realpath: let --relative-to default to --relative-base
[coreutils.git] / src / factor.c
blob1d5580507537c04f492e9766d4ae43dd92ac78dc
1 /* factor -- print prime factors of n.
2 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Paul Rubin <phr@ocf.berkeley.edu>.
18 Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
19 Arbitrary-precision code adapted by James Youngman from Torbjörn
20 Granlund's factorize.c, from GNU MP version 4.2.2.
23 #include <config.h>
24 #include <getopt.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27 #include <sys/types.h>
28 #if HAVE_GMP
29 # include <gmp.h>
30 #endif
32 #include <assert.h>
34 #include "system.h"
35 #include "error.h"
36 #include "quote.h"
37 #include "readtokens.h"
38 #include "xstrtol.h"
40 /* The official name of this program (e.g., no 'g' prefix). */
41 #define PROGRAM_NAME "factor"
43 #define AUTHORS proper_name ("Paul Rubin")
45 /* Token delimiters when reading from a file. */
46 #define DELIM "\n\t "
48 static bool verbose = false;
50 #if HAVE_GMP
51 static mpz_t *factor = NULL;
52 static size_t nfactors_found = 0;
53 static size_t nfactors_allocated = 0;
55 static void
56 debug (char const *fmt, ...)
58 if (verbose)
60 va_list ap;
61 va_start (ap, fmt);
62 vfprintf (stderr, fmt, ap);
63 va_end (ap);
67 static void
68 emit_factor (mpz_t n)
70 if (nfactors_found == nfactors_allocated)
71 factor = X2NREALLOC (factor, &nfactors_allocated);
72 mpz_init (factor[nfactors_found]);
73 mpz_set (factor[nfactors_found], n);
74 ++nfactors_found;
77 static void
78 emit_ul_factor (unsigned long int i)
80 mpz_t t;
81 mpz_init (t);
82 mpz_set_ui (t, i);
83 emit_factor (t);
84 mpz_clear (t);
87 static void
88 factor_using_division (mpz_t t, unsigned int limit)
90 mpz_t q, r;
91 unsigned long int f;
92 int ai;
93 static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6};
94 unsigned int const *addv = add;
95 unsigned int failures;
97 debug ("[trial division (%u)] ", limit);
99 mpz_init (q);
100 mpz_init (r);
102 f = mpz_scan1 (t, 0);
103 mpz_div_2exp (t, t, f);
104 while (f)
106 emit_ul_factor (2);
107 --f;
110 while (true)
112 mpz_tdiv_qr_ui (q, r, t, 3);
113 if (mpz_cmp_ui (r, 0) != 0)
114 break;
115 mpz_set (t, q);
116 emit_ul_factor (3);
119 while (true)
121 mpz_tdiv_qr_ui (q, r, t, 5);
122 if (mpz_cmp_ui (r, 0) != 0)
123 break;
124 mpz_set (t, q);
125 emit_ul_factor (5);
128 failures = 0;
129 f = 7;
130 ai = 0;
131 while (mpz_cmp_ui (t, 1) != 0)
133 mpz_tdiv_qr_ui (q, r, t, f);
134 if (mpz_cmp_ui (r, 0) != 0)
136 f += addv[ai];
137 if (mpz_cmp_ui (q, f) < 0)
138 break;
139 ai = (ai + 1) & 7;
140 failures++;
141 if (failures > limit)
142 break;
144 else
146 mpz_swap (t, q);
147 emit_ul_factor (f);
148 failures = 0;
152 mpz_clear (q);
153 mpz_clear (r);
156 static void
157 factor_using_pollard_rho (mpz_t n, int a_int)
159 mpz_t x, x1, y, P;
160 mpz_t a;
161 mpz_t g;
162 mpz_t t1, t2;
163 int k, l, c;
165 debug ("[pollard-rho (%d)] ", a_int);
167 mpz_init (g);
168 mpz_init (t1);
169 mpz_init (t2);
171 mpz_init_set_si (a, a_int);
172 mpz_init_set_si (y, 2);
173 mpz_init_set_si (x, 2);
174 mpz_init_set_si (x1, 2);
175 k = 1;
176 l = 1;
177 mpz_init_set_ui (P, 1);
178 c = 0;
180 while (mpz_cmp_ui (n, 1) != 0)
183 mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
185 mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n);
186 c++;
187 if (c == 20)
189 c = 0;
190 mpz_gcd (g, P, n);
191 if (mpz_cmp_ui (g, 1) != 0)
192 goto S4;
193 mpz_set (y, x);
196 k--;
197 if (k > 0)
198 goto S2;
200 mpz_gcd (g, P, n);
201 if (mpz_cmp_ui (g, 1) != 0)
202 goto S4;
204 mpz_set (x1, x);
205 k = l;
206 l = 2 * l;
207 unsigned int i;
208 for (i = 0; i < k; i++)
210 mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
212 mpz_set (y, x);
213 c = 0;
214 goto S2;
218 mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n);
219 mpz_sub (t1, x1, y); mpz_gcd (g, t1, n);
221 while (mpz_cmp_ui (g, 1) == 0);
223 mpz_div (n, n, g); /* divide by g, before g is overwritten */
225 if (!mpz_probab_prime_p (g, 3))
229 mp_limb_t a_limb;
230 mpn_random (&a_limb, (mp_size_t) 1);
231 a_int = (int) a_limb;
233 while (a_int == -2 || a_int == 0);
235 debug ("[composite factor--restarting pollard-rho] ");
236 factor_using_pollard_rho (g, a_int);
238 else
240 emit_factor (g);
242 mpz_mod (x, x, n);
243 mpz_mod (x1, x1, n);
244 mpz_mod (y, y, n);
245 if (mpz_probab_prime_p (n, 3))
247 emit_factor (n);
248 break;
252 mpz_clear (g);
253 mpz_clear (P);
254 mpz_clear (t2);
255 mpz_clear (t1);
256 mpz_clear (a);
257 mpz_clear (x1);
258 mpz_clear (x);
259 mpz_clear (y);
262 #else
264 static void
265 debug (char const *fmt ATTRIBUTE_UNUSED, ...)
269 #endif
271 /* The maximum number of factors, including -1, for negative numbers. */
272 #define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT)
274 /* The trial divisor increment wheel. Use it to skip over divisors that
275 are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to
276 WHEEL_END is reused periodically, while the "lead in" is used to test
277 for those primes and to jump onto the wheel. For more information, see
278 http://www.utm.edu/research/primes/glossary/WheelFactorization.html */
280 #include "wheel-size.h" /* For the definition of WHEEL_SIZE. */
281 static const unsigned char wheel_tab[] =
283 #include "wheel.h"
286 #define WHEEL_START (wheel_tab + WHEEL_SIZE)
287 #define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab))
289 /* FIXME: comment */
291 static size_t
292 factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors)
294 uintmax_t n = n0, d, q;
295 size_t n_factors = 0;
296 unsigned char const *w = wheel_tab;
298 if (n <= 1)
299 return n_factors;
301 /* The exit condition in the following loop is correct because
302 any time it is tested one of these 3 conditions holds:
303 (1) d divides n
304 (2) n is prime
305 (3) n is composite but has no factors less than d.
306 If (1) or (2) obviously the right thing happens.
307 If (3), then since n is composite it is >= d^2. */
309 d = 2;
312 q = n / d;
313 while (n == q * d)
315 assert (n_factors < max_n_factors);
316 factors[n_factors++] = d;
317 n = q;
318 q = n / d;
320 d += *(w++);
321 if (w == WHEEL_END)
322 w = WHEEL_START;
324 while (d <= q);
326 if (n != 1 || n0 == 1)
328 assert (n_factors < max_n_factors);
329 factors[n_factors++] = n;
332 return n_factors;
335 /* Single-precision factoring */
336 static void
337 print_factors_single (uintmax_t n)
339 uintmax_t factors[MAX_N_FACTORS];
340 size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors);
341 size_t i;
342 char buf[INT_BUFSIZE_BOUND (uintmax_t)];
344 printf ("%s:", umaxtostr (n, buf));
345 for (i = 0; i < n_factors; i++)
346 printf (" %s", umaxtostr (factors[i], buf));
347 putchar ('\n');
350 #if HAVE_GMP
351 static int
352 mpcompare (const void *av, const void *bv)
354 mpz_t *const *a = av;
355 mpz_t *const *b = bv;
356 return mpz_cmp (**a, **b);
359 static void
360 sort_and_print_factors (void)
362 mpz_t **faclist;
363 size_t i;
365 faclist = xcalloc (nfactors_found, sizeof *faclist);
366 for (i = 0; i < nfactors_found; ++i)
368 faclist[i] = &factor[i];
370 qsort (faclist, nfactors_found, sizeof *faclist, mpcompare);
372 for (i = 0; i < nfactors_found; ++i)
374 fputc (' ', stdout);
375 mpz_out_str (stdout, 10, *faclist[i]);
377 putchar ('\n');
378 free (faclist);
381 static void
382 free_factors (void)
384 size_t i;
386 for (i = 0; i < nfactors_found; ++i)
388 mpz_clear (factor[i]);
390 /* Don't actually free factor[] because in the case where we are
391 reading numbers from stdin, we may be about to use it again. */
392 nfactors_found = 0;
395 /* Arbitrary-precision factoring */
396 static void
397 print_factors_multi (mpz_t t)
399 mpz_out_str (stdout, 10, t);
400 putchar (':');
402 if (mpz_sgn (t) != 0)
404 /* Set the trial division limit according to the size of t. */
405 size_t n_bits = mpz_sizeinbase (t, 2);
406 unsigned int division_limit = MIN (n_bits, 1000);
407 division_limit *= division_limit;
409 factor_using_division (t, division_limit);
411 if (mpz_cmp_ui (t, 1) != 0)
413 debug ("[is number prime?] ");
414 if (mpz_probab_prime_p (t, 3))
415 emit_factor (t);
416 else
417 factor_using_pollard_rho (t, 1);
421 mpz_clear (t);
422 sort_and_print_factors ();
423 free_factors ();
425 #endif
428 /* Emit the factors of the indicated number. If we have the option of using
429 either algorithm, we select on the basis of the length of the number.
430 For longer numbers, we prefer the MP algorithm even if the native algorithm
431 has enough digits, because the algorithm is better. The turnover point
432 depends on the value. */
433 static bool
434 print_factors (char const *s)
436 uintmax_t n;
437 strtol_error err = xstrtoumax (s, NULL, 10, &n, "");
439 #if HAVE_GMP
440 enum { GMP_TURNOVER_POINT = 100000 };
442 if (err == LONGINT_OVERFLOW
443 || (err == LONGINT_OK && GMP_TURNOVER_POINT <= n))
445 mpz_t t;
446 mpz_init (t);
447 if (gmp_sscanf (s, "%Zd", t) == 1)
449 debug ("[%s]", _("using arbitrary-precision arithmetic"));
450 print_factors_multi (t);
451 return true;
453 err = LONGINT_INVALID;
455 #endif
457 switch (err)
459 case LONGINT_OK:
460 debug ("[%s]", _("using single-precision arithmetic"));
461 print_factors_single (n);
462 return true;
464 case LONGINT_OVERFLOW:
465 error (0, 0, _("%s is too large"), quote (s));
466 return false;
468 default:
469 error (0, 0, _("%s is not a valid positive integer"), quote (s));
470 return false;
474 enum
476 VERBOSE_OPTION = CHAR_MAX + 1
479 static struct option const long_options[] =
481 {"verbose", no_argument, NULL, VERBOSE_OPTION},
482 {GETOPT_HELP_OPTION_DECL},
483 {GETOPT_VERSION_OPTION_DECL},
484 {NULL, 0, NULL, 0}
487 void
488 usage (int status)
490 if (status != EXIT_SUCCESS)
491 emit_try_help ();
492 else
494 printf (_("\
495 Usage: %s [NUMBER]...\n\
496 or: %s OPTION\n\
498 program_name, program_name);
499 fputs (_("\
500 Print the prime factors of each specified integer NUMBER. If none\n\
501 are specified on the command line, read them from standard input.\n\
503 "), stdout);
504 fputs (HELP_OPTION_DESCRIPTION, stdout);
505 fputs (VERSION_OPTION_DESCRIPTION, stdout);
506 emit_ancillary_info ();
508 exit (status);
511 static bool
512 do_stdin (void)
514 bool ok = true;
515 token_buffer tokenbuffer;
517 init_tokenbuffer (&tokenbuffer);
519 while (true)
521 size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1,
522 &tokenbuffer);
523 if (token_length == (size_t) -1)
524 break;
525 ok &= print_factors (tokenbuffer.buffer);
527 free (tokenbuffer.buffer);
529 return ok;
533 main (int argc, char **argv)
535 bool ok;
536 int c;
538 initialize_main (&argc, &argv);
539 set_program_name (argv[0]);
540 setlocale (LC_ALL, "");
541 bindtextdomain (PACKAGE, LOCALEDIR);
542 textdomain (PACKAGE);
544 atexit (close_stdout);
546 while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1)
548 switch (c)
550 case VERBOSE_OPTION:
551 verbose = true;
552 break;
554 case_GETOPT_HELP_CHAR;
556 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
558 default:
559 usage (EXIT_FAILURE);
563 if (argc <= optind)
564 ok = do_stdin ();
565 else
567 int i;
568 ok = true;
569 for (i = optind; i < argc; i++)
570 if (! print_factors (argv[i]))
571 ok = false;
573 #if HAVE_GMP
574 free (factor);
575 #endif
576 exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);