base64: always treat input in binary mode
[coreutils.git] / src / factor.c
blob80aa3e639e9bb0381bf7e770a9188bce5a25c8de
1 /* factor -- print prime factors of n.
2 Copyright (C) 1986, 1995-2005, 2007-2010 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Paul Rubin <phr@ocf.berkeley.edu>.
18 Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
19 Arbitrary-precision code adapted by James Youngman from Torbjörn
20 Granlund's factorize.c, from GNU MP version 4.2.2.
23 #include <config.h>
24 #include <getopt.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27 #include <sys/types.h>
28 #if HAVE_GMP
29 # include <gmp.h>
30 #endif
32 #include <assert.h>
34 #include "system.h"
35 #include "error.h"
36 #include "quote.h"
37 #include "readtokens.h"
38 #include "xstrtol.h"
40 /* The official name of this program (e.g., no `g' prefix). */
41 #define PROGRAM_NAME "factor"
43 #define AUTHORS proper_name ("Paul Rubin")
45 /* Token delimiters when reading from a file. */
46 #define DELIM "\n\t "
48 static bool verbose = false;
50 #if HAVE_GMP
51 static mpz_t *factor = NULL;
52 static size_t nfactors_found = 0;
53 static size_t nfactors_allocated = 0;
55 static void
56 debug (char const *fmt, ...)
58 if (verbose)
60 va_list ap;
61 va_start (ap, fmt);
62 vfprintf (stderr, fmt, ap);
63 va_end (ap);
67 static void
68 emit_factor (mpz_t n)
70 if (nfactors_found == nfactors_allocated)
71 factor = X2NREALLOC (factor, &nfactors_allocated);
72 mpz_init (factor[nfactors_found]);
73 mpz_set (factor[nfactors_found], n);
74 ++nfactors_found;
77 static void
78 emit_ul_factor (unsigned long int i)
80 mpz_t t;
81 mpz_init (t);
82 mpz_set_ui (t, i);
83 emit_factor (t);
84 mpz_clear (t);
87 static void
88 factor_using_division (mpz_t t, unsigned int limit)
90 mpz_t q, r;
91 unsigned long int f;
92 int ai;
93 static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6};
94 unsigned int const *addv = add;
95 unsigned int failures;
97 debug ("[trial division (%u)] ", limit);
99 mpz_init (q);
100 mpz_init (r);
102 f = mpz_scan1 (t, 0);
103 mpz_div_2exp (t, t, f);
104 while (f)
106 emit_ul_factor (2);
107 --f;
110 for (;;)
112 mpz_tdiv_qr_ui (q, r, t, 3);
113 if (mpz_cmp_ui (r, 0) != 0)
114 break;
115 mpz_set (t, q);
116 emit_ul_factor (3);
119 for (;;)
121 mpz_tdiv_qr_ui (q, r, t, 5);
122 if (mpz_cmp_ui (r, 0) != 0)
123 break;
124 mpz_set (t, q);
125 emit_ul_factor (5);
128 failures = 0;
129 f = 7;
130 ai = 0;
131 while (mpz_cmp_ui (t, 1) != 0)
133 mpz_tdiv_qr_ui (q, r, t, f);
134 if (mpz_cmp_ui (r, 0) != 0)
136 f += addv[ai];
137 if (mpz_cmp_ui (q, f) < 0)
138 break;
139 ai = (ai + 1) & 7;
140 failures++;
141 if (failures > limit)
142 break;
144 else
146 mpz_swap (t, q);
147 emit_ul_factor (f);
148 failures = 0;
152 mpz_clear (q);
153 mpz_clear (r);
156 static void
157 factor_using_pollard_rho (mpz_t n, int a_int)
159 mpz_t x, x1, y, P;
160 mpz_t a;
161 mpz_t g;
162 mpz_t t1, t2;
163 int k, l, c, i;
165 debug ("[pollard-rho (%d)] ", a_int);
167 mpz_init (g);
168 mpz_init (t1);
169 mpz_init (t2);
171 mpz_init_set_si (a, a_int);
172 mpz_init_set_si (y, 2);
173 mpz_init_set_si (x, 2);
174 mpz_init_set_si (x1, 2);
175 k = 1;
176 l = 1;
177 mpz_init_set_ui (P, 1);
178 c = 0;
180 while (mpz_cmp_ui (n, 1) != 0)
183 mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
185 mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n);
186 c++;
187 if (c == 20)
189 c = 0;
190 mpz_gcd (g, P, n);
191 if (mpz_cmp_ui (g, 1) != 0)
192 goto S4;
193 mpz_set (y, x);
196 k--;
197 if (k > 0)
198 goto S2;
200 mpz_gcd (g, P, n);
201 if (mpz_cmp_ui (g, 1) != 0)
202 goto S4;
204 mpz_set (x1, x);
205 k = l;
206 l = 2 * l;
207 for (i = 0; i < k; i++)
209 mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
211 mpz_set (y, x);
212 c = 0;
213 goto S2;
217 mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n);
218 mpz_sub (t1, x1, y); mpz_gcd (g, t1, n);
220 while (mpz_cmp_ui (g, 1) == 0);
222 mpz_div (n, n, g); /* divide by g, before g is overwritten */
224 if (!mpz_probab_prime_p (g, 3))
228 mp_limb_t a_limb;
229 mpn_random (&a_limb, (mp_size_t) 1);
230 a_int = (int) a_limb;
232 while (a_int == -2 || a_int == 0);
234 debug ("[composite factor--restarting pollard-rho] ");
235 factor_using_pollard_rho (g, a_int);
237 else
239 emit_factor (g);
241 mpz_mod (x, x, n);
242 mpz_mod (x1, x1, n);
243 mpz_mod (y, y, n);
244 if (mpz_probab_prime_p (n, 3))
246 emit_factor (n);
247 break;
251 mpz_clear (g);
252 mpz_clear (P);
253 mpz_clear (t2);
254 mpz_clear (t1);
255 mpz_clear (a);
256 mpz_clear (x1);
257 mpz_clear (x);
258 mpz_clear (y);
261 #else
263 static void
264 debug (char const *fmt ATTRIBUTE_UNUSED, ...)
268 #endif
270 /* The maximum number of factors, including -1, for negative numbers. */
271 #define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT)
273 /* The trial divisor increment wheel. Use it to skip over divisors that
274 are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to
275 WHEEL_END is reused periodically, while the "lead in" is used to test
276 for those primes and to jump onto the wheel. For more information, see
277 http://www.utm.edu/research/primes/glossary/WheelFactorization.html */
279 #include "wheel-size.h" /* For the definition of WHEEL_SIZE. */
280 static const unsigned char wheel_tab[] =
282 #include "wheel.h"
285 #define WHEEL_START (wheel_tab + WHEEL_SIZE)
286 #define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab))
288 /* FIXME: comment */
290 static size_t
291 factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors)
293 uintmax_t n = n0, d, q;
294 size_t n_factors = 0;
295 unsigned char const *w = wheel_tab;
297 if (n <= 1)
298 return n_factors;
300 /* The exit condition in the following loop is correct because
301 any time it is tested one of these 3 conditions holds:
302 (1) d divides n
303 (2) n is prime
304 (3) n is composite but has no factors less than d.
305 If (1) or (2) obviously the right thing happens.
306 If (3), then since n is composite it is >= d^2. */
308 d = 2;
311 q = n / d;
312 while (n == q * d)
314 assert (n_factors < max_n_factors);
315 factors[n_factors++] = d;
316 n = q;
317 q = n / d;
319 d += *(w++);
320 if (w == WHEEL_END)
321 w = WHEEL_START;
323 while (d <= q);
325 if (n != 1 || n0 == 1)
327 assert (n_factors < max_n_factors);
328 factors[n_factors++] = n;
331 return n_factors;
334 /* Single-precision factoring */
335 static void
336 print_factors_single (uintmax_t n)
338 uintmax_t factors[MAX_N_FACTORS];
339 size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors);
340 size_t i;
341 char buf[INT_BUFSIZE_BOUND (uintmax_t)];
343 printf ("%s:", umaxtostr (n, buf));
344 for (i = 0; i < n_factors; i++)
345 printf (" %s", umaxtostr (factors[i], buf));
346 putchar ('\n');
349 #if HAVE_GMP
350 static int
351 mpcompare (const void *av, const void *bv)
353 mpz_t *const *a = av;
354 mpz_t *const *b = bv;
355 return mpz_cmp (**a, **b);
358 static void
359 sort_and_print_factors (void)
361 mpz_t **faclist;
362 size_t i;
364 faclist = xcalloc (nfactors_found, sizeof *faclist);
365 for (i = 0; i < nfactors_found; ++i)
367 faclist[i] = &factor[i];
369 qsort (faclist, nfactors_found, sizeof *faclist, mpcompare);
371 for (i = 0; i < nfactors_found; ++i)
373 fputc (' ', stdout);
374 mpz_out_str (stdout, 10, *faclist[i]);
376 putchar ('\n');
377 free (faclist);
380 static void
381 free_factors (void)
383 size_t i;
385 for (i = 0; i < nfactors_found; ++i)
387 mpz_clear (factor[i]);
389 /* Don't actually free factor[] because in the case where we are
390 reading numbers from stdin, we may be about to use it again. */
391 nfactors_found = 0;
394 /* Arbitrary-precision factoring */
395 static void
396 print_factors_multi (mpz_t t)
398 mpz_out_str (stdout, 10, t);
399 putchar (':');
401 if (mpz_sgn (t) != 0)
403 /* Set the trial division limit according to the size of t. */
404 size_t n_bits = mpz_sizeinbase (t, 2);
405 unsigned int division_limit = MIN (n_bits, 1000);
406 division_limit *= division_limit;
408 factor_using_division (t, division_limit);
410 if (mpz_cmp_ui (t, 1) != 0)
412 debug ("[is number prime?] ");
413 if (mpz_probab_prime_p (t, 3))
414 emit_factor (t);
415 else
416 factor_using_pollard_rho (t, 1);
420 mpz_clear (t);
421 sort_and_print_factors ();
422 free_factors ();
424 #endif
427 /* Emit the factors of the indicated number. If we have the option of using
428 either algorithm, we select on the basis of the length of the number.
429 For longer numbers, we prefer the MP algorithm even if the native algorithm
430 has enough digits, because the algorithm is better. The turnover point
431 depends on the value. */
432 static bool
433 print_factors (char const *s)
435 uintmax_t n;
436 strtol_error err = xstrtoumax (s, NULL, 10, &n, "");
438 #if HAVE_GMP
439 enum { GMP_TURNOVER_POINT = 100000 };
441 if (err == LONGINT_OVERFLOW
442 || (err == LONGINT_OK && GMP_TURNOVER_POINT <= n))
444 mpz_t t;
445 mpz_init (t);
446 if (gmp_sscanf (s, "%Zd", t) == 1)
448 debug ("[%s]", _("using arbitrary-precision arithmetic"));
449 print_factors_multi (t);
450 return true;
452 err = LONGINT_INVALID;
454 #endif
456 switch (err)
458 case LONGINT_OK:
459 debug ("[%s]", _("using single-precision arithmetic"));
460 print_factors_single (n);
461 return true;
463 case LONGINT_OVERFLOW:
464 error (0, 0, _("%s is too large"), quote (s));
465 return false;
467 default:
468 error (0, 0, _("%s is not a valid positive integer"), quote (s));
469 return false;
473 enum
475 VERBOSE_OPTION = CHAR_MAX + 1
478 static struct option const long_options[] =
480 {"verbose", no_argument, NULL, VERBOSE_OPTION},
481 {GETOPT_HELP_OPTION_DECL},
482 {GETOPT_VERSION_OPTION_DECL},
483 {NULL, 0, NULL, 0}
486 void
487 usage (int status)
489 if (status != EXIT_SUCCESS)
490 fprintf (stderr, _("Try `%s --help' for more information.\n"),
491 program_name);
492 else
494 printf (_("\
495 Usage: %s [NUMBER]...\n\
496 or: %s OPTION\n\
498 program_name, program_name);
499 fputs (_("\
500 Print the prime factors of each specified integer NUMBER. If none\n\
501 are specified on the command line, read them from standard input.\n\
503 "), stdout);
504 fputs (HELP_OPTION_DESCRIPTION, stdout);
505 fputs (VERSION_OPTION_DESCRIPTION, stdout);
506 emit_ancillary_info ();
508 exit (status);
511 static bool
512 do_stdin (void)
514 bool ok = true;
515 token_buffer tokenbuffer;
517 init_tokenbuffer (&tokenbuffer);
519 for (;;)
521 size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1,
522 &tokenbuffer);
523 if (token_length == (size_t) -1)
524 break;
525 ok &= print_factors (tokenbuffer.buffer);
527 free (tokenbuffer.buffer);
529 return ok;
533 main (int argc, char **argv)
535 bool ok;
536 int c;
538 initialize_main (&argc, &argv);
539 set_program_name (argv[0]);
540 setlocale (LC_ALL, "");
541 bindtextdomain (PACKAGE, LOCALEDIR);
542 textdomain (PACKAGE);
544 atexit (close_stdout);
546 while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1)
548 switch (c)
550 case VERBOSE_OPTION:
551 verbose = true;
552 break;
554 case_GETOPT_HELP_CHAR;
556 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
558 default:
559 usage (EXIT_FAILURE);
563 if (argc <= optind)
564 ok = do_stdin ();
565 else
567 int i;
568 ok = true;
569 for (i = optind; i < argc; i++)
570 if (! print_factors (argv[i]))
571 ok = false;
573 #if HAVE_GMP
574 free (factor);
575 #endif
576 exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);