1 /* Generate random permutations.
3 Copyright (C) 2006-2007, 2009-2011 Free Software Foundation, Inc.
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 /* Written by Paul Eggert. */
30 /* Return the ceiling of the log base 2 of N. If N is zero, return
31 an unspecified value. */
33 static size_t _GL_ATTRIBUTE_CONST
37 for (n
--; n
!= 0; n
/= 2)
42 /* Return an upper bound on the number of random bytes needed to
43 generate the first H elements of a random permutation of N
44 elements. H must not exceed N. */
47 randperm_bound (size_t h
, size_t n
)
49 /* Upper bound on number of bits needed to generate the first number
50 of the permutation. */
51 size_t lg_n
= ceil_lg (n
);
53 /* Upper bound on number of bits needed to generated the first H elements. */
56 /* Convert the bit count to a byte count. */
57 size_t bound
= (ar
+ CHAR_BIT
- 1) / CHAR_BIT
;
62 /* Swap elements I and J in array V. */
65 swap (size_t *v
, size_t i
, size_t j
)
72 /* Structures and functions for a sparse_map abstract data type that's
73 used to effectively swap elements I and J in array V like swap(),
74 but in a more memory efficient manner (when the number of permutations
75 performed is significantly less than the size of the input). */
84 sparse_hash_ (void const *x
, size_t table_size
)
86 struct sparse_ent_
const *ent
= x
;
87 return ent
->index
% table_size
;
91 sparse_cmp_ (void const *x
, void const *y
)
93 struct sparse_ent_
const *ent1
= x
;
94 struct sparse_ent_
const *ent2
= y
;
95 return ent1
->index
== ent2
->index
;
98 typedef Hash_table sparse_map
;
100 /* Initialize the structure for the sparse map,
101 when a best guess as to the number of entries
102 specified with SIZE_HINT. */
105 sparse_new (size_t size_hint
)
107 return hash_initialize (size_hint
, NULL
, sparse_hash_
, sparse_cmp_
, free
);
110 /* Swap the values for I and J. If a value is not already present
111 then assume it's equal to the index. Update the value for
112 index I in array V. */
115 sparse_swap (sparse_map
*sv
, size_t* v
, size_t i
, size_t j
)
117 struct sparse_ent_
*v1
= hash_delete (sv
, &(struct sparse_ent_
) {i
,0});
118 struct sparse_ent_
*v2
= hash_delete (sv
, &(struct sparse_ent_
) {j
,0});
120 /* FIXME: reduce the frequency of these mallocs. */
123 v1
= xmalloc (sizeof *v1
);
124 v1
->index
= v1
->val
= i
;
128 v2
= xmalloc (sizeof *v2
);
129 v2
->index
= v2
->val
= j
;
135 if (!hash_insert (sv
, v1
))
137 if (!hash_insert (sv
, v2
))
144 sparse_free (sparse_map
*sv
)
150 /* From R, allocate and return a malloc'd array of the first H elements
151 of a random permutation of N elements. H must not exceed N.
152 Return NULL if H is zero. */
155 randperm_new (struct randint_source
*r
, size_t h
, size_t n
)
166 v
= xmalloc (sizeof *v
);
167 v
[0] = randint_choose (r
, n
);
172 /* The algorithm is essentially the same in both
173 the sparse and non sparse case. In the sparse case we use
174 a hash to implement sparse storage for the set of n numbers
175 we're shuffling. When to use the sparse method was
176 determined with the help of this script:
179 for n in $(seq 2 32); do
180 for h in $(seq 2 32); do
181 test $h -gt $n && continue
183 test $s = o && shuf=shuf || shuf=./shuf
184 num=$(env time -f "$s:${h},${n} = %e,%M" \
185 $shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l)
186 test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2
191 This showed that if sparseness = n/h, then:
193 sparseness = 128 => .125 mem used, and about same speed
194 sparseness = 64 => .25 mem used, but 1.5 times slower
195 sparseness = 32 => .5 mem used, but 2 times slower
197 Also the memory usage was only significant when n > 128Ki
199 bool sparse
= (n
>= (128 * 1024)) && (n
/ h
>= 32);
206 sv
= sparse_new (h
* 2);
209 v
= xnmalloc (h
, sizeof *v
);
213 sv
= NULL
; /* To placate GCC's -Wuninitialized. */
214 v
= xnmalloc (n
, sizeof *v
);
215 for (i
= 0; i
< n
; i
++)
219 for (i
= 0; i
< h
; i
++)
221 size_t j
= i
+ randint_choose (r
, n
- i
);
223 sparse_swap (sv
, v
, i
, j
);
231 v
= xnrealloc (v
, h
, sizeof *v
);