + sect->size() > _fileLength) && (sectionType != S_ZEROFILL) && (sectionType != S_THREAD_LOCAL_ZEROFILL) )
2483 throwf("section %s/%s extends beyond end of file,", sect->segname(), sect->sectname());
2485 if ( (sect->flags() & S_ATTR_DEBUG) != 0 ) {
2486 if ( strcmp(sect->segname(), "__DWARF") == 0 ) {
2487 // note that .o file has dwarf
2488 _file->_debugInfoKind = ld::relocatable::File::kDebugInfoDwarf;
2489 // save off iteresting dwarf sections
2490 if ( strcmp(sect->sectname(), "__debug_info") == 0 )
2491 _file->_dwarfDebugInfoSect = sect;
2492 else if ( strcmp(sect->sectname(), "__debug_abbrev") == 0 )
2493 _file->_dwarfDebugAbbrevSect = sect;
2494 else if ( strcmp(sect->sectname(), "__debug_line") == 0 )
2495 _file->_dwarfDebugLineSect = sect;
2496 else if ( strcmp(sect->sectname(), "__debug_str") == 0 )
2497 _file->_dwarfDebugStringSect = sect;
2498 // linker does not propagate dwarf sections to output file
2499 continue;
2501 else if ( strcmp(sect->segname(), "__LD") == 0 ) {
2502 if ( strncmp(sect->sectname(), "__compact_unwind", 16) == 0 ) {
2503 machOSects[count].sect = sect;
2504 totalSectionsSize += sizeof(CUSection<A>);
2505 machOSects[count++].type = sectionTypeCompactUnwind;
2506 continue;
2510 if ( strcmp(sect->segname(), "__LLVM") == 0 ) {
2511 // Process bitcode segement
2512 if ( strncmp(sect->sectname(), "__bitcode", 9) == 0 ) {
2513 bitcodeSect = sect;
2514 } else if ( strncmp(sect->sectname(), "__cmdline", 9) == 0 ) {
2515 cmdlineSect = sect;
2516 } else if ( strncmp(sect->sectname(), "__swift_cmdline", 15) == 0 ) {
2517 swiftCmdlineSect = sect;
2518 } else if ( strncmp(sect->sectname(), "__bundle", 8) == 0 ) {
2519 bundleSect = sect;
2520 } else if ( strncmp(sect->sectname(), "__asm", 5) == 0 ) {
2521 bitcodeAsm = true;
2523 // If treat the bitcode as data, continue to parse as a normal section.
2524 if ( !_treateBitcodeAsData )
2525 continue;
2527 // ignore empty __OBJC sections
2528 if ( (sect->size() == 0) && (strcmp(sect->segname(), "__OBJC") == 0) )
2529 continue;
2530 // objc image info section is really attributes and not content
2531 if ( ((strcmp(sect->sectname(), "__image_info") == 0) && (strcmp(sect->segname(), "__OBJC") == 0))
2532 || ((strncmp(sect->sectname(), "__objc_imageinfo", 16) == 0) && (strcmp(sect->segname(), "__DATA") == 0)) ) {
2533 // struct objc_image_info {
2534 // uint32_t version; // initially 0
2535 // uint32_t flags;
2536 // };
2537 // #define OBJC_IMAGE_SUPPORTS_GC 2
2538 // #define OBJC_IMAGE_GC_ONLY 4
2539 // #define OBJC_IMAGE_IS_SIMULATED 32
2540 // #define OBJC_IMAGE_HAS_CATEGORY_CLASS_PROPERTIES 64
2542 const uint32_t* contents = (uint32_t*)(_file->fileContent()+sect->offset());
2543 if ( (sect->size() >= 8) && (contents[0] == 0) ) {
2544 uint32_t flags = E::get32(contents[1]);
2545 if ( (flags & 4) == 4 )
2546 _file->_objConstraint = ld::File::objcConstraintGC;
2547 else if ( (flags & 2) == 2 )
2548 _file->_objConstraint = ld::File::objcConstraintRetainReleaseOrGC;
2549 else if ( (flags & 32) == 32 )
2550 _file->_objConstraint = ld::File::objcConstraintRetainReleaseForSimulator;
2551 else
2552 _file->_objConstraint = ld::File::objcConstraintRetainRelease;
2553 _file->_swiftVersion = ((flags >> 8) & 0xFF);
2554 _file->_objcHasCategoryClassPropertiesField = (flags & 64);
2555 if ( sect->size() > 8 ) {
2556 warning("section %s/%s has unexpectedly large size %llu in %s",
2557 sect->segname(), Section<A>::makeSectionName(sect), sect->size(), _file->path());
2560 else {
2561 warning("can't parse %s/%s section in %s", sect->segname(), Section<A>::makeSectionName(sect), _file->path());
2563 continue;
2565 machOSects[count].sect = sect;
2566 switch ( sect->flags() & SECTION_TYPE ) {
2567 case S_SYMBOL_STUBS:
2568 if ( _stubsSectionNum == 0 ) {
2569 _stubsSectionNum = i+1;
2570 _stubsMachOSection = sect;
2572 else
2573 assert(1 && "multiple S_SYMBOL_STUBS sections");
2574 case S_LAZY_SYMBOL_POINTERS:
2575 break;
2576 case S_4BYTE_LITERALS:
2577 totalSectionsSize += sizeof(Literal4Section<A>);
2578 machOSects[count++].type = sectionTypeLiteral4;
2579 break;
2580 case S_8BYTE_LITERALS:
2581 totalSectionsSize += sizeof(Literal8Section<A>);
2582 machOSects[count++].type = sectionTypeLiteral8;
2583 break;
2584 case S_16BYTE_LITERALS:
2585 totalSectionsSize += sizeof(Literal16Section<A>);
2586 machOSects[count++].type = sectionTypeLiteral16;
2587 break;
2588 case S_NON_LAZY_SYMBOL_POINTERS:
2589 totalSectionsSize += sizeof(NonLazyPointerSection<A>);
2590 machOSects[count++].type = sectionTypeNonLazy;
2591 break;
2592 case S_THREAD_LOCAL_VARIABLE_POINTERS:
2593 totalSectionsSize += sizeof(TLVPointerSection<A>);
2594 machOSects[count++].type = sectionTypeTLVPointers;
2595 break;
2596 case S_LITERAL_POINTERS:
2597 if ( (strcmp(sect->segname(), "__OBJC") == 0) && (strcmp(sect->sectname(), "__cls_refs") == 0) ) {
2598 totalSectionsSize += sizeof(Objc1ClassReferences<A>);
2599 machOSects[count++].type = sectionTypeObjC1ClassRefs;
2601 else {
2602 totalSectionsSize += sizeof(PointerToCStringSection<A>);
2603 machOSects[count++].type = sectionTypeCStringPointer;
2605 break;
2606 case S_CSTRING_LITERALS:
2607 totalSectionsSize += sizeof(CStringSection<A>);
2608 machOSects[count++].type = sectionTypeCString;
2609 break;
2610 case S_MOD_INIT_FUNC_POINTERS:
2611 case S_MOD_TERM_FUNC_POINTERS:
2612 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
2613 case S_INTERPOSING:
2614 case S_ZEROFILL:
2615 case S_REGULAR:
2616 case S_COALESCED:
2617 case S_THREAD_LOCAL_REGULAR:
2618 case S_THREAD_LOCAL_ZEROFILL:
2619 if ( (strcmp(sect->segname(), "__TEXT") == 0) && (strcmp(sect->sectname(), "__eh_frame") == 0) ) {
2620 totalSectionsSize += sizeof(CFISection<A>);
2621 machOSects[count++].type = sectionTypeCFI;
2623 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strcmp(sect->sectname(), "__cfstring") == 0) ) {
2624 totalSectionsSize += sizeof(CFStringSection<A>);
2625 machOSects[count++].type = sectionTypeCFString;
2627 else if ( (strcmp(sect->segname(), "__TEXT") == 0) && (strcmp(sect->sectname(), "__ustring") == 0) ) {
2628 totalSectionsSize += sizeof(UTF16StringSection<A>);
2629 machOSects[count++].type = sectionTypeUTF16Strings;
2631 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strncmp(sect->sectname(), "__objc_classrefs", 16) == 0) ) {
2632 totalSectionsSize += sizeof(ObjC2ClassRefsSection<A>);
2633 machOSects[count++].type = sectionTypeObjC2ClassRefs;
2635 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strcmp(sect->sectname(), "__objc_catlist") == 0) ) {
2636 totalSectionsSize += sizeof(ObjC2CategoryListSection<A>);
2637 machOSects[count++].type = typeObjC2CategoryList;
2639 else if ( _AppleObjc && (strcmp(sect->segname(), "__OBJC") == 0) && (strcmp(sect->sectname(), "__class") == 0) ) {
2640 totalSectionsSize += sizeof(ObjC1ClassSection<A>);
2641 machOSects[count++].type = sectionTypeObjC1Classes;
2643 else {
2644 totalSectionsSize += sizeof(SymboledSection<A>);
2645 machOSects[count++].type = sectionTypeSymboled;
2647 break;
2648 case S_THREAD_LOCAL_VARIABLES:
2649 totalSectionsSize += sizeof(TLVDefsSection<A>);
2650 machOSects[count++].type = sectionTypeTLVDefs;
2651 break;
2652 default:
2653 throwf("unknown section type %d", sect->flags() & SECTION_TYPE);
2657 // Create bitcode
2658 if ( bitcodeSect != NULL ) {
2659 if ( cmdlineSect != NULL )
2660 _file->_bitcode = std::unique_ptr<ld::Bitcode>(new ld::ClangBitcode(&_fileContent[bitcodeSect->offset()], bitcodeSect->size(),
2661 &_fileContent[cmdlineSect->offset()], cmdlineSect->size()));
2662 else if ( swiftCmdlineSect != NULL )
2663 _file->_bitcode = std::unique_ptr<ld::Bitcode>(new ld::SwiftBitcode(&_fileContent[bitcodeSect->offset()], bitcodeSect->size(),
2664 &_fileContent[swiftCmdlineSect->offset()], swiftCmdlineSect->size()));
2665 else
2666 throwf("Object file with bitcode missing cmdline options: %s", _file->path());
2668 else if ( bundleSect != NULL )
2669 _file->_bitcode = std::unique_ptr<ld::Bitcode>(new ld::BundleBitcode(&_fileContent[bundleSect->offset()], bundleSect->size()));
2670 else if ( bitcodeAsm )
2671 _file->_bitcode = std::unique_ptr<ld::Bitcode>(new ld::AsmBitcode(_fileContent, _fileLength));
2673 // sort by address (mach-o object files don't aways have sections sorted)
2674 ::qsort(machOSects, count, sizeof(MachOSectionAndSectionClass<P>), MachOSectionAndSectionClass<P>::sorter);
2676 // we will synthesize a dummy Section<A> object for tentative definitions
2677 if ( _tentativeDefinitionCount > 0 ) {
2678 totalSectionsSize += sizeof(TentativeDefinitionSection<A>);
2679 machOSects[count++].type = sectionTypeTentativeDefinitions;
2682 // we will synthesize a dummy Section<A> object for Absolute symbols
2683 if ( _absoluteSymbolCount > 0 ) {
2684 totalSectionsSize += sizeof(AbsoluteSymbolSection<A>);
2685 machOSects[count++].type = sectionTypeAbsoluteSymbols;
2688 // allocate one block for all Section objects as well as pointers to each
2689 uint8_t* space = new uint8_t[totalSectionsSize+count*sizeof(Section<A>*)];
2690 _file->_sectionsArray = (Section<A>**)space;
2691 _file->_sectionsArrayCount = count;
2692 Section<A>** objects = _file->_sectionsArray;
2693 space += count*sizeof(Section<A>*);
2694 for (uint32_t i=0; i < count; ++i) {
2695 switch ( machOSects[i].type ) {
2696 case sectionTypeIgnore:
2697 break;
2698 case sectionTypeLiteral4:
2699 *objects++ = new (space) Literal4Section<A>(*this, *_file, machOSects[i].sect);
2700 space += sizeof(Literal4Section<A>);
2701 break;
2702 case sectionTypeLiteral8:
2703 *objects++ = new (space) Literal8Section<A>(*this, *_file, machOSects[i].sect);
2704 space += sizeof(Literal8Section<A>);
2705 break;
2706 case sectionTypeLiteral16:
2707 *objects++ = new (space) Literal16Section<A>(*this, *_file, machOSects[i].sect);
2708 space += sizeof(Literal16Section<A>);
2709 break;
2710 case sectionTypeNonLazy:
2711 *objects++ = new (space) NonLazyPointerSection<A>(*this, *_file, machOSects[i].sect);
2712 space += sizeof(NonLazyPointerSection<A>);
2713 break;
2714 case sectionTypeTLVPointers:
2715 *objects++ = new (space) TLVPointerSection<A>(*this, *_file, machOSects[i].sect);
2716 space += sizeof(TLVPointerSection<A>);
2717 break;
2718 case sectionTypeCFI:
2719 _EHFrameSection = new (space) CFISection<A>(*this, *_file, machOSects[i].sect);
2720 *objects++ = _EHFrameSection;
2721 space += sizeof(CFISection<A>);
2722 break;
2723 case sectionTypeCString:
2724 *objects++ = new (space) CStringSection<A>(*this, *_file, machOSects[i].sect);
2725 space += sizeof(CStringSection<A>);
2726 break;
2727 case sectionTypeCStringPointer:
2728 *objects++ = new (space) PointerToCStringSection<A>(*this, *_file, machOSects[i].sect);
2729 space += sizeof(PointerToCStringSection<A>);
2730 break;
2731 case sectionTypeObjC1ClassRefs:
2732 *objects++ = new (space) Objc1ClassReferences<A>(*this, *_file, machOSects[i].sect);
2733 space += sizeof(Objc1ClassReferences<A>);
2734 break;
2735 case sectionTypeUTF16Strings:
2736 *objects++ = new (space) UTF16StringSection<A>(*this, *_file, machOSects[i].sect);
2737 space += sizeof(UTF16StringSection<A>);
2738 break;
2739 case sectionTypeCFString:
2740 *objects++ = new (space) CFStringSection<A>(*this, *_file, machOSects[i].sect);
2741 space += sizeof(CFStringSection<A>);
2742 break;
2743 case sectionTypeObjC2ClassRefs:
2744 *objects++ = new (space) ObjC2ClassRefsSection<A>(*this, *_file, machOSects[i].sect);
2745 space += sizeof(ObjC2ClassRefsSection<A>);
2746 break;
2747 case typeObjC2CategoryList:
2748 *objects++ = new (space) ObjC2CategoryListSection<A>(*this, *_file, machOSects[i].sect);
2749 space += sizeof(ObjC2CategoryListSection<A>);
2750 break;
2751 case sectionTypeObjC1Classes:
2752 *objects++ = new (space) ObjC1ClassSection<A>(*this, *_file, machOSects[i].sect);
2753 space += sizeof(ObjC1ClassSection<A>);
2754 break;
2755 case sectionTypeSymboled:
2756 *objects++ = new (space) SymboledSection<A>(*this, *_file, machOSects[i].sect);
2757 space += sizeof(SymboledSection<A>);
2758 break;
2759 case sectionTypeTLVDefs:
2760 *objects++ = new (space) TLVDefsSection<A>(*this, *_file, machOSects[i].sect);
2761 space += sizeof(TLVDefsSection<A>);
2762 break;
2763 case sectionTypeCompactUnwind:
2764 _compactUnwindSection = new (space) CUSection<A>(*this, *_file, machOSects[i].sect);
2765 *objects++ = _compactUnwindSection;
2766 space += sizeof(CUSection<A>);
2767 break;
2768 case sectionTypeTentativeDefinitions:
2769 *objects++ = new (space) TentativeDefinitionSection<A>(*this, *_file);
2770 space += sizeof(TentativeDefinitionSection<A>);
2771 break;
2772 case sectionTypeAbsoluteSymbols:
2773 _absoluteSection = new (space) AbsoluteSymbolSection<A>(*this, *_file);
2774 *objects++ = _absoluteSection;
2775 space += sizeof(AbsoluteSymbolSection<A>);
2776 break;
2777 default:
2778 throw "internal error uknown SectionType";
2784 template <typename A>
2785 Section<A>* Parser<A>::sectionForAddress(typename A::P::uint_t addr)
2787 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2788 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2789 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2790 if ( sect != NULL ) {
2791 if ( (sect->addr() <= addr) && (addr < (sect->addr()+sect->size())) ) {
2792 return _file->_sectionsArray[i];
2796 // not strictly in any section
2797 // may be in a zero length section
2798 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2799 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2800 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2801 if ( sect != NULL ) {
2802 if ( (sect->addr() == addr) && (sect->size() == 0) ) {
2803 return _file->_sectionsArray[i];
2808 throwf("sectionForAddress(0x%llX) address not in any section", (uint64_t)addr);
2811 template <typename A>
2812 Section<A>* Parser<A>::sectionForNum(unsigned int num)
2814 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2815 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2816 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2817 if ( sect != NULL ) {
2818 if ( num == (unsigned int)((sect - _sectionsStart)+1) )
2819 return _file->_sectionsArray[i];
2822 throwf("sectionForNum(%u) section number not for any section", num);
2825 template <typename A>
2826 Atom<A>* Parser<A>::findAtomByAddress(pint_t addr)
2828 Section<A>* section = this->sectionForAddress(addr);
2829 return section->findAtomByAddress(addr);
2832 template <typename A>
2833 Atom<A>* Parser<A>::findAtomByAddressOrNullIfStub(pint_t addr)
2835 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) )
2836 return NULL;
2837 return findAtomByAddress(addr);
2840 template <typename A>
2841 Atom<A>* Parser<A>::findAtomByAddressOrLocalTargetOfStub(pint_t addr, uint32_t* offsetInAtom)
2843 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) ) {
2844 // target is a stub, remove indirection
2845 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2846 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2847 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2848 // can't be to external weak symbol
2849 assert( (this->combineFromSymbol(sym) != ld::Atom::combineByName) || (this->scopeFromSymbol(sym) != ld::Atom::scopeGlobal) );
2850 *offsetInAtom = 0;
2851 return this->findAtomByName(this->nameFromSymbol(sym));
2853 Atom<A>* target = this->findAtomByAddress(addr);
2854 *offsetInAtom = addr - target->_objAddress;
2855 return target;
2858 template <typename A>
2859 Atom<A>* Parser<A>::findAtomByName(const char* name)
2861 uint8_t* p = _file->_atomsArray;
2862 for(int i=_file->_atomsArrayCount; i > 0; --i) {
2863 Atom<A>* atom = (Atom<A>*)p;
2864 if ( strcmp(name, atom->name()) == 0 )
2865 return atom;
2866 p += sizeof(Atom<A>);
2868 return NULL;
2871 template <typename A>
2872 void Parser<A>::findTargetFromAddress(pint_t addr, TargetDesc& target)
2874 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) ) {
2875 // target is a stub, remove indirection
2876 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2877 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2878 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2879 target.atom = NULL;
2880 target.name = this->nameFromSymbol(sym);
2881 target.weakImport = this->weakImportFromSymbol(sym);
2882 target.addend = 0;
2883 return;
2885 Section<A>* section = this->sectionForAddress(addr);
2886 target.atom = section->findAtomByAddress(addr);
2887 target.addend = addr - target.atom->_objAddress;
2888 target.weakImport = false;
2889 target.name = NULL;
2892 template <typename A>
2893 void Parser<A>::findTargetFromAddress(pint_t baseAddr, pint_t addr, TargetDesc& target)
2895 findTargetFromAddress(baseAddr, target);
2896 target.addend = addr - target.atom->_objAddress;
2899 template <typename A>
2900 void Parser<A>::findTargetFromAddressAndSectionNum(pint_t addr, unsigned int sectNum, TargetDesc& target)
2902 if ( sectNum == R_ABS ) {
2903 // target is absolute symbol that corresponds to addr
2904 if ( _absoluteSection != NULL ) {
2905 target.atom = _absoluteSection->findAbsAtomForValue(addr);
2906 if ( target.atom != NULL ) {
2907 target.name = NULL;
2908 target.weakImport = false;
2909 target.addend = 0;
2910 return;
2913 throwf("R_ABS reloc but no absolute symbol at target address");
2916 if ( hasStubsSection() && (stubsSectionNum() == sectNum) ) {
2917 // target is a stub, remove indirection
2918 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2919 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2920 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2921 // use direct reference when stub is to a static function
2922 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (this->nameFromSymbol(sym)[0] == 'L')) ) {
2923 this->findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
2925 else {
2926 target.atom = NULL;
2927 target.name = this->nameFromSymbol(sym);
2928 target.weakImport = this->weakImportFromSymbol(sym);
2929 target.addend = 0;
2931 return;
2933 Section<A>* section = this->sectionForNum(sectNum);
2934 target.atom = section->findAtomByAddress(addr);
2935 if ( target.atom == NULL ) {
2936 typedef typename A::P::sint_t sint_t;
2937 sint_t a = (sint_t)addr;
2938 sint_t sectStart = (sint_t)(section->machoSection()->addr());
2939 sint_t sectEnd = sectStart + section->machoSection()->size();
2940 if ( a < sectStart ) {
2941 // target address is before start of section, so must be negative addend
2942 target.atom = section->findAtomByAddress(sectStart);
2943 target.addend = a - sectStart;
2944 target.weakImport = false;
2945 target.name = NULL;
2946 return;
2948 else if ( a >= sectEnd ) {
2949 target.atom = section->findAtomByAddress(sectEnd-1);
2950 target.addend = a - sectEnd;
2951 target.weakImport = false;
2952 target.name = NULL;
2953 return;
2956 assert(target.atom != NULL);
2957 target.addend = addr - target.atom->_objAddress;
2958 target.weakImport = false;
2959 target.name = NULL;
2962 template <typename A>
2963 void Parser<A>::addDtraceExtraInfos(const SourceLocation& src, const char* providerName)
2965 // for every ___dtrace_stability$* and ___dtrace_typedefs$* undefine with
2966 // a matching provider name, add a by-name kDtraceTypeReference at probe site
2967 const char* dollar = strchr(providerName, '$');
2968 if ( dollar != NULL ) {
2969 int providerNameLen = dollar-providerName+1;
2970 for ( std::vector<const char*>::iterator it = _dtraceProviderInfo.begin(); it != _dtraceProviderInfo.end(); ++it) {
2971 const char* typeDollar = strchr(*it, '$');
2972 if ( typeDollar != NULL ) {
2973 if ( strncmp(typeDollar+1, providerName, providerNameLen) == 0 ) {
2974 addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindDtraceExtra,false, *it);
2981 template <typename A>
2982 const char* Parser<A>::scanSymbolTableForAddress(uint64_t addr)
2984 uint64_t closestSymAddr = 0;
2985 const char* closestSymName = NULL;
2986 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2987 const macho_nlist<P>& sym = symbolFromIndex(i);
2988 // ignore stabs
2989 if ( (sym.n_type() & N_STAB) != 0 )
2990 continue;
2992 // only look at definitions
2993 if ( (sym.n_type() & N_TYPE) != N_SECT )
2994 continue;
2996 // return with exact match
2997 if ( sym.n_value() == addr ) {
2998 const char* name = nameFromSymbol(sym);
2999 if ( strncmp(name, "ltmp", 4) != 0 )
3000 return name;
3001 // treat 'ltmp*' labels as close match
3002 closestSymAddr = sym.n_value();
3003 closestSymName = name;
3006 // record closest seen so far
3007 if ( (sym.n_value() < addr) && ((sym.n_value() > closestSymAddr) || (closestSymName == NULL)) )
3008 closestSymName = nameFromSymbol(sym);
3011 return (closestSymName != NULL) ? closestSymName : "unknown";
3015 template <typename A>
3016 void Parser<A>::addFixups(const SourceLocation& src, ld::Fixup::Kind setKind, const TargetDesc& target)
3018 // some fixup pairs can be combined
3019 ld::Fixup::Cluster cl = ld::Fixup::k1of3;
3020 ld::Fixup::Kind firstKind = ld::Fixup::kindSetTargetAddress;
3021 bool combined = false;
3022 if ( target.addend == 0 ) {
3023 cl = ld::Fixup::k1of1;
3024 combined = true;
3025 switch ( setKind ) {
3026 case ld::Fixup::kindStoreLittleEndian32:
3027 firstKind = ld::Fixup::kindStoreTargetAddressLittleEndian32;
3028 break;
3029 case ld::Fixup::kindStoreLittleEndian64:
3030 firstKind = ld::Fixup::kindStoreTargetAddressLittleEndian64;
3031 break;
3032 case ld::Fixup::kindStoreBigEndian32:
3033 firstKind = ld::Fixup::kindStoreTargetAddressBigEndian32;
3034 break;
3035 case ld::Fixup::kindStoreBigEndian64:
3036 firstKind = ld::Fixup::kindStoreTargetAddressBigEndian64;
3037 break;
3038 case ld::Fixup::kindStoreX86BranchPCRel32:
3039 firstKind = ld::Fixup::kindStoreTargetAddressX86BranchPCRel32;
3040 break;
3041 case ld::Fixup::kindStoreX86PCRel32:
3042 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32;
3043 break;
3044 case ld::Fixup::kindStoreX86PCRel32GOTLoad:
3045 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32GOTLoad;
3046 break;
3047 case ld::Fixup::kindStoreX86PCRel32TLVLoad:
3048 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32TLVLoad;
3049 break;
3050 case ld::Fixup::kindStoreX86Abs32TLVLoad:
3051 firstKind = ld::Fixup::kindStoreTargetAddressX86Abs32TLVLoad;
3052 break;
3053 case ld::Fixup::kindStoreARMBranch24:
3054 firstKind = ld::Fixup::kindStoreTargetAddressARMBranch24;
3055 break;
3056 case ld::Fixup::kindStoreThumbBranch22:
3057 firstKind = ld::Fixup::kindStoreTargetAddressThumbBranch22;
3058 break;
3059 #if SUPPORT_ARCH_arm64
3060 case ld::Fixup::kindStoreARM64Branch26:
3061 firstKind = ld::Fixup::kindStoreTargetAddressARM64Branch26;
3062 break;
3063 case ld::Fixup::kindStoreARM64Page21:
3064 firstKind = ld::Fixup::kindStoreTargetAddressARM64Page21;
3065 break;
3066 case ld::Fixup::kindStoreARM64PageOff12:
3067 firstKind = ld::Fixup::kindStoreTargetAddressARM64PageOff12;
3068 break;
3069 case ld::Fixup::kindStoreARM64GOTLoadPage21:
3070 firstKind = ld::Fixup::kindStoreTargetAddressARM64GOTLoadPage21;
3071 break;
3072 case ld::Fixup::kindStoreARM64GOTLoadPageOff12:
3073 firstKind = ld::Fixup::kindStoreTargetAddressARM64GOTLoadPageOff12;
3074 break;
3075 case ld::Fixup::kindStoreARM64TLVPLoadPage21:
3076 firstKind = ld::Fixup::kindStoreTargetAddressARM64TLVPLoadPage21;
3077 break;
3078 case ld::Fixup::kindStoreARM64TLVPLoadPageOff12:
3079 firstKind = ld::Fixup::kindStoreTargetAddressARM64TLVPLoadPageOff12;
3080 break;
3081 #endif
3082 default:
3083 combined = false;
3084 cl = ld::Fixup::k1of2;
3085 break;
3089 if ( target.atom != NULL ) {
3090 if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
3091 addFixup(src, cl, firstKind, target.atom);
3093 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
3094 addFixup(src, cl, firstKind, ld::Fixup::bindingByContentBound, target.atom);
3096 else if ( (src.atom->section().type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
3097 // backing string in CFStrings should always be direct
3098 addFixup(src, cl, firstKind, target.atom);
3100 else if ( (src.atom == target.atom) && (target.atom->combine() == ld::Atom::combineByName) ) {
3101 // reference to self should always be direct
3102 addFixup(src, cl, firstKind, target.atom);
3104 else {
3105 // change direct fixup to by-name fixup
3106 addFixup(src, cl, firstKind, false, target.atom->name());
3109 else {
3110 addFixup(src, cl, firstKind, target.weakImport, target.name);
3112 if ( target.addend == 0 ) {
3113 if ( ! combined )
3114 addFixup(src, ld::Fixup::k2of2, setKind);
3116 else {
3117 addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, target.addend);
3118 addFixup(src, ld::Fixup::k3of3, setKind);
3122 template <typename A>
3123 void Parser<A>::addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target, const TargetDesc& picBase)
3125 ld::Fixup::Cluster cl = (target.addend == 0) ? ld::Fixup::k1of4 : ld::Fixup::k1of5;
3126 if ( target.atom != NULL ) {
3127 if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
3128 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, target.atom);
3130 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
3131 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
3133 else {
3134 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
3137 else {
3138 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, target.weakImport, target.name);
3140 if ( target.addend == 0 ) {
3141 assert(picBase.atom != NULL);
3142 addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, picBase.atom);
3143 addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, picBase.addend);
3144 addFixup(src, ld::Fixup::k4of4, kind);
3146 else {
3147 addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend);
3148 addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, picBase.atom);
3149 addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, picBase.addend);
3150 addFixup(src, ld::Fixup::k5of5, kind);
3156 template <typename A>
3157 uint32_t TentativeDefinitionSection<A>::computeAtomCount(class Parser<A>& parser,
3158 struct Parser<A>::LabelAndCFIBreakIterator& it,
3159 const struct Parser<A>::CFI_CU_InfoArrays&)
3161 return parser.tentativeDefinitionCount();
3164 template <typename A>
3165 uint32_t TentativeDefinitionSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
3166 struct Parser<A>::LabelAndCFIBreakIterator& it,
3167 const struct Parser<A>::CFI_CU_InfoArrays&)
3169 this->_beginAtoms = (Atom<A>*)p;
3170 uint32_t count = 0;
3171 for (uint32_t i=parser.undefinedStartIndex(); i < parser.undefinedEndIndex(); ++i) {
3172 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
3173 if ( ((sym.n_type() & N_TYPE) == N_UNDF) && (sym.n_value() != 0) ) {
3174 uint64_t size = sym.n_value();
3175 uint8_t alignP2 = GET_COMM_ALIGN(sym.n_desc());
3176 if ( alignP2 == 0 ) {
3177 // common symbols align to their size
3178 // that is, a 4-byte common aligns to 4-bytes
3179 // if this size is not a power of two,
3180 // then round up to the next power of two
3181 alignP2 = 63 - (uint8_t)__builtin_clzll(size);
3182 if ( size != (1ULL << alignP2) )
3183 ++alignP2;
3184 // <rdar://problem/24871389> limit default alignment of large commons
3185 if ( alignP2 > parser.maxDefaultCommonAlignment() )
3186 alignP2 = parser.maxDefaultCommonAlignment();
3188 Atom<A>* allocatedSpace = (Atom<A>*)p;
3189 new (allocatedSpace) Atom<A>(*this, parser.nameFromSymbol(sym), (pint_t)ULLONG_MAX, size,
3190 ld::Atom::definitionTentative, ld::Atom::combineByName,
3191 parser.scopeFromSymbol(sym), ld::Atom::typeZeroFill, ld::Atom::symbolTableIn,
3192 parser.dontDeadStripFromSymbol(sym), false, false, ld::Atom::Alignment(alignP2) );
3193 p += sizeof(Atom<A>);
3194 ++count;
3197 this->_endAtoms = (Atom<A>*)p;
3198 return count;
3202 template <typename A>
3203 uint32_t AbsoluteSymbolSection<A>::computeAtomCount(class Parser<A>& parser,
3204 struct Parser<A>::LabelAndCFIBreakIterator& it,
3205 const struct Parser<A>::CFI_CU_InfoArrays&)
3207 return parser.absoluteSymbolCount();
3210 template <typename A>
3211 uint32_t AbsoluteSymbolSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
3212 struct Parser<A>::LabelAndCFIBreakIterator& it,
3213 const struct Parser<A>::CFI_CU_InfoArrays&)
3215 this->_beginAtoms = (Atom<A>*)p;
3216 uint32_t count = 0;
3217 for (uint32_t i=0; i < parser.symbolCount(); ++i) {
3218 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
3219 if ( (sym.n_type() & N_TYPE) != N_ABS )
3220 continue;
3221 const char* absName = parser.nameFromSymbol(sym);
3222 // ignore .objc_class_name_* symbols
3223 if ( strncmp(absName, ".objc_class_name_", 17) == 0 )
3224 continue;
3225 // ignore .objc_class_name_* symbols
3226 if ( strncmp(absName, ".objc_category_name_", 20) == 0 )
3227 continue;
3228 // ignore empty *.eh symbols
3229 if ( strcmp(&absName[strlen(absName)-3], ".eh") == 0 )
3230 continue;
3232 Atom<A>* allocatedSpace = (Atom<A>*)p;
3233 new (allocatedSpace) Atom<A>(*this, parser, sym, 0);
3234 p += sizeof(Atom<A>);
3235 ++count;
3237 this->_endAtoms = (Atom<A>*)p;
3238 return count;
3241 template <typename A>
3242 Atom<A>* AbsoluteSymbolSection<A>::findAbsAtomForValue(typename A::P::uint_t value)
3244 Atom<A>* end = this->_endAtoms;
3245 for(Atom<A>* p = this->_beginAtoms; p < end; ++p) {
3246 if ( p->_objAddress == value )
3247 return p;
3249 return NULL;
3253 template <typename A>
3254 uint32_t Parser<A>::indirectSymbol(uint32_t indirectIndex)
3256 if ( indirectIndex >= _indirectTableCount )
3257 throw "indirect symbol index out of range";
3258 return E::get32(_indirectTable[indirectIndex]);
3261 template <typename A>
3262 const macho_nlist<typename A::P>& Parser<A>::symbolFromIndex(uint32_t index)
3264 if ( index > _symbolCount )
3265 throw "symbol index out of range";
3266 return _symbols[index];
3269 template <typename A>
3270 const macho_section<typename A::P>* Parser<A>::machOSectionFromSectionIndex(uint32_t index)
3272 if ( index >= _machOSectionsCount )
3273 throw "section index out of range";
3274 return &_sectionsStart[index];
3277 template <typename A>
3278 uint32_t Parser<A>::symbolIndexFromIndirectSectionAddress(pint_t addr, const macho_section<P>* sect)
3280 uint32_t elementSize = 0;
3281 switch ( sect->flags() & SECTION_TYPE ) {
3282 case S_SYMBOL_STUBS:
3283 elementSize = sect->reserved2();
3284 break;
3285 case S_LAZY_SYMBOL_POINTERS:
3286 case S_NON_LAZY_SYMBOL_POINTERS:
3287 case S_THREAD_LOCAL_VARIABLE_POINTERS:
3288 elementSize = sizeof(pint_t);
3289 break;
3290 default:
3291 throw "section does not use indirect symbol table";
3293 uint32_t indexInSection = (addr - sect->addr()) / elementSize;
3294 uint32_t indexIntoIndirectTable = sect->reserved1() + indexInSection;
3295 return this->indirectSymbol(indexIntoIndirectTable);
3300 template <typename A>
3301 const char* Parser<A>::nameFromSymbol(const macho_nlist<P>& sym)
3303 return &_strings[sym.n_strx()];
3306 template <typename A>
3307 ld::Atom::Scope Parser<A>::scopeFromSymbol(const macho_nlist<P>& sym)
3309 if ( (sym.n_type() & N_EXT) == 0 )
3310 return ld::Atom::scopeTranslationUnit;
3311 else if ( (sym.n_type() & N_PEXT) != 0 )
3312 return ld::Atom::scopeLinkageUnit;
3313 else if ( this->nameFromSymbol(sym)[0] == 'l' ) // since all 'l' symbols will be remove, don't make them global
3314 return ld::Atom::scopeLinkageUnit;
3315 else
3316 return ld::Atom::scopeGlobal;
3319 template <typename A>
3320 ld::Atom::Definition Parser<A>::definitionFromSymbol(const macho_nlist<P>& sym)
3322 switch ( sym.n_type() & N_TYPE ) {
3323 case N_ABS:
3324 return ld::Atom::definitionAbsolute;
3325 case N_SECT:
3326 return ld::Atom::definitionRegular;
3327 case N_UNDF:
3328 if ( sym.n_value() != 0 )
3329 return ld::Atom::definitionTentative;
3331 throw "definitionFromSymbol() bad symbol";
3334 template <typename A>
3335 ld::Atom::Combine Parser<A>::combineFromSymbol(const macho_nlist<P>& sym)
3337 if ( sym.n_desc() & N_WEAK_DEF )
3338 return ld::Atom::combineByName;
3339 else
3340 return ld::Atom::combineNever;
3344 template <typename A>
3345 ld::Atom::SymbolTableInclusion Parser<A>::inclusionFromSymbol(const macho_nlist<P>& sym)
3347 const char* symbolName = nameFromSymbol(sym);
3348 // labels beginning with 'l' (lowercase ell) are automatically removed in final linked images <rdar://problem/4571042>
3349 // labels beginning with 'L' should have been stripped by the assembler, so are stripped now
3350 if ( sym.n_desc() & REFERENCED_DYNAMICALLY )
3351 return ld::Atom::symbolTableInAndNeverStrip;
3352 else if ( symbolName[0] == 'l' )
3353 return ld::Atom::symbolTableNotInFinalLinkedImages;
3354 else if ( symbolName[0] == 'L' )
3355 return ld::Atom::symbolTableNotIn;
3356 else
3357 return ld::Atom::symbolTableIn;
3360 template <typename A>
3361 bool Parser<A>::dontDeadStripFromSymbol(const macho_nlist<P>& sym)
3363 return ( (sym.n_desc() & (N_NO_DEAD_STRIP|REFERENCED_DYNAMICALLY)) != 0 );
3366 template <typename A>
3367 bool Parser<A>::isThumbFromSymbol(const macho_nlist<P>& sym)
3369 return ( sym.n_desc() & N_ARM_THUMB_DEF );
3372 template <typename A>
3373 bool Parser<A>::weakImportFromSymbol(const macho_nlist<P>& sym)
3375 return ( ((sym.n_type() & N_TYPE) == N_UNDF) && ((sym.n_desc() & N_WEAK_REF) != 0) );
3378 template <typename A>
3379 bool Parser<A>::resolverFromSymbol(const macho_nlist<P>& sym)
3381 return ( sym.n_desc() & N_SYMBOL_RESOLVER );
3384 template <typename A>
3385 bool Parser<A>::altEntryFromSymbol(const macho_nlist<P>& sym)
3387 return ( sym.n_desc() & N_ALT_ENTRY );
3391 /* Skip over a LEB128 value (signed or unsigned). */
3392 static void
3393 skip_leb128 (const uint8_t ** offset, const uint8_t * end)
3395 while (*offset != end && **offset >= 0x80)
3396 (*offset)++;
3397 if (*offset != end)
3398 (*offset)++;
3401 /* Read a ULEB128 into a 64-bit word. Return (uint64_t)-1 on overflow
3402 or error. On overflow, skip past the rest of the uleb128. */
3403 static uint64_t
3404 read_uleb128 (const uint8_t ** offset, const uint8_t * end)
3406 uint64_t result = 0;
3407 int bit = 0;
3409 do {
3410 uint64_t b;
3412 if (*offset == end)
3413 return (uint64_t) -1;
3415 b = **offset & 0x7f;
3417 if (bit >= 64 || b << bit >> bit != b)
3418 result = (uint64_t) -1;
3419 else
3420 result |= b << bit, bit += 7;
3421 } while (*(*offset)++ >= 0x80);
3422 return result;
3426 /* Skip over a DWARF attribute of form FORM. */
3427 template <typename A>
3428 bool Parser<A>::skip_form(const uint8_t ** offset, const uint8_t * end, uint64_t form,
3429 uint8_t addr_size, bool dwarf64)
3431 int64_t sz=0;
3433 switch (form)
3435 case DW_FORM_addr:
3436 sz = addr_size;
3437 break;
3439 case DW_FORM_block2:
3440 if (end - *offset < 2)
3441 return false;
3442 sz = 2 + A::P::E::get16(*(uint16_t*)offset);
3443 break;
3445 case DW_FORM_block4:
3446 if (end - *offset < 4)
3447 return false;
3448 sz = 2 + A::P::E::get32(*(uint32_t*)offset);
3449 break;
3451 case DW_FORM_data2:
3452 case DW_FORM_ref2:
3453 sz = 2;
3454 break;
3456 case DW_FORM_data4:
3457 case DW_FORM_ref4:
3458 sz = 4;
3459 break;
3461 case DW_FORM_data8:
3462 case DW_FORM_ref8:
3463 sz = 8;
3464 break;
3466 case DW_FORM_string:
3467 while (*offset != end && **offset)
3468 ++*offset;
3469 case DW_FORM_data1:
3470 case DW_FORM_flag:
3471 case DW_FORM_ref1:
3472 sz = 1;
3473 break;
3475 case DW_FORM_block:
3476 sz = read_uleb128 (offset, end);
3477 break;
3479 case DW_FORM_block1:
3480 if (*offset == end)
3481 return false;
3482 sz = 1 + **offset;
3483 break;
3485 case DW_FORM_sdata:
3486 case DW_FORM_udata:
3487 case DW_FORM_ref_udata:
3488 skip_leb128 (offset, end);
3489 return true;
3491 case DW_FORM_strp:
3492 case DW_FORM_ref_addr:
3493 sz = 4;
3494 break;
3496 case DW_FORM_sec_offset:
3497 sz = sizeof(typename A::P::uint_t);
3498 break;
3500 case DW_FORM_exprloc:
3501 sz = read_uleb128 (offset, end);
3502 break;
3504 case DW_FORM_flag_present:
3505 sz = 0;
3506 break;
3508 case DW_FORM_ref_sig8:
3509 sz = 8;
3510 break;
3512 default:
3513 return false;
3515 if (end - *offset < sz)
3516 return false;
3517 *offset += sz;
3518 return true;
3522 template <typename A>
3523 const char* Parser<A>::getDwarfString(uint64_t form, const uint8_t*& di)
3525 uint32_t offset;
3526 const char* dwarfStrings;
3527 const char* result = NULL;
3528 switch (form) {
3529 case DW_FORM_string:
3530 result = (const char*)di;
3531 di += strlen(result) + 1;
3532 break;
3533 case DW_FORM_strp:
3534 offset = E::get32(*((uint32_t*)di));
3535 dwarfStrings = (char*)_file->fileContent() + _file->_dwarfDebugStringSect->offset();
3536 if ( offset < _file->_dwarfDebugStringSect->size() )
3537 result = &dwarfStrings[offset];
3538 else
3539 warning("dwarf DW_FORM_strp (offset=0x%08X) is too big in %s", offset, this->_path);
3540 di += 4;
3541 break;
3542 default:
3543 warning("unknown dwarf string encoding (form=%lld) in %s", form, this->_path);
3544 break;
3546 return result;
3549 template <typename A>
3550 uint64_t Parser<A>::getDwarfOffset(uint64_t form, const uint8_t*& di, bool dwarf64)
3552 if ( form == DW_FORM_sec_offset )
3553 form = (dwarf64 ? DW_FORM_data8 : DW_FORM_data4);
3554 uint64_t result = -1;
3555 switch (form) {
3556 case DW_FORM_data4:
3557 result = A::P::E::get32(*(uint32_t*)di);
3558 di += 4;
3559 break;
3560 case DW_FORM_data8:
3561 result = A::P::E::get64(*(uint64_t*)di);
3562 di += 8;
3563 break;
3564 default:
3565 warning("unknown dwarf DW_FORM_ for DW_AT_stmt_list in %s", this->_path);
3567 return result;
3571 template <typename A>
3572 struct AtomAndLineInfo {
3573 Atom<A>* atom;
3574 ld::Atom::LineInfo info;
3578 // <rdar://problem/5591394> Add support to ld64 for N_FUN stabs when used for symbolic constants
3579 // Returns whether a stabStr belonging to an N_FUN stab represents a
3580 // symbolic constant rather than a function
3581 template <typename A>
3582 bool Parser<A>::isConstFunStabs(const char *stabStr)
3584 const char* colon;
3585 // N_FUN can be used for both constants and for functions. In case it's a constant,
3586 // the format of the stabs string is "symname:c=<value>;"
3587 // ':' cannot appear in the symbol name, except if it's an Objective-C method
3588 // (in which case the symbol name starts with + or -, and then it's definitely
3589 // not a constant)
3590 return (stabStr != NULL) && (stabStr[0] != '+') && (stabStr[0] != '-')
3591 && ((colon = strchr(stabStr, ':')) != NULL)
3592 && (colon[1] == 'c') && (colon[2] == '=');
3596 template <typename A>
3597 void Parser<A>::parseDebugInfo()
3599 // check for dwarf __debug_info section
3600 if ( _file->_dwarfDebugInfoSect == NULL ) {
3601 // if no DWARF debug info, look for stabs
3602 this->parseStabs();
3603 return;
3605 if ( _file->_dwarfDebugInfoSect->size() == 0 )
3606 return;
3608 uint64_t stmtList;
3609 const char* tuDir;
3610 const char* tuName;
3611 if ( !read_comp_unit(&tuName, &tuDir, &stmtList) ) {
3612 // if can't parse dwarf, warn and give up
3613 _file->_dwarfTranslationUnitPath = NULL;
3614 warning("can't parse dwarf compilation unit info in %s", _path);
3615 _file->_debugInfoKind = ld::relocatable::File::kDebugInfoNone;
3616 return;
3618 if ( (tuName != NULL) && (tuName[0] == '/') ) {
3619 _file->_dwarfTranslationUnitPath = tuName;
3621 else if ( (tuDir != NULL) && (tuName != NULL) ) {
3622 asprintf((char**)&(_file->_dwarfTranslationUnitPath), "%s/%s", tuDir, tuName);
3624 else if ( tuDir == NULL ) {
3625 _file->_dwarfTranslationUnitPath = tuName;
3627 else {
3628 _file->_dwarfTranslationUnitPath = NULL;
3631 // add line number info to atoms from dwarf
3632 std::vector<AtomAndLineInfo<A> > entries;
3633 entries.reserve(64);
3634 if ( _file->_debugInfoKind == ld::relocatable::File::kDebugInfoDwarf ) {
3635 // file with just data will have no __debug_line info
3636 if ( (_file->_dwarfDebugLineSect != NULL) && (_file->_dwarfDebugLineSect->size() != 0) ) {
3637 // validate stmt_list
3638 if ( (stmtList != (uint64_t)-1) && (stmtList < _file->_dwarfDebugLineSect->size()) ) {
3639 const uint8_t* debug_line = (uint8_t*)_file->fileContent() + _file->_dwarfDebugLineSect->offset();
3640 struct line_reader_data* lines = line_open(&debug_line[stmtList],
3641 _file->_dwarfDebugLineSect->size() - stmtList, E::little_endian);
3642 struct line_info result;
3643 Atom<A>* curAtom = NULL;
3644 uint32_t curAtomOffset = 0;
3645 uint32_t curAtomAddress = 0;
3646 uint32_t curAtomSize = 0;
3647 std::map<uint32_t,const char*> dwarfIndexToFile;
3648 if ( lines != NULL ) {
3649 while ( line_next(lines, &result, line_stop_pc) ) {
3650 //fprintf(stderr, "curAtom=%p, result.pc=0x%llX, result.line=%llu, result.end_of_sequence=%d,"
3651 // " curAtomAddress=0x%X, curAtomSize=0x%X\n",
3652 // curAtom, result.pc, result.line, result.end_of_sequence, curAtomAddress, curAtomSize);
3653 // work around weird debug line table compiler generates if no functions in __text section
3654 if ( (curAtom == NULL) && (result.pc == 0) && result.end_of_sequence && (result.file == 1))
3655 continue;
3656 // for performance, see if in next pc is in current atom
3657 if ( (curAtom != NULL) && (curAtomAddress <= result.pc) && (result.pc < (curAtomAddress+curAtomSize)) ) {
3658 curAtomOffset = result.pc - curAtomAddress;
3660 // or pc at end of current atom
3661 else if ( result.end_of_sequence && (curAtom != NULL) && (result.pc == (curAtomAddress+curAtomSize)) ) {
3662 curAtomOffset = result.pc - curAtomAddress;
3664 // or only one function that is a one line function
3665 else if ( result.end_of_sequence && (curAtom == NULL) && (this->findAtomByAddress(0) != NULL) && (result.pc == this->findAtomByAddress(0)->size()) ) {
3666 curAtom = this->findAtomByAddress(0);
3667 curAtomOffset = result.pc - curAtom->objectAddress();
3668 curAtomAddress = curAtom->objectAddress();
3669 curAtomSize = curAtom->size();
3671 else {
3672 // do slow look up of atom by address
3673 try {
3674 curAtom = this->findAtomByAddress(result.pc);
3676 catch (...) {
3677 // in case of bug in debug info, don't abort link, just limp on
3678 curAtom = NULL;
3680 if ( curAtom == NULL )
3681 break; // file has line info but no functions
3682 if ( result.end_of_sequence && (curAtomAddress+curAtomSize < result.pc) ) {
3683 // a one line function can be returned by line_next() as one entry with pc at end of blob
3684 // look for alt atom starting at end of previous atom
3685 uint32_t previousEnd = curAtomAddress+curAtomSize;
3686 Atom<A>* alt = this->findAtomByAddressOrNullIfStub(previousEnd);
3687 if ( alt == NULL )
3688 continue; // ignore spurious debug info for stubs
3689 if ( result.pc <= alt->objectAddress() + alt->size() ) {
3690 curAtom = alt;
3691 curAtomOffset = result.pc - alt->objectAddress();
3692 curAtomAddress = alt->objectAddress();
3693 curAtomSize = alt->size();
3695 else {
3696 curAtomOffset = result.pc - curAtom->objectAddress();
3697 curAtomAddress = curAtom->objectAddress();
3698 curAtomSize = curAtom->size();
3701 else {
3702 curAtomOffset = result.pc - curAtom->objectAddress();
3703 curAtomAddress = curAtom->objectAddress();
3704 curAtomSize = curAtom->size();
3707 const char* filename;
3708 std::map<uint32_t,const char*>::iterator pos = dwarfIndexToFile.find(result.file);
3709 if ( pos == dwarfIndexToFile.end() ) {
3710 filename = line_file(lines, result.file);
3711 dwarfIndexToFile[result.file] = filename;
3713 else {
3714 filename = pos->second;
3716 // only record for ~8000 line info records per function
3717 if ( curAtom->roomForMoreLineInfoCount() ) {
3718 AtomAndLineInfo<A> entry;
3719 entry.atom = curAtom;
3720 entry.info.atomOffset = curAtomOffset;
3721 entry.info.fileName = filename;
3722 entry.info.lineNumber = result.line;
3723 //fprintf(stderr, "addr=0x%08llX, line=%lld, file=%s, atom=%s, atom.size=0x%X, end=%d\n",
3724 // result.pc, result.line, filename, curAtom->name(), curAtomSize, result.end_of_sequence);
3725 entries.push_back(entry);
3726 curAtom->incrementLineInfoCount();
3728 if ( result.end_of_sequence ) {
3729 curAtom = NULL;
3732 line_free(lines);
3738 // assign line info start offset for each atom
3739 uint8_t* p = _file->_atomsArray;
3740 uint32_t liOffset = 0;
3741 for(int i=_file->_atomsArrayCount; i > 0; --i) {
3742 Atom<A>* atom = (Atom<A>*)p;
3743 atom->_lineInfoStartIndex = liOffset;
3744 liOffset += atom->_lineInfoCount;
3745 atom->_lineInfoCount = 0;
3746 p += sizeof(Atom<A>);
3748 assert(liOffset == entries.size());
3749 _file->_lineInfos.resize(liOffset);
3751 // copy each line info for each atom
3752 for (typename std::vector<AtomAndLineInfo<A> >::iterator it = entries.begin(); it != entries.end(); ++it) {
3753 uint32_t slot = it->atom->_lineInfoStartIndex + it->atom->_lineInfoCount;
3754 _file->_lineInfos[slot] = it->info;
3755 it->atom->_lineInfoCount++;
3758 // done with temp vector
3759 entries.clear();
3762 template <typename A>
3763 void Parser<A>::parseStabs()
3765 // scan symbol table for stabs entries
3766 Atom<A>* currentAtom = NULL;
3767 pint_t currentAtomAddress = 0;
3768 enum { start, inBeginEnd, inFun } state = start;
3769 for (uint32_t symbolIndex = 0; symbolIndex < _symbolCount; ++symbolIndex ) {
3770 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
3771 bool useStab = true;
3772 uint8_t type = sym.n_type();
3773 const char* symString = (sym.n_strx() != 0) ? this->nameFromSymbol(sym) : NULL;
3774 if ( (type & N_STAB) != 0 ) {
3775 _file->_debugInfoKind = (_hasUUID ? ld::relocatable::File::kDebugInfoStabsUUID : ld::relocatable::File::kDebugInfoStabs);
3776 ld::relocatable::File::Stab stab;
3777 stab.atom = NULL;
3778 stab.type = type;
3779 stab.other = sym.n_sect();
3780 stab.desc = sym.n_desc();
3781 stab.value = sym.n_value();
3782 stab.string = NULL;
3783 switch (state) {
3784 case start:
3785 switch (type) {
3786 case N_BNSYM:
3787 // beginning of function block
3788 state = inBeginEnd;
3789 // fall into case to lookup atom by addresss
3790 case N_LCSYM:
3791 case N_STSYM:
3792 currentAtomAddress = sym.n_value();
3793 currentAtom = this->findAtomByAddress(currentAtomAddress);
3794 if ( currentAtom != NULL ) {
3795 stab.atom = currentAtom;
3796 stab.string = symString;
3798 else {
3799 fprintf(stderr, "can't find atom for stabs BNSYM at %08llX in %s",
3800 (uint64_t)sym.n_value(), _path);
3802 break;
3803 case N_SO:
3804 case N_OSO:
3805 case N_OPT:
3806 case N_LSYM:
3807 case N_RSYM:
3808 case N_PSYM:
3809 case N_AST:
3810 // not associated with an atom, just copy
3811 stab.string = symString;
3812 break;
3813 case N_GSYM:
3815 // n_value field is NOT atom address ;-(
3816 // need to find atom by name match
3817 const char* colon = strchr(symString, ':');
3818 if ( colon != NULL ) {
3819 // build underscore leading name
3820 int nameLen = colon - symString;
3821 char symName[nameLen+2];
3822 strlcpy(&symName[1], symString, nameLen+1);
3823 symName[0] = '_';
3824 symName[nameLen+1] = '\0';
3825 currentAtom = this->findAtomByName(symName);
3826 if ( currentAtom != NULL ) {
3827 stab.atom = currentAtom;
3828 stab.string = symString;
3831 else {
3832 // might be a debug-note without trailing :G()
3833 currentAtom = this->findAtomByName(symString);
3834 if ( currentAtom != NULL ) {
3835 stab.atom = currentAtom;
3836 stab.string = symString;
3839 if ( stab.atom == NULL ) {
3840 // ld_classic added bogus GSYM stabs for old style dtrace probes
3841 if ( (strncmp(symString, "__dtrace_probe$", 15) != 0) )
3842 warning("can't find atom for N_GSYM stabs %s in %s", symString, _path);
3843 useStab = false;
3845 break;
3847 case N_FUN:
3848 if ( isConstFunStabs(symString) ) {
3849 // constant not associated with a function
3850 stab.string = symString;
3852 else {
3853 // old style stabs without BNSYM
3854 state = inFun;
3855 currentAtomAddress = sym.n_value();
3856 currentAtom = this->findAtomByAddress(currentAtomAddress);
3857 if ( currentAtom != NULL ) {
3858 stab.atom = currentAtom;
3859 stab.string = symString;
3861 else {
3862 warning("can't find atom for stabs FUN at %08llX in %s",
3863 (uint64_t)currentAtomAddress, _path);
3866 break;
3867 case N_SOL:
3868 case N_SLINE:
3869 stab.string = symString;
3870 // old stabs
3871 break;
3872 case N_BINCL:
3873 case N_EINCL:
3874 case N_EXCL:
3875 stab.string = symString;
3876 // -gfull built .o file
3877 break;
3878 default:
3879 warning("unknown stabs type 0x%X in %s", type, _path);
3881 break;
3882 case inBeginEnd:
3883 stab.atom = currentAtom;
3884 switch (type) {
3885 case N_ENSYM:
3886 state = start;
3887 currentAtom = NULL;
3888 break;
3889 case N_LCSYM:
3890 case N_STSYM:
3892 Atom<A>* nestedAtom = this->findAtomByAddress(sym.n_value());
3893 if ( nestedAtom != NULL ) {
3894 stab.atom = nestedAtom;
3895 stab.string = symString;
3897 else {
3898 warning("can't find atom for stabs 0x%X at %08llX in %s",
3899 type, (uint64_t)sym.n_value(), _path);
3901 break;
3903 case N_LBRAC:
3904 case N_RBRAC:
3905 case N_SLINE:
3906 // adjust value to be offset in atom
3907 stab.value -= currentAtomAddress;
3908 default:
3909 stab.string = symString;
3910 break;
3912 break;
3913 case inFun:
3914 switch (type) {
3915 case N_FUN:
3916 if ( isConstFunStabs(symString) ) {
3917 stab.atom = currentAtom;
3918 stab.string = symString;
3920 else {
3921 if ( sym.n_sect() != 0 ) {
3922 // found another start stab, must be really old stabs...
3923 currentAtomAddress = sym.n_value();
3924 currentAtom = this->findAtomByAddress(currentAtomAddress);
3925 if ( currentAtom != NULL ) {
3926 stab.atom = currentAtom;
3927 stab.string = symString;
3929 else {
3930 warning("can't find atom for stabs FUN at %08llX in %s",
3931 (uint64_t)currentAtomAddress, _path);
3934 else {
3935 // found ending stab, switch back to start state
3936 stab.string = symString;
3937 stab.atom = currentAtom;
3938 state = start;
3939 currentAtom = NULL;
3942 break;
3943 case N_LBRAC:
3944 case N_RBRAC:
3945 case N_SLINE:
3946 // adjust value to be offset in atom
3947 stab.value -= currentAtomAddress;
3948 stab.atom = currentAtom;
3949 break;
3950 case N_SO:
3951 stab.string = symString;
3952 state = start;
3953 break;
3954 default:
3955 stab.atom = currentAtom;
3956 stab.string = symString;
3957 break;
3959 break;
3961 // add to list of stabs for this .o file
3962 if ( useStab )
3963 _file->_stabs.push_back(stab);
3970 // Look at the compilation unit DIE and determine
3971 // its NAME, compilation directory (in COMP_DIR) and its
3972 // line number information offset (in STMT_LIST). NAME and COMP_DIR
3973 // may be NULL (especially COMP_DIR) if they are not in the .o file;
3974 // STMT_LIST will be (uint64_t) -1.
3976 // At present this assumes that there's only one compilation unit DIE.
3978 template <typename A>
3979 bool Parser<A>::read_comp_unit(const char ** name, const char ** comp_dir,
3980 uint64_t *stmt_list)
3982 const uint8_t * debug_info;
3983 const uint8_t * debug_abbrev;
3984 const uint8_t * di;
3985 const uint8_t * next_cu;
3986 const uint8_t * da;
3987 const uint8_t * end;
3988 const uint8_t * enda;
3989 uint64_t sz;
3990 uint16_t vers;
3991 uint64_t abbrev_base;
3992 uint64_t abbrev;
3993 uint8_t address_size;
3994 bool dwarf64;
3996 *name = NULL;
3997 *comp_dir = NULL;
3998 *stmt_list = (uint64_t) -1;
4000 if ( (_file->_dwarfDebugInfoSect == NULL) || (_file->_dwarfDebugAbbrevSect == NULL) )
4001 return false;
4003 if (_file->_dwarfDebugInfoSect->size() < 12)
4004 /* Too small to be a real debug_info section. */
4005 return false;
4007 debug_info = (uint8_t*)_file->fileContent() + _file->_dwarfDebugInfoSect->offset();
4008 debug_abbrev = (uint8_t*)_file->fileContent() + _file->_dwarfDebugAbbrevSect->offset();
4009 next_cu = debug_info;
4011 while ((uint64_t)(next_cu - debug_info) < _file->_dwarfDebugInfoSect->size()) {
4012 di = next_cu;
4013 sz = A::P::E::get32(*(uint32_t*)di);
4014 di += 4;
4015 dwarf64 = sz == 0xffffffff;
4016 if (dwarf64)
4017 sz = A::P::E::get64(*(uint64_t*)di), di += 8;
4018 else if (sz > 0xffffff00)
4019 /* Unknown dwarf format. */
4020 return false;
4022 /* Verify claimed size. */
4023 if (sz + (di - debug_info) > _file->_dwarfDebugInfoSect->size() || sz <= (dwarf64 ? 23 : 11))
4024 return false;
4026 next_cu = di + sz;
4028 vers = A::P::E::get16(*(uint16_t*)di);
4029 if (vers < 2 || vers > 4)
4030 /* DWARF version wrong for this code.
4031 Chances are we could continue anyway, but we don't know for sure. */
4032 return false;
4033 di += 2;
4035 /* Find the debug_abbrev section. */
4036 abbrev_base = dwarf64 ? A::P::E::get64(*(uint64_t*)di) : A::P::E::get32(*(uint32_t*)di);
4037 di += dwarf64 ? 8 : 4;
4039 if (abbrev_base > _file->_dwarfDebugAbbrevSect->size())
4040 return false;
4041 da = debug_abbrev + abbrev_base;
4042 enda = debug_abbrev + _file->_dwarfDebugAbbrevSect->size();
4044 address_size = *di++;
4046 /* Find the abbrev number we're looking for. */
4047 end = di + sz;
4048 abbrev = read_uleb128 (&di, end);
4049 if (abbrev == (uint64_t) -1)
4050 return false;
4052 /* Skip through the debug_abbrev section looking for that abbrev. */
4053 for (;;)
4055 uint64_t this_abbrev = read_uleb128 (&da, enda);
4056 uint64_t attr;
4058 if (this_abbrev == abbrev)
4059 /* This is almost always taken. */
4060 break;
4061 skip_leb128 (&da, enda); /* Skip the tag. */
4062 if (da == enda)
4063 return false;
4064 da++; /* Skip the DW_CHILDREN_* value. */
4066 do {
4067 attr = read_uleb128 (&da, enda);
4068 skip_leb128 (&da, enda);
4069 } while (attr != 0 && attr != (uint64_t) -1);
4070 if (attr != 0)
4071 return false;
4074 /* Check that the abbrev is one for a DW_TAG_compile_unit. */
4075 if (read_uleb128 (&da, enda) != DW_TAG_compile_unit)
4076 return false;
4077 if (da == enda)
4078 return false;
4079 da++; /* Skip the DW_CHILDREN_* value. */
4081 /* Now, go through the DIE looking for DW_AT_name,
4082 DW_AT_comp_dir, and DW_AT_stmt_list. */
4083 bool skip_to_next_cu = false;
4084 while (!skip_to_next_cu) {
4086 uint64_t attr = read_uleb128 (&da, enda);
4087 uint64_t form = read_uleb128 (&da, enda);
4089 if (attr == (uint64_t) -1)
4090 return false;
4091 else if (attr == 0)
4092 return true;
4093 if (form == DW_FORM_indirect)
4094 form = read_uleb128 (&di, end);
4096 switch (attr) {
4097 case DW_AT_name:
4098 *name = getDwarfString(form, di);
4099 /* Swift object files may contain two CUs: One
4100 describes the Swift code, one is created by the
4101 clang importer. Skip over the CU created by the
4102 clang importer as it may be empty. */
4103 if (std::string(*name) == "<swift-imported-modules>")
4104 skip_to_next_cu = true;
4105 break;
4106 case DW_AT_comp_dir:
4107 *comp_dir = getDwarfString(form, di);
4108 break;
4109 case DW_AT_stmt_list:
4110 *stmt_list = getDwarfOffset(form, di, dwarf64);
4111 break;
4112 default:
4113 if (! skip_form (&di, end, form, address_size, dwarf64))
4114 return false;
4118 return false;
4123 template <typename A>
4124 File<A>::~File()
4126 free(_sectionsArray);
4127 free(_atomsArray);
4130 template <typename A>
4131 const char* File<A>::translationUnitSource() const
4133 return _dwarfTranslationUnitPath;
4136 template <typename A>
4137 bool File<A>::forEachAtom(ld::File::AtomHandler& handler) const
4139 handler.doFile(*this);
4140 uint8_t* p = _atomsArray;
4141 for(int i=_atomsArrayCount; i > 0; --i) {
4142 handler.doAtom(*((Atom<A>*)p));
4143 p += sizeof(Atom<A>);
4145 p = _aliasAtomsArray;
4146 for(int i=_aliasAtomsArrayCount; i > 0; --i) {
4147 handler.doAtom(*((AliasAtom*)p));
4148 p += sizeof(AliasAtom);
4151 return (_atomsArrayCount != 0) || (_aliasAtomsArrayCount != 0);
4154 template <typename A>
4155 const char* Section<A>::makeSegmentName(const macho_section<typename A::P>* sect)
4157 // mach-o section record only has room for 16-byte seg/sect names
4158 // so a 16-byte name has no trailing zero
4159 const char* name = sect->segname();
4160 if ( strlen(name) < 16 )
4161 return name;
4162 char* tmp = new char[17];
4163 strlcpy(tmp, name, 17);
4164 return tmp;
4167 template <typename A>
4168 const char* Section<A>::makeSectionName(const macho_section<typename A::P>* sect)
4170 const char* name = sect->sectname();
4171 if ( strlen(name) < 16 )
4172 return name;
4174 // special case common long section names so we don't have to malloc
4175 if ( strncmp(sect->sectname(), "__objc_classrefs", 16) == 0 )
4176 return "__objc_classrefs";
4177 if ( strncmp(sect->sectname(), "__objc_classlist", 16) == 0 )
4178 return "__objc_classlist";
4179 if ( strncmp(sect->sectname(), "__objc_nlclslist", 16) == 0 )
4180 return "__objc_nlclslist";
4181 if ( strncmp(sect->sectname(), "__objc_nlcatlist", 16) == 0 )
4182 return "__objc_nlcatlist";
4183 if ( strncmp(sect->sectname(), "__objc_protolist", 16) == 0 )
4184 return "__objc_protolist";
4185 if ( strncmp(sect->sectname(), "__objc_protorefs", 16) == 0 )
4186 return "__objc_protorefs";
4187 if ( strncmp(sect->sectname(), "__objc_superrefs", 16) == 0 )
4188 return "__objc_superrefs";
4189 if ( strncmp(sect->sectname(), "__objc_imageinfo", 16) == 0 )
4190 return "__objc_imageinfo";
4191 if ( strncmp(sect->sectname(), "__objc_stringobj", 16) == 0 )
4192 return "__objc_stringobj";
4193 if ( strncmp(sect->sectname(), "__gcc_except_tab", 16) == 0 )
4194 return "__gcc_except_tab";
4196 char* tmp = new char[17];
4197 strlcpy(tmp, name, 17);
4198 return tmp;
4201 template <typename A>
4202 bool Section<A>::readable(const macho_section<typename A::P>* sect)
4204 return true;
4207 template <typename A>
4208 bool Section<A>::writable(const macho_section<typename A::P>* sect)
4210 // mach-o .o files do not contain segment permissions
4211 // we just know TEXT is special
4212 return ( strcmp(sect->segname(), "__TEXT") != 0 );
4215 template <typename A>
4216 bool Section<A>::exectuable(const macho_section<typename A::P>* sect)
4218 // mach-o .o files do not contain segment permissions
4219 // we just know TEXT is special
4220 return ( strcmp(sect->segname(), "__TEXT") == 0 );
4224 template <typename A>
4225 ld::Section::Type Section<A>::sectionType(const macho_section<typename A::P>* sect)
4227 switch ( sect->flags() & SECTION_TYPE ) {
4228 case S_ZEROFILL:
4229 return ld::Section::typeZeroFill;
4230 case S_CSTRING_LITERALS:
4231 if ( (strcmp(sect->sectname(), "__cstring") == 0) && (strcmp(sect->segname(), "__TEXT") == 0) )
4232 return ld::Section::typeCString;
4233 else
4234 return ld::Section::typeNonStdCString;
4235 case S_4BYTE_LITERALS:
4236 return ld::Section::typeLiteral4;
4237 case S_8BYTE_LITERALS:
4238 return ld::Section::typeLiteral8;
4239 case S_LITERAL_POINTERS:
4240 return ld::Section::typeCStringPointer;
4241 case S_NON_LAZY_SYMBOL_POINTERS:
4242 return ld::Section::typeNonLazyPointer;
4243 case S_LAZY_SYMBOL_POINTERS:
4244 return ld::Section::typeLazyPointer;
4245 case S_SYMBOL_STUBS:
4246 return ld::Section::typeStub;
4247 case S_MOD_INIT_FUNC_POINTERS:
4248 return ld::Section::typeInitializerPointers;
4249 case S_MOD_TERM_FUNC_POINTERS:
4250 return ld::Section::typeTerminatorPointers;
4251 case S_INTERPOSING:
4252 return ld::Section::typeUnclassified;
4253 case S_16BYTE_LITERALS:
4254 return ld::Section::typeLiteral16;
4255 case S_REGULAR:
4256 case S_COALESCED:
4257 if ( sect->flags() & S_ATTR_PURE_INSTRUCTIONS ) {
4258 return ld::Section::typeCode;
4260 else if ( strcmp(sect->segname(), "__TEXT") == 0 ) {
4261 if ( strcmp(sect->sectname(), "__eh_frame") == 0 )
4262 return ld::Section::typeCFI;
4263 else if ( strcmp(sect->sectname(), "__ustring") == 0 )
4264 return ld::Section::typeUTF16Strings;
4265 else if ( strcmp(sect->sectname(), "__textcoal_nt") == 0 )
4266 return ld::Section::typeCode;
4267 else if ( strcmp(sect->sectname(), "__StaticInit") == 0 )
4268 return ld::Section::typeCode;
4269 else if ( strcmp(sect->sectname(), "__constructor") == 0 )
4270 return ld::Section::typeInitializerPointers;
4272 else if ( strcmp(sect->segname(), "__DATA") == 0 ) {
4273 if ( strcmp(sect->sectname(), "__cfstring") == 0 )
4274 return ld::Section::typeCFString;
4275 else if ( strcmp(sect->sectname(), "__dyld") == 0 )
4276 return ld::Section::typeDyldInfo;
4277 else if ( strcmp(sect->sectname(), "__program_vars") == 0 )
4278 return ld::Section::typeDyldInfo;
4279 else if ( strncmp(sect->sectname(), "__objc_classrefs", 16) == 0 )
4280 return ld::Section::typeObjCClassRefs;
4281 else if ( strcmp(sect->sectname(), "__objc_catlist") == 0 )
4282 return ld::Section::typeObjC2CategoryList;
4284 else if ( strcmp(sect->segname(), "__OBJC") == 0 ) {
4285 if ( strcmp(sect->sectname(), "__class") == 0 )
4286 return ld::Section::typeObjC1Classes;
4288 break;
4289 case S_THREAD_LOCAL_REGULAR:
4290 return ld::Section::typeTLVInitialValues;
4291 case S_THREAD_LOCAL_ZEROFILL:
4292 return ld::Section::typeTLVZeroFill;
4293 case S_THREAD_LOCAL_VARIABLES:
4294 return ld::Section::typeTLVDefs;
4295 case S_THREAD_LOCAL_VARIABLE_POINTERS:
4296 return ld::Section::typeTLVPointers;
4297 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
4298 return ld::Section::typeTLVInitializerPointers;
4300 return ld::Section::typeUnclassified;
4304 template <typename A>
4305 Atom<A>* Section<A>::findContentAtomByAddress(pint_t addr, class Atom<A>* start, class Atom<A>* end)
4307 // do a binary search of atom array
4308 uint32_t atomCount = end - start;
4309 Atom<A>* base = start;
4310 for (uint32_t n = atomCount; n > 0; n /= 2) {
4311 Atom<A>* pivot = &base[n/2];
4312 pint_t atomStartAddr = pivot->_objAddress;
4313 pint_t atomEndAddr = atomStartAddr + pivot->_size;
4314 if ( atomStartAddr <= addr ) {
4315 // address in normal atom
4316 if (addr < atomEndAddr)
4317 return pivot;
4318 // address in "end" label (but not in alias)
4319 if ( (pivot->_size == 0) && (addr == atomEndAddr) && !pivot->isAlias() )
4320 return pivot;
4322 if ( addr >= atomEndAddr ) {
4323 // key > pivot
4324 // move base to atom after pivot
4325 base = &pivot[1];
4326 --n;
4328 else {
4329 // key < pivot
4330 // keep same base
4333 return NULL;
4336 template <typename A>
4337 ld::Atom::Alignment Section<A>::alignmentForAddress(pint_t addr)
4339 const uint32_t sectionAlignment = this->_machOSection->align();
4340 uint32_t modulus = (addr % (1 << sectionAlignment));
4341 if ( modulus > 0xFFFF )
4342 warning("alignment for symbol at address 0x%08llX in %s exceeds 2^16", (uint64_t)addr, this->file().path());
4343 return ld::Atom::Alignment(sectionAlignment, modulus);
4346 template <typename A>
4347 uint32_t Section<A>::sectionNum(class Parser<A>& parser) const
4349 if ( _machOSection == NULL )
4350 return 0;
4351 else
4352 return 1 + (this->_machOSection - parser.firstMachOSection());
4355 // arm does not have zero cost exceptions
4356 template <>
4357 uint32_t CFISection<arm>::cfiCount(Parser<arm>& parser)
4359 if ( parser.armUsesZeroCostExceptions() ) {
4360 // create ObjectAddressSpace object for use by libunwind
4361 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
4362 return libunwind::CFI_Parser<OAS>::getCFICount(oas,
4363 this->_machOSection->addr(), this->_machOSection->size());
4365 return 0;
4368 template <typename A>
4369 uint32_t CFISection<A>::cfiCount(Parser<A>& parser)
4371 // create ObjectAddressSpace object for use by libunwind
4372 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
4373 return libunwind::CFI_Parser<OAS>::getCFICount(oas,
4374 this->_machOSection->addr(), this->_machOSection->size());
4377 template <typename A>
4378 void CFISection<A>::warnFunc(void* ref, uint64_t funcAddr, const char* msg)
4380 Parser<A>* parser = (Parser<A>*)ref;
4381 if ( ! parser->warnUnwindConversionProblems() )
4382 return;
4383 if ( funcAddr != CFI_INVALID_ADDRESS ) {
4384 // atoms are not constructed yet, so scan symbol table for labels
4385 const char* name = parser->scanSymbolTableForAddress(funcAddr);
4386 warning("could not create compact unwind for %s: %s", name, msg);
4388 else {
4389 warning("could not create compact unwind: %s", msg);
4393 template <>
4394 bool CFISection<x86_64>::needsRelocating()
4396 return true;
4399 template <>
4400 bool CFISection<arm64>::needsRelocating()
4402 return true;
4406 template <typename A>
4407 bool CFISection<A>::needsRelocating()
4409 return false;
4412 template <>
4413 void CFISection<x86_64>::cfiParse(class Parser<x86_64>& parser, uint8_t* buffer,
4414 libunwind::CFI_Atom_Info<CFISection<x86_64>::OAS>::CFI_Atom_Info cfiArray[],
4415 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
4417 const uint32_t sectionSize = this->_machOSection->size();
4418 // copy __eh_frame data to buffer
4419 memcpy(buffer, file().fileContent() + this->_machOSection->offset(), sectionSize);
4421 // and apply relocations
4422 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + this->_machOSection->reloff());
4423 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
4424 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
4425 uint64_t value = 0;
4426 switch ( reloc->r_type() ) {
4427 case X86_64_RELOC_SUBTRACTOR:
4428 value = 0 - parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4429 ++reloc;
4430 if ( reloc->r_extern() )
4431 value += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4432 break;
4433 case X86_64_RELOC_UNSIGNED:
4434 value = parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4435 break;
4436 case X86_64_RELOC_GOT:
4437 // this is used for the reference to the personality function in CIEs
4438 // store the symbol number of the personality function for later use as a Fixup
4439 value = reloc->r_symbolnum();
4440 break;
4441 default:
4442 fprintf(stderr, "CFISection::cfiParse() unexpected relocation type at r_address=0x%08X\n", reloc->r_address());
4443 break;
4445 if ( reloc->r_address() > sectionSize )
4446 throwf("malformed __eh_frame relocation, offset (0x%08X) is beyond end of section,", reloc->r_address());
4447 uint64_t* p64;
4448 uint32_t* p32;
4449 switch ( reloc->r_length() ) {
4450 case 3:
4451 p64 = (uint64_t*)&buffer[reloc->r_address()];
4452 E::set64(*p64, value + E::get64(*p64));
4453 break;
4454 case 2:
4455 p32 = (uint32_t*)&buffer[reloc->r_address()];
4456 E::set32(*p32, value + E::get32(*p32));
4457 break;
4458 default:
4459 fprintf(stderr, "CFISection::cfiParse() unexpected relocation size at r_address=0x%08X\n", reloc->r_address());
4460 break;
4464 // create ObjectAddressSpace object for use by libunwind
4465 OAS oas(*this, buffer);
4467 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
4468 const char* msg;
4469 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_x86_64>::parseCFIs(
4470 oas, this->_machOSection->addr(), this->_machOSection->size(),
4471 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), parser.neverConvertDwarf(),
4472 cfiArray, count, (void*)&parser, warnFunc);
4473 if ( msg != NULL )
4474 throwf("malformed __eh_frame section: %s", msg);
4477 template <>
4478 void CFISection<x86>::cfiParse(class Parser<x86>& parser, uint8_t* buffer,
4479 libunwind::CFI_Atom_Info<CFISection<x86>::OAS>::CFI_Atom_Info cfiArray[],
4480 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
4482 // create ObjectAddressSpace object for use by libunwind
4483 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
4485 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
4486 const char* msg;
4487 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_x86>::parseCFIs(
4488 oas, this->_machOSection->addr(), this->_machOSection->size(),
4489 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), parser.neverConvertDwarf(),
4490 cfiArray, count, (void*)&parser, warnFunc);
4491 if ( msg != NULL )
4492 throwf("malformed __eh_frame section: %s", msg);
4498 template <>
4499 void CFISection<arm>::cfiParse(class Parser<arm>& parser, uint8_t* buffer,
4500 libunwind::CFI_Atom_Info<CFISection<arm>::OAS>::CFI_Atom_Info cfiArray[],
4501 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
4503 if ( !parser.armUsesZeroCostExceptions() ) {
4504 // most arm do not use zero cost exceptions
4505 assert(count == 0);
4506 return;
4508 // create ObjectAddressSpace object for use by libunwind
4509 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
4511 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
4512 const char* msg;
4513 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_arm>::parseCFIs(
4514 oas, this->_machOSection->addr(), this->_machOSection->size(),
4515 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), parser.neverConvertDwarf(),
4516 cfiArray, count, (void*)&parser, warnFunc);
4517 if ( msg != NULL )
4518 throwf("malformed __eh_frame section: %s", msg);
4524 template <>
4525 void CFISection<arm64>::cfiParse(class Parser<arm64>& parser, uint8_t* buffer,
4526 libunwind::CFI_Atom_Info<CFISection<arm64>::OAS>::CFI_Atom_Info cfiArray[],
4527 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
4529 // copy __eh_frame data to buffer
4530 const uint32_t sectionSize = this->_machOSection->size();
4531 memcpy(buffer, file().fileContent() + this->_machOSection->offset(), sectionSize);
4533 // and apply relocations
4534 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + this->_machOSection->reloff());
4535 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
4536 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
4537 uint64_t* p64 = (uint64_t*)&buffer[reloc->r_address()];
4538 uint32_t* p32 = (uint32_t*)&buffer[reloc->r_address()];
4539 uint32_t addend32 = E::get32(*p32);
4540 uint64_t addend64 = E::get64(*p64);
4541 uint64_t value = 0;
4542 switch ( reloc->r_type() ) {
4543 case ARM64_RELOC_SUBTRACTOR:
4544 value = 0 - parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4545 ++reloc;
4546 if ( reloc->r_extern() )
4547 value += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4548 break;
4549 case ARM64_RELOC_UNSIGNED:
4550 value = parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4551 break;
4552 case ARM64_RELOC_POINTER_TO_GOT:
4553 // this is used for the reference to the personality function in CIEs
4554 // store the symbol number of the personality function for later use as a Fixup
4555 value = reloc->r_symbolnum();
4556 addend32 = 0;
4557 addend64 = 0;
4558 break;
4559 default:
4560 fprintf(stderr, "CFISection::cfiParse() unexpected relocation type at r_address=0x%08X\n", reloc->r_address());
4561 break;
4563 if ( reloc->r_address() > sectionSize )
4564 throwf("malformed __eh_frame relocation, offset (0x%08X) is beyond end of section,", reloc->r_address());
4565 switch ( reloc->r_length() ) {
4566 case 3:
4567 E::set64(*p64, value + addend64);
4568 break;
4569 case 2:
4570 E::set32(*p32, value + addend32);
4571 break;
4572 default:
4573 fprintf(stderr, "CFISection::cfiParse() unexpected relocation size at r_address=0x%08X\n", reloc->r_address());
4574 break;
4579 // create ObjectAddressSpace object for use by libunwind
4580 OAS oas(*this, buffer);
4582 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
4583 const char* msg;
4584 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_arm64>::parseCFIs(
4585 oas, this->_machOSection->addr(), this->_machOSection->size(),
4586 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), parser.neverConvertDwarf(),
4587 cfiArray, count, (void*)&parser, warnFunc);
4588 if ( msg != NULL )
4589 throwf("malformed __eh_frame section: %s", msg);
4593 template <typename A>
4594 uint32_t CFISection<A>::computeAtomCount(class Parser<A>& parser,
4595 struct Parser<A>::LabelAndCFIBreakIterator& it,
4596 const struct Parser<A>::CFI_CU_InfoArrays& cfis)
4598 return cfis.cfiCount;
4603 template <typename A>
4604 uint32_t CFISection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
4605 struct Parser<A>::LabelAndCFIBreakIterator& it,
4606 const struct Parser<A>::CFI_CU_InfoArrays& cfis)
4608 this->_beginAtoms = (Atom<A>*)p;
4609 // walk CFI_Atom_Info array and create atom for each entry
4610 const CFI_Atom_Info* start = &cfis.cfiArray[0];
4611 const CFI_Atom_Info* end = &cfis.cfiArray[cfis.cfiCount];
4612 for(const CFI_Atom_Info* a=start; a < end; ++a) {
4613 Atom<A>* space = (Atom<A>*)p;
4614 new (space) Atom<A>(*this, (a->isCIE ? "CIE" : "FDE"), a->address, a->size,
4615 ld::Atom::definitionRegular, ld::Atom::combineNever, ld::Atom::scopeTranslationUnit,
4616 ld::Atom::typeCFI, ld::Atom::symbolTableNotInFinalLinkedImages,
4617 false, false, false, ld::Atom::Alignment(0));
4618 p += sizeof(Atom<A>);
4620 this->_endAtoms = (Atom<A>*)p;
4621 return cfis.cfiCount;
4625 template <> bool CFISection<x86_64>::bigEndian() { return false; }
4626 template <> bool CFISection<x86>::bigEndian() { return false; }
4627 template <> bool CFISection<arm>::bigEndian() { return false; }
4628 template <> bool CFISection<arm64>::bigEndian() { return false; }
4630 template <>
4631 void CFISection<x86_64>::addCiePersonalityFixups(class Parser<x86_64>& parser, const CFI_Atom_Info* cieInfo)
4633 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4634 if ( personalityEncoding == 0x9B ) {
4635 // compiler always produces X86_64_RELOC_GOT with addend of 4 to personality function
4636 // CFISection<x86_64>::cfiParse() set targetAddress to be symbolIndex + 4 + addressInCIE
4637 uint32_t symbolIndex = cieInfo->u.cieInfo.personality.targetAddress - 4
4638 - cieInfo->address - cieInfo->u.cieInfo.personality.offsetInCFI;
4639 const macho_nlist<P>& sym = parser.symbolFromIndex(symbolIndex);
4640 const char* personalityName = parser.nameFromSymbol(sym);
4642 Atom<x86_64>* cieAtom = this->findAtomByAddress(cieInfo->address);
4643 Parser<x86_64>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4644 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, false, personalityName);
4645 parser.addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, 4);
4646 parser.addFixup(src, ld::Fixup::k3of3, ld::Fixup::kindStoreX86PCRel32GOT);
4648 else if ( personalityEncoding != 0 ) {
4649 throwf("unsupported address encoding (%02X) of personality function in CIE",
4650 personalityEncoding);
4654 template <>
4655 void CFISection<x86>::addCiePersonalityFixups(class Parser<x86>& parser, const CFI_Atom_Info* cieInfo)
4657 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4658 if ( (personalityEncoding == 0x9B) || (personalityEncoding == 0x90) ) {
4659 uint32_t offsetInCFI = cieInfo->u.cieInfo.personality.offsetInCFI;
4660 uint32_t nlpAddr = cieInfo->u.cieInfo.personality.targetAddress;
4661 Atom<x86>* cieAtom = this->findAtomByAddress(cieInfo->address);
4662 Atom<x86>* nlpAtom = parser.findAtomByAddress(nlpAddr);
4663 assert(nlpAtom->contentType() == ld::Atom::typeNonLazyPointer);
4664 Parser<x86>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4666 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, nlpAtom);
4667 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, cieAtom);
4668 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, offsetInCFI);
4669 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
4671 else if ( personalityEncoding != 0 ) {
4672 throwf("unsupported address encoding (%02X) of personality function in CIE", personalityEncoding);
4676 #if SUPPORT_ARCH_arm64
4677 template <>
4678 void CFISection<arm64>::addCiePersonalityFixups(class Parser<arm64>& parser, const CFI_Atom_Info* cieInfo)
4680 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4681 if ( personalityEncoding == 0x9B ) {
4682 // compiler always produces ARM64_RELOC_GOT r_pcrel=1 to personality function
4683 // CFISection<arm64>::cfiParse() set targetAddress to be symbolIndex + addressInCIE
4684 uint32_t symbolIndex = cieInfo->u.cieInfo.personality.targetAddress
4685 - cieInfo->address - cieInfo->u.cieInfo.personality.offsetInCFI;
4686 const macho_nlist<P>& sym = parser.symbolFromIndex(symbolIndex);
4687 const char* personalityName = parser.nameFromSymbol(sym);
4689 Atom<arm64>* cieAtom = this->findAtomByAddress(cieInfo->address);
4690 Parser<arm64>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4691 parser.addFixup(src, ld::Fixup::k1of2, ld::Fixup::kindSetTargetAddress, false, personalityName);
4692 parser.addFixup(src, ld::Fixup::k2of2, ld::Fixup::kindStoreARM64PCRelToGOT);
4694 else if ( personalityEncoding != 0 ) {
4695 throwf("unsupported address encoding (%02X) of personality function in CIE",
4696 personalityEncoding);
4699 #endif
4702 template <>
4703 void CFISection<arm>::addCiePersonalityFixups(class Parser<arm>& parser, const CFI_Atom_Info* cieInfo)
4705 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4706 if ( (personalityEncoding == 0x9B) || (personalityEncoding == 0x90) ) {
4707 uint32_t offsetInCFI = cieInfo->u.cieInfo.personality.offsetInCFI;
4708 uint32_t nlpAddr = cieInfo->u.cieInfo.personality.targetAddress;
4709 Atom<arm>* cieAtom = this->findAtomByAddress(cieInfo->address);
4710 Atom<arm>* nlpAtom = parser.findAtomByAddress(nlpAddr);
4711 assert(nlpAtom->contentType() == ld::Atom::typeNonLazyPointer);
4712 Parser<arm>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4714 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, nlpAtom);
4715 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, cieAtom);
4716 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, offsetInCFI);
4717 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
4719 else if ( personalityEncoding != 0 ) {
4720 throwf("unsupported address encoding (%02X) of personality function in CIE", personalityEncoding);
4726 template <typename A>
4727 void CFISection<A>::addCiePersonalityFixups(class Parser<A>& parser, const CFI_Atom_Info* cieInfo)
4729 assert(0 && "addCiePersonalityFixups() not implemented for arch");
4732 template <typename A>
4733 void CFISection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays& cfis)
4735 ld::Fixup::Kind store32 = bigEndian() ? ld::Fixup::kindStoreBigEndian32 : ld::Fixup::kindStoreLittleEndian32;
4736 ld::Fixup::Kind store64 = bigEndian() ? ld::Fixup::kindStoreBigEndian64 : ld::Fixup::kindStoreLittleEndian64;
4738 // add all references for FDEs, including implicit group references
4739 const CFI_Atom_Info* end = &cfis.cfiArray[cfis.cfiCount];
4740 for(const CFI_Atom_Info* p = &cfis.cfiArray[0]; p < end; ++p) {
4741 if ( p->isCIE ) {
4742 // add reference to personality function if used
4743 if ( p->u.cieInfo.personality.targetAddress != CFI_INVALID_ADDRESS ) {
4744 this->addCiePersonalityFixups(parser, p);
4747 else {
4748 // find FDE Atom
4749 Atom<A>* fdeAtom = this->findAtomByAddress(p->address);
4750 // find function Atom
4751 Atom<A>* functionAtom = parser.findAtomByAddress(p->u.fdeInfo.function.targetAddress);
4752 // find CIE Atom
4753 Atom<A>* cieAtom = this->findAtomByAddress(p->u.fdeInfo.cie.targetAddress);
4754 // find LSDA Atom
4755 Atom<A>* lsdaAtom = NULL;
4756 if ( p->u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS ) {
4757 lsdaAtom = parser.findAtomByAddress(p->u.fdeInfo.lsda.targetAddress);
4759 // add reference from FDE to CIE (always 32-bit pc-rel)
4760 typename Parser<A>::SourceLocation fdeToCieSrc(fdeAtom, p->u.fdeInfo.cie.offsetInCFI);
4761 parser.addFixup(fdeToCieSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, fdeAtom);
4762 parser.addFixup(fdeToCieSrc, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, p->u.fdeInfo.cie.offsetInCFI);
4763 parser.addFixup(fdeToCieSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, cieAtom);
4764 parser.addFixup(fdeToCieSrc, ld::Fixup::k4of4, store32, cieAtom);
4766 // add reference from FDE to function
4767 typename Parser<A>::SourceLocation fdeToFuncSrc(fdeAtom, p->u.fdeInfo.function.offsetInCFI);
4768 switch (p->u.fdeInfo.function.encodingOfTargetAddress) {
4769 case DW_EH_PE_pcrel|DW_EH_PE_ptr:
4770 if ( sizeof(typename A::P::uint_t) == 8 ) {
4771 parser.addFixup(fdeToFuncSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, functionAtom);
4772 parser.addFixup(fdeToFuncSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4773 parser.addFixup(fdeToFuncSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.function.offsetInCFI);
4774 parser.addFixup(fdeToFuncSrc, ld::Fixup::k4of4, store64);
4775 break;
4777 // else fall into 32-bit case
4778 case DW_EH_PE_pcrel|DW_EH_PE_sdata4:
4779 parser.addFixup(fdeToFuncSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, functionAtom);
4780 parser.addFixup(fdeToFuncSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4781 parser.addFixup(fdeToFuncSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.function.offsetInCFI);
4782 parser.addFixup(fdeToFuncSrc, ld::Fixup::k4of4, store32);
4783 break;
4784 default:
4785 throw "unsupported encoding in FDE of pointer to function";
4788 // add reference from FDE to LSDA
4789 typename Parser<A>::SourceLocation fdeToLsdaSrc(fdeAtom, p->u.fdeInfo.lsda.offsetInCFI);
4790 if ( lsdaAtom != NULL ) {
4791 switch (p->u.fdeInfo.lsda.encodingOfTargetAddress) {
4792 case DW_EH_PE_pcrel|DW_EH_PE_ptr:
4793 if ( sizeof(typename A::P::uint_t) == 8 ) {
4794 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, lsdaAtom);
4795 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4796 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.lsda.offsetInCFI);
4797 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k4of4, store64);
4798 break;
4800 // else fall into 32-bit case
4801 case DW_EH_PE_pcrel|DW_EH_PE_sdata4:
4802 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, lsdaAtom);
4803 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4804 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.lsda.offsetInCFI);
4805 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k4of4, store32);
4806 break;
4807 default:
4808 throw "unsupported encoding in FDE of pointer to LSDA";
4812 // FDE is in group lead by function atom
4813 typename Parser<A>::SourceLocation fdeSrc(functionAtom,0);
4814 parser.addFixup(fdeSrc, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateFDE, fdeAtom);
4816 // LSDA is in group lead by function atom
4817 if ( lsdaAtom != NULL ) {
4818 parser.addFixup(fdeSrc, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, lsdaAtom);
4827 template <typename A>
4828 const void* CFISection<A>::OAS::mappedAddress(pint_t addr)
4830 if ( (_ehFrameStartAddr <= addr) && (addr < _ehFrameEndAddr) )
4831 return &_ehFrameContent[addr-_ehFrameStartAddr];
4832 else {
4833 // requested bytes are not in __eh_frame section
4834 // this can occur when examining the instruction bytes in the __text
4835 File<A>& file = _ehFrameSection.file();
4836 for (uint32_t i=0; i < file._sectionsArrayCount; ++i ) {
4837 const macho_section<typename A::P>* sect = file._sectionsArray[i]->machoSection();
4838 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
4839 if ( sect != NULL ) {
4840 if ( (sect->addr() <= addr) && (addr < (sect->addr()+sect->size())) ) {
4841 return file.fileContent() + sect->offset() + addr - sect->addr();
4845 throwf("__eh_frame parsing problem. Can't find target of reference to address 0x%08llX", (uint64_t)addr);
4850 template <typename A>
4851 uint64_t CFISection<A>::OAS::getULEB128(pint_t& logicalAddr, pint_t end)
4853 uintptr_t size = (end - logicalAddr);
4854 libunwind::LocalAddressSpace::pint_t laddr = (libunwind::LocalAddressSpace::pint_t)mappedAddress(logicalAddr);
4855 libunwind::LocalAddressSpace::pint_t sladdr = laddr;
4856 uint64_t result = libunwind::LocalAddressSpace::getULEB128(laddr, laddr+size);
4857 logicalAddr += (laddr-sladdr);
4858 return result;
4861 template <typename A>
4862 int64_t CFISection<A>::OAS::getSLEB128(pint_t& logicalAddr, pint_t end)
4864 uintptr_t size = (end - logicalAddr);
4865 libunwind::LocalAddressSpace::pint_t laddr = (libunwind::LocalAddressSpace::pint_t)mappedAddress(logicalAddr);
4866 libunwind::LocalAddressSpace::pint_t sladdr = laddr;
4867 int64_t result = libunwind::LocalAddressSpace::getSLEB128(laddr, laddr+size);
4868 logicalAddr += (laddr-sladdr);
4869 return result;
4872 template <typename A>
4873 typename A::P::uint_t CFISection<A>::OAS::getEncodedP(pint_t& addr, pint_t end, uint8_t encoding)
4875 pint_t startAddr = addr;
4876 pint_t p = addr;
4877 pint_t result;
4879 // first get value
4880 switch (encoding & 0x0F) {
4881 case DW_EH_PE_ptr:
4882 result = getP(addr);
4883 p += sizeof(pint_t);
4884 addr = (pint_t)p;
4885 break;
4886 case DW_EH_PE_uleb128:
4887 result = getULEB128(addr, end);
4888 break;
4889 case DW_EH_PE_udata2:
4890 result = get16(addr);
4891 p += 2;
4892 addr = (pint_t)p;
4893 break;
4894 case DW_EH_PE_udata4:
4895 result = get32(addr);
4896 p += 4;
4897 addr = (pint_t)p;
4898 break;
4899 case DW_EH_PE_udata8:
4900 result = get64(addr);
4901 p += 8;
4902 addr = (pint_t)p;
4903 break;
4904 case DW_EH_PE_sleb128:
4905 result = getSLEB128(addr, end);
4906 break;
4907 case DW_EH_PE_sdata2:
4908 result = (int16_t)get16(addr);
4909 p += 2;
4910 addr = (pint_t)p;
4911 break;
4912 case DW_EH_PE_sdata4:
4913 result = (int32_t)get32(addr);
4914 p += 4;
4915 addr = (pint_t)p;
4916 break;
4917 case DW_EH_PE_sdata8:
4918 result = get64(addr);
4919 p += 8;
4920 addr = (pint_t)p;
4921 break;
4922 default:
4923 throwf("ObjectFileAddressSpace<A>::getEncodedP() encoding 0x%08X not supported", encoding);
4926 // then add relative offset
4927 switch ( encoding & 0x70 ) {
4928 case DW_EH_PE_absptr:
4929 // do nothing
4930 break;
4931 case DW_EH_PE_pcrel:
4932 result += startAddr;
4933 break;
4934 case DW_EH_PE_textrel:
4935 throw "DW_EH_PE_textrel pointer encoding not supported";
4936 break;
4937 case DW_EH_PE_datarel:
4938 throw "DW_EH_PE_datarel pointer encoding not supported";
4939 break;
4940 case DW_EH_PE_funcrel:
4941 throw "DW_EH_PE_funcrel pointer encoding not supported";
4942 break;
4943 case DW_EH_PE_aligned:
4944 throw "DW_EH_PE_aligned pointer encoding not supported";
4945 break;
4946 default:
4947 throwf("ObjectFileAddressSpace<A>::getEncodedP() encoding 0x%08X not supported", encoding);
4948 break;
4951 // Note: DW_EH_PE_indirect is only used in CIEs to refernce the personality pointer
4952 // When parsing .o files that pointer contains zero, so we don't to return that.
4953 // Instead we skip the dereference and return the address of the pointer.
4954 // if ( encoding & DW_EH_PE_indirect )
4955 // result = getP(result);
4957 return result;
4960 template <>
4961 const char* CUSection<x86_64>::personalityName(class Parser<x86_64>& parser, const macho_relocation_info<x86_64::P>* reloc)
4963 if ( reloc->r_extern() ) {
4964 assert((reloc->r_type() == X86_64_RELOC_UNSIGNED) && "wrong reloc type on personality column in __compact_unwind section");
4965 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
4966 return parser.nameFromSymbol(sym);
4968 else {
4969 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
4970 pint_t personalityAddr = *content;
4971 assert((parser.sectionForAddress(personalityAddr)->type() == ld::Section::typeCode) && "personality column in __compact_unwind section is not pointer to function");
4972 // atoms may not be constructed yet, so scan symbol table for labels
4973 const char* name = parser.scanSymbolTableForAddress(personalityAddr);
4974 return name;
4978 template <>
4979 const char* CUSection<x86>::personalityName(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
4981 if ( reloc->r_extern() ) {
4982 assert((reloc->r_type() == GENERIC_RELOC_VANILLA) && "wrong reloc type on personality column in __compact_unwind section");
4983 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
4984 return parser.nameFromSymbol(sym);
4986 else {
4987 // support __LD, __compact_unwind personality entries which are pointer to personality non-lazy pointer
4988 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
4989 pint_t nlPointerAddr = *content;
4990 Section<x86>* nlSection = parser.sectionForAddress(nlPointerAddr);
4991 if ( nlSection->type() == ld::Section::typeCode ) {
4992 // personality function is defined in this .o file, so this is a direct reference to it
4993 // atoms may not be constructed yet, so scan symbol table for labels
4994 const char* name = parser.scanSymbolTableForAddress(nlPointerAddr);
4995 return name;
4997 else {
4998 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(nlPointerAddr, nlSection->machoSection());
4999 const macho_nlist<P>& nlSymbol = parser.symbolFromIndex(symIndex);
5000 return parser.nameFromSymbol(nlSymbol);
5005 #if SUPPORT_ARCH_arm64
5006 template <>
5007 const char* CUSection<arm64>::personalityName(class Parser<arm64>& parser, const macho_relocation_info<arm64::P>* reloc)
5009 if ( reloc->r_extern() ) {
5010 assert((reloc->r_type() == ARM64_RELOC_UNSIGNED) && "wrong reloc type on personality column in __compact_unwind section");
5011 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
5012 return parser.nameFromSymbol(sym);
5014 else {
5015 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
5016 pint_t personalityAddr = *content;
5017 Section<arm64>* personalitySection = parser.sectionForAddress(personalityAddr);
5018 (void)personalitySection;
5019 assert((personalitySection->type() == ld::Section::typeCode) && "personality column in __compact_unwind section is not pointer to function");
5020 // atoms may not be constructed yet, so scan symbol table for labels
5021 const char* name = parser.scanSymbolTableForAddress(personalityAddr);
5022 return name;
5025 #endif
5028 #if SUPPORT_ARCH_arm_any
5029 template <>
5030 const char* CUSection<arm>::personalityName(class Parser<arm>& parser, const macho_relocation_info<arm::P>* reloc)
5032 if ( reloc->r_extern() ) {
5033 assert((reloc->r_type() == ARM_RELOC_VANILLA) && "wrong reloc type on personality column in __compact_unwind section");
5034 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
5035 return parser.nameFromSymbol(sym);
5037 else {
5038 // support __LD, __compact_unwind personality entries which are pointer to personality non-lazy pointer
5039 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
5040 pint_t nlPointerAddr = *content;
5041 Section<arm>* nlSection = parser.sectionForAddress(nlPointerAddr);
5042 if ( nlSection->type() == ld::Section::typeCode ) {
5043 // personality function is defined in this .o file, so this is a direct reference to it
5044 // atoms may not be constructed yet, so scan symbol table for labels
5045 const char* name = parser.scanSymbolTableForAddress(nlPointerAddr);
5046 return name;
5048 else {
5049 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(nlPointerAddr, nlSection->machoSection());
5050 const macho_nlist<P>& nlSymbol = parser.symbolFromIndex(symIndex);
5051 return parser.nameFromSymbol(nlSymbol);
5055 #endif
5058 template <typename A>
5059 const char* CUSection<A>::personalityName(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
5061 return NULL;
5064 template <>
5065 bool CUSection<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
5067 return ((enc & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF);
5070 template <>
5071 bool CUSection<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
5073 return ((enc & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF);
5076 #if SUPPORT_ARCH_arm_any
5077 template <>
5078 bool CUSection<arm>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
5080 return ((enc & UNWIND_ARM_MODE_MASK) == UNWIND_ARM_MODE_DWARF);
5082 #endif
5084 #if SUPPORT_ARCH_arm64
5085 template <>
5086 bool CUSection<arm64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
5088 return ((enc & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF);
5090 #endif
5093 template <typename A>
5094 int CUSection<A>::infoSorter(const void* l, const void* r)
5096 // sort references by symbol index, then address
5097 const Info* left = (Info*)l;
5098 const Info* right = (Info*)r;
5099 if ( left->functionSymbolIndex == right->functionSymbolIndex )
5100 return (left->functionStartAddress - right->functionStartAddress);
5101 else
5102 return (left->functionSymbolIndex - right->functionSymbolIndex);
5105 template <typename A>
5106 void CUSection<A>::parse(class Parser<A>& parser, uint32_t cnt, Info array[])
5108 // walk section content and copy to Info array
5109 const macho_compact_unwind_entry<P>* const entries = (macho_compact_unwind_entry<P>*)(this->file().fileContent() + this->_machOSection->offset());
5110 for (uint32_t i=0; i < cnt; ++i) {
5111 Info* info = &array[i];
5112 const macho_compact_unwind_entry<P>* entry = &entries[i];
5113 info->functionStartAddress = entry->codeStart();
5114 info->functionSymbolIndex = 0xFFFFFFFF;
5115 info->rangeLength = entry->codeLen();
5116 info->compactUnwindInfo = entry->compactUnwindInfo();
5117 info->personality = NULL;
5118 info->lsdaAddress = entry->lsda();
5119 info->function = NULL;
5120 info->lsda = NULL;
5121 if ( (info->compactUnwindInfo & UNWIND_PERSONALITY_MASK) != 0 )
5122 warning("no bits should be set in UNWIND_PERSONALITY_MASK of compact unwind encoding in __LD,__compact_unwind section");
5123 if ( info->lsdaAddress != 0 ) {
5124 info->compactUnwindInfo |= UNWIND_HAS_LSDA;
5128 // scan relocs, extern relocs are needed for personality references (possibly for function/lsda refs??)
5129 const uint32_t sectionSize = this->_machOSection->size();
5130 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(this->file().fileContent() + this->_machOSection->reloff());
5131 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
5132 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
5133 if ( reloc->r_address() & R_SCATTERED )
5134 continue;
5135 if ( reloc->r_address() > sectionSize )
5136 throwf("malformed __compact_unwind relocation, offset (0x%08X) is beyond end of section,", reloc->r_address());
5137 if ( reloc->r_extern() ) {
5138 // only expect external relocs on some colummns
5139 if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::personalityFieldOffset() ) {
5140 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
5141 array[entryIndex].personality = this->personalityName(parser, reloc);
5143 else if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::lsdaFieldOffset() ) {
5144 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
5145 const macho_nlist<P>& lsdaSym = parser.symbolFromIndex(reloc->r_symbolnum());
5146 if ( (lsdaSym.n_type() & N_TYPE) == N_SECT )
5147 array[entryIndex].lsdaAddress = lsdaSym.n_value();
5148 else
5149 warning("unexpected extern relocation to lsda in __compact_unwind section");
5151 else if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::codeStartFieldOffset() ) {
5152 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
5153 array[entryIndex].functionSymbolIndex = reloc->r_symbolnum();
5154 array[entryIndex].functionStartAddress += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
5156 else {
5157 warning("unexpected extern relocation in __compact_unwind section");
5160 else {
5161 if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::personalityFieldOffset() ) {
5162 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
5163 array[entryIndex].personality = this->personalityName(parser, reloc);
5168 // sort array by function start address so unwind infos will be contiguous for a given function
5169 ::qsort(array, cnt, sizeof(Info), infoSorter);
5172 template <typename A>
5173 uint32_t CUSection<A>::count()
5175 const macho_section<P>* machoSect = this->machoSection();
5176 if ( (machoSect->size() % sizeof(macho_compact_unwind_entry<P>)) != 0 )
5177 throw "malformed __LD,__compact_unwind section, bad length";
5179 return machoSect->size() / sizeof(macho_compact_unwind_entry<P>);
5182 template <typename A>
5183 void CUSection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays& cus)
5185 Info* const arrayStart = cus.cuArray;
5186 Info* const arrayEnd = &cus.cuArray[cus.cuCount];
5187 for (Info* info=arrayStart; info < arrayEnd; ++info) {
5188 // find function atom from address
5189 info->function = parser.findAtomByAddress(info->functionStartAddress);
5190 // find lsda atom from address
5191 if ( info->lsdaAddress != 0 ) {
5192 info->lsda = parser.findAtomByAddress(info->lsdaAddress);
5193 // add lsda subordinate
5194 typename Parser<A>::SourceLocation src(info->function, info->functionStartAddress - info->function->objectAddress());
5195 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, info->lsda);
5197 if ( info->personality != NULL ) {
5198 // add personality subordinate
5199 typename Parser<A>::SourceLocation src(info->function, info->functionStartAddress - info->function->objectAddress());
5200 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinatePersonality, false, info->personality);
5206 template <typename A>
5207 SymboledSection<A>::SymboledSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
5208 : Section<A>(f, s), _type(ld::Atom::typeUnclassified)
5210 switch ( s->flags() & SECTION_TYPE ) {
5211 case S_ZEROFILL:
5212 _type = ld::Atom::typeZeroFill;
5213 break;
5214 case S_MOD_INIT_FUNC_POINTERS:
5215 _type = ld::Atom::typeInitializerPointers;
5216 break;
5217 case S_MOD_TERM_FUNC_POINTERS:
5218 _type = ld::Atom::typeTerminatorPointers;
5219 break;
5220 case S_THREAD_LOCAL_VARIABLES:
5221 _type = ld::Atom::typeTLV;
5222 break;
5223 case S_THREAD_LOCAL_ZEROFILL:
5224 _type = ld::Atom::typeTLVZeroFill;
5225 break;
5226 case S_THREAD_LOCAL_REGULAR:
5227 _type = ld::Atom::typeTLVInitialValue;
5228 break;
5229 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
5230 _type = ld::Atom::typeTLVInitializerPointers;
5231 break;
5232 case S_REGULAR:
5233 if ( strncmp(s->sectname(), "__gcc_except_tab", 16) == 0 )
5234 _type = ld::Atom::typeLSDA;
5235 else if ( this->type() == ld::Section::typeInitializerPointers )
5236 _type = ld::Atom::typeInitializerPointers;
5237 break;
5242 template <typename A>
5243 bool SymboledSection<A>::dontDeadStrip()
5245 switch ( _type ) {
5246 case ld::Atom::typeInitializerPointers:
5247 case ld::Atom::typeTerminatorPointers:
5248 return true;
5249 default:
5250 // model an object file without MH_SUBSECTIONS_VIA_SYMBOLS as one in which nothing can be dead stripped
5251 if ( ! this->_file.canScatterAtoms() )
5252 return true;
5253 // call inherited
5254 return Section<A>::dontDeadStrip();
5256 return false;
5260 template <typename A>
5261 uint32_t SymboledSection<A>::computeAtomCount(class Parser<A>& parser,
5262 struct Parser<A>::LabelAndCFIBreakIterator& it,
5263 const struct Parser<A>::CFI_CU_InfoArrays&)
5265 const pint_t startAddr = this->_machOSection->addr();
5266 const pint_t endAddr = startAddr + this->_machOSection->size();
5267 const uint32_t sectNum = this->sectionNum(parser);
5269 uint32_t count = 0;
5270 pint_t addr;
5271 pint_t size;
5272 const macho_nlist<P>* sym;
5273 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &addr, &size, &sym) ) {
5274 ++count;
5276 //fprintf(stderr, "computeAtomCount(%s,%s) => %d\n", this->segmentName(), this->sectionName(), count);
5277 return count;
5280 template <typename A>
5281 uint32_t SymboledSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
5282 struct Parser<A>::LabelAndCFIBreakIterator& it,
5283 const struct Parser<A>::CFI_CU_InfoArrays&)
5285 this->_beginAtoms = (Atom<A>*)p;
5287 //fprintf(stderr, "SymboledSection::appendAtoms() in section %s\n", this->_machOSection->sectname());
5288 const pint_t startAddr = this->_machOSection->addr();
5289 const pint_t endAddr = startAddr + this->_machOSection->size();
5290 const uint32_t sectNum = this->sectionNum(parser);
5292 uint32_t count = 0;
5293 pint_t addr;
5294 pint_t size;
5295 const macho_nlist<P>* label;
5296 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &addr, &size, &label) ) {
5297 Atom<A>* allocatedSpace = (Atom<A>*)p;
5298 // is break because of label or CFI?
5299 if ( label != NULL ) {
5300 // The size is computed based on the address of the next label (or the end of the section for the last label)
5301 // If there are two labels at the same address, we want them one to be an alias of the other.
5302 // If the label is at the end of a section, it is has zero size, but is not an alias
5303 const bool isAlias = ( (size == 0) && (addr < endAddr) );
5304 new (allocatedSpace) Atom<A>(*this, parser, *label, size, isAlias);
5305 if ( isAlias )
5306 this->_hasAliases = true;
5307 if ( parser.altEntryFromSymbol(*label) )
5308 this->_altEntries.insert(allocatedSpace);
5310 else {
5311 ld::Atom::SymbolTableInclusion inclusion = ld::Atom::symbolTableNotIn;
5312 ld::Atom::ContentType ctype = this->contentType();
5313 if ( ctype == ld::Atom::typeLSDA )
5314 inclusion = ld::Atom::symbolTableInWithRandomAutoStripLabel;
5315 new (allocatedSpace) Atom<A>(*this, "anon", addr, size, ld::Atom::definitionRegular, ld::Atom::combineNever,
5316 ld::Atom::scopeTranslationUnit, ctype, inclusion,
5317 this->dontDeadStrip(), false, false, this->alignmentForAddress(addr));
5319 p += sizeof(Atom<A>);
5320 ++count;
5323 this->_endAtoms = (Atom<A>*)p;
5324 return count;
5328 template <>
5329 ld::Atom::SymbolTableInclusion ImplicitSizeSection<arm64>::symbolTableInclusion()
5331 return ld::Atom::symbolTableInWithRandomAutoStripLabel;
5335 template <typename A>
5336 ld::Atom::SymbolTableInclusion ImplicitSizeSection<A>::symbolTableInclusion()
5338 return ld::Atom::symbolTableNotIn;
5342 template <typename A>
5343 uint32_t ImplicitSizeSection<A>::computeAtomCount(class Parser<A>& parser,
5344 struct Parser<A>::LabelAndCFIBreakIterator& it,
5345 const struct Parser<A>::CFI_CU_InfoArrays&)
5347 uint32_t count = 0;
5348 const macho_section<P>* sect = this->machoSection();
5349 const pint_t startAddr = sect->addr();
5350 const pint_t endAddr = startAddr + sect->size();
5351 for (pint_t addr = startAddr; addr < endAddr; addr += elementSizeAtAddress(addr) ) {
5352 if ( useElementAt(parser, it, addr) )
5353 ++count;
5355 if ( it.fileHasOverlappingSymbols && (sect->size() != 0) && (this->combine(parser, startAddr) == ld::Atom::combineByNameAndContent) ) {
5356 // if there are multiple labels in this section for the same address, then clone them into multi atoms
5357 pint_t prevSymbolAddr = (pint_t)(-1);
5358 uint8_t prevSymbolSectNum = 0;
5359 bool prevIgnore = false;
5360 for(uint32_t i=0; i < it.sortedSymbolCount; ++i) {
5361 const macho_nlist<P>& sym = parser.symbolFromIndex(it.sortedSymbolIndexes[i]);
5362 const pint_t symbolAddr = sym.n_value();
5363 const uint8_t symbolSectNum = sym.n_sect();
5364 const bool ignore = this->ignoreLabel(parser.nameFromSymbol(sym));
5365 if ( !ignore && !prevIgnore && (symbolAddr == prevSymbolAddr) && (prevSymbolSectNum == symbolSectNum) && (symbolSectNum == this->sectionNum(parser)) ) {
5366 ++count;
5368 prevSymbolAddr = symbolAddr;
5369 prevSymbolSectNum = symbolSectNum;
5370 prevIgnore = ignore;
5373 return count;
5376 template <typename A>
5377 uint32_t ImplicitSizeSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
5378 struct Parser<A>::LabelAndCFIBreakIterator& it,
5379 const struct Parser<A>::CFI_CU_InfoArrays&)
5381 this->_beginAtoms = (Atom<A>*)p;
5383 const macho_section<P>* sect = this->machoSection();
5384 const pint_t startAddr = sect->addr();
5385 const pint_t endAddr = startAddr + sect->size();
5386 const uint32_t sectNum = this->sectionNum(parser);
5387 //fprintf(stderr, "ImplicitSizeSection::appendAtoms() in section %s\n", sect->sectname());
5388 uint32_t count = 0;
5389 pint_t foundAddr;
5390 pint_t size;
5391 const macho_nlist<P>* foundLabel;
5392 Atom<A>* allocatedSpace;
5393 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &foundAddr, &size, &foundLabel) ) {
5394 if ( foundLabel != NULL ) {
5395 bool skip = false;
5396 pint_t labeledAtomSize = this->elementSizeAtAddress(foundAddr);
5397 allocatedSpace = (Atom<A>*)p;
5398 if ( this->ignoreLabel(parser.nameFromSymbol(*foundLabel)) ) {
5399 if ( size == 0 ) {
5400 // <rdar://problem/10018737>
5401 // a size of zero means there is another label at same location
5402 // and we are supposed to ignore this label
5403 skip = true;
5405 else {
5406 //fprintf(stderr, " 0x%08llX make annon, size=%lld\n", (uint64_t)foundAddr, (uint64_t)size);
5407 new (allocatedSpace) Atom<A>(*this, this->unlabeledAtomName(parser, foundAddr), foundAddr,
5408 this->elementSizeAtAddress(foundAddr), this->definition(),
5409 this->combine(parser, foundAddr), this->scopeAtAddress(parser, foundAddr),
5410 this->contentType(), this->symbolTableInclusion(),
5411 this->dontDeadStrip(), false, false, this->alignmentForAddress(foundAddr));
5414 else {
5415 // make named atom for label
5416 //fprintf(stderr, " 0x%08llX make labeled\n", (uint64_t)foundAddr);
5417 new (allocatedSpace) Atom<A>(*this, parser, *foundLabel, labeledAtomSize);
5419 if ( !skip ) {
5420 ++count;
5421 p += sizeof(Atom<A>);
5422 foundAddr += labeledAtomSize;
5423 size -= labeledAtomSize;
5426 // some number of anonymous atoms
5427 for (pint_t addr = foundAddr; addr < (foundAddr+size); addr += elementSizeAtAddress(addr) ) {
5428 // make anon atoms for area before label
5429 if ( this->useElementAt(parser, it, addr) ) {
5430 //fprintf(stderr, " 0x%08llX make annon, size=%lld\n", (uint64_t)addr, (uint64_t)elementSizeAtAddress(addr));
5431 allocatedSpace = (Atom<A>*)p;
5432 new (allocatedSpace) Atom<A>(*this, this->unlabeledAtomName(parser, addr), addr, this->elementSizeAtAddress(addr),
5433 this->definition(), this->combine(parser, addr), this->scopeAtAddress(parser, addr),
5434 this->contentType(), this->symbolTableInclusion(),
5435 this->dontDeadStrip(), false, false, this->alignmentForAddress(addr));
5436 ++count;
5437 p += sizeof(Atom<A>);
5442 this->_endAtoms = (Atom<A>*)p;
5444 return count;
5447 template <typename A>
5448 bool Literal4Section<A>::ignoreLabel(const char* label) const
5450 return (label[0] == 'L') || (label[0] == 'l');
5453 template <typename A>
5454 unsigned long Literal4Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5456 const uint32_t* literalContent = (uint32_t*)atom->contentPointer();
5457 return *literalContent;
5460 template <typename A>
5461 bool Literal4Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5462 const ld::IndirectBindingTable& ind) const
5464 assert(this->type() == rhs.section().type());
5465 const uint32_t* literalContent = (uint32_t*)atom->contentPointer();
5467 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5468 assert(rhsAtom != NULL);
5469 if ( rhsAtom != NULL ) {
5470 const uint32_t* rhsLiteralContent = (uint32_t*)rhsAtom->contentPointer();
5471 return (*literalContent == *rhsLiteralContent);
5473 return false;
5477 template <typename A>
5478 bool Literal8Section<A>::ignoreLabel(const char* label) const
5480 return (label[0] == 'L') || (label[0] == 'l');
5483 template <typename A>
5484 unsigned long Literal8Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5486 #if __LP64__
5487 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
5488 return *literalContent;
5489 #else
5490 unsigned long hash = 5381;
5491 const uint8_t* byteContent = atom->contentPointer();
5492 for (int i=0; i < 8; ++i) {
5493 hash = hash * 33 + byteContent[i];
5495 return hash;
5496 #endif
5499 template <typename A>
5500 bool Literal8Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5501 const ld::IndirectBindingTable& ind) const
5503 if ( rhs.section().type() != ld::Section::typeLiteral8 )
5504 return false;
5505 assert(this->type() == rhs.section().type());
5506 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
5508 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5509 assert(rhsAtom != NULL);
5510 if ( rhsAtom != NULL ) {
5511 const uint64_t* rhsLiteralContent = (uint64_t*)rhsAtom->contentPointer();
5512 return (*literalContent == *rhsLiteralContent);
5514 return false;
5517 template <typename A>
5518 bool Literal16Section<A>::ignoreLabel(const char* label) const
5520 return (label[0] == 'L') || (label[0] == 'l');
5523 template <typename A>
5524 unsigned long Literal16Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5526 unsigned long hash = 5381;
5527 const uint8_t* byteContent = atom->contentPointer();
5528 for (int i=0; i < 16; ++i) {
5529 hash = hash * 33 + byteContent[i];
5531 return hash;
5534 template <typename A>
5535 bool Literal16Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5536 const ld::IndirectBindingTable& ind) const
5538 if ( rhs.section().type() != ld::Section::typeLiteral16 )
5539 return false;
5540 assert(this->type() == rhs.section().type());
5541 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
5543 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5544 assert(rhsAtom != NULL);
5545 if ( rhsAtom != NULL ) {
5546 const uint64_t* rhsLiteralContent = (uint64_t*)rhsAtom->contentPointer();
5547 return ((literalContent[0] == rhsLiteralContent[0]) && (literalContent[1] == rhsLiteralContent[1]));
5549 return false;
5554 template <typename A>
5555 typename A::P::uint_t CStringSection<A>::elementSizeAtAddress(pint_t addr)
5557 const macho_section<P>* sect = this->machoSection();
5558 const char* stringContent = (char*)(this->file().fileContent() + sect->offset() + addr - sect->addr());
5559 return strlen(stringContent) + 1;
5562 template <typename A>
5563 bool CStringSection<A>::useElementAt(Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr)
5565 return true;
5568 template <typename A>
5569 bool CStringSection<A>::ignoreLabel(const char* label) const
5571 return (label[0] == 'L') || (label[0] == 'l');
5575 template <typename A>
5576 Atom<A>* CStringSection<A>::findAtomByAddress(pint_t addr)
5578 Atom<A>* result = this->findContentAtomByAddress(addr, this->_beginAtoms, this->_endAtoms);
5579 return result;
5582 template <typename A>
5583 unsigned long CStringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5585 unsigned long hash = 5381;
5586 const char* stringContent = (char*)atom->contentPointer();
5587 for (const char* s = stringContent; *s != '\0'; ++s) {
5588 hash = hash * 33 + *s;
5590 return hash;
5594 template <typename A>
5595 bool CStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5596 const ld::IndirectBindingTable& ind) const
5598 if ( rhs.section().type() != ld::Section::typeCString )
5599 return false;
5600 assert(this->type() == rhs.section().type());
5601 assert(strcmp(this->sectionName(), rhs.section().sectionName())== 0);
5602 assert(strcmp(this->segmentName(), rhs.section().segmentName())== 0);
5603 const char* stringContent = (char*)atom->contentPointer();
5605 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5606 assert(rhsAtom != NULL);
5607 if ( rhsAtom != NULL ) {
5608 if ( atom->_size != rhsAtom->_size )
5609 return false;
5610 const char* rhsStringContent = (char*)rhsAtom->contentPointer();
5611 return (strcmp(stringContent, rhsStringContent) == 0);
5613 return false;
5617 template <>
5618 ld::Fixup::Kind NonLazyPointerSection<x86>::fixupKind()
5620 return ld::Fixup::kindStoreLittleEndian32;
5623 template <>
5624 ld::Fixup::Kind NonLazyPointerSection<arm>::fixupKind()
5626 return ld::Fixup::kindStoreLittleEndian32;
5629 template <>
5630 ld::Fixup::Kind NonLazyPointerSection<arm64>::fixupKind()
5632 return ld::Fixup::kindStoreLittleEndian64;
5636 template <>
5637 void NonLazyPointerSection<x86_64>::makeFixups(class Parser<x86_64>& parser, const struct Parser<x86_64>::CFI_CU_InfoArrays&)
5639 assert(0 && "x86_64 should not have non-lazy-pointer sections in .o files");
5642 template <typename A>
5643 void NonLazyPointerSection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&)
5645 // add references for each NLP atom based on indirect symbol table
5646 const macho_section<P>* sect = this->machoSection();
5647 const pint_t endAddr = sect->addr() + sect->size();
5648 for( pint_t addr = sect->addr(); addr < endAddr; addr += sizeof(pint_t)) {
5649 typename Parser<A>::SourceLocation src;
5650 typename Parser<A>::TargetDesc target;
5651 src.atom = this->findAtomByAddress(addr);
5652 src.offsetInAtom = 0;
5653 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5654 target.atom = NULL;
5655 target.name = NULL;
5656 target.weakImport = false;
5657 target.addend = 0;
5658 if ( symIndex == INDIRECT_SYMBOL_LOCAL ) {
5659 // use direct reference for local symbols
5660 const pint_t* nlpContent = (pint_t*)(this->file().fileContent() + sect->offset() + addr - sect->addr());
5661 pint_t targetAddr = P::getP(*nlpContent);
5662 target.atom = parser.findAtomByAddress(targetAddr);
5663 target.weakImport = false;
5664 target.addend = (targetAddr - target.atom->objectAddress());
5665 // <rdar://problem/8385011> if pointer to thumb function, mask of thumb bit (not an addend of +1)
5666 if ( target.atom->isThumb() )
5667 target.addend &= (-2);
5668 assert(src.atom->combine() == ld::Atom::combineNever);
5670 else {
5671 const macho_nlist<P>& sym = parser.symbolFromIndex(symIndex);
5672 // use direct reference for local symbols
5673 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) ) {
5674 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
5675 assert(src.atom->combine() == ld::Atom::combineNever);
5677 else {
5678 target.name = parser.nameFromSymbol(sym);
5679 target.weakImport = parser.weakImportFromSymbol(sym);
5680 assert(src.atom->combine() == ld::Atom::combineByNameAndReferences);
5683 parser.addFixups(src, this->fixupKind(), target);
5687 template <typename A>
5688 ld::Atom::Combine NonLazyPointerSection<A>::combine(Parser<A>& parser, pint_t addr)
5690 const macho_section<P>* sect = this->machoSection();
5691 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5692 if ( symIndex == INDIRECT_SYMBOL_LOCAL)
5693 return ld::Atom::combineNever;
5695 // don't coalesce non-lazy-pointers to local symbols
5696 const macho_nlist<P>& sym = parser.symbolFromIndex(symIndex);
5697 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) )
5698 return ld::Atom::combineNever;
5700 return ld::Atom::combineByNameAndReferences;
5703 template <typename A>
5704 const char* NonLazyPointerSection<A>::targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind)
5706 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5707 assert(atom->fixupCount() == 1);
5708 ld::Fixup::iterator fit = atom->fixupsBegin();
5709 const char* name = NULL;
5710 switch ( fit->binding ) {
5711 case ld::Fixup::bindingByNameUnbound:
5712 name = fit->u.name;
5713 break;
5714 case ld::Fixup::bindingByContentBound:
5715 name = fit->u.target->name();
5716 break;
5717 case ld::Fixup::bindingsIndirectlyBound:
5718 name = ind.indirectName(fit->u.bindingIndex);
5719 break;
5720 default:
5721 assert(0);
5723 assert(name != NULL);
5724 return name;
5727 template <typename A>
5728 unsigned long NonLazyPointerSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5730 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5731 unsigned long hash = 9508;
5732 for (const char* s = this->targetName(atom, ind); *s != '\0'; ++s) {
5733 hash = hash * 33 + *s;
5735 return hash;
5738 template <typename A>
5739 bool NonLazyPointerSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5740 const ld::IndirectBindingTable& indirectBindingTable) const
5742 if ( rhs.section().type() != ld::Section::typeNonLazyPointer )
5743 return false;
5744 assert(this->type() == rhs.section().type());
5745 // there can be many non-lazy pointer in different section names
5746 // we only want to coalesce in same section name
5747 if ( *this != rhs.section() )
5748 return false;
5749 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5750 assert(rhsAtom != NULL);
5751 const char* thisName = this->targetName(atom, indirectBindingTable);
5752 const char* rhsName = this->targetName(rhsAtom, indirectBindingTable);
5753 return (strcmp(thisName, rhsName) == 0);
5756 template <typename A>
5757 ld::Atom::Scope NonLazyPointerSection<A>::scopeAtAddress(Parser<A>& parser, pint_t addr)
5759 const macho_section<P>* sect = this->machoSection();
5760 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5761 if ( symIndex == INDIRECT_SYMBOL_LOCAL)
5762 return ld::Atom::scopeTranslationUnit;
5763 else
5764 return ld::Atom::scopeLinkageUnit;
5769 template <typename A>
5770 ld::Atom::Combine TLVPointerSection<A>::combine(Parser<A>& parser, pint_t addr)
5772 return ld::Atom::combineByNameAndReferences;
5775 template <>
5776 void TLVPointerSection<arm>::makeFixups(class Parser<arm>& parser, const struct Parser<arm>::CFI_CU_InfoArrays&)
5778 // add references for each thread local pointer atom based on indirect symbol table
5779 const macho_section<P>* sect = this->machoSection();
5780 const pint_t endAddr = sect->addr() + sect->size();
5781 for (pint_t addr = sect->addr(); addr < endAddr; addr += sizeof(pint_t)) {
5782 typename Parser<arm>::SourceLocation src;
5783 typename Parser<arm>::TargetDesc target;
5784 src.atom = this->findAtomByAddress(addr);
5785 src.offsetInAtom = 0;
5786 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5787 target.atom = NULL;
5788 target.name = NULL;
5789 target.weakImport = false;
5790 target.addend = 0;
5791 if ( symIndex == INDIRECT_SYMBOL_LOCAL ) {
5792 throwf("unexpected INDIRECT_SYMBOL_LOCAL in section %s", this->sectionName());
5794 else {
5795 const macho_nlist<P>& sym = parser.symbolFromIndex(symIndex);
5796 // use direct reference for local symbols
5797 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) ) {
5798 throwf("unexpected pointer to local symbol in section %s", this->sectionName());
5800 else {
5801 target.name = parser.nameFromSymbol(sym);
5802 target.weakImport = parser.weakImportFromSymbol(sym);
5803 assert(src.atom->combine() == ld::Atom::combineByNameAndReferences);
5806 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
5810 template <typename A>
5811 void TLVPointerSection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&)
5813 assert(0 && "should not have thread-local-pointer sections in .o files");
5817 template <typename A>
5818 const char* TLVPointerSection<A>::targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind, bool* isStatic)
5820 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5821 assert(atom->fixupCount() == 1);
5822 *isStatic = false;
5823 ld::Fixup::iterator fit = atom->fixupsBegin();
5824 const char* name = NULL;
5825 switch ( fit->binding ) {
5826 case ld::Fixup::bindingByNameUnbound:
5827 name = fit->u.name;
5828 break;
5829 case ld::Fixup::bindingByContentBound:
5830 name = fit->u.target->name();
5831 break;
5832 case ld::Fixup::bindingsIndirectlyBound:
5833 name = ind.indirectName(fit->u.bindingIndex);
5834 break;
5835 case ld::Fixup::bindingDirectlyBound:
5836 name = fit->u.target->name();
5837 *isStatic = (fit->u.target->scope() == ld::Atom::scopeTranslationUnit);
5838 break;
5839 default:
5840 assert(0);
5842 assert(name != NULL);
5843 return name;
5846 template <typename A>
5847 unsigned long TLVPointerSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5849 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5850 unsigned long hash = 9508;
5851 bool isStatic;
5852 for (const char* s = this->targetName(atom, ind, &isStatic); *s != '\0'; ++s) {
5853 hash = hash * 33 + *s;
5855 return hash;
5858 template <typename A>
5859 bool TLVPointerSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5860 const ld::IndirectBindingTable& indirectBindingTable) const
5862 if ( rhs.section().type() != ld::Section::typeTLVPointers )
5863 return false;
5864 assert(this->type() == rhs.section().type());
5865 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5866 assert(rhsAtom != NULL);
5867 bool thisIsStatic;
5868 bool rhsIsStatic;
5869 const char* thisName = this->targetName(atom, indirectBindingTable, &thisIsStatic);
5870 const char* rhsName = this->targetName(rhsAtom, indirectBindingTable, &rhsIsStatic);
5871 return !thisIsStatic && !rhsIsStatic && (strcmp(thisName, rhsName) == 0);
5875 template <typename A>
5876 const uint8_t* CFStringSection<A>::targetContent(const class Atom<A>* atom, const ld::IndirectBindingTable& ind,
5877 ContentType* ct, unsigned int* count)
5879 *ct = contentUnknown;
5880 for (ld::Fixup::iterator fit=atom->fixupsBegin(), end=atom->fixupsEnd(); fit != end; ++fit) {
5881 const ld::Atom* targetAtom = NULL;
5882 switch ( fit->binding ) {
5883 case ld::Fixup::bindingByNameUnbound:
5884 // ignore reference to ___CFConstantStringClassReference
5885 // we are just looking for reference to backing string data
5886 assert(fit->offsetInAtom == 0);
5887 assert(strcmp(fit->u.name, "___CFConstantStringClassReference") == 0);
5888 break;
5889 case ld::Fixup::bindingDirectlyBound:
5890 case ld::Fixup::bindingByContentBound:
5891 targetAtom = fit->u.target;
5892 break;
5893 case ld::Fixup::bindingsIndirectlyBound:
5894 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
5895 break;
5896 default:
5897 assert(0 && "bad binding type");
5899 assert(targetAtom != NULL);
5900 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
5901 if ( targetAtom->section().type() == ld::Section::typeCString ) {
5902 *ct = contentUTF8;
5903 *count = targetAtom->size();
5905 else if ( targetAtom->section().type() == ld::Section::typeUTF16Strings ) {
5906 *ct = contentUTF16;
5907 *count = (targetAtom->size()+1)/2; // round up incase of buggy compiler that has only one trailing zero byte
5909 else {
5910 *ct = contentUnknown;
5911 *count = 0;
5912 return NULL;
5914 return target->contentPointer();
5916 assert(0);
5917 return NULL;
5920 template <typename A>
5921 unsigned long CFStringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5923 // base hash of CFString on hash of cstring it wraps
5924 ContentType cType;
5925 unsigned long hash;
5926 unsigned int charCount;
5927 const uint8_t* content = this->targetContent(atom, ind, &cType, &charCount);
5928 switch ( cType ) {
5929 case contentUTF8:
5930 hash = 9408;
5931 for (const char* s = (char*)content; *s != '\0'; ++s) {
5932 hash = hash * 33 + *s;
5934 return hash;
5935 case contentUTF16:
5936 hash = 407955;
5937 --charCount; // don't add last 0x0000 to hash because some buggy compilers only have trailing single byte
5938 for (const uint16_t* s = (uint16_t*)content; charCount > 0; ++s, --charCount) {
5939 hash = hash * 1025 + *s;
5941 return hash;
5942 case contentUnknown:
5943 // <rdar://problem/14134211> For malformed CFStrings, hash to address of atom so they have unique hashes
5944 return ULONG_MAX - (unsigned long)(atom);
5946 return 0;
5950 template <typename A>
5951 bool CFStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5952 const ld::IndirectBindingTable& indirectBindingTable) const
5954 if ( atom == &rhs )
5955 return true;
5956 if ( rhs.section().type() != ld::Section::typeCFString)
5957 return false;
5958 assert(this->type() == rhs.section().type());
5959 assert(strcmp(this->sectionName(), "__cfstring") == 0);
5961 ContentType thisType;
5962 unsigned int charCount;
5963 const uint8_t* cstringContent = this->targetContent(atom, indirectBindingTable, &thisType, &charCount);
5964 ContentType rhsType;
5965 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5966 assert(rhsAtom != NULL);
5967 unsigned int rhsCharCount;
5968 const uint8_t* rhsStringContent = this->targetContent(rhsAtom, indirectBindingTable, &rhsType, &rhsCharCount);
5970 if ( thisType != rhsType )
5971 return false;
5973 if ( thisType == contentUnknown )
5974 return false;
5976 if ( rhsType == contentUnknown )
5977 return false;
5979 // no need to compare content of pointers are already the same
5980 if ( cstringContent == rhsStringContent )
5981 return true;
5983 // no need to compare content if size is different
5984 if ( charCount != rhsCharCount )
5985 return false;
5987 switch ( thisType ) {
5988 case contentUTF8:
5989 return (strcmp((char*)cstringContent, (char*)rhsStringContent) == 0);
5990 case contentUTF16:
5992 const uint16_t* cstringContent16 = (uint16_t*)cstringContent;
5993 const uint16_t* rhsStringContent16 = (uint16_t*)rhsStringContent;
5994 for (unsigned int i = 0; i < charCount; ++i) {
5995 if ( cstringContent16[i] != rhsStringContent16[i] )
5996 return false;
5998 return true;
6000 case contentUnknown:
6001 return false;
6003 return false;
6007 template <typename A>
6008 typename A::P::uint_t ObjC1ClassSection<A>::elementSizeAtAddress(pint_t addr)
6010 // nominal size for each class is 48 bytes, but sometimes the compiler
6011 // over aligns and there is padding after class data
6012 const macho_section<P>* sct = this->machoSection();
6013 uint32_t align = 1 << sct->align();
6014 uint32_t size = ((12 * sizeof(pint_t)) + align-1) & (-align);
6015 return size;
6018 template <typename A>
6019 const char* ObjC1ClassSection<A>::unlabeledAtomName(Parser<A>& parser, pint_t addr)
6021 // 8-bytes into class object is pointer to class name
6022 const macho_section<P>* sct = this->machoSection();
6023 uint32_t classObjcFileOffset = sct->offset() - sct->addr() + addr;
6024 const uint8_t* mappedFileContent = this->file().fileContent();
6025 pint_t nameAddr = P::getP(*((pint_t*)(mappedFileContent+classObjcFileOffset+2*sizeof(pint_t))));
6027 // find section containing string address to get string bytes
6028 const macho_section<P>* const sections = parser.firstMachOSection();
6029 const uint32_t sectionCount = parser.machOSectionCount();
6030 for (uint32_t i=0; i < sectionCount; ++i) {
6031 const macho_section<P>* aSect = &sections[i];
6032 if ( (aSect->addr() <= nameAddr) && (nameAddr < (aSect->addr()+aSect->size())) ) {
6033 assert((aSect->flags() & SECTION_TYPE) == S_CSTRING_LITERALS);
6034 uint32_t nameFileOffset = aSect->offset() - aSect->addr() + nameAddr;
6035 const char* name = (char*)mappedFileContent + nameFileOffset;
6036 // spin through symbol table to find absolute symbol corresponding to this class
6037 for (uint32_t s=0; s < parser.symbolCount(); ++s) {
6038 const macho_nlist<P>& sym = parser.symbolFromIndex(s);
6039 if ( (sym.n_type() & N_TYPE) != N_ABS )
6040 continue;
6041 const char* absName = parser.nameFromSymbol(sym);
6042 if ( strncmp(absName, ".objc_class_name_", 17) == 0 ) {
6043 if ( strcmp(&absName[17], name) == 0 )
6044 return absName;
6047 assert(0 && "obj class name not found in symbol table");
6050 assert(0 && "obj class name not found");
6051 return "unknown objc class";
6055 template <typename A>
6056 const char* ObjC2ClassRefsSection<A>::targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
6058 assert(atom->fixupCount() == 1);
6059 ld::Fixup::iterator fit = atom->fixupsBegin();
6060 const char* className = NULL;
6061 switch ( fit->binding ) {
6062 case ld::Fixup::bindingByNameUnbound:
6063 className = fit->u.name;
6064 break;
6065 case ld::Fixup::bindingDirectlyBound:
6066 case ld::Fixup::bindingByContentBound:
6067 className = fit->u.target->name();
6068 break;
6069 case ld::Fixup::bindingsIndirectlyBound:
6070 className = ind.indirectName(fit->u.bindingIndex);
6071 break;
6072 default:
6073 assert(0 && "unsupported binding in objc2 class ref section");
6075 assert(className != NULL);
6076 return className;
6080 template <typename A>
6081 unsigned long ObjC2ClassRefsSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
6083 unsigned long hash = 978;
6084 for (const char* s = targetClassName(atom, ind); *s != '\0'; ++s) {
6085 hash = hash * 33 + *s;
6087 return hash;
6090 template <typename A>
6091 bool ObjC2ClassRefsSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
6092 const ld::IndirectBindingTable& indirectBindingTable) const
6094 assert(this->type() == rhs.section().type());
6095 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
6096 assert(rhsAtom != NULL);
6097 const char* thisClassName = targetClassName(atom, indirectBindingTable);
6098 const char* rhsClassName = targetClassName(rhsAtom, indirectBindingTable);
6099 return (strcmp(thisClassName, rhsClassName) == 0);
6103 template <typename A>
6104 const char* Objc1ClassReferences<A>::targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
6106 assert(atom->fixupCount() == 2);
6107 ld::Fixup::iterator fit = atom->fixupsBegin();
6108 if ( fit->kind == ld::Fixup::kindSetTargetAddress )
6109 ++fit;
6110 const ld::Atom* targetAtom = NULL;
6111 switch ( fit->binding ) {
6112 case ld::Fixup::bindingByContentBound:
6113 targetAtom = fit->u.target;
6114 break;
6115 case ld::Fixup::bindingsIndirectlyBound:
6116 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
6117 if ( targetAtom == NULL ) {
6118 fprintf(stderr, "missing target named %s\n", ind.indirectName(fit->u.bindingIndex));
6120 break;
6121 default:
6122 assert(0);
6124 assert(targetAtom != NULL);
6125 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
6126 assert(target != NULL);
6127 return (char*)target->contentPointer();
6131 template <typename A>
6132 const char* PointerToCStringSection<A>::targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
6134 assert(atom->fixupCount() == 1);
6135 ld::Fixup::iterator fit = atom->fixupsBegin();
6136 const ld::Atom* targetAtom = NULL;
6137 switch ( fit->binding ) {
6138 case ld::Fixup::bindingByContentBound:
6139 targetAtom = fit->u.target;
6140 break;
6141 case ld::Fixup::bindingsIndirectlyBound:
6142 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
6143 break;
6144 case ld::Fixup::bindingDirectlyBound:
6145 targetAtom = fit->u.target;
6146 break;
6147 default:
6148 assert(0 && "unsupported reference to selector");
6150 assert(targetAtom != NULL);
6151 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
6152 assert(target != NULL);
6153 assert(target->contentType() == ld::Atom::typeCString);
6154 return (char*)target->contentPointer();
6157 template <typename A>
6158 unsigned long PointerToCStringSection<A>::contentHash(const class Atom<A>* atom,
6159 const ld::IndirectBindingTable& indirectBindingTable) const
6161 // make hash from section name and target cstring name
6162 unsigned long hash = 123;
6163 for (const char* s = this->sectionName(); *s != '\0'; ++s) {
6164 hash = hash * 33 + *s;
6166 for (const char* s = this->targetCString(atom, indirectBindingTable); *s != '\0'; ++s) {
6167 hash = hash * 33 + *s;
6169 return hash;
6172 template <typename A>
6173 bool PointerToCStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
6174 const ld::IndirectBindingTable& indirectBindingTable) const
6176 assert(this->type() == rhs.section().type());
6177 // there can be pointers-to-cstrings in different section names
6178 // we only want to coalesce in same section name
6179 if ( *this != rhs.section() )
6180 return false;
6182 // get string content for this
6183 const char* cstringContent = this->targetCString(atom, indirectBindingTable);
6184 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
6185 assert(rhsAtom != NULL);
6186 const char* rhsCstringContent = this->targetCString(rhsAtom, indirectBindingTable);
6188 assert(cstringContent != NULL);
6189 assert(rhsCstringContent != NULL);
6190 return (strcmp(cstringContent, rhsCstringContent) == 0);
6195 template <typename A>
6196 unsigned long UTF16StringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
6198 unsigned long hash = 5381;
6199 const uint16_t* stringContent = (uint16_t*)atom->contentPointer();
6200 // some buggy compilers end utf16 data with single byte, so don't use last word in hash computation
6201 unsigned int count = (atom->size()/2) - 1;
6202 for (const uint16_t* s = stringContent; count > 0; ++s, --count) {
6203 hash = hash * 33 + *s;
6205 return hash;
6208 template <typename A>
6209 bool UTF16StringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
6210 const ld::IndirectBindingTable& ind) const
6212 if ( rhs.section().type() != ld::Section::typeUTF16Strings )
6213 return false;
6214 assert(0);
6215 return false;
6224 template <>
6225 uint32_t Section<x86_64>::x86_64PcRelOffset(uint8_t r_type)
6227 switch ( r_type ) {
6228 case X86_64_RELOC_SIGNED:
6229 return 4;
6230 case X86_64_RELOC_SIGNED_1:
6231 return 5;
6232 case X86_64_RELOC_SIGNED_2:
6233 return 6;
6234 case X86_64_RELOC_SIGNED_4:
6235 return 8;
6237 return 0;
6241 template <>
6242 bool Section<x86_64>::addRelocFixup(class Parser<x86_64>& parser, const macho_relocation_info<P>* reloc)
6244 const macho_section<P>* sect = this->machoSection();
6245 uint64_t srcAddr = sect->addr() + reloc->r_address();
6246 Parser<x86_64>::SourceLocation src;
6247 Parser<x86_64>::TargetDesc target;
6248 Parser<x86_64>::TargetDesc toTarget;
6249 src.atom = this->findAtomByAddress(srcAddr);
6250 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6251 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
6252 uint64_t contentValue = 0;
6253 const macho_relocation_info<x86_64::P>* nextReloc = &reloc[1];
6254 bool result = false;
6255 bool useDirectBinding;
6256 switch ( reloc->r_length() ) {
6257 case 0:
6258 contentValue = *fixUpPtr;
6259 break;
6260 case 1:
6261 contentValue = (int64_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
6262 break;
6263 case 2:
6264 contentValue = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
6265 break;
6266 case 3:
6267 contentValue = E::get64(*((uint64_t*)fixUpPtr));
6268 break;
6270 target.atom = NULL;
6271 target.name = NULL;
6272 target.weakImport = false;
6273 target.addend = 0;
6274 if ( reloc->r_extern() ) {
6275 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
6276 // use direct reference for local symbols
6277 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
6278 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
6279 target.addend += contentValue;
6281 else {
6282 target.name = parser.nameFromSymbol(sym);
6283 target.weakImport = parser.weakImportFromSymbol(sym);
6284 target.addend = contentValue;
6286 // cfstrings should always use direct reference to backing store
6287 if ( (this->type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
6288 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
6289 target.addend = contentValue;
6292 else {
6293 if ( reloc->r_pcrel() )
6294 contentValue += srcAddr + x86_64PcRelOffset(reloc->r_type());
6295 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
6297 switch ( reloc->r_type() ) {
6298 case X86_64_RELOC_UNSIGNED:
6299 if ( reloc->r_pcrel() )
6300 throw "pcrel and X86_64_RELOC_UNSIGNED not supported";
6301 switch ( reloc->r_length() ) {
6302 case 0:
6303 case 1:
6304 throw "length < 2 and X86_64_RELOC_UNSIGNED not supported";
6305 case 2:
6306 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6307 break;
6308 case 3:
6309 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian64, target);
6310 break;
6312 break;
6313 case X86_64_RELOC_SIGNED:
6314 case X86_64_RELOC_SIGNED_1:
6315 case X86_64_RELOC_SIGNED_2:
6316 case X86_64_RELOC_SIGNED_4:
6317 if ( ! reloc->r_pcrel() )
6318 throw "not pcrel and X86_64_RELOC_SIGNED* not supported";
6319 if ( reloc->r_length() != 2 )
6320 throw "length != 2 and X86_64_RELOC_SIGNED* not supported";
6321 switch ( reloc->r_type() ) {
6322 case X86_64_RELOC_SIGNED:
6323 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32, target);
6324 break;
6325 case X86_64_RELOC_SIGNED_1:
6326 if ( reloc->r_extern() )
6327 target.addend += 1;
6328 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_1, target);
6329 break;
6330 case X86_64_RELOC_SIGNED_2:
6331 if ( reloc->r_extern() )
6332 target.addend += 2;
6333 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_2, target);
6334 break;
6335 case X86_64_RELOC_SIGNED_4:
6336 if ( reloc->r_extern() )
6337 target.addend += 4;
6338 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_4, target);
6339 break;
6341 break;
6342 case X86_64_RELOC_BRANCH:
6343 if ( ! reloc->r_pcrel() )
6344 throw "not pcrel and X86_64_RELOC_BRANCH not supported";
6345 switch ( reloc->r_length() ) {
6346 case 2:
6347 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6348 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceCallSiteNop, false, target.name);
6349 parser.addDtraceExtraInfos(src, &target.name[16]);
6351 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6352 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceIsEnableSiteClear, false, target.name);
6353 parser.addDtraceExtraInfos(src, &target.name[20]);
6355 else {
6356 parser.addFixups(src, ld::Fixup::kindStoreX86BranchPCRel32, target);
6358 break;
6359 case 0:
6360 parser.addFixups(src, ld::Fixup::kindStoreX86BranchPCRel8, target);
6361 break;
6362 default:
6363 throwf("length=%d and X86_64_RELOC_BRANCH not supported", reloc->r_length());
6365 break;
6366 case X86_64_RELOC_GOT:
6367 if ( ! reloc->r_extern() )
6368 throw "not extern and X86_64_RELOC_GOT not supported";
6369 if ( ! reloc->r_pcrel() )
6370 throw "not pcrel and X86_64_RELOC_GOT not supported";
6371 if ( reloc->r_length() != 2 )
6372 throw "length != 2 and X86_64_RELOC_GOT not supported";
6373 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32GOT, target);
6374 break;
6375 case X86_64_RELOC_GOT_LOAD:
6376 if ( ! reloc->r_extern() )
6377 throw "not extern and X86_64_RELOC_GOT_LOAD not supported";
6378 if ( ! reloc->r_pcrel() )
6379 throw "not pcrel and X86_64_RELOC_GOT_LOAD not supported";
6380 if ( reloc->r_length() != 2 )
6381 throw "length != 2 and X86_64_RELOC_GOT_LOAD not supported";
6382 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32GOTLoad, target);
6383 break;
6384 case X86_64_RELOC_SUBTRACTOR:
6385 if ( reloc->r_pcrel() )
6386 throw "X86_64_RELOC_SUBTRACTOR cannot be pc-relative";
6387 if ( reloc->r_length() < 2 )
6388 throw "X86_64_RELOC_SUBTRACTOR must have r_length of 2 or 3";
6389 if ( !reloc->r_extern() )
6390 throw "X86_64_RELOC_SUBTRACTOR must have r_extern=1";
6391 if ( nextReloc->r_type() != X86_64_RELOC_UNSIGNED )
6392 throw "X86_64_RELOC_SUBTRACTOR must be followed by X86_64_RELOC_UNSIGNED";
6393 result = true;
6394 if ( nextReloc->r_pcrel() )
6395 throw "X86_64_RELOC_UNSIGNED following a X86_64_RELOC_SUBTRACTOR cannot be pc-relative";
6396 if ( nextReloc->r_length() != reloc->r_length() )
6397 throw "X86_64_RELOC_UNSIGNED following a X86_64_RELOC_SUBTRACTOR must have same r_length";
6398 if ( nextReloc->r_extern() ) {
6399 const macho_nlist<P>& sym = parser.symbolFromIndex(nextReloc->r_symbolnum());
6400 // use direct reference for local symbols
6401 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
6402 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), toTarget);
6403 toTarget.addend = contentValue;
6404 useDirectBinding = true;
6406 else {
6407 toTarget.name = parser.nameFromSymbol(sym);
6408 toTarget.weakImport = parser.weakImportFromSymbol(sym);
6409 toTarget.addend = contentValue;
6410 useDirectBinding = false;
6413 else {
6414 parser.findTargetFromAddressAndSectionNum(contentValue, nextReloc->r_symbolnum(), toTarget);
6415 useDirectBinding = (toTarget.atom->scope() == ld::Atom::scopeTranslationUnit) || ((toTarget.atom->combine() == ld::Atom::combineByNameAndContent) || (toTarget.atom->combine() == ld::Atom::combineByNameAndReferences));
6417 if ( useDirectBinding ) {
6418 if ( (toTarget.atom->combine() == ld::Atom::combineByNameAndContent) || (toTarget.atom->combine() == ld::Atom::combineByNameAndReferences) )
6419 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, toTarget.atom);
6420 else
6421 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.atom);
6423 else
6424 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.weakImport, toTarget.name);
6425 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, toTarget.addend);
6426 if ( target.atom == NULL )
6427 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, false, target.name);
6428 else
6429 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, target.atom);
6430 if ( reloc->r_length() == 2 )
6431 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
6432 else
6433 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian64);
6434 break;
6435 case X86_64_RELOC_TLV:
6436 if ( ! reloc->r_extern() )
6437 throw "not extern and X86_64_RELOC_TLV not supported";
6438 if ( ! reloc->r_pcrel() )
6439 throw "not pcrel and X86_64_RELOC_TLV not supported";
6440 if ( reloc->r_length() != 2 )
6441 throw "length != 2 and X86_64_RELOC_TLV not supported";
6442 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32TLVLoad, target);
6443 break;
6444 default:
6445 throwf("unknown relocation type %d", reloc->r_type());
6447 return result;
6452 template <>
6453 bool Section<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<P>* reloc)
6455 const macho_section<P>* sect = this->machoSection();
6456 uint32_t srcAddr;
6457 const uint8_t* fixUpPtr;
6458 uint32_t contentValue = 0;
6459 ld::Fixup::Kind kind = ld::Fixup::kindNone;
6460 Parser<x86>::SourceLocation src;
6461 Parser<x86>::TargetDesc target;
6463 if ( (reloc->r_address() & R_SCATTERED) == 0 ) {
6464 srcAddr = sect->addr() + reloc->r_address();
6465 src.atom = this->findAtomByAddress(srcAddr);
6466 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6467 fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
6468 switch ( reloc->r_type() ) {
6469 case GENERIC_RELOC_VANILLA:
6470 switch ( reloc->r_length() ) {
6471 case 0:
6472 contentValue = (int32_t)(int8_t)*fixUpPtr;
6473 if ( reloc->r_pcrel() ) {
6474 kind = ld::Fixup::kindStoreX86BranchPCRel8;
6475 contentValue += srcAddr + sizeof(uint8_t);
6477 else
6478 throw "r_length=0 and r_pcrel=0 not supported";
6479 break;
6480 case 1:
6481 contentValue = (int32_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
6482 if ( reloc->r_pcrel() ) {
6483 kind = ld::Fixup::kindStoreX86PCRel16;
6484 contentValue += srcAddr + sizeof(uint16_t);
6486 else
6487 kind = ld::Fixup::kindStoreLittleEndian16;
6488 break;
6489 case 2:
6490 contentValue = E::get32(*((uint32_t*)fixUpPtr));
6491 if ( reloc->r_pcrel() ) {
6492 kind = ld::Fixup::kindStoreX86BranchPCRel32;
6493 contentValue += srcAddr + sizeof(uint32_t);
6495 else
6496 kind = ld::Fixup::kindStoreLittleEndian32;
6497 break;
6498 case 3:
6499 throw "r_length=3 not supported";
6501 if ( reloc->r_extern() ) {
6502 target.atom = NULL;
6503 const macho_nlist<P>& targetSymbol = parser.symbolFromIndex(reloc->r_symbolnum());
6504 target.name = parser.nameFromSymbol(targetSymbol);
6505 target.weakImport = parser.weakImportFromSymbol(targetSymbol);
6506 target.addend = (int32_t)contentValue;
6508 else {
6509 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
6511 if ( (kind == ld::Fixup::kindStoreX86BranchPCRel32) && (target.name != NULL) ) {
6512 if ( strncmp(target.name, "___dtrace_probe$", 16) == 0 ) {
6513 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceCallSiteNop, false, target.name);
6514 parser.addDtraceExtraInfos(src, &target.name[16]);
6515 return false;
6517 else if ( strncmp(target.name, "___dtrace_isenabled$", 20) == 0 ) {
6518 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceIsEnableSiteClear, false, target.name);
6519 parser.addDtraceExtraInfos(src, &target.name[20]);
6520 return false;
6523 parser.addFixups(src, kind, target);
6524 return false;
6525 break;
6526 case GENERIC_RLEOC_TLV:
6528 if ( !reloc->r_extern() )
6529 throw "r_extern=0 and r_type=GENERIC_RLEOC_TLV not supported";
6530 if ( reloc->r_length() != 2 )
6531 throw "r_length!=2 and r_type=GENERIC_RLEOC_TLV not supported";
6532 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
6533 // use direct reference for local symbols
6534 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) ) {
6535 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
6537 else {
6538 target.atom = NULL;
6539 target.name = parser.nameFromSymbol(sym);
6540 target.weakImport = parser.weakImportFromSymbol(sym);
6542 target.addend = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
6543 if ( reloc->r_pcrel() ) {
6544 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32TLVLoad, target);
6546 else {
6547 parser.addFixups(src, ld::Fixup::kindStoreX86Abs32TLVLoad, target);
6549 return false;
6551 break;
6552 default:
6553 throwf("unsupported i386 relocation type (%d)", reloc->r_type());
6556 else {
6557 // scattered relocation
6558 const macho_scattered_relocation_info<P>* sreloc = (macho_scattered_relocation_info<P>*)reloc;
6559 srcAddr = sect->addr() + sreloc->r_address();
6560 src.atom = this->findAtomByAddress(srcAddr);
6561 assert(src.atom != NULL);
6562 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6563 fixUpPtr = file().fileContent() + sect->offset() + sreloc->r_address();
6564 uint32_t relocValue = sreloc->r_value();
6565 bool result = false;
6566 // file format allows pair to be scattered or not
6567 const macho_scattered_relocation_info<P>* nextSReloc = &sreloc[1];
6568 const macho_relocation_info<P>* nextReloc = &reloc[1];
6569 bool nextRelocIsPair = false;
6570 uint32_t nextRelocAddress = 0;
6571 uint32_t nextRelocValue = 0;
6572 if ( (nextReloc->r_address() & R_SCATTERED) == 0 ) {
6573 if ( nextReloc->r_type() == GENERIC_RELOC_PAIR ) {
6574 nextRelocIsPair = true;
6575 nextRelocAddress = nextReloc->r_address();
6576 result = true; // iterator should skip next reloc, since we've consumed it here
6579 else {
6580 if ( nextSReloc->r_type() == GENERIC_RELOC_PAIR ) {
6581 nextRelocIsPair = true;
6582 nextRelocAddress = nextSReloc->r_address();
6583 nextRelocValue = nextSReloc->r_value();
6586 switch (sreloc->r_type()) {
6587 case GENERIC_RELOC_VANILLA:
6588 // with a scattered relocation we get both the target (sreloc->r_value()) and the target+offset (*fixUpPtr)
6589 target.atom = parser.findAtomByAddress(relocValue);
6590 if ( sreloc->r_pcrel() ) {
6591 switch ( sreloc->r_length() ) {
6592 case 0:
6593 contentValue = srcAddr + 1 + *fixUpPtr;
6594 target.addend = (int32_t)contentValue - (int32_t)relocValue;
6595 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel8, target);
6596 break;
6597 case 1:
6598 contentValue = srcAddr + 2 + LittleEndian::get16(*((uint16_t*)fixUpPtr));
6599 target.addend = (int32_t)contentValue - (int32_t)relocValue;
6600 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel16, target);
6601 break;
6602 case 2:
6603 contentValue = srcAddr + 4 + LittleEndian::get32(*((uint32_t*)fixUpPtr));
6604 target.addend = (int32_t)contentValue - (int32_t)relocValue;
6605 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32, target);
6606 break;
6607 case 3:
6608 throw "unsupported r_length=3 for scattered pc-rel vanilla reloc";
6609 break;
6612 else {
6613 if ( sreloc->r_length() != 2 )
6614 throwf("unsupported r_length=%d for scattered vanilla reloc", sreloc->r_length());
6615 contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
6616 target.addend = (int32_t)contentValue - (int32_t)(target.atom->objectAddress());
6617 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6619 break;
6620 case GENERIC_RELOC_SECTDIFF:
6621 case GENERIC_RELOC_LOCAL_SECTDIFF:
6623 if ( !nextRelocIsPair )
6624 throw "GENERIC_RELOC_SECTDIFF missing following pair";
6625 switch ( sreloc->r_length() ) {
6626 case 0:
6627 case 3:
6628 throw "bad length for GENERIC_RELOC_SECTDIFF";
6629 case 1:
6630 contentValue = (int32_t)(int16_t)LittleEndian::get16(*((uint16_t*)fixUpPtr));
6631 kind = ld::Fixup::kindStoreLittleEndian16;
6632 break;
6633 case 2:
6634 contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
6635 kind = ld::Fixup::kindStoreLittleEndian32;
6636 break;
6638 Atom<x86>* fromAtom = parser.findAtomByAddress(nextRelocValue);
6639 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
6640 parser.findTargetFromAddress(sreloc->r_value(), target);
6641 // check for addend encoded in the section content
6642 int64_t addend = (int32_t)contentValue - (int32_t)(sreloc->r_value() - nextRelocValue);
6643 if ( addend < 0 ) {
6644 // switch binding base on coalescing
6645 if ( target.atom == NULL ) {
6646 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.name);
6648 else if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
6649 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, target.atom);
6651 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
6652 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
6654 else {
6655 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
6657 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend);
6658 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
6659 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom-addend);
6660 parser.addFixup(src, ld::Fixup::k5of5, kind);
6662 else {
6663 // switch binding base on coalescing
6664 if ( target.atom == NULL ) {
6665 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.name);
6667 else if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
6668 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, target.atom);
6670 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
6671 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
6673 else {
6674 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
6676 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend+addend);
6677 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
6678 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
6679 parser.addFixup(src, ld::Fixup::k5of5, kind);
6682 break;
6684 return result;
6692 #if SUPPORT_ARCH_arm_any
6693 template <>
6694 bool Section<arm>::addRelocFixup(class Parser<arm>& parser, const macho_relocation_info<P>* reloc)
6696 const macho_section<P>* sect = this->machoSection();
6697 bool result = false;
6698 uint32_t srcAddr;
6699 uint32_t dstAddr;
6700 uint32_t* fixUpPtr;
6701 int32_t displacement = 0;
6702 uint32_t instruction = 0;
6703 pint_t contentValue = 0;
6704 Parser<arm>::SourceLocation src;
6705 Parser<arm>::TargetDesc target;
6706 const macho_relocation_info<P>* nextReloc;
6708 if ( (reloc->r_address() & R_SCATTERED) == 0 ) {
6709 bool externSymbolIsThumbDef = false;
6710 srcAddr = sect->addr() + reloc->r_address();
6711 src.atom = this->findAtomByAddress(srcAddr);
6712 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6713 fixUpPtr = (uint32_t*)(file().fileContent() + sect->offset() + reloc->r_address());
6714 if ( reloc->r_type() != ARM_RELOC_PAIR )
6715 instruction = LittleEndian::get32(*fixUpPtr);
6716 if ( reloc->r_extern() ) {
6717 const macho_nlist<P>& targetSymbol = parser.symbolFromIndex(reloc->r_symbolnum());
6718 // use direct reference for local symbols
6719 if ( ((targetSymbol.n_type() & N_TYPE) == N_SECT) && (((targetSymbol.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(targetSymbol)[0] == 'L')) ) {
6720 parser.findTargetFromAddressAndSectionNum(targetSymbol.n_value(), targetSymbol.n_sect(), target);
6722 else {
6723 target.atom = NULL;
6724 target.name = parser.nameFromSymbol(targetSymbol);
6725 target.weakImport = parser.weakImportFromSymbol(targetSymbol);
6726 if ( ((targetSymbol.n_type() & N_TYPE) == N_SECT) && (targetSymbol.n_desc() & N_ARM_THUMB_DEF) )
6727 externSymbolIsThumbDef = true;
6730 switch ( reloc->r_type() ) {
6731 case ARM_RELOC_BR24:
6732 // Sign-extend displacement
6733 displacement = (instruction & 0x00FFFFFF) << 2;
6734 if ( (displacement & 0x02000000) != 0 )
6735 displacement |= 0xFC000000;
6736 // The pc added will be +8 from the pc
6737 displacement += 8;
6738 // If this is BLX add H << 1
6739 if ((instruction & 0xFE000000) == 0xFA000000)
6740 displacement += ((instruction & 0x01000000) >> 23);
6741 if ( reloc->r_extern() ) {
6742 dstAddr = srcAddr + displacement;
6743 // <rdar://problem/16652542> support large .o files
6744 if ( srcAddr > 0x2000000 ) {
6745 dstAddr -= ((srcAddr + 0x1FFFFFF) & 0xFC000000);
6747 target.addend = dstAddr;
6748 if ( externSymbolIsThumbDef )
6749 target.addend &= -2; // remove thumb bit
6751 else {
6752 dstAddr = srcAddr + displacement;
6753 parser.findTargetFromAddressAndSectionNum(dstAddr, reloc->r_symbolnum(), target);
6755 // special case "calls" for dtrace
6756 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6757 parser.addFixup(src, ld::Fixup::k1of1,
6758 ld::Fixup::kindStoreARMDtraceCallSiteNop, false, target.name);
6759 parser.addDtraceExtraInfos(src, &target.name[16]);
6761 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6762 parser.addFixup(src, ld::Fixup::k1of1,
6763 ld::Fixup::kindStoreARMDtraceIsEnableSiteClear, false, target.name);
6764 parser.addDtraceExtraInfos(src, &target.name[20]);
6766 else {
6767 parser.addFixups(src, ld::Fixup::kindStoreARMBranch24, target);
6769 break;
6770 case ARM_THUMB_RELOC_BR22:
6771 // thumb2 added two more bits to displacement, complicating the displacement decoding
6773 uint32_t s = (instruction >> 10) & 0x1;
6774 uint32_t j1 = (instruction >> 29) & 0x1;
6775 uint32_t j2 = (instruction >> 27) & 0x1;
6776 uint32_t imm10 = instruction & 0x3FF;
6777 uint32_t imm11 = (instruction >> 16) & 0x7FF;
6778 uint32_t i1 = (j1 == s);
6779 uint32_t i2 = (j2 == s);
6780 uint32_t dis = (s << 24) | (i1 << 23) | (i2 << 22) | (imm10 << 12) | (imm11 << 1);
6781 int32_t sdis = dis;
6782 if ( s )
6783 sdis |= 0xFE000000;
6784 displacement = sdis;
6786 // The pc added will be +4 from the pc
6787 displacement += 4;
6788 // If the instruction was blx, force the low 2 bits to be clear
6789 dstAddr = srcAddr + displacement;
6790 if ((instruction & 0xD0000000) == 0xC0000000)
6791 dstAddr &= 0xFFFFFFFC;
6793 if ( reloc->r_extern() ) {
6794 // <rdar://problem/16652542> support large .o files
6795 if ( srcAddr > 0x1000000 ) {
6796 dstAddr -= ((srcAddr + 0xFFFFFF) & 0xFE000000);
6798 target.addend = (int64_t)(int32_t)dstAddr;
6800 else {
6801 parser.findTargetFromAddressAndSectionNum(dstAddr, reloc->r_symbolnum(), target);
6803 // special case "calls" for dtrace
6804 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6805 parser.addFixup(src, ld::Fixup::k1of1,
6806 ld::Fixup::kindStoreThumbDtraceCallSiteNop, false, target.name);
6807 parser.addDtraceExtraInfos(src, &target.name[16]);
6809 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6810 parser.addFixup(src, ld::Fixup::k1of1,
6811 ld::Fixup::kindStoreThumbDtraceIsEnableSiteClear, false, target.name);
6812 parser.addDtraceExtraInfos(src, &target.name[20]);
6814 else {
6815 parser.addFixups(src, ld::Fixup::kindStoreThumbBranch22, target);
6817 break;
6818 case ARM_RELOC_VANILLA:
6819 if ( reloc->r_length() != 2 )
6820 throw "bad length for ARM_RELOC_VANILLA";
6821 contentValue = LittleEndian::get32(*fixUpPtr);
6822 if ( reloc->r_extern() ) {
6823 target.addend = (int32_t)contentValue;
6824 if ( externSymbolIsThumbDef )
6825 target.addend &= -2; // remove thumb bit
6827 else {
6828 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
6829 // possible non-extern relocation turned into by-name ref because target is a weak-def
6830 if ( target.atom != NULL ) {
6831 if ( target.atom->isThumb() )
6832 target.addend &= -2; // remove thumb bit
6833 // if reference to LSDA, add group subordinate fixup
6834 if ( target.atom->contentType() == ld::Atom::typeLSDA ) {
6835 Parser<arm>::SourceLocation src2;
6836 src2.atom = src.atom;
6837 src2.offsetInAtom = 0;
6838 parser.addFixup(src2, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, target.atom);
6842 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6843 break;
6844 case ARM_THUMB_32BIT_BRANCH:
6845 // silently ignore old unnecessary reloc
6846 break;
6847 case ARM_RELOC_HALF:
6848 nextReloc = &reloc[1];
6849 if ( nextReloc->r_type() == ARM_RELOC_PAIR ) {
6850 uint32_t instruction16;
6851 uint32_t other16 = (nextReloc->r_address() & 0xFFFF);
6852 bool isThumb;
6853 if ( reloc->r_length() & 2 ) {
6854 isThumb = true;
6855 uint32_t i = ((instruction & 0x00000400) >> 10);
6856 uint32_t imm4 = (instruction & 0x0000000F);
6857 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
6858 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
6859 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
6861 else {
6862 isThumb = false;
6863 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
6864 uint32_t imm12 = (instruction & 0x00000FFF);
6865 instruction16 = (imm4 << 12) | imm12;
6867 if ( reloc->r_length() & 1 ) {
6868 // high 16
6869 dstAddr = ((instruction16 << 16) | other16);
6870 if ( reloc->r_extern() ) {
6871 target.addend = dstAddr;
6872 if ( externSymbolIsThumbDef )
6873 target.addend &= -2; // remove thumb bit
6875 else {
6876 parser.findTargetFromAddress(dstAddr, target);
6877 if ( target.atom->isThumb() )
6878 target.addend &= (-2); // remove thumb bit
6880 parser.addFixups(src, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16), target);
6882 else {
6883 // low 16
6884 dstAddr = (other16 << 16) | instruction16;
6885 if ( reloc->r_extern() ) {
6886 target.addend = dstAddr;
6887 if ( externSymbolIsThumbDef )
6888 target.addend &= -2; // remove thumb bit
6890 else {
6891 parser.findTargetFromAddress(dstAddr, target);
6892 if ( target.atom->isThumb() )
6893 target.addend &= (-2); // remove thumb bit
6895 parser.addFixups(src, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16), target);
6897 result = true;
6899 else
6900 throw "for ARM_RELOC_HALF, next reloc is not ARM_RELOC_PAIR";
6901 break;
6902 default:
6903 throwf("unknown relocation type %d", reloc->r_type());
6904 break;
6907 else {
6908 const macho_scattered_relocation_info<P>* sreloc = (macho_scattered_relocation_info<P>*)reloc;
6909 // file format allows pair to be scattered or not
6910 const macho_scattered_relocation_info<P>* nextSReloc = &sreloc[1];
6911 nextReloc = &reloc[1];
6912 srcAddr = sect->addr() + sreloc->r_address();
6913 dstAddr = sreloc->r_value();
6914 fixUpPtr = (uint32_t*)(file().fileContent() + sect->offset() + sreloc->r_address());
6915 instruction = LittleEndian::get32(*fixUpPtr);
6916 src.atom = this->findAtomByAddress(srcAddr);
6917 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6918 bool nextRelocIsPair = false;
6919 uint32_t nextRelocAddress = 0;
6920 uint32_t nextRelocValue = 0;
6921 if ( (nextReloc->r_address() & R_SCATTERED) == 0 ) {
6922 if ( nextReloc->r_type() == ARM_RELOC_PAIR ) {
6923 nextRelocIsPair = true;
6924 nextRelocAddress = nextReloc->r_address();
6925 result = true;
6928 else {
6929 if ( nextSReloc->r_type() == ARM_RELOC_PAIR ) {
6930 nextRelocIsPair = true;
6931 nextRelocAddress = nextSReloc->r_address();
6932 nextRelocValue = nextSReloc->r_value();
6933 result = true;
6936 switch ( sreloc->r_type() ) {
6937 case ARM_RELOC_VANILLA:
6938 // with a scattered relocation we get both the target (sreloc->r_value()) and the target+offset (*fixUpPtr)
6939 if ( sreloc->r_length() != 2 )
6940 throw "bad length for ARM_RELOC_VANILLA";
6941 target.atom = parser.findAtomByAddress(sreloc->r_value());
6942 if ( target.atom == NULL )
6943 throwf("bad r_value (0x%08X) for ARM_RELOC_VANILLA\n", sreloc->r_value());
6944 contentValue = LittleEndian::get32(*fixUpPtr);
6945 target.addend = contentValue - target.atom->_objAddress;
6946 if ( target.atom->isThumb() )
6947 target.addend &= -2; // remove thumb bit
6948 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6949 break;
6950 case ARM_RELOC_BR24:
6951 // Sign-extend displacement
6952 displacement = (instruction & 0x00FFFFFF) << 2;
6953 if ( (displacement & 0x02000000) != 0 )
6954 displacement |= 0xFC000000;
6955 // The pc added will be +8 from the pc
6956 displacement += 8;
6957 // If this is BLX add H << 1
6958 if ((instruction & 0xFE000000) == 0xFA000000)
6959 displacement += ((instruction & 0x01000000) >> 23);
6960 target.atom = parser.findAtomByAddress(sreloc->r_value());
6961 target.addend = (int64_t)(srcAddr + displacement) - (int64_t)(target.atom->_objAddress);
6962 parser.addFixups(src, ld::Fixup::kindStoreARMBranch24, target);
6963 break;
6964 case ARM_THUMB_RELOC_BR22:
6965 // thumb2 added two more bits to displacement, complicating the displacement decoding
6967 uint32_t s = (instruction >> 10) & 0x1;
6968 uint32_t j1 = (instruction >> 29) & 0x1;
6969 uint32_t j2 = (instruction >> 27) & 0x1;
6970 uint32_t imm10 = instruction & 0x3FF;
6971 uint32_t imm11 = (instruction >> 16) & 0x7FF;
6972 uint32_t i1 = (j1 == s);
6973 uint32_t i2 = (j2 == s);
6974 uint32_t dis = (s << 24) | (i1 << 23) | (i2 << 22) | (imm10 << 12) | (imm11 << 1);
6975 int32_t sdis = dis;
6976 if ( s )
6977 sdis |= 0xFE000000;
6978 displacement = sdis;
6980 // The pc added will be +4 from the pc
6981 displacement += 4;
6982 dstAddr = srcAddr+displacement;
6983 // If the instruction was blx, force the low 2 bits to be clear
6984 if ((instruction & 0xF8000000) == 0xE8000000)
6985 dstAddr &= 0xFFFFFFFC;
6986 target.atom = parser.findAtomByAddress(sreloc->r_value());
6987 target.addend = dstAddr - target.atom->_objAddress;
6988 parser.addFixups(src, ld::Fixup::kindStoreThumbBranch22, target);
6989 break;
6990 case ARM_RELOC_SECTDIFF:
6991 case ARM_RELOC_LOCAL_SECTDIFF:
6993 if ( ! nextRelocIsPair )
6994 throw "ARM_RELOC_SECTDIFF missing following pair";
6995 if ( sreloc->r_length() != 2 )
6996 throw "bad length for ARM_RELOC_SECTDIFF";
6997 contentValue = LittleEndian::get32(*fixUpPtr);
6998 Atom<arm>* fromAtom = parser.findAtomByAddress(nextRelocValue);
6999 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
7000 uint32_t offsetInTarget;
7001 Atom<arm>* targetAtom = parser.findAtomByAddressOrLocalTargetOfStub(sreloc->r_value(), &offsetInTarget);
7002 // check for addend encoded in the section content
7003 int64_t addend = (int32_t)contentValue - (int32_t)(sreloc->r_value() - nextRelocValue);
7004 if ( targetAtom->isThumb() )
7005 addend &= -2; // remove thumb bit
7006 // if reference to LSDA, add group subordinate fixup
7007 if ( targetAtom->contentType() == ld::Atom::typeLSDA ) {
7008 Parser<arm>::SourceLocation src2;
7009 src2.atom = src.atom;
7010 src2.offsetInAtom = 0;
7011 parser.addFixup(src2, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, targetAtom);
7013 if ( addend < 0 ) {
7014 // switch binding base on coalescing
7015 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
7016 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
7018 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
7019 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
7021 else {
7022 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
7024 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, offsetInTarget);
7025 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
7026 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom-addend);
7027 parser.addFixup(src, ld::Fixup::k5of5, ld::Fixup::kindStoreLittleEndian32);
7029 else {
7030 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
7031 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
7033 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
7034 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
7036 else {
7037 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
7039 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, (uint32_t)(offsetInTarget+addend));
7040 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
7041 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
7042 parser.addFixup(src, ld::Fixup::k5of5, ld::Fixup::kindStoreLittleEndian32);
7045 break;
7046 case ARM_RELOC_HALF_SECTDIFF:
7047 if ( nextRelocIsPair ) {
7048 instruction = LittleEndian::get32(*fixUpPtr);
7049 Atom<arm>* fromAtom = parser.findAtomByAddress(nextRelocValue);
7050 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
7051 Atom<arm>* targetAtom = parser.findAtomByAddress(sreloc->r_value());
7052 uint32_t offsetInTarget = sreloc->r_value() - targetAtom->_objAddress;
7053 uint32_t instruction16;
7054 uint32_t other16 = (nextRelocAddress & 0xFFFF);
7055 bool isThumb;
7056 if ( sreloc->r_length() & 2 ) {
7057 isThumb = true;
7058 uint32_t i = ((instruction & 0x00000400) >> 10);
7059 uint32_t imm4 = (instruction & 0x0000000F);
7060 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
7061 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
7062 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
7064 else {
7065 isThumb = false;
7066 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
7067 uint32_t imm12 = (instruction & 0x00000FFF);
7068 instruction16 = (imm4 << 12) | imm12;
7070 if ( sreloc->r_length() & 1 )
7071 dstAddr = ((instruction16 << 16) | other16);
7072 else
7073 dstAddr = (other16 << 16) | instruction16;
7074 if ( targetAtom->isThumb() )
7075 dstAddr &= (-2); // remove thumb bit
7076 int32_t addend = dstAddr - (sreloc->r_value() - nextRelocValue);
7077 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
7078 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
7080 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
7081 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
7083 else {
7084 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
7086 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, (uint32_t)offsetInTarget+addend);
7087 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
7088 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
7089 if ( sreloc->r_length() & 1 ) {
7090 // high 16
7091 parser.addFixup(src, ld::Fixup::k5of5, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16));
7093 else {
7094 // low 16
7095 parser.addFixup(src, ld::Fixup::k5of5, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16));
7097 result = true;
7099 else
7100 throw "ARM_RELOC_HALF_SECTDIFF reloc missing following pair";
7101 break;
7102 case ARM_RELOC_HALF:
7103 if ( nextRelocIsPair ) {
7104 instruction = LittleEndian::get32(*fixUpPtr);
7105 Atom<arm>* targetAtom = parser.findAtomByAddress(sreloc->r_value());
7106 uint32_t instruction16;
7107 uint32_t other16 = (nextRelocAddress & 0xFFFF);
7108 bool isThumb;
7109 if ( sreloc->r_length() & 2 ) {
7110 isThumb = true;
7111 uint32_t i = ((instruction & 0x00000400) >> 10);
7112 uint32_t imm4 = (instruction & 0x0000000F);
7113 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
7114 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
7115 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
7117 else {
7118 isThumb = false;
7119 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
7120 uint32_t imm12 = (instruction & 0x00000FFF);
7121 instruction16 = (imm4 << 12) | imm12;
7123 if ( sreloc->r_length() & 1 )
7124 dstAddr = ((instruction16 << 16) | other16);
7125 else
7126 dstAddr = (other16 << 16) | instruction16;
7127 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
7128 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, targetAtom);
7130 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
7131 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
7133 else {
7134 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
7136 parser.addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, dstAddr - targetAtom->_objAddress);
7137 if ( sreloc->r_length() & 1 ) {
7138 // high 16
7139 parser.addFixup(src, ld::Fixup::k3of3, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16));
7141 else {
7142 // low 16
7143 parser.addFixup(src, ld::Fixup::k3of3, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16));
7145 result = true;
7147 else
7148 throw "scattered ARM_RELOC_HALF reloc missing following pair";
7149 break;
7150 default:
7151 throwf("unknown ARM scattered relocation type %d", sreloc->r_type());
7154 return result;
7156 #endif
7159 #if SUPPORT_ARCH_arm64
7160 template <>
7161 bool Section<arm64>::addRelocFixup(class Parser<arm64>& parser, const macho_relocation_info<P>* reloc)
7163 bool result = false;
7164 Parser<arm64>::SourceLocation src;
7165 Parser<arm64>::TargetDesc target = { NULL, NULL, false, 0 };
7166 Parser<arm64>::TargetDesc toTarget;
7167 int32_t prefixRelocAddend = 0;
7168 if ( reloc->r_type() == ARM64_RELOC_ADDEND ) {
7169 uint32_t rawAddend = reloc->r_symbolnum();
7170 prefixRelocAddend = rawAddend;
7171 if ( rawAddend & 0x00800000 )
7172 prefixRelocAddend |= 0xFF000000; // sign extend 24-bit signed int to 32-bits
7173 uint32_t addendAddress = reloc->r_address();
7174 ++reloc; //advance to next reloc record
7175 result = true;
7176 if ( reloc->r_address() != addendAddress )
7177 throw "ARM64_RELOC_ADDEND r_address does not match next reloc's r_address";
7179 const macho_section<P>* sect = this->machoSection();
7180 uint64_t srcAddr = sect->addr() + reloc->r_address();
7181 src.atom = this->findAtomByAddress(srcAddr);
7182 src.offsetInAtom = srcAddr - src.atom->_objAddress;
7183 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
7184 uint64_t contentValue = 0;
7185 const macho_relocation_info<arm64::P>* nextReloc = &reloc[1];
7186 bool useDirectBinding;
7187 uint32_t instruction;
7188 uint32_t encodedAddend;
7189 switch ( reloc->r_length() ) {
7190 case 0:
7191 contentValue = *fixUpPtr;
7192 break;
7193 case 1:
7194 contentValue = (int64_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
7195 break;
7196 case 2:
7197 contentValue = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
7198 break;
7199 case 3:
7200 contentValue = E::get64(*((uint64_t*)fixUpPtr));
7201 break;
7203 if ( reloc->r_extern() ) {
7204 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
7205 const char* symbolName = parser.nameFromSymbol(sym);
7206 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (symbolName[0] == 'L') || (symbolName[0] == 'l')) ) {
7207 // use direct reference for local symbols
7208 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
7209 //target.addend += contentValue;
7211 else if ( ((sym.n_type() & N_TYPE) == N_SECT) && (src.atom->_objAddress <= sym.n_value()) && (sym.n_value() < (src.atom->_objAddress+src.atom->size())) ) {
7212 // <rdar://problem/13700961> spurious warning when weak function has reference to itself
7213 // use direct reference when atom targets itself
7214 target.atom = src.atom;
7215 target.name = NULL;
7217 else {
7218 target.name = symbolName;
7219 target.weakImport = parser.weakImportFromSymbol(sym);
7220 //target.addend = contentValue;
7222 // cfstrings should always use direct reference to backing store
7223 if ( (this->type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
7224 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
7225 //target.addend = contentValue;
7228 else {
7229 if ( reloc->r_pcrel() )
7230 contentValue += srcAddr;
7231 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
7233 switch ( reloc->r_type() ) {
7234 case ARM64_RELOC_UNSIGNED:
7235 if ( reloc->r_pcrel() )
7236 throw "pcrel and ARM64_RELOC_UNSIGNED not supported";
7237 if ( reloc->r_extern() )
7238 target.addend = contentValue;
7239 switch ( reloc->r_length() ) {
7240 case 0:
7241 case 1:
7242 throw "length < 2 and ARM64_RELOC_UNSIGNED not supported";
7243 case 2:
7244 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
7245 break;
7246 case 3:
7247 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian64, target);
7248 break;
7250 break;
7251 case ARM64_RELOC_BRANCH26:
7252 if ( ! reloc->r_pcrel() )
7253 throw "not pcrel and ARM64_RELOC_BRANCH26 not supported";
7254 if ( ! reloc->r_extern() )
7255 throw "r_extern == 0 and ARM64_RELOC_BRANCH26 not supported";
7256 if ( reloc->r_length() != 2 )
7257 throw "r_length != 2 and ARM64_RELOC_BRANCH26 not supported";
7258 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
7259 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreARM64DtraceCallSiteNop, false, target.name);
7260 parser.addDtraceExtraInfos(src, &target.name[16]);
7262 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
7263 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreARM64DtraceIsEnableSiteClear, false, target.name);
7264 parser.addDtraceExtraInfos(src, &target.name[20]);
7266 else {
7267 target.addend = prefixRelocAddend;
7268 instruction = contentValue;
7269 encodedAddend = (instruction & 0x03FFFFFF) << 2;
7270 if ( encodedAddend != 0 ) {
7271 if ( prefixRelocAddend == 0 ) {
7272 warning("branch26 instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
7273 target.addend = encodedAddend;
7275 else {
7276 throwf("branch26 instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
7279 parser.addFixups(src, ld::Fixup::kindStoreARM64Branch26, target);
7281 break;
7282 case ARM64_RELOC_PAGE21:
7283 if ( ! reloc->r_pcrel() )
7284 throw "not pcrel and ARM64_RELOC_PAGE21 not supported";
7285 if ( ! reloc->r_extern() )
7286 throw "r_extern == 0 and ARM64_RELOC_PAGE21 not supported";
7287 if ( reloc->r_length() != 2 )
7288 throw "length != 2 and ARM64_RELOC_PAGE21 not supported";
7289 target.addend = prefixRelocAddend;
7290 instruction = contentValue;
7291 encodedAddend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
7292 encodedAddend *= 4096; // internally addend is in bytes, so scale
7293 if ( encodedAddend != 0 ) {
7294 if ( prefixRelocAddend == 0 ) {
7295 warning("adrp instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
7296 target.addend = encodedAddend;
7298 else {
7299 throwf("adrp instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
7302 parser.addFixups(src, ld::Fixup::kindStoreARM64Page21, target);
7303 break;
7304 case ARM64_RELOC_PAGEOFF12:
7305 if ( reloc->r_pcrel() )
7306 throw "pcrel and ARM64_RELOC_PAGEOFF12 not supported";
7307 if ( ! reloc->r_extern() )
7308 throw "r_extern == 0 and ARM64_RELOC_PAGEOFF12 not supported";
7309 if ( reloc->r_length() != 2 )
7310 throw "length != 2 and ARM64_RELOC_PAGEOFF12 not supported";
7311 target.addend = prefixRelocAddend;
7312 instruction = contentValue;
7313 encodedAddend = ((instruction & 0x003FFC00) >> 10);
7314 // internally addend is in bytes. Some instructions have an implicit scale factor
7315 if ( (instruction & 0x3B000000) == 0x39000000 ) {
7316 switch ( instruction & 0xC0000000 ) {
7317 case 0x00000000:
7318 break;
7319 case 0x40000000:
7320 encodedAddend *= 2;
7321 break;
7322 case 0x80000000:
7323 encodedAddend *= 4;
7324 break;
7325 case 0xC0000000:
7326 encodedAddend *= 8;
7327 break;
7330 if ( encodedAddend != 0 ) {
7331 if ( prefixRelocAddend == 0 ) {
7332 warning("pageoff12 instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
7333 target.addend = encodedAddend;
7335 else {
7336 throwf("pageoff12 instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
7339 parser.addFixups(src, ld::Fixup::kindStoreARM64PageOff12, target);
7340 break;
7341 case ARM64_RELOC_GOT_LOAD_PAGE21:
7342 if ( ! reloc->r_pcrel() )
7343 throw "not pcrel and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
7344 if ( ! reloc->r_extern() )
7345 throw "r_extern == 0 and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
7346 if ( reloc->r_length() != 2 )
7347 throw "length != 2 and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
7348 if ( prefixRelocAddend != 0 )
7349 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
7350 instruction = contentValue;
7351 target.addend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
7352 if ( target.addend != 0 )
7353 throw "non-zero addend with ARM64_RELOC_GOT_LOAD_PAGE21 is not supported";
7354 parser.addFixups(src, ld::Fixup::kindStoreARM64GOTLoadPage21, target);
7355 break;
7356 case ARM64_RELOC_GOT_LOAD_PAGEOFF12:
7357 if ( reloc->r_pcrel() )
7358 throw "pcrel and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
7359 if ( ! reloc->r_extern() )
7360 throw "r_extern == 0 and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
7361 if ( reloc->r_length() != 2 )
7362 throw "length != 2 and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
7363 if ( prefixRelocAddend != 0 )
7364 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
7365 instruction = contentValue;
7366 target.addend = ((instruction & 0x003FFC00) >> 10);
7367 parser.addFixups(src, ld::Fixup::kindStoreARM64GOTLoadPageOff12, target);
7368 break;
7369 case ARM64_RELOC_TLVP_LOAD_PAGE21:
7370 if ( ! reloc->r_pcrel() )
7371 throw "not pcrel and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
7372 if ( ! reloc->r_extern() )
7373 throw "r_extern == 0 and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
7374 if ( reloc->r_length() != 2 )
7375 throw "length != 2 and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
7376 if ( prefixRelocAddend != 0 )
7377 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
7378 instruction = contentValue;
7379 target.addend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
7380 if ( target.addend != 0 )
7381 throw "non-zero addend with ARM64_RELOC_GOT_LOAD_PAGE21 is not supported";
7382 parser.addFixups(src, ld::Fixup::kindStoreARM64TLVPLoadPage21, target);
7383 break;
7384 case ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
7385 if ( reloc->r_pcrel() )
7386 throw "pcrel and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
7387 if ( ! reloc->r_extern() )
7388 throw "r_extern == 0 and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
7389 if ( reloc->r_length() != 2 )
7390 throw "length != 2 and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
7391 if ( prefixRelocAddend != 0 )
7392 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
7393 instruction = contentValue;
7394 target.addend = ((instruction & 0x003FFC00) >> 10);
7395 parser.addFixups(src, ld::Fixup::kindStoreARM64TLVPLoadPageOff12, target);
7396 break;
7397 case ARM64_RELOC_SUBTRACTOR:
7398 if ( reloc->r_pcrel() )
7399 throw "ARM64_RELOC_SUBTRACTOR cannot be pc-relative";
7400 if ( reloc->r_length() < 2 )
7401 throw "ARM64_RELOC_SUBTRACTOR must have r_length of 2 or 3";
7402 if ( !reloc->r_extern() )
7403 throw "ARM64_RELOC_SUBTRACTOR must have r_extern=1";
7404 if ( nextReloc->r_type() != ARM64_RELOC_UNSIGNED )
7405 throw "ARM64_RELOC_SUBTRACTOR must be followed by ARM64_RELOC_UNSIGNED";
7406 if ( prefixRelocAddend != 0 )
7407 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_SUBTRACTOR not supported";
7408 result = true;
7409 if ( nextReloc->r_pcrel() )
7410 throw "ARM64_RELOC_UNSIGNED following a ARM64_RELOC_SUBTRACTOR cannot be pc-relative";
7411 if ( nextReloc->r_length() != reloc->r_length() )
7412 throw "ARM64_RELOC_UNSIGNED following a ARM64_RELOC_SUBTRACTOR must have same r_length";
7413 if ( nextReloc->r_extern() ) {
7414 const macho_nlist<P>& sym = parser.symbolFromIndex(nextReloc->r_symbolnum());
7415 // use direct reference for local symbols
7416 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
7417 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), toTarget);
7418 toTarget.addend = contentValue;
7419 useDirectBinding = true;
7421 else {
7422 toTarget.name = parser.nameFromSymbol(sym);
7423 toTarget.weakImport = parser.weakImportFromSymbol(sym);
7424 toTarget.addend = contentValue;
7425 useDirectBinding = false;
7428 else {
7429 parser.findTargetFromAddressAndSectionNum(contentValue, nextReloc->r_symbolnum(), toTarget);
7430 useDirectBinding = (toTarget.atom->scope() == ld::Atom::scopeTranslationUnit);
7432 if ( useDirectBinding )
7433 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.atom);
7434 else
7435 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.weakImport, toTarget.name);
7436 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, toTarget.addend);
7437 if ( target.atom == NULL )
7438 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, false, target.name);
7439 else
7440 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, target.atom);
7441 if ( reloc->r_length() == 2 )
7442 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
7443 else
7444 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian64);
7445 break;
7446 case ARM64_RELOC_POINTER_TO_GOT:
7447 if ( ! reloc->r_extern() )
7448 throw "r_extern == 0 and ARM64_RELOC_POINTER_TO_GOT not supported";
7449 if ( prefixRelocAddend != 0 )
7450 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_POINTER_TO_GOT not supported";
7451 if ( reloc->r_pcrel() ) {
7452 if ( reloc->r_length() != 2 )
7453 throw "r_length != 2 and r_extern = 1 and ARM64_RELOC_POINTER_TO_GOT not supported";
7454 parser.addFixups(src, ld::Fixup::kindStoreARM64PCRelToGOT, target);
7456 else {
7457 if ( reloc->r_length() != 3 )
7458 throw "r_length != 3 and r_extern = 0 and ARM64_RELOC_POINTER_TO_GOT not supported";
7459 parser.addFixups(src, ld::Fixup::kindStoreARM64PointerToGOT, target);
7461 break;
7462 default:
7463 throwf("unknown relocation type %d", reloc->r_type());
7465 return result;
7467 #endif
7470 template <typename A>
7471 bool ObjC1ClassSection<A>::addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
7473 // inherited
7474 FixedSizeSection<A>::addRelocFixup(parser, reloc);
7476 assert(0 && "needs template specialization");
7477 return false;
7480 template <>
7481 bool ObjC1ClassSection<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
7483 // if this is the reloc for the super class name string, add implicit reference to super class
7484 if ( ((reloc->r_address() & R_SCATTERED) == 0) && (reloc->r_type() == GENERIC_RELOC_VANILLA) ) {
7485 assert( reloc->r_length() == 2 );
7486 assert( ! reloc->r_pcrel() );
7488 const macho_section<P>* sect = this->machoSection();
7489 Parser<x86>::SourceLocation src;
7490 uint32_t srcAddr = sect->addr() + reloc->r_address();
7491 src.atom = this->findAtomByAddress(srcAddr);
7492 src.offsetInAtom = srcAddr - src.atom->objectAddress();
7493 if ( src.offsetInAtom == 4 ) {
7494 Parser<x86>::TargetDesc stringTarget;
7495 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
7496 uint32_t contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
7497 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), stringTarget);
7499 assert(stringTarget.atom != NULL);
7500 assert(stringTarget.atom->contentType() == ld::Atom::typeCString);
7501 const char* superClassBaseName = (char*)stringTarget.atom->rawContentPointer();
7502 char* superClassName = new char[strlen(superClassBaseName) + 20];
7503 strcpy(superClassName, ".objc_class_name_");
7504 strcat(superClassName, superClassBaseName);
7506 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindSetTargetAddress, false, superClassName);
7509 // inherited
7510 return FixedSizeSection<x86>::addRelocFixup(parser, reloc);
7515 template <typename A>
7516 bool Objc1ClassReferences<A>::addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
7518 // inherited
7519 PointerToCStringSection<A>::addRelocFixup(parser, reloc);
7521 assert(0 && "needs template specialization");
7522 return false;
7527 template <>
7528 bool Objc1ClassReferences<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
7530 // add implict class refs, fixups not usable yet, so look at relocations
7531 assert( (reloc->r_address() & R_SCATTERED) == 0 );
7532 assert( reloc->r_type() == GENERIC_RELOC_VANILLA );
7533 assert( reloc->r_length() == 2 );
7534 assert( ! reloc->r_pcrel() );
7536 const macho_section<P>* sect = this->machoSection();
7537 Parser<x86>::SourceLocation src;
7538 uint32_t srcAddr = sect->addr() + reloc->r_address();
7539 src.atom = this->findAtomByAddress(srcAddr);
7540 src.offsetInAtom = srcAddr - src.atom->objectAddress();
7541 Parser<x86>::TargetDesc stringTarget;
7542 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
7543 uint32_t contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
7544 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), stringTarget);
7546 assert(stringTarget.atom != NULL);
7547 assert(stringTarget.atom->contentType() == ld::Atom::typeCString);
7548 const char* baseClassName = (char*)stringTarget.atom->rawContentPointer();
7549 char* objcClassName = new char[strlen(baseClassName) + 20];
7550 strcpy(objcClassName, ".objc_class_name_");
7551 strcat(objcClassName, baseClassName);
7553 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindSetTargetAddress, false, objcClassName);
7555 // inherited
7556 return PointerToCStringSection<x86>::addRelocFixup(parser, reloc);
7559 #if SUPPORT_ARCH_arm64
7560 template <>
7561 void Section<arm64>::addLOH(class Parser<arm64>& parser, int kind, int count, const uint64_t addrs[]) {
7562 switch (kind) {
7563 case LOH_ARM64_ADRP_ADRP:
7564 case LOH_ARM64_ADRP_LDR:
7565 case LOH_ARM64_ADRP_ADD:
7566 case LOH_ARM64_ADRP_LDR_GOT:
7567 if ( count != 2 )
7568 warning("arm64 Linker Optimiztion Hint %d has wrong number of arguments", kind);
7569 break;
7570 case LOH_ARM64_ADRP_ADD_LDR:
7571 case LOH_ARM64_ADRP_LDR_GOT_LDR:
7572 case LOH_ARM64_ADRP_ADD_STR:
7573 case LOH_ARM64_ADRP_LDR_GOT_STR:
7574 if ( count != 3 )
7575 warning("arm64 Linker Optimiztion Hint %d has wrong number of arguments", kind);
7578 // pick lowest address in tuple for use as offsetInAtom
7579 uint64_t lowestAddress = addrs[0];
7580 for(int i=1; i < count; ++i) {
7581 if ( addrs[i] < lowestAddress )
7582 lowestAddress = addrs[i];
7584 // verify all other address are in same atom
7585 Atom<arm64>* inAtom = parser.findAtomByAddress(lowestAddress);
7586 const uint64_t atomStartAddr = inAtom->objectAddress();
7587 const uint64_t atomEndAddr = atomStartAddr + inAtom->size();
7588 for(int i=0; i < count; ++i) {
7589 if ( (addrs[i] < atomStartAddr) || (addrs[i] >= atomEndAddr) ) {
7590 warning("arm64 Linker Optimiztion Hint addresses are not in same atom: 0x%08llX and 0x%08llX",
7591 lowestAddress, addrs[i]);
7592 return; // skip this LOH
7594 if ( (addrs[i] & 0x3) != 0 ) {
7595 warning("arm64 Linker Optimiztion Hint address is not 4-byte aligned: 0x%08llX", addrs[i]);
7596 return; // skip this LOH
7598 if ( (addrs[i] - lowestAddress) > 0xFFFF ) {
7599 if ( parser.verboseOptimizationHints() ) {
7600 warning("arm64 Linker Optimiztion Hint addresses are too far apart: 0x%08llX and 0x%08llX",
7601 lowestAddress, addrs[i]);
7603 return; // skip this LOH
7607 // encoded kind, count, and address deltas in 64-bit addend
7608 ld::Fixup::LOH_arm64 extra;
7609 extra.addend = 0;
7610 extra.info.kind = kind;
7611 extra.info.count = count-1;
7612 extra.info.delta1 = (addrs[0] - lowestAddress) >> 2;
7613 extra.info.delta2 = (count > 1) ? ((addrs[1] - lowestAddress) >> 2) : 0;
7614 extra.info.delta3 = (count > 2) ? ((addrs[2] - lowestAddress) >> 2) : 0;
7615 extra.info.delta4 = (count > 3) ? ((addrs[3] - lowestAddress) >> 2) : 0;
7616 typename Parser<arm64>::SourceLocation src(inAtom, lowestAddress- inAtom->objectAddress());
7617 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindLinkerOptimizationHint, extra.addend);
7619 #endif
7622 template <typename A>
7623 void Section<A>::addLOH(class Parser<A>& parser, int kind, int count, const uint64_t addrs[]) {
7627 template <typename A>
7628 void Section<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&)
7630 const macho_section<P>* sect = this->machoSection();
7631 if ( sect->reloff() + (sect->nreloc() * sizeof(macho_relocation_info<P>)) > parser.fileLength() )
7632 throwf("relocations for section %s/%s extends beyond end of file,", sect->segname(), Section<A>::makeSectionName(sect) );
7633 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + sect->reloff());
7634 const uint32_t relocCount = sect->nreloc();
7635 for (uint32_t r = 0; r < relocCount; ++r) {
7636 try {
7637 if ( this->addRelocFixup(parser, &relocs[r]) )
7638 ++r; // skip next
7640 catch (const char* msg) {
7641 throwf("in section %s,%s reloc %u: %s", sect->segname(), Section<A>::makeSectionName(sect), r, msg);
7645 // add follow-on fixups if .o file is missing .subsections_via_symbols
7646 if ( this->addFollowOnFixups() ) {
7647 Atom<A>* end = &_endAtoms[-1];
7648 for(Atom<A>* p = _beginAtoms; p < end; ++p) {
7649 typename Parser<A>::SourceLocation src(p, 0);
7650 Atom<A>* nextAtom = &p[1];
7651 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, nextAtom);
7654 else if ( this->type() == ld::Section::typeCode ) {
7655 // if FDE broke text not at a symbol, use followOn to keep code together
7656 Atom<A>* end = &_endAtoms[-1];
7657 for(Atom<A>* p = _beginAtoms; p < end; ++p) {
7658 typename Parser<A>::SourceLocation src(p, 0);
7659 Atom<A>* nextAtom = &p[1];
7660 if ( (p->symbolTableInclusion() == ld::Atom::symbolTableIn) && (nextAtom->symbolTableInclusion() == ld::Atom::symbolTableNotIn) ) {
7661 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, nextAtom);
7665 if ( !this->_altEntries.empty() && !this->addFollowOnFixups() ) {
7666 if ( _altEntries.count(_beginAtoms) != 0 )
7667 warning("N_ALT_ENTRY bit set on first atom in section %s/%s", sect->segname(), Section<A>::makeSectionName(sect));
7669 Atom<A>* end = &_endAtoms[-1];
7670 for(Atom<A>* p = _beginAtoms; p < end; ++p) {
7671 Atom<A>* nextAtom = &p[1];
7672 // <rdar://problem/22960070> support alt_entry aliases (alias process already added followOn, don't repeat)
7673 if ( (_altEntries.count(nextAtom) != 0) && (p->_objAddress != nextAtom->_objAddress) ) {
7674 typename Parser<A>::SourceLocation src(p, 0);
7675 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, nextAtom);
7676 typename Parser<A>::SourceLocation src2(nextAtom, 0);
7677 parser.addFixup(src2, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinate, p);
7682 // <rdar://problem/9218847> track data-in-code
7683 if ( parser.hasDataInCodeLabels() && (this->type() == ld::Section::typeCode) ) {
7684 for (uint32_t i=0; i < parser.symbolCount(); ++i) {
7685 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
7686 // ignore stabs
7687 if ( (sym.n_type() & N_STAB) != 0 )
7688 continue;
7689 // ignore non-definitions
7690 if ( (sym.n_type() & N_TYPE) != N_SECT )
7691 continue;
7693 // 'L' labels do not denote atom breaks
7694 const char* symbolName = parser.nameFromSymbol(sym);
7695 if ( symbolName[0] == 'L' ) {
7696 if ( strncmp(symbolName, "L$start$", 8) == 0 ) {
7697 ld::Fixup::Kind kind = ld::Fixup::kindNone;
7698 if ( strncmp(&symbolName[8], "data$", 5) == 0 )
7699 kind = ld::Fixup::kindDataInCodeStartData;
7700 else if ( strncmp(&symbolName[8], "code$", 5) == 0 )
7701 kind = ld::Fixup::kindDataInCodeEnd;
7702 else if ( strncmp(&symbolName[8], "jt8$", 4) == 0 )
7703 kind = ld::Fixup::kindDataInCodeStartJT8;
7704 else if ( strncmp(&symbolName[8], "jt16$", 4) == 0 )
7705 kind = ld::Fixup::kindDataInCodeStartJT16;
7706 else if ( strncmp(&symbolName[8], "jt32$", 4) == 0 )
7707 kind = ld::Fixup::kindDataInCodeStartJT32;
7708 else if ( strncmp(&symbolName[8], "jta32$", 4) == 0 )
7709 kind = ld::Fixup::kindDataInCodeStartJTA32;
7710 else
7711 warning("unknown L$start$ label %s in file %s", symbolName, this->file().path());
7712 if ( kind != ld::Fixup::kindNone ) {
7713 Atom<A>* inAtom = parser.findAtomByAddress(sym.n_value());
7714 typename Parser<A>::SourceLocation src(inAtom, sym.n_value() - inAtom->objectAddress());
7715 parser.addFixup(src, ld::Fixup::k1of1, kind);
7722 // <rdar://problem/11150575> Handle LC_DATA_IN_CODE in object files
7723 if ( this->type() == ld::Section::typeCode ) {
7724 const pint_t startAddr = this->_machOSection->addr();
7725 const pint_t endAddr = startAddr + this->_machOSection->size();
7726 for ( const macho_data_in_code_entry<P>* p = parser.dataInCodeStart(); p != parser.dataInCodeEnd(); ++p ) {
7727 if ( (p->offset() >= startAddr) && (p->offset() < endAddr) ) {
7728 ld::Fixup::Kind kind = ld::Fixup::kindNone;
7729 switch ( p->kind() ) {
7730 case DICE_KIND_DATA:
7731 kind = ld::Fixup::kindDataInCodeStartData;
7732 break;
7733 case DICE_KIND_JUMP_TABLE8:
7734 kind = ld::Fixup::kindDataInCodeStartJT8;
7735 break;
7736 case DICE_KIND_JUMP_TABLE16:
7737 kind = ld::Fixup::kindDataInCodeStartJT16;
7738 break;
7739 case DICE_KIND_JUMP_TABLE32:
7740 kind = ld::Fixup::kindDataInCodeStartJT32;
7741 break;
7742 case DICE_KIND_ABS_JUMP_TABLE32:
7743 kind = ld::Fixup::kindDataInCodeStartJTA32;
7744 break;
7745 default:
7746 kind = ld::Fixup::kindDataInCodeStartData;
7747 warning("uknown LC_DATA_IN_CODE kind (%d) at offset 0x%08X", p->kind(), p->offset());
7748 break;
7750 Atom<A>* inAtom = parser.findAtomByAddress(p->offset());
7751 typename Parser<A>::SourceLocation srcStart(inAtom, p->offset() - inAtom->objectAddress());
7752 parser.addFixup(srcStart, ld::Fixup::k1of1, kind);
7753 typename Parser<A>::SourceLocation srcEnd(inAtom, p->offset() + p->length() - inAtom->objectAddress());
7754 parser.addFixup(srcEnd, ld::Fixup::k1of1, ld::Fixup::kindDataInCodeEnd);
7759 // <rdar://problem/11945700> convert linker optimization hints into internal format
7760 if ( this->type() == ld::Section::typeCode && parser.hasOptimizationHints() ) {
7761 const pint_t startAddr = this->_machOSection->addr();
7762 const pint_t endAddr = startAddr + this->_machOSection->size();
7763 for (const uint8_t* p = parser.optimizationHintsStart(); p < parser.optimizationHintsEnd(); ) {
7764 uint64_t addrs[4];
7765 int32_t kind = read_uleb128(&p, parser.optimizationHintsEnd());
7766 if ( kind == 0 ) // padding at end of loh buffer
7767 break;
7768 if ( kind == -1 ) {
7769 warning("malformed uleb128 kind in LC_LINKER_OPTIMIZATION_HINTS");
7770 break;
7772 int32_t count = read_uleb128(&p, parser.optimizationHintsEnd());
7773 if ( count == -1 ) {
7774 warning("malformed uleb128 count in LC_LINKER_OPTIMIZATION_HINTS");
7775 break;
7777 if ( count > 3 ) {
7778 warning("address count > 3 in LC_LINKER_OPTIMIZATION_HINTS");
7779 break;
7781 for (int32_t i=0; i < count; ++i) {
7782 addrs[i] = read_uleb128(&p, parser.optimizationHintsEnd());
7784 if ( (startAddr <= addrs[0]) && (addrs[0] < endAddr) ) {
7785 this->addLOH(parser, kind, count, addrs);
7786 //fprintf(stderr, "kind=%d", kind);
7787 //for (int32_t i=0; i < count; ++i) {
7788 // fprintf(stderr, ", addr=0x%08llX", addrs[i]);
7790 //fprintf(stderr, "\n");
7796 // add follow-on fixups for aliases
7797 if ( _hasAliases ) {
7798 for(Atom<A>* p = _beginAtoms; p < _endAtoms; ++p) {
7799 if ( p->isAlias() && ! this->addFollowOnFixups() ) {
7800 Atom<A>* targetOfAlias = &p[1];
7801 assert(p < &_endAtoms[-1]);
7802 assert(p->_objAddress == targetOfAlias->_objAddress);
7803 typename Parser<A>::SourceLocation src(p, 0);
7804 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, targetOfAlias);
7813 // main function used by linker to instantiate ld::Files
7815 ld::relocatable::File* parse(const uint8_t* fileContent, uint64_t fileLength,
7816 const char* path, time_t modTime, ld::File::Ordinal ordinal, const ParserOptions& opts)
7818 switch ( opts.architecture ) {
7819 #if SUPPORT_ARCH_x86_64
7820 case CPU_TYPE_X86_64:
7821 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) )
7822 return mach_o::relocatable::Parser<x86_64>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
7823 break;
7824 #endif
7825 #if SUPPORT_ARCH_i386
7826 case CPU_TYPE_I386:
7827 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) )
7828 return mach_o::relocatable::Parser<x86>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
7829 break;
7830 #endif
7831 #if SUPPORT_ARCH_arm_any
7832 case CPU_TYPE_ARM:
7833 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) )
7834 return mach_o::relocatable::Parser<arm>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
7835 break;
7836 #endif
7837 #if SUPPORT_ARCH_arm64
7838 case CPU_TYPE_ARM64:
7839 if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) )
7840 return mach_o::relocatable::Parser<arm64>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
7841 break;
7842 #endif
7844 return NULL;
7848 // used by archive reader to validate member object file
7850 bool isObjectFile(const uint8_t* fileContent, uint64_t fileLength, const ParserOptions& opts)
7852 switch ( opts.architecture ) {
7853 case CPU_TYPE_X86_64:
7854 return ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) );
7855 case CPU_TYPE_I386:
7856 return ( mach_o::relocatable::Parser<x86>::validFile(fileContent) );
7857 case CPU_TYPE_ARM:
7858 return ( mach_o::relocatable::Parser<arm>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) );
7859 case CPU_TYPE_ARM64:
7860 return ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) );
7862 return false;
7866 // used by linker to infer architecture when no -arch is on command line
7868 bool isObjectFile(const uint8_t* fileContent, cpu_type_t* result, cpu_subtype_t* subResult, Options::Platform* platform)
7870 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7871 *result = CPU_TYPE_X86_64;
7872 const macho_header<Pointer64<LittleEndian> >* header = (const macho_header<Pointer64<LittleEndian> >*)fileContent;
7873 *subResult = header->cpusubtype();
7874 *platform = Parser<x86_64>::findPlatform(header);
7875 return true;
7877 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) ) {
7878 const macho_header<Pointer32<LittleEndian> >* header = (const macho_header<Pointer32<LittleEndian> >*)fileContent;
7879 *result = CPU_TYPE_I386;
7880 *subResult = CPU_SUBTYPE_X86_ALL;
7881 *platform = Parser<x86>::findPlatform(header);
7882 return true;
7884 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7885 const macho_header<Pointer32<LittleEndian> >* header = (const macho_header<Pointer32<LittleEndian> >*)fileContent;
7886 *result = CPU_TYPE_ARM;
7887 *subResult = header->cpusubtype();
7888 *platform = Parser<arm>::findPlatform(header);
7889 return true;
7891 if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, false, 0) ) {
7892 const macho_header<Pointer64<LittleEndian> >* header = (const macho_header<Pointer64<LittleEndian> >*)fileContent;
7893 *result = CPU_TYPE_ARM64;
7894 *subResult = CPU_SUBTYPE_ARM64_ALL;
7895 *platform = Parser<arm64>::findPlatform(header);
7896 return true;
7898 return false;
7902 // used by linker is error messages to describe bad .o file
7904 const char* archName(const uint8_t* fileContent)
7906 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7907 return mach_o::relocatable::Parser<x86_64>::fileKind(fileContent);
7909 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) ) {
7910 return mach_o::relocatable::Parser<x86>::fileKind(fileContent);
7912 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7913 return mach_o::relocatable::Parser<arm>::fileKind(fileContent);
7915 return NULL;
7919 // Used by archive reader when -ObjC option is specified
7921 bool hasObjC2Categories(const uint8_t* fileContent)
7923 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7924 return mach_o::relocatable::Parser<x86_64>::hasObjC2Categories(fileContent);
7926 else if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7927 return mach_o::relocatable::Parser<arm>::hasObjC2Categories(fileContent);
7929 else if ( mach_o::relocatable::Parser<x86>::validFile(fileContent, false, 0) ) {
7930 return mach_o::relocatable::Parser<x86>::hasObjC2Categories(fileContent);
7932 #if SUPPORT_ARCH_arm64
7933 else if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, false, 0) ) {
7934 return mach_o::relocatable::Parser<arm64>::hasObjC2Categories(fileContent);
7936 #endif
7937 return false;
7941 // Used by archive reader when -ObjC option is specified
7943 bool hasObjC1Categories(const uint8_t* fileContent)
7945 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent, false, 0) ) {
7946 return mach_o::relocatable::Parser<x86>::hasObjC1Categories(fileContent);
7948 return false;
7952 // Used by bitcode obfuscator to get a list of non local symbols from object file
7954 bool getNonLocalSymbols(const uint8_t* fileContent, std::vector<const char*> &syms)
7956 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7957 return mach_o::relocatable::Parser<x86_64>::getNonLocalSymbols(fileContent, syms);
7959 else if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7960 return mach_o::relocatable::Parser<arm>::getNonLocalSymbols(fileContent, syms);
7962 else if ( mach_o::relocatable::Parser<x86>::validFile(fileContent, false, 0) ) {
7963 return mach_o::relocatable::Parser<x86>::getNonLocalSymbols(fileContent, syms);
7965 else if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, false, 0) ) {
7966 return mach_o::relocatable::Parser<arm64>::getNonLocalSymbols(fileContent, syms);
7968 return false;
7973 } // namespace relocatable
7974 } // namespace mach_o