maint: use new emit_try_help in place of equivalent fprintf
[coreutils/ericb.git] / src / tr.c
blob5dc065cf82bd27806a1c4203a8cd801cd05a6875
1 /* tr -- a filter to translate characters
2 Copyright (C) 1991, 1995-2012 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Jim Meyering */
19 #include <config.h>
21 #include <stdio.h>
22 #include <assert.h>
23 #include <sys/types.h>
24 #include <getopt.h>
26 #include "system.h"
27 #include "error.h"
28 #include "fadvise.h"
29 #include "quote.h"
30 #include "safe-read.h"
31 #include "xfreopen.h"
32 #include "xstrtol.h"
34 /* The official name of this program (e.g., no `g' prefix). */
35 #define PROGRAM_NAME "tr"
37 #define AUTHORS proper_name ("Jim Meyering")
39 enum { N_CHARS = UCHAR_MAX + 1 };
41 /* An unsigned integer type big enough to hold a repeat count or an
42 unsigned character. POSIX requires support for repeat counts as
43 high as 2**31 - 1. Since repeat counts might need to expand to
44 match the length of an argument string, we need at least size_t to
45 avoid arbitrary internal limits. It doesn't cost much to use
46 uintmax_t, though. */
47 typedef uintmax_t count;
49 /* The value for Spec_list->state that indicates to
50 get_next that it should initialize the tail pointer.
51 Its value should be as large as possible to avoid conflict
52 a valid value for the state field -- and that may be as
53 large as any valid repeat_count. */
54 #define BEGIN_STATE (UINTMAX_MAX - 1)
56 /* The value for Spec_list->state that indicates to
57 get_next that the element pointed to by Spec_list->tail is
58 being considered for the first time on this pass through the
59 list -- it indicates that get_next should make any necessary
60 initializations. */
61 #define NEW_ELEMENT (BEGIN_STATE + 1)
63 /* The maximum possible repeat count. Due to how the states are
64 implemented, it can be as much as BEGIN_STATE. */
65 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
67 /* The following (but not CC_NO_CLASS) are indices into the array of
68 valid character class strings. */
69 enum Char_class
71 CC_ALNUM = 0, CC_ALPHA = 1, CC_BLANK = 2, CC_CNTRL = 3,
72 CC_DIGIT = 4, CC_GRAPH = 5, CC_LOWER = 6, CC_PRINT = 7,
73 CC_PUNCT = 8, CC_SPACE = 9, CC_UPPER = 10, CC_XDIGIT = 11,
74 CC_NO_CLASS = 9999
77 /* Character class to which a character (returned by get_next) belonged;
78 but it is set only if the construct from which the character was obtained
79 was one of the character classes [:upper:] or [:lower:]. The value
80 is used only when translating and then, only to make sure that upper
81 and lower class constructs have the same relative positions in string1
82 and string2. */
83 enum Upper_Lower_class
85 UL_LOWER,
86 UL_UPPER,
87 UL_NONE
90 /* The type of a List_element. See build_spec_list for more details. */
91 enum Range_element_type
93 RE_NORMAL_CHAR,
94 RE_RANGE,
95 RE_CHAR_CLASS,
96 RE_EQUIV_CLASS,
97 RE_REPEATED_CHAR
100 /* One construct in one of tr's argument strings.
101 For example, consider the POSIX version of the classic tr command:
102 tr -cs 'a-zA-Z_' '[\n*]'
103 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
104 and a single normal character, `_'. String2 has one construct. */
105 struct List_element
107 enum Range_element_type type;
108 struct List_element *next;
109 union
111 unsigned char normal_char;
112 struct /* unnamed */
114 unsigned char first_char;
115 unsigned char last_char;
117 range;
118 enum Char_class char_class;
119 unsigned char equiv_code;
120 struct /* unnamed */
122 unsigned char the_repeated_char;
123 count repeat_count;
125 repeated_char;
130 /* Each of tr's argument strings is parsed into a form that is easier
131 to work with: a linked list of constructs (struct List_element).
132 Each Spec_list structure also encapsulates various attributes of
133 the corresponding argument string. The attributes are used mainly
134 to verify that the strings are valid in the context of any options
135 specified (like -s, -d, or -c). The main exception is the member
136 `tail', which is first used to construct the list. After construction,
137 it is used by get_next to save its state when traversing the list.
138 The member `state' serves a similar function. */
139 struct Spec_list
141 /* Points to the head of the list of range elements.
142 The first struct is a dummy; its members are never used. */
143 struct List_element *head;
145 /* When appending, points to the last element. When traversing via
146 get_next(), points to the element to process next. Setting
147 Spec_list.state to the value BEGIN_STATE before calling get_next
148 signals get_next to initialize tail to point to head->next. */
149 struct List_element *tail;
151 /* Used to save state between calls to get_next. */
152 count state;
154 /* Length, in the sense that length ('a-z[:digit:]123abc')
155 is 42 ( = 26 + 10 + 6). */
156 count length;
158 /* The number of [c*] and [c*0] constructs that appear in this spec. */
159 size_t n_indefinite_repeats;
161 /* If n_indefinite_repeats is nonzero, this points to the List_element
162 corresponding to the last [c*] or [c*0] construct encountered in
163 this spec. Otherwise it is undefined. */
164 struct List_element *indefinite_repeat_element;
166 /* True if this spec contains at least one equivalence
167 class construct e.g. [=c=]. */
168 bool has_equiv_class;
170 /* True if this spec contains at least one character class
171 construct. E.g. [:digit:]. */
172 bool has_char_class;
174 /* True if this spec contains at least one of the character class
175 constructs (all but upper and lower) that aren't allowed in s2. */
176 bool has_restricted_char_class;
179 /* A representation for escaped string1 or string2. As a string is parsed,
180 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
181 etc.) are marked as such in this structure by setting the corresponding
182 entry in the ESCAPED vector. */
183 struct E_string
185 char *s;
186 bool *escaped;
187 size_t len;
190 /* Return nonzero if the Ith character of escaped string ES matches C
191 and is not escaped itself. */
192 static inline bool
193 es_match (struct E_string const *es, size_t i, char c)
195 return es->s[i] == c && !es->escaped[i];
198 /* When true, each sequence in the input of a repeated character
199 (call it c) is replaced (in the output) by a single occurrence of c
200 for every c in the squeeze set. */
201 static bool squeeze_repeats = false;
203 /* When true, removes characters in the delete set from input. */
204 static bool delete = false;
206 /* Use the complement of set1 in place of set1. */
207 static bool complement = false;
209 /* When tr is performing translation and string1 is longer than string2,
210 POSIX says that the result is unspecified. That gives the implementor
211 of a POSIX conforming version of tr two reasonable choices for the
212 semantics of this case.
214 * The BSD tr pads string2 to the length of string1 by
215 repeating the last character in string2.
217 * System V tr ignores characters in string1 that have no
218 corresponding character in string2. That is, string1 is effectively
219 truncated to the length of string2.
221 When nonzero, this flag causes GNU tr to imitate the behavior
222 of System V tr when translating with string1 longer than string2.
223 The default is to emulate BSD tr. This flag is ignored in modes where
224 no translation is performed. Emulating the System V tr
225 in this exceptional case causes the relatively common BSD idiom:
227 tr -cs A-Za-z0-9 '\012'
229 to break (it would convert only zero bytes, rather than all
230 non-alphanumerics, to newlines).
232 WARNING: This switch does not provide general BSD or System V
233 compatibility. For example, it doesn't disable the interpretation
234 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
235 some unfortunate coincidence you use such constructs in scripts
236 expecting to use some other version of tr, the scripts will break. */
237 static bool truncate_set1 = false;
239 /* An alias for (!delete && non_option_args == 2).
240 It is set in main and used there and in validate(). */
241 static bool translating;
243 static char io_buf[BUFSIZ];
245 static char const *const char_class_name[] =
247 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
248 "lower", "print", "punct", "space", "upper", "xdigit"
251 /* Array of boolean values. A character `c' is a member of the
252 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
253 set is defined by the last (possibly, the only) string argument
254 on the command line when the squeeze option is given. */
255 static bool in_squeeze_set[N_CHARS];
257 /* Array of boolean values. A character `c' is a member of the
258 delete set if and only if in_delete_set[c] is true. The delete
259 set is defined by the first (or only) string argument on the
260 command line when the delete option is given. */
261 static bool in_delete_set[N_CHARS];
263 /* Array of character values defining the translation (if any) that
264 tr is to perform. Translation is performed only when there are
265 two specification strings and the delete switch is not given. */
266 static char xlate[N_CHARS];
268 static struct option const long_options[] =
270 {"complement", no_argument, NULL, 'c'},
271 {"delete", no_argument, NULL, 'd'},
272 {"squeeze-repeats", no_argument, NULL, 's'},
273 {"truncate-set1", no_argument, NULL, 't'},
274 {GETOPT_HELP_OPTION_DECL},
275 {GETOPT_VERSION_OPTION_DECL},
276 {NULL, 0, NULL, 0}
279 void
280 usage (int status)
282 if (status != EXIT_SUCCESS)
283 emit_try_help ();
284 else
286 printf (_("\
287 Usage: %s [OPTION]... SET1 [SET2]\n\
289 program_name);
290 fputs (_("\
291 Translate, squeeze, and/or delete characters from standard input,\n\
292 writing to standard output.\n\
294 -c, -C, --complement use the complement of SET1\n\
295 -d, --delete delete characters in SET1, do not translate\n\
296 -s, --squeeze-repeats replace each input sequence of a repeated character\n\
297 that is listed in SET1 with a single occurrence\n\
298 of that character\n\
299 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
300 "), stdout);
301 fputs (HELP_OPTION_DESCRIPTION, stdout);
302 fputs (VERSION_OPTION_DESCRIPTION, stdout);
303 fputs (_("\
305 SETs are specified as strings of characters. Most represent themselves.\n\
306 Interpreted sequences are:\n\
308 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
309 \\\\ backslash\n\
310 \\a audible BEL\n\
311 \\b backspace\n\
312 \\f form feed\n\
313 \\n new line\n\
314 \\r return\n\
315 \\t horizontal tab\n\
316 "), stdout);
317 fputs (_("\
318 \\v vertical tab\n\
319 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
320 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
321 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
322 [:alnum:] all letters and digits\n\
323 [:alpha:] all letters\n\
324 [:blank:] all horizontal whitespace\n\
325 [:cntrl:] all control characters\n\
326 [:digit:] all digits\n\
327 "), stdout);
328 fputs (_("\
329 [:graph:] all printable characters, not including space\n\
330 [:lower:] all lower case letters\n\
331 [:print:] all printable characters, including space\n\
332 [:punct:] all punctuation characters\n\
333 [:space:] all horizontal or vertical whitespace\n\
334 [:upper:] all upper case letters\n\
335 [:xdigit:] all hexadecimal digits\n\
336 [=CHAR=] all characters which are equivalent to CHAR\n\
337 "), stdout);
338 fputs (_("\
340 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
341 -t may be used only when translating. SET2 is extended to length of\n\
342 SET1 by repeating its last character as necessary. Excess characters\n\
343 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
344 expand in ascending order; used in SET2 while translating, they may\n\
345 only be used in pairs to specify case conversion. -s uses SET1 if not\n\
346 translating nor deleting; else squeezing uses SET2 and occurs after\n\
347 translation or deletion.\n\
348 "), stdout);
349 emit_ancillary_info ();
351 exit (status);
354 /* Return nonzero if the character C is a member of the
355 equivalence class containing the character EQUIV_CLASS. */
357 static inline bool
358 is_equiv_class_member (unsigned char equiv_class, unsigned char c)
360 return (equiv_class == c);
363 /* Return true if the character C is a member of the
364 character class CHAR_CLASS. */
366 static bool _GL_ATTRIBUTE_PURE
367 is_char_class_member (enum Char_class char_class, unsigned char c)
369 int result;
371 switch (char_class)
373 case CC_ALNUM:
374 result = isalnum (c);
375 break;
376 case CC_ALPHA:
377 result = isalpha (c);
378 break;
379 case CC_BLANK:
380 result = isblank (c);
381 break;
382 case CC_CNTRL:
383 result = iscntrl (c);
384 break;
385 case CC_DIGIT:
386 result = isdigit (c);
387 break;
388 case CC_GRAPH:
389 result = isgraph (c);
390 break;
391 case CC_LOWER:
392 result = islower (c);
393 break;
394 case CC_PRINT:
395 result = isprint (c);
396 break;
397 case CC_PUNCT:
398 result = ispunct (c);
399 break;
400 case CC_SPACE:
401 result = isspace (c);
402 break;
403 case CC_UPPER:
404 result = isupper (c);
405 break;
406 case CC_XDIGIT:
407 result = isxdigit (c);
408 break;
409 default:
410 abort ();
411 break;
414 return !! result;
417 static void
418 es_free (struct E_string *es)
420 free (es->s);
421 free (es->escaped);
424 /* Perform the first pass over each range-spec argument S, converting all
425 \c and \ddd escapes to their one-byte representations. If an invalid
426 quote sequence is found print an error message and return false;
427 Otherwise set *ES to the resulting string and return true.
428 The resulting array of characters may contain zero-bytes;
429 however, on input, S is assumed to be null-terminated, and hence
430 cannot contain actual (non-escaped) zero bytes. */
432 static bool
433 unquote (char const *s, struct E_string *es)
435 size_t i, j;
436 size_t len = strlen (s);
438 es->s = xmalloc (len);
439 es->escaped = xcalloc (len, sizeof es->escaped[0]);
441 j = 0;
442 for (i = 0; s[i]; i++)
444 unsigned char c;
445 int oct_digit;
447 switch (s[i])
449 case '\\':
450 es->escaped[j] = true;
451 switch (s[i + 1])
453 case '\\':
454 c = '\\';
455 break;
456 case 'a':
457 c = '\a';
458 break;
459 case 'b':
460 c = '\b';
461 break;
462 case 'f':
463 c = '\f';
464 break;
465 case 'n':
466 c = '\n';
467 break;
468 case 'r':
469 c = '\r';
470 break;
471 case 't':
472 c = '\t';
473 break;
474 case 'v':
475 c = '\v';
476 break;
477 case '0':
478 case '1':
479 case '2':
480 case '3':
481 case '4':
482 case '5':
483 case '6':
484 case '7':
485 c = s[i + 1] - '0';
486 oct_digit = s[i + 2] - '0';
487 if (0 <= oct_digit && oct_digit <= 7)
489 c = 8 * c + oct_digit;
490 ++i;
491 oct_digit = s[i + 2] - '0';
492 if (0 <= oct_digit && oct_digit <= 7)
494 if (8 * c + oct_digit < N_CHARS)
496 c = 8 * c + oct_digit;
497 ++i;
499 else
501 /* A 3-digit octal number larger than \377 won't
502 fit in 8 bits. So we stop when adding the
503 next digit would put us over the limit and
504 give a warning about the ambiguity. POSIX
505 isn't clear on this, and we interpret this
506 lack of clarity as meaning the resulting behavior
507 is undefined, which means we're allowed to issue
508 a warning. */
509 error (0, 0, _("warning: the ambiguous octal escape \
510 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
511 s[i], s[i + 1], s[i + 2],
512 s[i], s[i + 1], s[i + 2]);
516 break;
517 case '\0':
518 error (0, 0, _("warning: an unescaped backslash "
519 "at end of string is not portable"));
520 /* POSIX is not clear about this. */
521 es->escaped[j] = false;
522 i--;
523 c = '\\';
524 break;
525 default:
526 c = s[i + 1];
527 break;
529 ++i;
530 es->s[j++] = c;
531 break;
532 default:
533 es->s[j++] = s[i];
534 break;
537 es->len = j;
538 return true;
541 /* If CLASS_STR is a valid character class string, return its index
542 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
544 static enum Char_class _GL_ATTRIBUTE_PURE
545 look_up_char_class (char const *class_str, size_t len)
547 enum Char_class i;
549 for (i = 0; i < ARRAY_CARDINALITY (char_class_name); i++)
550 if (STREQ_LEN (class_str, char_class_name[i], len)
551 && strlen (char_class_name[i]) == len)
552 return i;
553 return CC_NO_CLASS;
556 /* Return a newly allocated string with a printable version of C.
557 This function is used solely for formatting error messages. */
559 static char *
560 make_printable_char (unsigned char c)
562 char *buf = xmalloc (5);
564 if (isprint (c))
566 buf[0] = c;
567 buf[1] = '\0';
569 else
571 sprintf (buf, "\\%03o", c);
573 return buf;
576 /* Return a newly allocated copy of S which is suitable for printing.
577 LEN is the number of characters in S. Most non-printing
578 (isprint) characters are represented by a backslash followed by
579 3 octal digits. However, the characters represented by \c escapes
580 where c is one of [abfnrtv] are represented by their 2-character \c
581 sequences. This function is used solely for printing error messages. */
583 static char *
584 make_printable_str (char const *s, size_t len)
586 /* Worst case is that every character expands to a backslash
587 followed by a 3-character octal escape sequence. */
588 char *printable_buf = xnmalloc (len + 1, 4);
589 char *p = printable_buf;
590 size_t i;
592 for (i = 0; i < len; i++)
594 char buf[5];
595 char const *tmp = NULL;
596 unsigned char c = s[i];
598 switch (c)
600 case '\\':
601 tmp = "\\";
602 break;
603 case '\a':
604 tmp = "\\a";
605 break;
606 case '\b':
607 tmp = "\\b";
608 break;
609 case '\f':
610 tmp = "\\f";
611 break;
612 case '\n':
613 tmp = "\\n";
614 break;
615 case '\r':
616 tmp = "\\r";
617 break;
618 case '\t':
619 tmp = "\\t";
620 break;
621 case '\v':
622 tmp = "\\v";
623 break;
624 default:
625 if (isprint (c))
627 buf[0] = c;
628 buf[1] = '\0';
630 else
631 sprintf (buf, "\\%03o", c);
632 tmp = buf;
633 break;
635 p = stpcpy (p, tmp);
637 return printable_buf;
640 /* Append a newly allocated structure representing a
641 character C to the specification list LIST. */
643 static void
644 append_normal_char (struct Spec_list *list, unsigned char c)
646 struct List_element *new;
648 new = xmalloc (sizeof *new);
649 new->next = NULL;
650 new->type = RE_NORMAL_CHAR;
651 new->u.normal_char = c;
652 assert (list->tail);
653 list->tail->next = new;
654 list->tail = new;
657 /* Append a newly allocated structure representing the range
658 of characters from FIRST to LAST to the specification list LIST.
659 Return false if LAST precedes FIRST in the collating sequence,
660 true otherwise. This means that '[c-c]' is acceptable. */
662 static bool
663 append_range (struct Spec_list *list, unsigned char first, unsigned char last)
665 struct List_element *new;
667 if (last < first)
669 char *tmp1 = make_printable_char (first);
670 char *tmp2 = make_printable_char (last);
672 error (0, 0,
673 _("range-endpoints of `%s-%s' are in reverse collating sequence order"),
674 tmp1, tmp2);
675 free (tmp1);
676 free (tmp2);
677 return false;
679 new = xmalloc (sizeof *new);
680 new->next = NULL;
681 new->type = RE_RANGE;
682 new->u.range.first_char = first;
683 new->u.range.last_char = last;
684 assert (list->tail);
685 list->tail->next = new;
686 list->tail = new;
687 return true;
690 /* If CHAR_CLASS_STR is a valid character class string, append a
691 newly allocated structure representing that character class to the end
692 of the specification list LIST and return true. If CHAR_CLASS_STR is not
693 a valid string return false. */
695 static bool
696 append_char_class (struct Spec_list *list,
697 char const *char_class_str, size_t len)
699 enum Char_class char_class;
700 struct List_element *new;
702 char_class = look_up_char_class (char_class_str, len);
703 if (char_class == CC_NO_CLASS)
704 return false;
705 new = xmalloc (sizeof *new);
706 new->next = NULL;
707 new->type = RE_CHAR_CLASS;
708 new->u.char_class = char_class;
709 assert (list->tail);
710 list->tail->next = new;
711 list->tail = new;
712 return true;
715 /* Append a newly allocated structure representing a [c*n]
716 repeated character construct to the specification list LIST.
717 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
718 is a non-negative repeat count. */
720 static void
721 append_repeated_char (struct Spec_list *list, unsigned char the_char,
722 count repeat_count)
724 struct List_element *new;
726 new = xmalloc (sizeof *new);
727 new->next = NULL;
728 new->type = RE_REPEATED_CHAR;
729 new->u.repeated_char.the_repeated_char = the_char;
730 new->u.repeated_char.repeat_count = repeat_count;
731 assert (list->tail);
732 list->tail->next = new;
733 list->tail = new;
736 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
737 the length of that string, LEN, if LEN is exactly one, append
738 a newly allocated structure representing the specified
739 equivalence class to the specification list, LIST and return true.
740 If LEN is not 1, return false. */
742 static bool
743 append_equiv_class (struct Spec_list *list,
744 char const *equiv_class_str, size_t len)
746 struct List_element *new;
748 if (len != 1)
749 return false;
750 new = xmalloc (sizeof *new);
751 new->next = NULL;
752 new->type = RE_EQUIV_CLASS;
753 new->u.equiv_code = *equiv_class_str;
754 assert (list->tail);
755 list->tail->next = new;
756 list->tail = new;
757 return true;
760 /* Search forward starting at START_IDX for the 2-char sequence
761 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
762 a sequence is found, set *RESULT_IDX to the index of the first
763 character and return true. Otherwise return false. P may contain
764 zero bytes. */
766 static bool
767 find_closing_delim (const struct E_string *es, size_t start_idx,
768 char pre_bracket_char, size_t *result_idx)
770 size_t i;
772 for (i = start_idx; i < es->len - 1; i++)
773 if (es->s[i] == pre_bracket_char && es->s[i + 1] == ']'
774 && !es->escaped[i] && !es->escaped[i + 1])
776 *result_idx = i;
777 return true;
779 return false;
782 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
783 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
784 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
785 and return zero. If the second character following
786 the opening bracket is not `*' or if no closing bracket can be
787 found, return -1. If a closing bracket is found and the
788 second char is `*', but the string between the `*' and `]' isn't
789 empty, an octal number, or a decimal number, print an error message
790 and return -2. */
792 static int
793 find_bracketed_repeat (const struct E_string *es, size_t start_idx,
794 unsigned char *char_to_repeat, count *repeat_count,
795 size_t *closing_bracket_idx)
797 size_t i;
799 assert (start_idx + 1 < es->len);
800 if (!es_match (es, start_idx + 1, '*'))
801 return -1;
803 for (i = start_idx + 2; i < es->len && !es->escaped[i]; i++)
805 if (es->s[i] == ']')
807 size_t digit_str_len = i - start_idx - 2;
809 *char_to_repeat = es->s[start_idx];
810 if (digit_str_len == 0)
812 /* We've matched [c*] -- no explicit repeat count. */
813 *repeat_count = 0;
815 else
817 /* Here, we have found [c*s] where s should be a string
818 of octal (if it starts with `0') or decimal digits. */
819 char const *digit_str = &es->s[start_idx + 2];
820 char *d_end;
821 if ((xstrtoumax (digit_str, &d_end, *digit_str == '0' ? 8 : 10,
822 repeat_count, NULL)
823 != LONGINT_OK)
824 || REPEAT_COUNT_MAXIMUM < *repeat_count
825 || digit_str + digit_str_len != d_end)
827 char *tmp = make_printable_str (digit_str, digit_str_len);
828 error (0, 0,
829 _("invalid repeat count %s in [c*n] construct"),
830 quote (tmp));
831 free (tmp);
832 return -2;
835 *closing_bracket_idx = i;
836 return 0;
839 return -1; /* No bracket found. */
842 /* Return true if the string at ES->s[IDX] matches the regular
843 expression `\*[0-9]*\]', false otherwise. The string does not
844 match if any of its characters are escaped. */
846 static bool _GL_ATTRIBUTE_PURE
847 star_digits_closebracket (const struct E_string *es, size_t idx)
849 size_t i;
851 if (!es_match (es, idx, '*'))
852 return false;
854 for (i = idx + 1; i < es->len; i++)
855 if (!ISDIGIT (to_uchar (es->s[i])) || es->escaped[i])
856 return es_match (es, i, ']');
857 return false;
860 /* Convert string UNESCAPED_STRING (which has been preprocessed to
861 convert backslash-escape sequences) of length LEN characters into
862 a linked list of the following 5 types of constructs:
863 - [:str:] Character class where `str' is one of the 12 valid strings.
864 - [=c=] Equivalence class where `c' is any single character.
865 - [c*n] Repeat the single character `c' `n' times. n may be omitted.
866 However, if `n' is present, it must be a non-negative octal or
867 decimal integer.
868 - r-s Range of characters from `r' to `s'. The second endpoint must
869 not precede the first in the current collating sequence.
870 - c Any other character is interpreted as itself. */
872 static bool
873 build_spec_list (const struct E_string *es, struct Spec_list *result)
875 char const *p;
876 size_t i;
878 p = es->s;
880 /* The main for-loop below recognizes the 4 multi-character constructs.
881 A character that matches (in its context) none of the multi-character
882 constructs is classified as `normal'. Since all multi-character
883 constructs have at least 3 characters, any strings of length 2 or
884 less are composed solely of normal characters. Hence, the index of
885 the outer for-loop runs only as far as LEN-2. */
887 for (i = 0; i + 2 < es->len; /* empty */)
889 if (es_match (es, i, '['))
891 bool matched_multi_char_construct;
892 size_t closing_bracket_idx;
893 unsigned char char_to_repeat;
894 count repeat_count;
895 int err;
897 matched_multi_char_construct = true;
898 if (es_match (es, i + 1, ':') || es_match (es, i + 1, '='))
900 size_t closing_delim_idx;
902 if (find_closing_delim (es, i + 2, p[i + 1], &closing_delim_idx))
904 size_t opnd_str_len = closing_delim_idx - 1 - (i + 2) + 1;
905 char const *opnd_str = p + i + 2;
907 if (opnd_str_len == 0)
909 if (p[i + 1] == ':')
910 error (0, 0, _("missing character class name `[::]'"));
911 else
912 error (0, 0,
913 _("missing equivalence class character `[==]'"));
914 return false;
917 if (p[i + 1] == ':')
919 /* FIXME: big comment. */
920 if (!append_char_class (result, opnd_str, opnd_str_len))
922 if (star_digits_closebracket (es, i + 2))
923 goto try_bracketed_repeat;
924 else
926 char *tmp = make_printable_str (opnd_str,
927 opnd_str_len);
928 error (0, 0, _("invalid character class %s"),
929 quote (tmp));
930 free (tmp);
931 return false;
935 else
937 /* FIXME: big comment. */
938 if (!append_equiv_class (result, opnd_str, opnd_str_len))
940 if (star_digits_closebracket (es, i + 2))
941 goto try_bracketed_repeat;
942 else
944 char *tmp = make_printable_str (opnd_str,
945 opnd_str_len);
946 error (0, 0,
947 _("%s: equivalence class operand must be a single character"),
948 tmp);
949 free (tmp);
950 return false;
955 i = closing_delim_idx + 2;
956 continue;
958 /* Else fall through. This could be [:*] or [=*]. */
961 try_bracketed_repeat:
963 /* Determine whether this is a bracketed repeat range
964 matching the RE \[.\*(dec_or_oct_number)?\]. */
965 err = find_bracketed_repeat (es, i + 1, &char_to_repeat,
966 &repeat_count,
967 &closing_bracket_idx);
968 if (err == 0)
970 append_repeated_char (result, char_to_repeat, repeat_count);
971 i = closing_bracket_idx + 1;
973 else if (err == -1)
975 matched_multi_char_construct = false;
977 else
979 /* Found a string that looked like [c*n] but the
980 numeric part was invalid. */
981 return false;
984 if (matched_multi_char_construct)
985 continue;
987 /* We reach this point if P does not match [:str:], [=c=],
988 [c*n], or [c*]. Now, see if P looks like a range `[-c'
989 (from `[' to `c'). */
992 /* Look ahead one char for ranges like a-z. */
993 if (es_match (es, i + 1, '-'))
995 if (!append_range (result, p[i], p[i + 2]))
996 return false;
997 i += 3;
999 else
1001 append_normal_char (result, p[i]);
1002 ++i;
1006 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1007 for (; i < es->len; i++)
1008 append_normal_char (result, p[i]);
1010 return true;
1013 /* Advance past the current construct.
1014 S->tail must be non-NULL. */
1015 static void
1016 skip_construct (struct Spec_list *s)
1018 s->tail = s->tail->next;
1019 s->state = NEW_ELEMENT;
1022 /* Given a Spec_list S (with its saved state implicit in the values
1023 of its members `tail' and `state'), return the next single character
1024 in the expansion of S's constructs. If the last character of S was
1025 returned on the previous call or if S was empty, this function
1026 returns -1. For example, successive calls to get_next where S
1027 represents the spec-string 'a-d[y*3]' will return the sequence
1028 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1029 which the returned character comes is [:upper:] or [:lower:], the
1030 parameter CLASS is given a value to indicate which it was. Otherwise
1031 CLASS is set to UL_NONE. This value is used only when constructing
1032 the translation table to verify that any occurrences of upper and
1033 lower class constructs in the spec-strings appear in the same relative
1034 positions. */
1036 static int
1037 get_next (struct Spec_list *s, enum Upper_Lower_class *class)
1039 struct List_element *p;
1040 int return_val;
1041 int i;
1043 if (class)
1044 *class = UL_NONE;
1046 if (s->state == BEGIN_STATE)
1048 s->tail = s->head->next;
1049 s->state = NEW_ELEMENT;
1052 p = s->tail;
1053 if (p == NULL)
1054 return -1;
1056 switch (p->type)
1058 case RE_NORMAL_CHAR:
1059 return_val = p->u.normal_char;
1060 s->state = NEW_ELEMENT;
1061 s->tail = p->next;
1062 break;
1064 case RE_RANGE:
1065 if (s->state == NEW_ELEMENT)
1066 s->state = p->u.range.first_char;
1067 else
1068 ++(s->state);
1069 return_val = s->state;
1070 if (s->state == p->u.range.last_char)
1072 s->tail = p->next;
1073 s->state = NEW_ELEMENT;
1075 break;
1077 case RE_CHAR_CLASS:
1078 if (class)
1080 switch (p->u.char_class)
1082 case CC_LOWER:
1083 *class = UL_LOWER;
1084 break;
1085 case CC_UPPER:
1086 *class = UL_UPPER;
1087 break;
1088 default:
1089 break;
1093 if (s->state == NEW_ELEMENT)
1095 for (i = 0; i < N_CHARS; i++)
1096 if (is_char_class_member (p->u.char_class, i))
1097 break;
1098 assert (i < N_CHARS);
1099 s->state = i;
1101 assert (is_char_class_member (p->u.char_class, s->state));
1102 return_val = s->state;
1103 for (i = s->state + 1; i < N_CHARS; i++)
1104 if (is_char_class_member (p->u.char_class, i))
1105 break;
1106 if (i < N_CHARS)
1107 s->state = i;
1108 else
1110 s->tail = p->next;
1111 s->state = NEW_ELEMENT;
1113 break;
1115 case RE_EQUIV_CLASS:
1116 /* FIXME: this assumes that each character is alone in its own
1117 equivalence class (which appears to be correct for my
1118 LC_COLLATE. But I don't know of any function that allows
1119 one to determine a character's equivalence class. */
1121 return_val = p->u.equiv_code;
1122 s->state = NEW_ELEMENT;
1123 s->tail = p->next;
1124 break;
1126 case RE_REPEATED_CHAR:
1127 /* Here, a repeat count of n == 0 means don't repeat at all. */
1128 if (p->u.repeated_char.repeat_count == 0)
1130 s->tail = p->next;
1131 s->state = NEW_ELEMENT;
1132 return_val = get_next (s, class);
1134 else
1136 if (s->state == NEW_ELEMENT)
1138 s->state = 0;
1140 ++(s->state);
1141 return_val = p->u.repeated_char.the_repeated_char;
1142 if (s->state == p->u.repeated_char.repeat_count)
1144 s->tail = p->next;
1145 s->state = NEW_ELEMENT;
1148 break;
1150 default:
1151 abort ();
1152 break;
1155 return return_val;
1158 /* This is a minor kludge. This function is called from
1159 get_spec_stats to determine the cardinality of a set derived
1160 from a complemented string. It's a kludge in that some of the
1161 same operations are (duplicated) performed in set_initialize. */
1163 static int
1164 card_of_complement (struct Spec_list *s)
1166 int c;
1167 int cardinality = N_CHARS;
1168 bool in_set[N_CHARS] = { 0, };
1170 s->state = BEGIN_STATE;
1171 while ((c = get_next (s, NULL)) != -1)
1173 cardinality -= (!in_set[c]);
1174 in_set[c] = true;
1176 return cardinality;
1179 /* Discard the lengths associated with a case conversion,
1180 as using the actual number of upper or lower case characters
1181 is problematic when they don't match in some locales.
1182 Also ensure the case conversion classes in string2 are
1183 aligned correctly with those in string1.
1184 Note POSIX says the behavior of `tr "[:upper:]" "[:upper:]"'
1185 is undefined. Therefore we allow it (unlike Solaris)
1186 and treat it as a no-op. */
1188 static void
1189 validate_case_classes (struct Spec_list *s1, struct Spec_list *s2)
1191 size_t n_upper = 0;
1192 size_t n_lower = 0;
1193 unsigned int i;
1194 int c1 = 0;
1195 int c2 = 0;
1196 count old_s1_len = s1->length;
1197 count old_s2_len = s2->length;
1198 struct List_element *s1_tail = s1->tail;
1199 struct List_element *s2_tail = s2->tail;
1200 bool s1_new_element = true;
1201 bool s2_new_element = true;
1203 if (!s2->has_char_class)
1204 return;
1206 for (i = 0; i < N_CHARS; i++)
1208 if (isupper (i))
1209 n_upper++;
1210 if (islower (i))
1211 n_lower++;
1214 s1->state = BEGIN_STATE;
1215 s2->state = BEGIN_STATE;
1217 while (c1 != -1 && c2 != -1)
1219 enum Upper_Lower_class class_s1, class_s2;
1221 c1 = get_next (s1, &class_s1);
1222 c2 = get_next (s2, &class_s2);
1224 /* If c2 transitions to a new case class, then
1225 c1 must also transition at the same time. */
1226 if (s2_new_element && class_s2 != UL_NONE
1227 && !(s1_new_element && class_s1 != UL_NONE))
1228 error (EXIT_FAILURE, 0,
1229 _("misaligned [:upper:] and/or [:lower:] construct"));
1231 /* If case converting, quickly skip over the elements. */
1232 if (class_s2 != UL_NONE)
1234 skip_construct (s1);
1235 skip_construct (s2);
1236 /* Discount insignificant/problematic lengths. */
1237 s1->length -= (class_s1 == UL_UPPER ? n_upper : n_lower) - 1;
1238 s2->length -= (class_s2 == UL_UPPER ? n_upper : n_lower) - 1;
1241 s1_new_element = s1->state == NEW_ELEMENT; /* Next element is new. */
1242 s2_new_element = s2->state == NEW_ELEMENT; /* Next element is new. */
1245 assert (old_s1_len >= s1->length && old_s2_len >= s2->length);
1247 s1->tail = s1_tail;
1248 s2->tail = s2_tail;
1251 /* Gather statistics about the spec-list S in preparation for the tests
1252 in validate that determine the consistency of the specs. This function
1253 is called at most twice; once for string1, and again for any string2.
1254 LEN_S1 < 0 indicates that this is the first call and that S represents
1255 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1256 constructs in string1, and we can use its value to resolve any
1257 indefinite repeat construct in S (which represents string2). Hence,
1258 this function has the side-effect that it converts a valid [c*]
1259 construct in string2 to [c*n] where n is large enough (or 0) to give
1260 string2 the same length as string1. For example, with the command
1261 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1262 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1264 static void
1265 get_spec_stats (struct Spec_list *s)
1267 struct List_element *p;
1268 count length = 0;
1270 s->n_indefinite_repeats = 0;
1271 s->has_equiv_class = false;
1272 s->has_restricted_char_class = false;
1273 s->has_char_class = false;
1274 for (p = s->head->next; p; p = p->next)
1276 int i;
1277 count len = 0;
1278 count new_length;
1280 switch (p->type)
1282 case RE_NORMAL_CHAR:
1283 len = 1;
1284 break;
1286 case RE_RANGE:
1287 assert (p->u.range.last_char >= p->u.range.first_char);
1288 len = p->u.range.last_char - p->u.range.first_char + 1;
1289 break;
1291 case RE_CHAR_CLASS:
1292 s->has_char_class = true;
1293 for (i = 0; i < N_CHARS; i++)
1294 if (is_char_class_member (p->u.char_class, i))
1295 ++len;
1296 switch (p->u.char_class)
1298 case CC_UPPER:
1299 case CC_LOWER:
1300 break;
1301 default:
1302 s->has_restricted_char_class = true;
1303 break;
1305 break;
1307 case RE_EQUIV_CLASS:
1308 for (i = 0; i < N_CHARS; i++)
1309 if (is_equiv_class_member (p->u.equiv_code, i))
1310 ++len;
1311 s->has_equiv_class = true;
1312 break;
1314 case RE_REPEATED_CHAR:
1315 if (p->u.repeated_char.repeat_count > 0)
1316 len = p->u.repeated_char.repeat_count;
1317 else
1319 s->indefinite_repeat_element = p;
1320 ++(s->n_indefinite_repeats);
1322 break;
1324 default:
1325 abort ();
1326 break;
1329 /* Check for arithmetic overflow in computing length. Also, reject
1330 any length greater than the maximum repeat count, in case the
1331 length is later used to compute the repeat count for an
1332 indefinite element. */
1333 new_length = length + len;
1334 if (! (length <= new_length && new_length <= REPEAT_COUNT_MAXIMUM))
1335 error (EXIT_FAILURE, 0, _("too many characters in set"));
1336 length = new_length;
1339 s->length = length;
1342 static void
1343 get_s1_spec_stats (struct Spec_list *s1)
1345 get_spec_stats (s1);
1346 if (complement)
1347 s1->length = card_of_complement (s1);
1350 static void
1351 get_s2_spec_stats (struct Spec_list *s2, count len_s1)
1353 get_spec_stats (s2);
1354 if (len_s1 >= s2->length && s2->n_indefinite_repeats == 1)
1356 s2->indefinite_repeat_element->u.repeated_char.repeat_count =
1357 len_s1 - s2->length;
1358 s2->length = len_s1;
1362 static void
1363 spec_init (struct Spec_list *spec_list)
1365 struct List_element *new = xmalloc (sizeof *new);
1366 spec_list->head = spec_list->tail = new;
1367 spec_list->head->next = NULL;
1370 /* This function makes two passes over the argument string S. The first
1371 one converts all \c and \ddd escapes to their one-byte representations.
1372 The second constructs a linked specification list, SPEC_LIST, of the
1373 characters and constructs that comprise the argument string. If either
1374 of these passes detects an error, this function returns false. */
1376 static bool
1377 parse_str (char const *s, struct Spec_list *spec_list)
1379 struct E_string es;
1380 bool ok = unquote (s, &es) && build_spec_list (&es, spec_list);
1381 es_free (&es);
1382 return ok;
1385 /* Given two specification lists, S1 and S2, and assuming that
1386 S1->length > S2->length, append a single [c*n] element to S2 where c
1387 is the last character in the expansion of S2 and n is the difference
1388 between the two lengths.
1389 Upon successful completion, S2->length is set to S1->length. The only
1390 way this function can fail to make S2 as long as S1 is when S2 has
1391 zero-length, since in that case, there is no last character to repeat.
1392 So S2->length is required to be at least 1. */
1395 static void
1396 string2_extend (const struct Spec_list *s1, struct Spec_list *s2)
1398 struct List_element *p;
1399 unsigned char char_to_repeat;
1401 assert (translating);
1402 assert (s1->length > s2->length);
1403 assert (s2->length > 0);
1405 p = s2->tail;
1406 switch (p->type)
1408 case RE_NORMAL_CHAR:
1409 char_to_repeat = p->u.normal_char;
1410 break;
1411 case RE_RANGE:
1412 char_to_repeat = p->u.range.last_char;
1413 break;
1414 case RE_CHAR_CLASS:
1415 /* Note BSD allows extending of classes in string2. For example:
1416 tr '[:upper:]0-9' '[:lower:]'
1417 That's not portable however, contradicts POSIX and is dependent
1418 on your collating sequence. */
1419 error (EXIT_FAILURE, 0,
1420 _("when translating with string1 longer than string2,\n\
1421 the latter string must not end with a character class"));
1422 abort (); /* inform gcc that the above use of error never returns. */
1423 break;
1425 case RE_REPEATED_CHAR:
1426 char_to_repeat = p->u.repeated_char.the_repeated_char;
1427 break;
1429 case RE_EQUIV_CLASS:
1430 /* This shouldn't happen, because validate exits with an error
1431 if it finds an equiv class in string2 when translating. */
1432 abort ();
1433 break;
1435 default:
1436 abort ();
1437 break;
1440 append_repeated_char (s2, char_to_repeat, s1->length - s2->length);
1441 s2->length = s1->length;
1444 /* Return true if S is a non-empty list in which exactly one
1445 character (but potentially, many instances of it) appears.
1446 E.g., [X*] or xxxxxxxx. */
1448 static bool
1449 homogeneous_spec_list (struct Spec_list *s)
1451 int b, c;
1453 s->state = BEGIN_STATE;
1455 if ((b = get_next (s, NULL)) == -1)
1456 return false;
1458 while ((c = get_next (s, NULL)) != -1)
1459 if (c != b)
1460 return false;
1462 return true;
1465 /* Die with an error message if S1 and S2 describe strings that
1466 are not valid with the given command line switches.
1467 A side effect of this function is that if a valid [c*] or
1468 [c*0] construct appears in string2, it is converted to [c*n]
1469 with a value for n that makes s2->length == s1->length. By
1470 the same token, if the --truncate-set1 option is not
1471 given, S2 may be extended. */
1473 static void
1474 validate (struct Spec_list *s1, struct Spec_list *s2)
1476 get_s1_spec_stats (s1);
1477 if (s1->n_indefinite_repeats > 0)
1479 error (EXIT_FAILURE, 0,
1480 _("the [c*] repeat construct may not appear in string1"));
1483 if (s2)
1485 get_s2_spec_stats (s2, s1->length);
1487 if (s2->n_indefinite_repeats > 1)
1489 error (EXIT_FAILURE, 0,
1490 _("only one [c*] repeat construct may appear in string2"));
1493 if (translating)
1495 if (s2->has_equiv_class)
1497 error (EXIT_FAILURE, 0,
1498 _("[=c=] expressions may not appear in string2 \
1499 when translating"));
1502 if (s2->has_restricted_char_class)
1504 error (EXIT_FAILURE, 0,
1505 _("when translating, the only character classes that may \
1506 appear in\nstring2 are `upper' and `lower'"));
1509 validate_case_classes (s1, s2);
1511 if (s1->length > s2->length)
1513 if (!truncate_set1)
1515 /* string2 must be non-empty unless --truncate-set1 is
1516 given or string1 is empty. */
1518 if (s2->length == 0)
1519 error (EXIT_FAILURE, 0,
1520 _("when not truncating set1, string2 must be non-empty"));
1521 string2_extend (s1, s2);
1525 if (complement && s1->has_char_class
1526 && ! (s2->length == s1->length && homogeneous_spec_list (s2)))
1528 error (EXIT_FAILURE, 0,
1529 _("when translating with complemented character classes,\
1530 \nstring2 must map all characters in the domain to one"));
1533 else
1534 /* Not translating. */
1536 if (s2->n_indefinite_repeats > 0)
1537 error (EXIT_FAILURE, 0,
1538 _("the [c*] construct may appear in string2 only \
1539 when translating"));
1544 /* Read buffers of SIZE bytes via the function READER (if READER is
1545 NULL, read from stdin) until EOF. When non-NULL, READER is either
1546 read_and_delete or read_and_xlate. After each buffer is read, it is
1547 processed and written to stdout. The buffers are processed so that
1548 multiple consecutive occurrences of the same character in the input
1549 stream are replaced by a single occurrence of that character if the
1550 character is in the squeeze set. */
1552 static void
1553 squeeze_filter (char *buf, size_t size, size_t (*reader) (char *, size_t))
1555 /* A value distinct from any character that may have been stored in a
1556 buffer as the result of a block-read in the function squeeze_filter. */
1557 const int NOT_A_CHAR = INT_MAX;
1559 int char_to_squeeze = NOT_A_CHAR;
1560 size_t i = 0;
1561 size_t nr = 0;
1563 while (true)
1565 size_t begin;
1567 if (i >= nr)
1569 nr = reader (buf, size);
1570 if (nr == 0)
1571 break;
1572 i = 0;
1575 begin = i;
1577 if (char_to_squeeze == NOT_A_CHAR)
1579 size_t out_len;
1580 /* Here, by being a little tricky, we can get a significant
1581 performance increase in most cases when the input is
1582 reasonably large. Since tr will modify the input only
1583 if two consecutive (and identical) input characters are
1584 in the squeeze set, we can step by two through the data
1585 when searching for a character in the squeeze set. This
1586 means there may be a little more work in a few cases and
1587 perhaps twice as much work in the worst cases where most
1588 of the input is removed by squeezing repeats. But most
1589 uses of this functionality seem to remove less than 20-30%
1590 of the input. */
1591 for (; i < nr && !in_squeeze_set[to_uchar (buf[i])]; i += 2)
1592 continue;
1594 /* There is a special case when i == nr and we've just
1595 skipped a character (the last one in buf) that is in
1596 the squeeze set. */
1597 if (i == nr && in_squeeze_set[to_uchar (buf[i - 1])])
1598 --i;
1600 if (i >= nr)
1601 out_len = nr - begin;
1602 else
1604 char_to_squeeze = buf[i];
1605 /* We're about to output buf[begin..i]. */
1606 out_len = i - begin + 1;
1608 /* But since we stepped by 2 in the loop above,
1609 out_len may be one too large. */
1610 if (i > 0 && buf[i - 1] == char_to_squeeze)
1611 --out_len;
1613 /* Advance i to the index of first character to be
1614 considered when looking for a char different from
1615 char_to_squeeze. */
1616 ++i;
1618 if (out_len > 0
1619 && fwrite (&buf[begin], 1, out_len, stdout) != out_len)
1620 error (EXIT_FAILURE, errno, _("write error"));
1623 if (char_to_squeeze != NOT_A_CHAR)
1625 /* Advance i to index of first char != char_to_squeeze
1626 (or to nr if all the rest of the characters in this
1627 buffer are the same as char_to_squeeze). */
1628 for (; i < nr && buf[i] == char_to_squeeze; i++)
1629 continue;
1630 if (i < nr)
1631 char_to_squeeze = NOT_A_CHAR;
1632 /* If (i >= nr) we've squeezed the last character in this buffer.
1633 So now we have to read a new buffer and continue comparing
1634 characters against char_to_squeeze. */
1639 static size_t
1640 plain_read (char *buf, size_t size)
1642 size_t nr = safe_read (STDIN_FILENO, buf, size);
1643 if (nr == SAFE_READ_ERROR)
1644 error (EXIT_FAILURE, errno, _("read error"));
1645 return nr;
1648 /* Read buffers of SIZE bytes from stdin until one is found that
1649 contains at least one character not in the delete set. Store
1650 in the array BUF, all characters from that buffer that are not
1651 in the delete set, and return the number of characters saved
1652 or 0 upon EOF. */
1654 static size_t
1655 read_and_delete (char *buf, size_t size)
1657 size_t n_saved;
1659 /* This enclosing do-while loop is to make sure that
1660 we don't return zero (indicating EOF) when we've
1661 just deleted all the characters in a buffer. */
1664 size_t i;
1665 size_t nr = plain_read (buf, size);
1667 if (nr == 0)
1668 return 0;
1670 /* This first loop may be a waste of code, but gives much
1671 better performance when no characters are deleted in
1672 the beginning of a buffer. It just avoids the copying
1673 of buf[i] into buf[n_saved] when it would be a NOP. */
1675 for (i = 0; i < nr && !in_delete_set[to_uchar (buf[i])]; i++)
1676 continue;
1677 n_saved = i;
1679 for (++i; i < nr; i++)
1680 if (!in_delete_set[to_uchar (buf[i])])
1681 buf[n_saved++] = buf[i];
1683 while (n_saved == 0);
1685 return n_saved;
1688 /* Read at most SIZE bytes from stdin into the array BUF. Then
1689 perform the in-place and one-to-one mapping specified by the global
1690 array `xlate'. Return the number of characters read, or 0 upon EOF. */
1692 static size_t
1693 read_and_xlate (char *buf, size_t size)
1695 size_t bytes_read = plain_read (buf, size);
1696 size_t i;
1698 for (i = 0; i < bytes_read; i++)
1699 buf[i] = xlate[to_uchar (buf[i])];
1701 return bytes_read;
1704 /* Initialize a boolean membership set, IN_SET, with the character
1705 values obtained by traversing the linked list of constructs S
1706 using the function `get_next'. IN_SET is expected to have been
1707 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1708 is true the resulting set is complemented. */
1710 static void
1711 set_initialize (struct Spec_list *s, bool complement_this_set, bool *in_set)
1713 int c;
1714 size_t i;
1716 s->state = BEGIN_STATE;
1717 while ((c = get_next (s, NULL)) != -1)
1718 in_set[c] = true;
1719 if (complement_this_set)
1720 for (i = 0; i < N_CHARS; i++)
1721 in_set[i] = (!in_set[i]);
1725 main (int argc, char **argv)
1727 int c;
1728 int non_option_args;
1729 int min_operands;
1730 int max_operands;
1731 struct Spec_list buf1, buf2;
1732 struct Spec_list *s1 = &buf1;
1733 struct Spec_list *s2 = &buf2;
1735 initialize_main (&argc, &argv);
1736 set_program_name (argv[0]);
1737 setlocale (LC_ALL, "");
1738 bindtextdomain (PACKAGE, LOCALEDIR);
1739 textdomain (PACKAGE);
1741 atexit (close_stdout);
1743 while ((c = getopt_long (argc, argv, "+cCdst", long_options, NULL)) != -1)
1745 switch (c)
1747 case 'c':
1748 case 'C':
1749 complement = true;
1750 break;
1752 case 'd':
1753 delete = true;
1754 break;
1756 case 's':
1757 squeeze_repeats = true;
1758 break;
1760 case 't':
1761 truncate_set1 = true;
1762 break;
1764 case_GETOPT_HELP_CHAR;
1766 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
1768 default:
1769 usage (EXIT_FAILURE);
1770 break;
1774 non_option_args = argc - optind;
1775 translating = (non_option_args == 2 && !delete);
1776 min_operands = 1 + (delete == squeeze_repeats);
1777 max_operands = 1 + (delete <= squeeze_repeats);
1779 if (non_option_args < min_operands)
1781 if (non_option_args == 0)
1782 error (0, 0, _("missing operand"));
1783 else
1785 error (0, 0, _("missing operand after %s"), quote (argv[argc - 1]));
1786 fprintf (stderr, "%s\n",
1787 _(squeeze_repeats
1788 ? N_("Two strings must be given when "
1789 "both deleting and squeezing repeats.")
1790 : N_("Two strings must be given when translating.")));
1792 usage (EXIT_FAILURE);
1795 if (max_operands < non_option_args)
1797 error (0, 0, _("extra operand %s"), quote (argv[optind + max_operands]));
1798 if (non_option_args == 2)
1799 fprintf (stderr, "%s\n",
1800 _("Only one string may be given when "
1801 "deleting without squeezing repeats."));
1802 usage (EXIT_FAILURE);
1805 spec_init (s1);
1806 if (!parse_str (argv[optind], s1))
1807 exit (EXIT_FAILURE);
1809 if (non_option_args == 2)
1811 spec_init (s2);
1812 if (!parse_str (argv[optind + 1], s2))
1813 exit (EXIT_FAILURE);
1815 else
1816 s2 = NULL;
1818 validate (s1, s2);
1820 /* Use binary I/O, since `tr' is sometimes used to transliterate
1821 non-printable characters, or characters which are stripped away
1822 by text-mode reads (like CR and ^Z). */
1823 if (O_BINARY && ! isatty (STDIN_FILENO))
1824 xfreopen (NULL, "rb", stdin);
1825 if (O_BINARY && ! isatty (STDOUT_FILENO))
1826 xfreopen (NULL, "wb", stdout);
1828 fadvise (stdin, FADVISE_SEQUENTIAL);
1830 if (squeeze_repeats && non_option_args == 1)
1832 set_initialize (s1, complement, in_squeeze_set);
1833 squeeze_filter (io_buf, sizeof io_buf, plain_read);
1835 else if (delete && non_option_args == 1)
1837 set_initialize (s1, complement, in_delete_set);
1839 while (true)
1841 size_t nr = read_and_delete (io_buf, sizeof io_buf);
1842 if (nr == 0)
1843 break;
1844 if (fwrite (io_buf, 1, nr, stdout) != nr)
1845 error (EXIT_FAILURE, errno, _("write error"));
1848 else if (squeeze_repeats && delete && non_option_args == 2)
1850 set_initialize (s1, complement, in_delete_set);
1851 set_initialize (s2, false, in_squeeze_set);
1852 squeeze_filter (io_buf, sizeof io_buf, read_and_delete);
1854 else if (translating)
1856 if (complement)
1858 int i;
1859 bool *in_s1 = in_delete_set;
1861 set_initialize (s1, false, in_s1);
1862 s2->state = BEGIN_STATE;
1863 for (i = 0; i < N_CHARS; i++)
1864 xlate[i] = i;
1865 for (i = 0; i < N_CHARS; i++)
1867 if (!in_s1[i])
1869 int ch = get_next (s2, NULL);
1870 assert (ch != -1 || truncate_set1);
1871 if (ch == -1)
1873 /* This will happen when tr is invoked like e.g.
1874 tr -cs A-Za-z0-9 '\012'. */
1875 break;
1877 xlate[i] = ch;
1881 else
1883 int c1, c2;
1884 int i;
1885 enum Upper_Lower_class class_s1;
1886 enum Upper_Lower_class class_s2;
1888 for (i = 0; i < N_CHARS; i++)
1889 xlate[i] = i;
1890 s1->state = BEGIN_STATE;
1891 s2->state = BEGIN_STATE;
1892 while (true)
1894 c1 = get_next (s1, &class_s1);
1895 c2 = get_next (s2, &class_s2);
1897 if (class_s1 == UL_LOWER && class_s2 == UL_UPPER)
1899 for (i = 0; i < N_CHARS; i++)
1900 if (islower (i))
1901 xlate[i] = toupper (i);
1903 else if (class_s1 == UL_UPPER && class_s2 == UL_LOWER)
1905 for (i = 0; i < N_CHARS; i++)
1906 if (isupper (i))
1907 xlate[i] = tolower (i);
1909 else
1911 /* The following should have been checked by validate... */
1912 if (c1 == -1 || c2 == -1)
1913 break;
1914 xlate[c1] = c2;
1917 /* When case-converting, skip the elements as an optimization. */
1918 if (class_s2 != UL_NONE)
1920 skip_construct (s1);
1921 skip_construct (s2);
1924 assert (c1 == -1 || truncate_set1);
1926 if (squeeze_repeats)
1928 set_initialize (s2, false, in_squeeze_set);
1929 squeeze_filter (io_buf, sizeof io_buf, read_and_xlate);
1931 else
1933 while (true)
1935 size_t bytes_read = read_and_xlate (io_buf, sizeof io_buf);
1936 if (bytes_read == 0)
1937 break;
1938 if (fwrite (io_buf, 1, bytes_read, stdout) != bytes_read)
1939 error (EXIT_FAILURE, errno, _("write error"));
1944 if (close (STDIN_FILENO) != 0)
1945 error (EXIT_FAILURE, errno, _("standard input"));
1947 exit (EXIT_SUCCESS);