1 /* $OpenBSD: sha2.c,v 1.23 2015/01/15 13:05:59 millert Exp $ */
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
7 * Copyright (c) 2000-2001, Aaron D. Gifford
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
37 #include <sys/types.h>
43 * UNROLLED TRANSFORM LOOP NOTE:
44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45 * loop version for the hash transform rounds (defined using macros
46 * later in this file). Either define on the command line, for example:
48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
52 * #define SHA2_UNROLL_TRANSFORM
56 #if defined(__amd64__) || defined(__i386__)
57 #define SHA2_UNROLL_TRANSFORM
61 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
65 * Please make sure that your system defines BYTE_ORDER. If your
66 * architecture is little-endian, make sure it also defines
67 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
70 * If your system does not define the above, then you can do so by
73 * #define LITTLE_ENDIAN 1234
74 * #define BIG_ENDIAN 4321
76 * And for little-endian machines, add:
78 * #define BYTE_ORDER LITTLE_ENDIAN
80 * Or for big-endian machines:
82 * #define BYTE_ORDER BIG_ENDIAN
84 * The FreeBSD machine this was written on defines BYTE_ORDER
85 * appropriately by including <sys/types.h> (which in turn includes
86 * <machine/endian.h> where the appropriate definitions are actually
89 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
90 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
94 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
95 /* NOTE: Most of these are in sha2.h */
96 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
97 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
98 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
99 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
101 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
102 #define BE_8_TO_32(dst, cp) do { \
103 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
104 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
107 #define BE_8_TO_64(dst, cp) do { \
108 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
109 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
110 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
111 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
114 #define BE_64_TO_8(cp, src) do { \
115 (cp)[0] = (src) >> 56; \
116 (cp)[1] = (src) >> 48; \
117 (cp)[2] = (src) >> 40; \
118 (cp)[3] = (src) >> 32; \
119 (cp)[4] = (src) >> 24; \
120 (cp)[5] = (src) >> 16; \
121 (cp)[6] = (src) >> 8; \
125 #define BE_32_TO_8(cp, src) do { \
126 (cp)[0] = (src) >> 24; \
127 (cp)[1] = (src) >> 16; \
128 (cp)[2] = (src) >> 8; \
133 * Macro for incrementally adding the unsigned 64-bit integer n to the
134 * unsigned 128-bit integer (represented using a two-element array of
137 #define ADDINC128(w,n) do { \
138 (w)[0] += (u_int64_t)(n); \
139 if ((w)[0] < (n)) { \
144 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
146 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
148 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
149 * S is a ROTATION) because the SHA-224/256/384/512 description document
150 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
151 * same "backwards" definition.
153 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
154 #define R(b,x) ((x) >> (b))
155 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
156 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
157 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
158 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
160 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
161 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
162 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
164 /* Four of six logical functions used in SHA-224 and SHA-256: */
165 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
166 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
167 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
168 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
170 /* Four of six logical functions used in SHA-384 and SHA-512: */
171 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
172 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
173 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
174 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
177 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
178 /* Hash constant words K for SHA-224 and SHA-256: */
179 static const u_int32_t K256
[64] = {
180 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
181 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
182 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
183 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
184 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
185 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
186 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
187 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
188 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
189 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
190 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
191 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
192 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
193 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
194 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
195 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
198 #if !defined(SHA2_SMALL)
199 /* Initial hash value H for SHA-224: */
200 static const u_int32_t sha224_initial_hash_value
[8] = {
212 /* Initial hash value H for SHA-256: */
213 static const u_int32_t sha256_initial_hash_value
[8] = {
224 /* Hash constant words K for SHA-384 and SHA-512: */
225 static const u_int64_t K512
[80] = {
226 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
227 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
228 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
229 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
230 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
231 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
232 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
233 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
234 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
235 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
236 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
237 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
238 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
239 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
240 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
241 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
242 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
243 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
244 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
245 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
246 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
247 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
248 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
249 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
250 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
251 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
252 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
253 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
254 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
255 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
256 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
257 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
258 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
259 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
260 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
261 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
262 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
263 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
264 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
265 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
268 /* Initial hash value H for SHA-512 */
269 static const u_int64_t sha512_initial_hash_value
[8] = {
270 0x6a09e667f3bcc908ULL
,
271 0xbb67ae8584caa73bULL
,
272 0x3c6ef372fe94f82bULL
,
273 0xa54ff53a5f1d36f1ULL
,
274 0x510e527fade682d1ULL
,
275 0x9b05688c2b3e6c1fULL
,
276 0x1f83d9abfb41bd6bULL
,
277 0x5be0cd19137e2179ULL
280 #if !defined(SHA2_SMALL)
281 /* Initial hash value H for SHA-384 */
282 static const u_int64_t sha384_initial_hash_value
[8] = {
283 0xcbbb9d5dc1059ed8ULL
,
284 0x629a292a367cd507ULL
,
285 0x9159015a3070dd17ULL
,
286 0x152fecd8f70e5939ULL
,
287 0x67332667ffc00b31ULL
,
288 0x8eb44a8768581511ULL
,
289 0xdb0c2e0d64f98fa7ULL
,
290 0x47b5481dbefa4fa4ULL
293 /*** SHA-224: *********************************************************/
295 SHA224Init(SHA2_CTX
*context
)
297 memcpy(context
->state
.st32
, sha224_initial_hash_value
,
298 sizeof(sha224_initial_hash_value
));
299 memset(context
->buffer
, 0, sizeof(context
->buffer
));
300 context
->bitcount
[0] = 0;
303 __weak_alias(SHA224Transform
, SHA256Transform
);
304 __weak_alias(SHA224Update
, SHA256Update
);
305 __weak_alias(SHA224Pad
, SHA256Pad
);
308 SHA224Final(u_int8_t digest
[SHA224_DIGEST_LENGTH
], SHA2_CTX
*context
)
312 #if BYTE_ORDER == LITTLE_ENDIAN
315 /* Convert TO host byte order */
316 for (i
= 0; i
< 7; i
++)
317 BE_32_TO_8(digest
+ i
* 4, context
->state
.st32
[i
]);
319 memcpy(digest
, context
->state
.st32
, SHA224_DIGEST_LENGTH
);
321 explicit_bzero(context
, sizeof(*context
));
323 #endif /* !defined(SHA2_SMALL) */
325 /*** SHA-256: *********************************************************/
327 SHA256Init(SHA2_CTX
*context
)
329 memcpy(context
->state
.st32
, sha256_initial_hash_value
,
330 sizeof(sha256_initial_hash_value
));
331 memset(context
->buffer
, 0, sizeof(context
->buffer
));
332 context
->bitcount
[0] = 0;
335 #ifdef SHA2_UNROLL_TRANSFORM
337 /* Unrolled SHA-256 round macros: */
339 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
340 BE_8_TO_32(W256[j], data); \
342 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
344 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
348 #define ROUND256(a,b,c,d,e,f,g,h) do { \
349 s0 = W256[(j+1)&0x0f]; \
350 s0 = sigma0_256(s0); \
351 s1 = W256[(j+14)&0x0f]; \
352 s1 = sigma1_256(s1); \
353 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
354 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
356 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
361 SHA256Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
363 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
364 u_int32_t T1
, W256
[16];
367 /* Initialize registers with the prev. intermediate value */
379 /* Rounds 0 to 15 (unrolled): */
380 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
381 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
382 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
383 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
384 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
385 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
386 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
387 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
390 /* Now for the remaining rounds up to 63: */
392 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
393 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
394 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
395 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
396 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
397 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
398 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
399 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
402 /* Compute the current intermediate hash value */
413 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
416 #else /* SHA2_UNROLL_TRANSFORM */
419 SHA256Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
421 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
422 u_int32_t T1
, T2
, W256
[16];
425 /* Initialize registers with the prev. intermediate value */
437 BE_8_TO_32(W256
[j
], data
);
439 /* Apply the SHA-256 compression function to update a..h */
440 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
441 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
455 /* Part of the message block expansion: */
456 s0
= W256
[(j
+1)&0x0f];
458 s1
= W256
[(j
+14)&0x0f];
461 /* Apply the SHA-256 compression function to update a..h */
462 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
463 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
464 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
477 /* Compute the current intermediate hash value */
488 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
491 #endif /* SHA2_UNROLL_TRANSFORM */
494 SHA256Update(SHA2_CTX
*context
, const u_int8_t
*data
, size_t len
)
496 size_t freespace
, usedspace
;
498 /* Calling with no data is valid (we do nothing) */
502 usedspace
= (context
->bitcount
[0] >> 3) % SHA256_BLOCK_LENGTH
;
504 /* Calculate how much free space is available in the buffer */
505 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
507 if (len
>= freespace
) {
508 /* Fill the buffer completely and process it */
509 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
510 context
->bitcount
[0] += freespace
<< 3;
513 SHA256Transform(context
->state
.st32
, context
->buffer
);
515 /* The buffer is not yet full */
516 memcpy(&context
->buffer
[usedspace
], data
, len
);
517 context
->bitcount
[0] += len
<< 3;
519 usedspace
= freespace
= 0;
523 while (len
>= SHA256_BLOCK_LENGTH
) {
524 /* Process as many complete blocks as we can */
525 SHA256Transform(context
->state
.st32
, data
);
526 context
->bitcount
[0] += SHA256_BLOCK_LENGTH
<< 3;
527 len
-= SHA256_BLOCK_LENGTH
;
528 data
+= SHA256_BLOCK_LENGTH
;
531 /* There's left-overs, so save 'em */
532 memcpy(context
->buffer
, data
, len
);
533 context
->bitcount
[0] += len
<< 3;
536 usedspace
= freespace
= 0;
540 SHA256Pad(SHA2_CTX
*context
)
542 unsigned int usedspace
;
544 usedspace
= (context
->bitcount
[0] >> 3) % SHA256_BLOCK_LENGTH
;
546 /* Begin padding with a 1 bit: */
547 context
->buffer
[usedspace
++] = 0x80;
549 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
550 /* Set-up for the last transform: */
551 memset(&context
->buffer
[usedspace
], 0,
552 SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
554 if (usedspace
< SHA256_BLOCK_LENGTH
) {
555 memset(&context
->buffer
[usedspace
], 0,
556 SHA256_BLOCK_LENGTH
- usedspace
);
558 /* Do second-to-last transform: */
559 SHA256Transform(context
->state
.st32
, context
->buffer
);
561 /* Prepare for last transform: */
562 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
565 /* Set-up for the last transform: */
566 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
568 /* Begin padding with a 1 bit: */
569 *context
->buffer
= 0x80;
571 /* Store the length of input data (in bits) in big endian format: */
572 BE_64_TO_8(&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
],
573 context
->bitcount
[0]);
575 /* Final transform: */
576 SHA256Transform(context
->state
.st32
, context
->buffer
);
583 SHA256Final(u_int8_t digest
[SHA256_DIGEST_LENGTH
], SHA2_CTX
*context
)
587 #if BYTE_ORDER == LITTLE_ENDIAN
590 /* Convert TO host byte order */
591 for (i
= 0; i
< 8; i
++)
592 BE_32_TO_8(digest
+ i
* 4, context
->state
.st32
[i
]);
594 memcpy(digest
, context
->state
.st32
, SHA256_DIGEST_LENGTH
);
596 explicit_bzero(context
, sizeof(*context
));
600 /*** SHA-512: *********************************************************/
602 SHA512Init(SHA2_CTX
*context
)
604 memcpy(context
->state
.st64
, sha512_initial_hash_value
,
605 sizeof(sha512_initial_hash_value
));
606 memset(context
->buffer
, 0, sizeof(context
->buffer
));
607 context
->bitcount
[0] = context
->bitcount
[1] = 0;
610 #ifdef SHA2_UNROLL_TRANSFORM
612 /* Unrolled SHA-512 round macros: */
614 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
615 BE_8_TO_64(W512[j], data); \
617 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
619 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
624 #define ROUND512(a,b,c,d,e,f,g,h) do { \
625 s0 = W512[(j+1)&0x0f]; \
626 s0 = sigma0_512(s0); \
627 s1 = W512[(j+14)&0x0f]; \
628 s1 = sigma1_512(s1); \
629 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
630 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
632 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
637 SHA512Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
639 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
640 u_int64_t T1
, W512
[16];
643 /* Initialize registers with the prev. intermediate value */
655 /* Rounds 0 to 15 (unrolled): */
656 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
657 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
658 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
659 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
660 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
661 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
662 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
663 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
666 /* Now for the remaining rounds up to 79: */
668 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
669 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
670 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
671 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
672 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
673 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
674 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
675 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
678 /* Compute the current intermediate hash value */
689 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
692 #else /* SHA2_UNROLL_TRANSFORM */
695 SHA512Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
697 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
698 u_int64_t T1
, T2
, W512
[16];
701 /* Initialize registers with the prev. intermediate value */
713 BE_8_TO_64(W512
[j
], data
);
715 /* Apply the SHA-512 compression function to update a..h */
716 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
717 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
731 /* Part of the message block expansion: */
732 s0
= W512
[(j
+1)&0x0f];
734 s1
= W512
[(j
+14)&0x0f];
737 /* Apply the SHA-512 compression function to update a..h */
738 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
739 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
740 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
753 /* Compute the current intermediate hash value */
764 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
767 #endif /* SHA2_UNROLL_TRANSFORM */
770 SHA512Update(SHA2_CTX
*context
, const u_int8_t
*data
, size_t len
)
772 size_t freespace
, usedspace
;
774 /* Calling with no data is valid (we do nothing) */
778 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
780 /* Calculate how much free space is available in the buffer */
781 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
783 if (len
>= freespace
) {
784 /* Fill the buffer completely and process it */
785 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
786 ADDINC128(context
->bitcount
, freespace
<< 3);
789 SHA512Transform(context
->state
.st64
, context
->buffer
);
791 /* The buffer is not yet full */
792 memcpy(&context
->buffer
[usedspace
], data
, len
);
793 ADDINC128(context
->bitcount
, len
<< 3);
795 usedspace
= freespace
= 0;
799 while (len
>= SHA512_BLOCK_LENGTH
) {
800 /* Process as many complete blocks as we can */
801 SHA512Transform(context
->state
.st64
, data
);
802 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
803 len
-= SHA512_BLOCK_LENGTH
;
804 data
+= SHA512_BLOCK_LENGTH
;
807 /* There's left-overs, so save 'em */
808 memcpy(context
->buffer
, data
, len
);
809 ADDINC128(context
->bitcount
, len
<< 3);
812 usedspace
= freespace
= 0;
816 SHA512Pad(SHA2_CTX
*context
)
818 unsigned int usedspace
;
820 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
822 /* Begin padding with a 1 bit: */
823 context
->buffer
[usedspace
++] = 0x80;
825 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
826 /* Set-up for the last transform: */
827 memset(&context
->buffer
[usedspace
], 0, SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
829 if (usedspace
< SHA512_BLOCK_LENGTH
) {
830 memset(&context
->buffer
[usedspace
], 0, SHA512_BLOCK_LENGTH
- usedspace
);
832 /* Do second-to-last transform: */
833 SHA512Transform(context
->state
.st64
, context
->buffer
);
835 /* And set-up for the last transform: */
836 memset(context
->buffer
, 0, SHA512_BLOCK_LENGTH
- 2);
839 /* Prepare for final transform: */
840 memset(context
->buffer
, 0, SHA512_SHORT_BLOCK_LENGTH
);
842 /* Begin padding with a 1 bit: */
843 *context
->buffer
= 0x80;
845 /* Store the length of input data (in bits) in big endian format: */
846 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
],
847 context
->bitcount
[1]);
848 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+ 8],
849 context
->bitcount
[0]);
851 /* Final transform: */
852 SHA512Transform(context
->state
.st64
, context
->buffer
);
859 SHA512Final(u_int8_t digest
[SHA512_DIGEST_LENGTH
], SHA2_CTX
*context
)
863 #if BYTE_ORDER == LITTLE_ENDIAN
866 /* Convert TO host byte order */
867 for (i
= 0; i
< 8; i
++)
868 BE_64_TO_8(digest
+ i
* 8, context
->state
.st64
[i
]);
870 memcpy(digest
, context
->state
.st64
, SHA512_DIGEST_LENGTH
);
872 explicit_bzero(context
, sizeof(*context
));
875 #if !defined(SHA2_SMALL)
877 /*** SHA-384: *********************************************************/
879 SHA384Init(SHA2_CTX
*context
)
881 memcpy(context
->state
.st64
, sha384_initial_hash_value
,
882 sizeof(sha384_initial_hash_value
));
883 memset(context
->buffer
, 0, sizeof(context
->buffer
));
884 context
->bitcount
[0] = context
->bitcount
[1] = 0;
887 __weak_alias(SHA384Transform
, SHA512Transform
);
888 __weak_alias(SHA384Update
, SHA512Update
);
889 __weak_alias(SHA384Pad
, SHA512Pad
);
892 SHA384Final(u_int8_t digest
[SHA384_DIGEST_LENGTH
], SHA2_CTX
*context
)
896 #if BYTE_ORDER == LITTLE_ENDIAN
899 /* Convert TO host byte order */
900 for (i
= 0; i
< 6; i
++)
901 BE_64_TO_8(digest
+ i
* 8, context
->state
.st64
[i
]);
903 memcpy(digest
, context
->state
.st64
, SHA384_DIGEST_LENGTH
);
905 /* Zero out state data */
906 explicit_bzero(context
, sizeof(*context
));
908 #endif /* !defined(SHA2_SMALL) */