1 /* tr -- a filter to translate characters
2 Copyright (C) 1991, 1995-2011 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Jim Meyering */
23 #include <sys/types.h>
30 #include "safe-read.h"
34 /* The official name of this program (e.g., no `g' prefix). */
35 #define PROGRAM_NAME "tr"
37 #define AUTHORS proper_name ("Jim Meyering")
39 enum { N_CHARS
= UCHAR_MAX
+ 1 };
41 /* An unsigned integer type big enough to hold a repeat count or an
42 unsigned character. POSIX requires support for repeat counts as
43 high as 2**31 - 1. Since repeat counts might need to expand to
44 match the length of an argument string, we need at least size_t to
45 avoid arbitrary internal limits. It doesn't cost much to use
47 typedef uintmax_t count
;
49 /* The value for Spec_list->state that indicates to
50 get_next that it should initialize the tail pointer.
51 Its value should be as large as possible to avoid conflict
52 a valid value for the state field -- and that may be as
53 large as any valid repeat_count. */
54 #define BEGIN_STATE (UINTMAX_MAX - 1)
56 /* The value for Spec_list->state that indicates to
57 get_next that the element pointed to by Spec_list->tail is
58 being considered for the first time on this pass through the
59 list -- it indicates that get_next should make any necessary
61 #define NEW_ELEMENT (BEGIN_STATE + 1)
63 /* The maximum possible repeat count. Due to how the states are
64 implemented, it can be as much as BEGIN_STATE. */
65 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
67 /* The following (but not CC_NO_CLASS) are indices into the array of
68 valid character class strings. */
71 CC_ALNUM
= 0, CC_ALPHA
= 1, CC_BLANK
= 2, CC_CNTRL
= 3,
72 CC_DIGIT
= 4, CC_GRAPH
= 5, CC_LOWER
= 6, CC_PRINT
= 7,
73 CC_PUNCT
= 8, CC_SPACE
= 9, CC_UPPER
= 10, CC_XDIGIT
= 11,
77 /* Character class to which a character (returned by get_next) belonged;
78 but it is set only if the construct from which the character was obtained
79 was one of the character classes [:upper:] or [:lower:]. The value
80 is used only when translating and then, only to make sure that upper
81 and lower class constructs have the same relative positions in string1
83 enum Upper_Lower_class
90 /* The type of a List_element. See build_spec_list for more details. */
91 enum Range_element_type
100 /* One construct in one of tr's argument strings.
101 For example, consider the POSIX version of the classic tr command:
102 tr -cs 'a-zA-Z_' '[\n*]'
103 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
104 and a single normal character, `_'. String2 has one construct. */
107 enum Range_element_type type
;
108 struct List_element
*next
;
111 unsigned char normal_char
;
114 unsigned char first_char
;
115 unsigned char last_char
;
118 enum Char_class char_class
;
119 unsigned char equiv_code
;
122 unsigned char the_repeated_char
;
130 /* Each of tr's argument strings is parsed into a form that is easier
131 to work with: a linked list of constructs (struct List_element).
132 Each Spec_list structure also encapsulates various attributes of
133 the corresponding argument string. The attributes are used mainly
134 to verify that the strings are valid in the context of any options
135 specified (like -s, -d, or -c). The main exception is the member
136 `tail', which is first used to construct the list. After construction,
137 it is used by get_next to save its state when traversing the list.
138 The member `state' serves a similar function. */
141 /* Points to the head of the list of range elements.
142 The first struct is a dummy; its members are never used. */
143 struct List_element
*head
;
145 /* When appending, points to the last element. When traversing via
146 get_next(), points to the element to process next. Setting
147 Spec_list.state to the value BEGIN_STATE before calling get_next
148 signals get_next to initialize tail to point to head->next. */
149 struct List_element
*tail
;
151 /* Used to save state between calls to get_next. */
154 /* Length, in the sense that length ('a-z[:digit:]123abc')
155 is 42 ( = 26 + 10 + 6). */
158 /* The number of [c*] and [c*0] constructs that appear in this spec. */
159 size_t n_indefinite_repeats
;
161 /* If n_indefinite_repeats is nonzero, this points to the List_element
162 corresponding to the last [c*] or [c*0] construct encountered in
163 this spec. Otherwise it is undefined. */
164 struct List_element
*indefinite_repeat_element
;
166 /* True if this spec contains at least one equivalence
167 class construct e.g. [=c=]. */
168 bool has_equiv_class
;
170 /* True if this spec contains at least one character class
171 construct. E.g. [:digit:]. */
174 /* True if this spec contains at least one of the character class
175 constructs (all but upper and lower) that aren't allowed in s2. */
176 bool has_restricted_char_class
;
179 /* A representation for escaped string1 or string2. As a string is parsed,
180 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
181 etc.) are marked as such in this structure by setting the corresponding
182 entry in the ESCAPED vector. */
190 /* Return nonzero if the Ith character of escaped string ES matches C
191 and is not escaped itself. */
193 es_match (struct E_string
const *es
, size_t i
, char c
)
195 return es
->s
[i
] == c
&& !es
->escaped
[i
];
198 /* When true, each sequence in the input of a repeated character
199 (call it c) is replaced (in the output) by a single occurrence of c
200 for every c in the squeeze set. */
201 static bool squeeze_repeats
= false;
203 /* When true, removes characters in the delete set from input. */
204 static bool delete = false;
206 /* Use the complement of set1 in place of set1. */
207 static bool complement
= false;
209 /* When tr is performing translation and string1 is longer than string2,
210 POSIX says that the result is unspecified. That gives the implementor
211 of a POSIX conforming version of tr two reasonable choices for the
212 semantics of this case.
214 * The BSD tr pads string2 to the length of string1 by
215 repeating the last character in string2.
217 * System V tr ignores characters in string1 that have no
218 corresponding character in string2. That is, string1 is effectively
219 truncated to the length of string2.
221 When nonzero, this flag causes GNU tr to imitate the behavior
222 of System V tr when translating with string1 longer than string2.
223 The default is to emulate BSD tr. This flag is ignored in modes where
224 no translation is performed. Emulating the System V tr
225 in this exceptional case causes the relatively common BSD idiom:
227 tr -cs A-Za-z0-9 '\012'
229 to break (it would convert only zero bytes, rather than all
230 non-alphanumerics, to newlines).
232 WARNING: This switch does not provide general BSD or System V
233 compatibility. For example, it doesn't disable the interpretation
234 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
235 some unfortunate coincidence you use such constructs in scripts
236 expecting to use some other version of tr, the scripts will break. */
237 static bool truncate_set1
= false;
239 /* An alias for (!delete && non_option_args == 2).
240 It is set in main and used there and in validate(). */
241 static bool translating
;
243 static char io_buf
[BUFSIZ
];
245 static char const *const char_class_name
[] =
247 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
248 "lower", "print", "punct", "space", "upper", "xdigit"
251 /* Array of boolean values. A character `c' is a member of the
252 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
253 set is defined by the last (possibly, the only) string argument
254 on the command line when the squeeze option is given. */
255 static bool in_squeeze_set
[N_CHARS
];
257 /* Array of boolean values. A character `c' is a member of the
258 delete set if and only if in_delete_set[c] is true. The delete
259 set is defined by the first (or only) string argument on the
260 command line when the delete option is given. */
261 static bool in_delete_set
[N_CHARS
];
263 /* Array of character values defining the translation (if any) that
264 tr is to perform. Translation is performed only when there are
265 two specification strings and the delete switch is not given. */
266 static char xlate
[N_CHARS
];
268 static struct option
const long_options
[] =
270 {"complement", no_argument
, NULL
, 'c'},
271 {"delete", no_argument
, NULL
, 'd'},
272 {"squeeze-repeats", no_argument
, NULL
, 's'},
273 {"truncate-set1", no_argument
, NULL
, 't'},
274 {GETOPT_HELP_OPTION_DECL
},
275 {GETOPT_VERSION_OPTION_DECL
},
282 if (status
!= EXIT_SUCCESS
)
283 fprintf (stderr
, _("Try `%s --help' for more information.\n"),
288 Usage: %s [OPTION]... SET1 [SET2]\n\
292 Translate, squeeze, and/or delete characters from standard input,\n\
293 writing to standard output.\n\
295 -c, -C, --complement use the complement of SET1\n\
296 -d, --delete delete characters in SET1, do not translate\n\
297 -s, --squeeze-repeats replace each input sequence of a repeated character\n\
298 that is listed in SET1 with a single occurrence\n\
300 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
302 fputs (HELP_OPTION_DESCRIPTION
, stdout
);
303 fputs (VERSION_OPTION_DESCRIPTION
, stdout
);
306 SETs are specified as strings of characters. Most represent themselves.\n\
307 Interpreted sequences are:\n\
309 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
316 \\t horizontal tab\n\
320 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
321 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
322 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
323 [:alnum:] all letters and digits\n\
324 [:alpha:] all letters\n\
325 [:blank:] all horizontal whitespace\n\
326 [:cntrl:] all control characters\n\
327 [:digit:] all digits\n\
330 [:graph:] all printable characters, not including space\n\
331 [:lower:] all lower case letters\n\
332 [:print:] all printable characters, including space\n\
333 [:punct:] all punctuation characters\n\
334 [:space:] all horizontal or vertical whitespace\n\
335 [:upper:] all upper case letters\n\
336 [:xdigit:] all hexadecimal digits\n\
337 [=CHAR=] all characters which are equivalent to CHAR\n\
341 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
342 -t may be used only when translating. SET2 is extended to length of\n\
343 SET1 by repeating its last character as necessary. Excess characters\n\
344 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
345 expand in ascending order; used in SET2 while translating, they may\n\
346 only be used in pairs to specify case conversion. -s uses SET1 if not\n\
347 translating nor deleting; else squeezing uses SET2 and occurs after\n\
348 translation or deletion.\n\
350 emit_ancillary_info ();
355 /* Return nonzero if the character C is a member of the
356 equivalence class containing the character EQUIV_CLASS. */
359 is_equiv_class_member (unsigned char equiv_class
, unsigned char c
)
361 return (equiv_class
== c
);
364 /* Return true if the character C is a member of the
365 character class CHAR_CLASS. */
367 static bool _GL_ATTRIBUTE_PURE
368 is_char_class_member (enum Char_class char_class
, unsigned char c
)
375 result
= isalnum (c
);
378 result
= isalpha (c
);
381 result
= isblank (c
);
384 result
= iscntrl (c
);
387 result
= isdigit (c
);
390 result
= isgraph (c
);
393 result
= islower (c
);
396 result
= isprint (c
);
399 result
= ispunct (c
);
402 result
= isspace (c
);
405 result
= isupper (c
);
408 result
= isxdigit (c
);
419 es_free (struct E_string
*es
)
425 /* Perform the first pass over each range-spec argument S, converting all
426 \c and \ddd escapes to their one-byte representations. If an invalid
427 quote sequence is found print an error message and return false;
428 Otherwise set *ES to the resulting string and return true.
429 The resulting array of characters may contain zero-bytes;
430 however, on input, S is assumed to be null-terminated, and hence
431 cannot contain actual (non-escaped) zero bytes. */
434 unquote (char const *s
, struct E_string
*es
)
437 size_t len
= strlen (s
);
439 es
->s
= xmalloc (len
);
440 es
->escaped
= xcalloc (len
, sizeof es
->escaped
[0]);
443 for (i
= 0; s
[i
]; i
++)
451 es
->escaped
[j
] = true;
487 oct_digit
= s
[i
+ 2] - '0';
488 if (0 <= oct_digit
&& oct_digit
<= 7)
490 c
= 8 * c
+ oct_digit
;
492 oct_digit
= s
[i
+ 2] - '0';
493 if (0 <= oct_digit
&& oct_digit
<= 7)
495 if (8 * c
+ oct_digit
< N_CHARS
)
497 c
= 8 * c
+ oct_digit
;
502 /* A 3-digit octal number larger than \377 won't
503 fit in 8 bits. So we stop when adding the
504 next digit would put us over the limit and
505 give a warning about the ambiguity. POSIX
506 isn't clear on this, and we interpret this
507 lack of clarity as meaning the resulting behavior
508 is undefined, which means we're allowed to issue
510 error (0, 0, _("warning: the ambiguous octal escape \
511 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
512 s
[i
], s
[i
+ 1], s
[i
+ 2],
513 s
[i
], s
[i
+ 1], s
[i
+ 2]);
519 error (0, 0, _("warning: an unescaped backslash "
520 "at end of string is not portable"));
521 /* POSIX is not clear about this. */
522 es
->escaped
[j
] = false;
542 /* If CLASS_STR is a valid character class string, return its index
543 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
545 static enum Char_class _GL_ATTRIBUTE_PURE
546 look_up_char_class (char const *class_str
, size_t len
)
550 for (i
= 0; i
< ARRAY_CARDINALITY (char_class_name
); i
++)
551 if (STREQ_LEN (class_str
, char_class_name
[i
], len
)
552 && strlen (char_class_name
[i
]) == len
)
557 /* Return a newly allocated string with a printable version of C.
558 This function is used solely for formatting error messages. */
561 make_printable_char (unsigned char c
)
563 char *buf
= xmalloc (5);
572 sprintf (buf
, "\\%03o", c
);
577 /* Return a newly allocated copy of S which is suitable for printing.
578 LEN is the number of characters in S. Most non-printing
579 (isprint) characters are represented by a backslash followed by
580 3 octal digits. However, the characters represented by \c escapes
581 where c is one of [abfnrtv] are represented by their 2-character \c
582 sequences. This function is used solely for printing error messages. */
585 make_printable_str (char const *s
, size_t len
)
587 /* Worst case is that every character expands to a backslash
588 followed by a 3-character octal escape sequence. */
589 char *printable_buf
= xnmalloc (len
+ 1, 4);
590 char *p
= printable_buf
;
593 for (i
= 0; i
< len
; i
++)
596 char const *tmp
= NULL
;
597 unsigned char c
= s
[i
];
632 sprintf (buf
, "\\%03o", c
);
638 return printable_buf
;
641 /* Append a newly allocated structure representing a
642 character C to the specification list LIST. */
645 append_normal_char (struct Spec_list
*list
, unsigned char c
)
647 struct List_element
*new;
649 new = xmalloc (sizeof *new);
651 new->type
= RE_NORMAL_CHAR
;
652 new->u
.normal_char
= c
;
654 list
->tail
->next
= new;
658 /* Append a newly allocated structure representing the range
659 of characters from FIRST to LAST to the specification list LIST.
660 Return false if LAST precedes FIRST in the collating sequence,
661 true otherwise. This means that '[c-c]' is acceptable. */
664 append_range (struct Spec_list
*list
, unsigned char first
, unsigned char last
)
666 struct List_element
*new;
670 char *tmp1
= make_printable_char (first
);
671 char *tmp2
= make_printable_char (last
);
674 _("range-endpoints of `%s-%s' are in reverse collating sequence order"),
680 new = xmalloc (sizeof *new);
682 new->type
= RE_RANGE
;
683 new->u
.range
.first_char
= first
;
684 new->u
.range
.last_char
= last
;
686 list
->tail
->next
= new;
691 /* If CHAR_CLASS_STR is a valid character class string, append a
692 newly allocated structure representing that character class to the end
693 of the specification list LIST and return true. If CHAR_CLASS_STR is not
694 a valid string return false. */
697 append_char_class (struct Spec_list
*list
,
698 char const *char_class_str
, size_t len
)
700 enum Char_class char_class
;
701 struct List_element
*new;
703 char_class
= look_up_char_class (char_class_str
, len
);
704 if (char_class
== CC_NO_CLASS
)
706 new = xmalloc (sizeof *new);
708 new->type
= RE_CHAR_CLASS
;
709 new->u
.char_class
= char_class
;
711 list
->tail
->next
= new;
716 /* Append a newly allocated structure representing a [c*n]
717 repeated character construct to the specification list LIST.
718 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
719 is a non-negative repeat count. */
722 append_repeated_char (struct Spec_list
*list
, unsigned char the_char
,
725 struct List_element
*new;
727 new = xmalloc (sizeof *new);
729 new->type
= RE_REPEATED_CHAR
;
730 new->u
.repeated_char
.the_repeated_char
= the_char
;
731 new->u
.repeated_char
.repeat_count
= repeat_count
;
733 list
->tail
->next
= new;
737 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
738 the length of that string, LEN, if LEN is exactly one, append
739 a newly allocated structure representing the specified
740 equivalence class to the specification list, LIST and return true.
741 If LEN is not 1, return false. */
744 append_equiv_class (struct Spec_list
*list
,
745 char const *equiv_class_str
, size_t len
)
747 struct List_element
*new;
751 new = xmalloc (sizeof *new);
753 new->type
= RE_EQUIV_CLASS
;
754 new->u
.equiv_code
= *equiv_class_str
;
756 list
->tail
->next
= new;
761 /* Search forward starting at START_IDX for the 2-char sequence
762 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
763 a sequence is found, set *RESULT_IDX to the index of the first
764 character and return true. Otherwise return false. P may contain
768 find_closing_delim (const struct E_string
*es
, size_t start_idx
,
769 char pre_bracket_char
, size_t *result_idx
)
773 for (i
= start_idx
; i
< es
->len
- 1; i
++)
774 if (es
->s
[i
] == pre_bracket_char
&& es
->s
[i
+ 1] == ']'
775 && !es
->escaped
[i
] && !es
->escaped
[i
+ 1])
783 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
784 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
785 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
786 and return zero. If the second character following
787 the opening bracket is not `*' or if no closing bracket can be
788 found, return -1. If a closing bracket is found and the
789 second char is `*', but the string between the `*' and `]' isn't
790 empty, an octal number, or a decimal number, print an error message
794 find_bracketed_repeat (const struct E_string
*es
, size_t start_idx
,
795 unsigned char *char_to_repeat
, count
*repeat_count
,
796 size_t *closing_bracket_idx
)
800 assert (start_idx
+ 1 < es
->len
);
801 if (!es_match (es
, start_idx
+ 1, '*'))
804 for (i
= start_idx
+ 2; i
< es
->len
&& !es
->escaped
[i
]; i
++)
808 size_t digit_str_len
= i
- start_idx
- 2;
810 *char_to_repeat
= es
->s
[start_idx
];
811 if (digit_str_len
== 0)
813 /* We've matched [c*] -- no explicit repeat count. */
818 /* Here, we have found [c*s] where s should be a string
819 of octal (if it starts with `0') or decimal digits. */
820 char const *digit_str
= &es
->s
[start_idx
+ 2];
822 if ((xstrtoumax (digit_str
, &d_end
, *digit_str
== '0' ? 8 : 10,
825 || REPEAT_COUNT_MAXIMUM
< *repeat_count
826 || digit_str
+ digit_str_len
!= d_end
)
828 char *tmp
= make_printable_str (digit_str
, digit_str_len
);
830 _("invalid repeat count %s in [c*n] construct"),
836 *closing_bracket_idx
= i
;
840 return -1; /* No bracket found. */
843 /* Return true if the string at ES->s[IDX] matches the regular
844 expression `\*[0-9]*\]', false otherwise. The string does not
845 match if any of its characters are escaped. */
847 static bool _GL_ATTRIBUTE_PURE
848 star_digits_closebracket (const struct E_string
*es
, size_t idx
)
852 if (!es_match (es
, idx
, '*'))
855 for (i
= idx
+ 1; i
< es
->len
; i
++)
856 if (!ISDIGIT (to_uchar (es
->s
[i
])) || es
->escaped
[i
])
857 return es_match (es
, i
, ']');
861 /* Convert string UNESCAPED_STRING (which has been preprocessed to
862 convert backslash-escape sequences) of length LEN characters into
863 a linked list of the following 5 types of constructs:
864 - [:str:] Character class where `str' is one of the 12 valid strings.
865 - [=c=] Equivalence class where `c' is any single character.
866 - [c*n] Repeat the single character `c' `n' times. n may be omitted.
867 However, if `n' is present, it must be a non-negative octal or
869 - r-s Range of characters from `r' to `s'. The second endpoint must
870 not precede the first in the current collating sequence.
871 - c Any other character is interpreted as itself. */
874 build_spec_list (const struct E_string
*es
, struct Spec_list
*result
)
881 /* The main for-loop below recognizes the 4 multi-character constructs.
882 A character that matches (in its context) none of the multi-character
883 constructs is classified as `normal'. Since all multi-character
884 constructs have at least 3 characters, any strings of length 2 or
885 less are composed solely of normal characters. Hence, the index of
886 the outer for-loop runs only as far as LEN-2. */
888 for (i
= 0; i
+ 2 < es
->len
; /* empty */)
890 if (es_match (es
, i
, '['))
892 bool matched_multi_char_construct
;
893 size_t closing_bracket_idx
;
894 unsigned char char_to_repeat
;
898 matched_multi_char_construct
= true;
899 if (es_match (es
, i
+ 1, ':') || es_match (es
, i
+ 1, '='))
901 size_t closing_delim_idx
;
903 if (find_closing_delim (es
, i
+ 2, p
[i
+ 1], &closing_delim_idx
))
905 size_t opnd_str_len
= closing_delim_idx
- 1 - (i
+ 2) + 1;
906 char const *opnd_str
= p
+ i
+ 2;
908 if (opnd_str_len
== 0)
911 error (0, 0, _("missing character class name `[::]'"));
914 _("missing equivalence class character `[==]'"));
920 /* FIXME: big comment. */
921 if (!append_char_class (result
, opnd_str
, opnd_str_len
))
923 if (star_digits_closebracket (es
, i
+ 2))
924 goto try_bracketed_repeat
;
927 char *tmp
= make_printable_str (opnd_str
,
929 error (0, 0, _("invalid character class %s"),
938 /* FIXME: big comment. */
939 if (!append_equiv_class (result
, opnd_str
, opnd_str_len
))
941 if (star_digits_closebracket (es
, i
+ 2))
942 goto try_bracketed_repeat
;
945 char *tmp
= make_printable_str (opnd_str
,
948 _("%s: equivalence class operand must be a single character"),
956 i
= closing_delim_idx
+ 2;
959 /* Else fall through. This could be [:*] or [=*]. */
962 try_bracketed_repeat
:
964 /* Determine whether this is a bracketed repeat range
965 matching the RE \[.\*(dec_or_oct_number)?\]. */
966 err
= find_bracketed_repeat (es
, i
+ 1, &char_to_repeat
,
968 &closing_bracket_idx
);
971 append_repeated_char (result
, char_to_repeat
, repeat_count
);
972 i
= closing_bracket_idx
+ 1;
976 matched_multi_char_construct
= false;
980 /* Found a string that looked like [c*n] but the
981 numeric part was invalid. */
985 if (matched_multi_char_construct
)
988 /* We reach this point if P does not match [:str:], [=c=],
989 [c*n], or [c*]. Now, see if P looks like a range `[-c'
990 (from `[' to `c'). */
993 /* Look ahead one char for ranges like a-z. */
994 if (es_match (es
, i
+ 1, '-'))
996 if (!append_range (result
, p
[i
], p
[i
+ 2]))
1002 append_normal_char (result
, p
[i
]);
1007 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1008 for (; i
< es
->len
; i
++)
1009 append_normal_char (result
, p
[i
]);
1014 /* Advance past the current construct.
1015 S->tail must be non-NULL. */
1017 skip_construct (struct Spec_list
*s
)
1019 s
->tail
= s
->tail
->next
;
1020 s
->state
= NEW_ELEMENT
;
1023 /* Given a Spec_list S (with its saved state implicit in the values
1024 of its members `tail' and `state'), return the next single character
1025 in the expansion of S's constructs. If the last character of S was
1026 returned on the previous call or if S was empty, this function
1027 returns -1. For example, successive calls to get_next where S
1028 represents the spec-string 'a-d[y*3]' will return the sequence
1029 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1030 which the returned character comes is [:upper:] or [:lower:], the
1031 parameter CLASS is given a value to indicate which it was. Otherwise
1032 CLASS is set to UL_NONE. This value is used only when constructing
1033 the translation table to verify that any occurrences of upper and
1034 lower class constructs in the spec-strings appear in the same relative
1038 get_next (struct Spec_list
*s
, enum Upper_Lower_class
*class)
1040 struct List_element
*p
;
1047 if (s
->state
== BEGIN_STATE
)
1049 s
->tail
= s
->head
->next
;
1050 s
->state
= NEW_ELEMENT
;
1059 case RE_NORMAL_CHAR
:
1060 return_val
= p
->u
.normal_char
;
1061 s
->state
= NEW_ELEMENT
;
1066 if (s
->state
== NEW_ELEMENT
)
1067 s
->state
= p
->u
.range
.first_char
;
1070 return_val
= s
->state
;
1071 if (s
->state
== p
->u
.range
.last_char
)
1074 s
->state
= NEW_ELEMENT
;
1081 switch (p
->u
.char_class
)
1094 if (s
->state
== NEW_ELEMENT
)
1096 for (i
= 0; i
< N_CHARS
; i
++)
1097 if (is_char_class_member (p
->u
.char_class
, i
))
1099 assert (i
< N_CHARS
);
1102 assert (is_char_class_member (p
->u
.char_class
, s
->state
));
1103 return_val
= s
->state
;
1104 for (i
= s
->state
+ 1; i
< N_CHARS
; i
++)
1105 if (is_char_class_member (p
->u
.char_class
, i
))
1112 s
->state
= NEW_ELEMENT
;
1116 case RE_EQUIV_CLASS
:
1117 /* FIXME: this assumes that each character is alone in its own
1118 equivalence class (which appears to be correct for my
1119 LC_COLLATE. But I don't know of any function that allows
1120 one to determine a character's equivalence class. */
1122 return_val
= p
->u
.equiv_code
;
1123 s
->state
= NEW_ELEMENT
;
1127 case RE_REPEATED_CHAR
:
1128 /* Here, a repeat count of n == 0 means don't repeat at all. */
1129 if (p
->u
.repeated_char
.repeat_count
== 0)
1132 s
->state
= NEW_ELEMENT
;
1133 return_val
= get_next (s
, class);
1137 if (s
->state
== NEW_ELEMENT
)
1142 return_val
= p
->u
.repeated_char
.the_repeated_char
;
1143 if (s
->state
== p
->u
.repeated_char
.repeat_count
)
1146 s
->state
= NEW_ELEMENT
;
1159 /* This is a minor kludge. This function is called from
1160 get_spec_stats to determine the cardinality of a set derived
1161 from a complemented string. It's a kludge in that some of the
1162 same operations are (duplicated) performed in set_initialize. */
1165 card_of_complement (struct Spec_list
*s
)
1168 int cardinality
= N_CHARS
;
1169 bool in_set
[N_CHARS
] = { 0, };
1171 s
->state
= BEGIN_STATE
;
1172 while ((c
= get_next (s
, NULL
)) != -1)
1174 cardinality
-= (!in_set
[c
]);
1180 /* Discard the lengths associated with a case conversion,
1181 as using the actual number of upper or lower case characters
1182 is problematic when they don't match in some locales.
1183 Also ensure the case conversion classes in string2 are
1184 aligned correctly with those in string1.
1185 Note POSIX says the behavior of `tr "[:upper:]" "[:upper:]"'
1186 is undefined. Therefore we allow it (unlike Solaris)
1187 and treat it as a no-op. */
1190 validate_case_classes (struct Spec_list
*s1
, struct Spec_list
*s2
)
1197 count old_s1_len
= s1
->length
;
1198 count old_s2_len
= s2
->length
;
1199 struct List_element
*s1_tail
= s1
->tail
;
1200 struct List_element
*s2_tail
= s2
->tail
;
1201 bool s1_new_element
= true;
1202 bool s2_new_element
= true;
1204 if (!s2
->has_char_class
)
1207 for (i
= 0; i
< N_CHARS
; i
++)
1215 s1
->state
= BEGIN_STATE
;
1216 s2
->state
= BEGIN_STATE
;
1218 while (c1
!= -1 && c2
!= -1)
1220 enum Upper_Lower_class class_s1
, class_s2
;
1222 c1
= get_next (s1
, &class_s1
);
1223 c2
= get_next (s2
, &class_s2
);
1225 /* If c2 transitions to a new case class, then
1226 c1 must also transition at the same time. */
1227 if (s2_new_element
&& class_s2
!= UL_NONE
1228 && !(s1_new_element
&& class_s1
!= UL_NONE
))
1229 error (EXIT_FAILURE
, 0,
1230 _("misaligned [:upper:] and/or [:lower:] construct"));
1232 /* If case converting, quickly skip over the elements. */
1233 if (class_s2
!= UL_NONE
)
1235 skip_construct (s1
);
1236 skip_construct (s2
);
1237 /* Discount insignificant/problematic lengths. */
1238 s1
->length
-= (class_s1
== UL_UPPER
? n_upper
: n_lower
) - 1;
1239 s2
->length
-= (class_s2
== UL_UPPER
? n_upper
: n_lower
) - 1;
1242 s1_new_element
= s1
->state
== NEW_ELEMENT
; /* Next element is new. */
1243 s2_new_element
= s2
->state
== NEW_ELEMENT
; /* Next element is new. */
1246 assert (old_s1_len
>= s1
->length
&& old_s2_len
>= s2
->length
);
1252 /* Gather statistics about the spec-list S in preparation for the tests
1253 in validate that determine the consistency of the specs. This function
1254 is called at most twice; once for string1, and again for any string2.
1255 LEN_S1 < 0 indicates that this is the first call and that S represents
1256 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1257 constructs in string1, and we can use its value to resolve any
1258 indefinite repeat construct in S (which represents string2). Hence,
1259 this function has the side-effect that it converts a valid [c*]
1260 construct in string2 to [c*n] where n is large enough (or 0) to give
1261 string2 the same length as string1. For example, with the command
1262 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1263 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1266 get_spec_stats (struct Spec_list
*s
)
1268 struct List_element
*p
;
1271 s
->n_indefinite_repeats
= 0;
1272 s
->has_equiv_class
= false;
1273 s
->has_restricted_char_class
= false;
1274 s
->has_char_class
= false;
1275 for (p
= s
->head
->next
; p
; p
= p
->next
)
1283 case RE_NORMAL_CHAR
:
1288 assert (p
->u
.range
.last_char
>= p
->u
.range
.first_char
);
1289 len
= p
->u
.range
.last_char
- p
->u
.range
.first_char
+ 1;
1293 s
->has_char_class
= true;
1294 for (i
= 0; i
< N_CHARS
; i
++)
1295 if (is_char_class_member (p
->u
.char_class
, i
))
1297 switch (p
->u
.char_class
)
1303 s
->has_restricted_char_class
= true;
1308 case RE_EQUIV_CLASS
:
1309 for (i
= 0; i
< N_CHARS
; i
++)
1310 if (is_equiv_class_member (p
->u
.equiv_code
, i
))
1312 s
->has_equiv_class
= true;
1315 case RE_REPEATED_CHAR
:
1316 if (p
->u
.repeated_char
.repeat_count
> 0)
1317 len
= p
->u
.repeated_char
.repeat_count
;
1320 s
->indefinite_repeat_element
= p
;
1321 ++(s
->n_indefinite_repeats
);
1330 /* Check for arithmetic overflow in computing length. Also, reject
1331 any length greater than the maximum repeat count, in case the
1332 length is later used to compute the repeat count for an
1333 indefinite element. */
1334 new_length
= length
+ len
;
1335 if (! (length
<= new_length
&& new_length
<= REPEAT_COUNT_MAXIMUM
))
1336 error (EXIT_FAILURE
, 0, _("too many characters in set"));
1337 length
= new_length
;
1344 get_s1_spec_stats (struct Spec_list
*s1
)
1346 get_spec_stats (s1
);
1348 s1
->length
= card_of_complement (s1
);
1352 get_s2_spec_stats (struct Spec_list
*s2
, count len_s1
)
1354 get_spec_stats (s2
);
1355 if (len_s1
>= s2
->length
&& s2
->n_indefinite_repeats
== 1)
1357 s2
->indefinite_repeat_element
->u
.repeated_char
.repeat_count
=
1358 len_s1
- s2
->length
;
1359 s2
->length
= len_s1
;
1364 spec_init (struct Spec_list
*spec_list
)
1366 struct List_element
*new = xmalloc (sizeof *new);
1367 spec_list
->head
= spec_list
->tail
= new;
1368 spec_list
->head
->next
= NULL
;
1371 /* This function makes two passes over the argument string S. The first
1372 one converts all \c and \ddd escapes to their one-byte representations.
1373 The second constructs a linked specification list, SPEC_LIST, of the
1374 characters and constructs that comprise the argument string. If either
1375 of these passes detects an error, this function returns false. */
1378 parse_str (char const *s
, struct Spec_list
*spec_list
)
1381 bool ok
= unquote (s
, &es
) && build_spec_list (&es
, spec_list
);
1386 /* Given two specification lists, S1 and S2, and assuming that
1387 S1->length > S2->length, append a single [c*n] element to S2 where c
1388 is the last character in the expansion of S2 and n is the difference
1389 between the two lengths.
1390 Upon successful completion, S2->length is set to S1->length. The only
1391 way this function can fail to make S2 as long as S1 is when S2 has
1392 zero-length, since in that case, there is no last character to repeat.
1393 So S2->length is required to be at least 1. */
1397 string2_extend (const struct Spec_list
*s1
, struct Spec_list
*s2
)
1399 struct List_element
*p
;
1400 unsigned char char_to_repeat
;
1402 assert (translating
);
1403 assert (s1
->length
> s2
->length
);
1404 assert (s2
->length
> 0);
1409 case RE_NORMAL_CHAR
:
1410 char_to_repeat
= p
->u
.normal_char
;
1413 char_to_repeat
= p
->u
.range
.last_char
;
1416 /* Note BSD allows extending of classes in string2. For example:
1417 tr '[:upper:]0-9' '[:lower:]'
1418 That's not portable however, contradicts POSIX and is dependent
1419 on your collating sequence. */
1420 error (EXIT_FAILURE
, 0,
1421 _("when translating with string1 longer than string2,\n\
1422 the latter string must not end with a character class"));
1423 abort (); /* inform gcc that the above use of error never returns. */
1426 case RE_REPEATED_CHAR
:
1427 char_to_repeat
= p
->u
.repeated_char
.the_repeated_char
;
1430 case RE_EQUIV_CLASS
:
1431 /* This shouldn't happen, because validate exits with an error
1432 if it finds an equiv class in string2 when translating. */
1441 append_repeated_char (s2
, char_to_repeat
, s1
->length
- s2
->length
);
1442 s2
->length
= s1
->length
;
1445 /* Return true if S is a non-empty list in which exactly one
1446 character (but potentially, many instances of it) appears.
1447 E.g., [X*] or xxxxxxxx. */
1450 homogeneous_spec_list (struct Spec_list
*s
)
1454 s
->state
= BEGIN_STATE
;
1456 if ((b
= get_next (s
, NULL
)) == -1)
1459 while ((c
= get_next (s
, NULL
)) != -1)
1466 /* Die with an error message if S1 and S2 describe strings that
1467 are not valid with the given command line switches.
1468 A side effect of this function is that if a valid [c*] or
1469 [c*0] construct appears in string2, it is converted to [c*n]
1470 with a value for n that makes s2->length == s1->length. By
1471 the same token, if the --truncate-set1 option is not
1472 given, S2 may be extended. */
1475 validate (struct Spec_list
*s1
, struct Spec_list
*s2
)
1477 get_s1_spec_stats (s1
);
1478 if (s1
->n_indefinite_repeats
> 0)
1480 error (EXIT_FAILURE
, 0,
1481 _("the [c*] repeat construct may not appear in string1"));
1486 get_s2_spec_stats (s2
, s1
->length
);
1488 if (s2
->n_indefinite_repeats
> 1)
1490 error (EXIT_FAILURE
, 0,
1491 _("only one [c*] repeat construct may appear in string2"));
1496 if (s2
->has_equiv_class
)
1498 error (EXIT_FAILURE
, 0,
1499 _("[=c=] expressions may not appear in string2 \
1500 when translating"));
1503 if (s2
->has_restricted_char_class
)
1505 error (EXIT_FAILURE
, 0,
1506 _("when translating, the only character classes that may \
1507 appear in\nstring2 are `upper' and `lower'"));
1510 validate_case_classes (s1
, s2
);
1512 if (s1
->length
> s2
->length
)
1516 /* string2 must be non-empty unless --truncate-set1 is
1517 given or string1 is empty. */
1519 if (s2
->length
== 0)
1520 error (EXIT_FAILURE
, 0,
1521 _("when not truncating set1, string2 must be non-empty"));
1522 string2_extend (s1
, s2
);
1526 if (complement
&& s1
->has_char_class
1527 && ! (s2
->length
== s1
->length
&& homogeneous_spec_list (s2
)))
1529 error (EXIT_FAILURE
, 0,
1530 _("when translating with complemented character classes,\
1531 \nstring2 must map all characters in the domain to one"));
1535 /* Not translating. */
1537 if (s2
->n_indefinite_repeats
> 0)
1538 error (EXIT_FAILURE
, 0,
1539 _("the [c*] construct may appear in string2 only \
1540 when translating"));
1545 /* Read buffers of SIZE bytes via the function READER (if READER is
1546 NULL, read from stdin) until EOF. When non-NULL, READER is either
1547 read_and_delete or read_and_xlate. After each buffer is read, it is
1548 processed and written to stdout. The buffers are processed so that
1549 multiple consecutive occurrences of the same character in the input
1550 stream are replaced by a single occurrence of that character if the
1551 character is in the squeeze set. */
1554 squeeze_filter (char *buf
, size_t size
, size_t (*reader
) (char *, size_t))
1556 /* A value distinct from any character that may have been stored in a
1557 buffer as the result of a block-read in the function squeeze_filter. */
1558 const int NOT_A_CHAR
= INT_MAX
;
1560 int char_to_squeeze
= NOT_A_CHAR
;
1570 nr
= reader (buf
, size
);
1578 if (char_to_squeeze
== NOT_A_CHAR
)
1581 /* Here, by being a little tricky, we can get a significant
1582 performance increase in most cases when the input is
1583 reasonably large. Since tr will modify the input only
1584 if two consecutive (and identical) input characters are
1585 in the squeeze set, we can step by two through the data
1586 when searching for a character in the squeeze set. This
1587 means there may be a little more work in a few cases and
1588 perhaps twice as much work in the worst cases where most
1589 of the input is removed by squeezing repeats. But most
1590 uses of this functionality seem to remove less than 20-30%
1592 for (; i
< nr
&& !in_squeeze_set
[to_uchar (buf
[i
])]; i
+= 2)
1595 /* There is a special case when i == nr and we've just
1596 skipped a character (the last one in buf) that is in
1598 if (i
== nr
&& in_squeeze_set
[to_uchar (buf
[i
- 1])])
1602 out_len
= nr
- begin
;
1605 char_to_squeeze
= buf
[i
];
1606 /* We're about to output buf[begin..i]. */
1607 out_len
= i
- begin
+ 1;
1609 /* But since we stepped by 2 in the loop above,
1610 out_len may be one too large. */
1611 if (i
> 0 && buf
[i
- 1] == char_to_squeeze
)
1614 /* Advance i to the index of first character to be
1615 considered when looking for a char different from
1620 && fwrite (&buf
[begin
], 1, out_len
, stdout
) != out_len
)
1621 error (EXIT_FAILURE
, errno
, _("write error"));
1624 if (char_to_squeeze
!= NOT_A_CHAR
)
1626 /* Advance i to index of first char != char_to_squeeze
1627 (or to nr if all the rest of the characters in this
1628 buffer are the same as char_to_squeeze). */
1629 for (; i
< nr
&& buf
[i
] == char_to_squeeze
; i
++)
1632 char_to_squeeze
= NOT_A_CHAR
;
1633 /* If (i >= nr) we've squeezed the last character in this buffer.
1634 So now we have to read a new buffer and continue comparing
1635 characters against char_to_squeeze. */
1641 plain_read (char *buf
, size_t size
)
1643 size_t nr
= safe_read (STDIN_FILENO
, buf
, size
);
1644 if (nr
== SAFE_READ_ERROR
)
1645 error (EXIT_FAILURE
, errno
, _("read error"));
1649 /* Read buffers of SIZE bytes from stdin until one is found that
1650 contains at least one character not in the delete set. Store
1651 in the array BUF, all characters from that buffer that are not
1652 in the delete set, and return the number of characters saved
1656 read_and_delete (char *buf
, size_t size
)
1660 /* This enclosing do-while loop is to make sure that
1661 we don't return zero (indicating EOF) when we've
1662 just deleted all the characters in a buffer. */
1666 size_t nr
= plain_read (buf
, size
);
1671 /* This first loop may be a waste of code, but gives much
1672 better performance when no characters are deleted in
1673 the beginning of a buffer. It just avoids the copying
1674 of buf[i] into buf[n_saved] when it would be a NOP. */
1676 for (i
= 0; i
< nr
&& !in_delete_set
[to_uchar (buf
[i
])]; i
++)
1680 for (++i
; i
< nr
; i
++)
1681 if (!in_delete_set
[to_uchar (buf
[i
])])
1682 buf
[n_saved
++] = buf
[i
];
1684 while (n_saved
== 0);
1689 /* Read at most SIZE bytes from stdin into the array BUF. Then
1690 perform the in-place and one-to-one mapping specified by the global
1691 array `xlate'. Return the number of characters read, or 0 upon EOF. */
1694 read_and_xlate (char *buf
, size_t size
)
1696 size_t bytes_read
= plain_read (buf
, size
);
1699 for (i
= 0; i
< bytes_read
; i
++)
1700 buf
[i
] = xlate
[to_uchar (buf
[i
])];
1705 /* Initialize a boolean membership set, IN_SET, with the character
1706 values obtained by traversing the linked list of constructs S
1707 using the function `get_next'. IN_SET is expected to have been
1708 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1709 is true the resulting set is complemented. */
1712 set_initialize (struct Spec_list
*s
, bool complement_this_set
, bool *in_set
)
1717 s
->state
= BEGIN_STATE
;
1718 while ((c
= get_next (s
, NULL
)) != -1)
1720 if (complement_this_set
)
1721 for (i
= 0; i
< N_CHARS
; i
++)
1722 in_set
[i
] = (!in_set
[i
]);
1726 main (int argc
, char **argv
)
1729 int non_option_args
;
1732 struct Spec_list buf1
, buf2
;
1733 struct Spec_list
*s1
= &buf1
;
1734 struct Spec_list
*s2
= &buf2
;
1736 initialize_main (&argc
, &argv
);
1737 set_program_name (argv
[0]);
1738 setlocale (LC_ALL
, "");
1739 bindtextdomain (PACKAGE
, LOCALEDIR
);
1740 textdomain (PACKAGE
);
1742 atexit (close_stdout
);
1744 while ((c
= getopt_long (argc
, argv
, "+cCdst", long_options
, NULL
)) != -1)
1758 squeeze_repeats
= true;
1762 truncate_set1
= true;
1765 case_GETOPT_HELP_CHAR
;
1767 case_GETOPT_VERSION_CHAR (PROGRAM_NAME
, AUTHORS
);
1770 usage (EXIT_FAILURE
);
1775 non_option_args
= argc
- optind
;
1776 translating
= (non_option_args
== 2 && !delete);
1777 min_operands
= 1 + (delete == squeeze_repeats
);
1778 max_operands
= 1 + (delete <= squeeze_repeats
);
1780 if (non_option_args
< min_operands
)
1782 if (non_option_args
== 0)
1783 error (0, 0, _("missing operand"));
1786 error (0, 0, _("missing operand after %s"), quote (argv
[argc
- 1]));
1787 fprintf (stderr
, "%s\n",
1789 ? N_("Two strings must be given when "
1790 "both deleting and squeezing repeats.")
1791 : N_("Two strings must be given when translating.")));
1793 usage (EXIT_FAILURE
);
1796 if (max_operands
< non_option_args
)
1798 error (0, 0, _("extra operand %s"), quote (argv
[optind
+ max_operands
]));
1799 if (non_option_args
== 2)
1800 fprintf (stderr
, "%s\n",
1801 _("Only one string may be given when "
1802 "deleting without squeezing repeats."));
1803 usage (EXIT_FAILURE
);
1807 if (!parse_str (argv
[optind
], s1
))
1808 exit (EXIT_FAILURE
);
1810 if (non_option_args
== 2)
1813 if (!parse_str (argv
[optind
+ 1], s2
))
1814 exit (EXIT_FAILURE
);
1821 /* Use binary I/O, since `tr' is sometimes used to transliterate
1822 non-printable characters, or characters which are stripped away
1823 by text-mode reads (like CR and ^Z). */
1824 if (O_BINARY
&& ! isatty (STDIN_FILENO
))
1825 xfreopen (NULL
, "rb", stdin
);
1826 if (O_BINARY
&& ! isatty (STDOUT_FILENO
))
1827 xfreopen (NULL
, "wb", stdout
);
1829 fadvise (stdin
, FADVISE_SEQUENTIAL
);
1831 if (squeeze_repeats
&& non_option_args
== 1)
1833 set_initialize (s1
, complement
, in_squeeze_set
);
1834 squeeze_filter (io_buf
, sizeof io_buf
, plain_read
);
1836 else if (delete && non_option_args
== 1)
1838 set_initialize (s1
, complement
, in_delete_set
);
1842 size_t nr
= read_and_delete (io_buf
, sizeof io_buf
);
1845 if (fwrite (io_buf
, 1, nr
, stdout
) != nr
)
1846 error (EXIT_FAILURE
, errno
, _("write error"));
1849 else if (squeeze_repeats
&& delete && non_option_args
== 2)
1851 set_initialize (s1
, complement
, in_delete_set
);
1852 set_initialize (s2
, false, in_squeeze_set
);
1853 squeeze_filter (io_buf
, sizeof io_buf
, read_and_delete
);
1855 else if (translating
)
1860 bool *in_s1
= in_delete_set
;
1862 set_initialize (s1
, false, in_s1
);
1863 s2
->state
= BEGIN_STATE
;
1864 for (i
= 0; i
< N_CHARS
; i
++)
1866 for (i
= 0; i
< N_CHARS
; i
++)
1870 int ch
= get_next (s2
, NULL
);
1871 assert (ch
!= -1 || truncate_set1
);
1874 /* This will happen when tr is invoked like e.g.
1875 tr -cs A-Za-z0-9 '\012'. */
1886 enum Upper_Lower_class class_s1
;
1887 enum Upper_Lower_class class_s2
;
1889 for (i
= 0; i
< N_CHARS
; i
++)
1891 s1
->state
= BEGIN_STATE
;
1892 s2
->state
= BEGIN_STATE
;
1895 c1
= get_next (s1
, &class_s1
);
1896 c2
= get_next (s2
, &class_s2
);
1898 if (class_s1
== UL_LOWER
&& class_s2
== UL_UPPER
)
1900 for (i
= 0; i
< N_CHARS
; i
++)
1902 xlate
[i
] = toupper (i
);
1904 else if (class_s1
== UL_UPPER
&& class_s2
== UL_LOWER
)
1906 for (i
= 0; i
< N_CHARS
; i
++)
1908 xlate
[i
] = tolower (i
);
1912 /* The following should have been checked by validate... */
1913 if (c1
== -1 || c2
== -1)
1918 /* When case-converting, skip the elements as an optimization. */
1919 if (class_s2
!= UL_NONE
)
1921 skip_construct (s1
);
1922 skip_construct (s2
);
1925 assert (c1
== -1 || truncate_set1
);
1927 if (squeeze_repeats
)
1929 set_initialize (s2
, false, in_squeeze_set
);
1930 squeeze_filter (io_buf
, sizeof io_buf
, read_and_xlate
);
1936 size_t bytes_read
= read_and_xlate (io_buf
, sizeof io_buf
);
1937 if (bytes_read
== 0)
1939 if (fwrite (io_buf
, 1, bytes_read
, stdout
) != bytes_read
)
1940 error (EXIT_FAILURE
, errno
, _("write error"));
1945 if (close (STDIN_FILENO
) != 0)
1946 error (EXIT_FAILURE
, errno
, _("standard input"));
1948 exit (EXIT_SUCCESS
);