1 /* tr -- a filter to translate characters
2 Copyright (C) 1991-2015 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* Written by Jim Meyering */
23 #include <sys/types.h>
30 #include "safe-read.h"
34 /* The official name of this program (e.g., no 'g' prefix). */
35 #define PROGRAM_NAME "tr"
37 #define AUTHORS proper_name ("Jim Meyering")
39 enum { N_CHARS
= UCHAR_MAX
+ 1 };
41 /* An unsigned integer type big enough to hold a repeat count or an
42 unsigned character. POSIX requires support for repeat counts as
43 high as 2**31 - 1. Since repeat counts might need to expand to
44 match the length of an argument string, we need at least size_t to
45 avoid arbitrary internal limits. It doesn't cost much to use
47 typedef uintmax_t count
;
49 /* The value for Spec_list->state that indicates to
50 get_next that it should initialize the tail pointer.
51 Its value should be as large as possible to avoid conflict
52 a valid value for the state field -- and that may be as
53 large as any valid repeat_count. */
54 #define BEGIN_STATE (UINTMAX_MAX - 1)
56 /* The value for Spec_list->state that indicates to
57 get_next that the element pointed to by Spec_list->tail is
58 being considered for the first time on this pass through the
59 list -- it indicates that get_next should make any necessary
61 #define NEW_ELEMENT (BEGIN_STATE + 1)
63 /* The maximum possible repeat count. Due to how the states are
64 implemented, it can be as much as BEGIN_STATE. */
65 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
67 /* The following (but not CC_NO_CLASS) are indices into the array of
68 valid character class strings. */
71 CC_ALNUM
= 0, CC_ALPHA
= 1, CC_BLANK
= 2, CC_CNTRL
= 3,
72 CC_DIGIT
= 4, CC_GRAPH
= 5, CC_LOWER
= 6, CC_PRINT
= 7,
73 CC_PUNCT
= 8, CC_SPACE
= 9, CC_UPPER
= 10, CC_XDIGIT
= 11,
77 /* Character class to which a character (returned by get_next) belonged;
78 but it is set only if the construct from which the character was obtained
79 was one of the character classes [:upper:] or [:lower:]. The value
80 is used only when translating and then, only to make sure that upper
81 and lower class constructs have the same relative positions in string1
83 enum Upper_Lower_class
90 /* The type of a List_element. See build_spec_list for more details. */
91 enum Range_element_type
100 /* One construct in one of tr's argument strings.
101 For example, consider the POSIX version of the classic tr command:
102 tr -cs 'a-zA-Z_' '[\n*]'
103 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
104 and a single normal character, '_'. String2 has one construct. */
107 enum Range_element_type type
;
108 struct List_element
*next
;
111 unsigned char normal_char
;
114 unsigned char first_char
;
115 unsigned char last_char
;
118 enum Char_class char_class
;
119 unsigned char equiv_code
;
122 unsigned char the_repeated_char
;
130 /* Each of tr's argument strings is parsed into a form that is easier
131 to work with: a linked list of constructs (struct List_element).
132 Each Spec_list structure also encapsulates various attributes of
133 the corresponding argument string. The attributes are used mainly
134 to verify that the strings are valid in the context of any options
135 specified (like -s, -d, or -c). The main exception is the member
136 'tail', which is first used to construct the list. After construction,
137 it is used by get_next to save its state when traversing the list.
138 The member 'state' serves a similar function. */
141 /* Points to the head of the list of range elements.
142 The first struct is a dummy; its members are never used. */
143 struct List_element
*head
;
145 /* When appending, points to the last element. When traversing via
146 get_next(), points to the element to process next. Setting
147 Spec_list.state to the value BEGIN_STATE before calling get_next
148 signals get_next to initialize tail to point to head->next. */
149 struct List_element
*tail
;
151 /* Used to save state between calls to get_next. */
154 /* Length, in the sense that length ('a-z[:digit:]123abc')
155 is 42 ( = 26 + 10 + 6). */
158 /* The number of [c*] and [c*0] constructs that appear in this spec. */
159 size_t n_indefinite_repeats
;
161 /* If n_indefinite_repeats is nonzero, this points to the List_element
162 corresponding to the last [c*] or [c*0] construct encountered in
163 this spec. Otherwise it is undefined. */
164 struct List_element
*indefinite_repeat_element
;
166 /* True if this spec contains at least one equivalence
167 class construct e.g. [=c=]. */
168 bool has_equiv_class
;
170 /* True if this spec contains at least one character class
171 construct. E.g. [:digit:]. */
174 /* True if this spec contains at least one of the character class
175 constructs (all but upper and lower) that aren't allowed in s2. */
176 bool has_restricted_char_class
;
179 /* A representation for escaped string1 or string2. As a string is parsed,
180 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
181 etc.) are marked as such in this structure by setting the corresponding
182 entry in the ESCAPED vector. */
190 /* Return nonzero if the Ith character of escaped string ES matches C
191 and is not escaped itself. */
193 es_match (struct E_string
const *es
, size_t i
, char c
)
195 return es
->s
[i
] == c
&& !es
->escaped
[i
];
198 /* When true, each sequence in the input of a repeated character
199 (call it c) is replaced (in the output) by a single occurrence of c
200 for every c in the squeeze set. */
201 static bool squeeze_repeats
= false;
203 /* When true, removes characters in the delete set from input. */
204 static bool delete = false;
206 /* Use the complement of set1 in place of set1. */
207 static bool complement
= false;
209 /* When tr is performing translation and string1 is longer than string2,
210 POSIX says that the result is unspecified. That gives the implementor
211 of a POSIX conforming version of tr two reasonable choices for the
212 semantics of this case.
214 * The BSD tr pads string2 to the length of string1 by
215 repeating the last character in string2.
217 * System V tr ignores characters in string1 that have no
218 corresponding character in string2. That is, string1 is effectively
219 truncated to the length of string2.
221 When nonzero, this flag causes GNU tr to imitate the behavior
222 of System V tr when translating with string1 longer than string2.
223 The default is to emulate BSD tr. This flag is ignored in modes where
224 no translation is performed. Emulating the System V tr
225 in this exceptional case causes the relatively common BSD idiom:
227 tr -cs A-Za-z0-9 '\012'
229 to break (it would convert only zero bytes, rather than all
230 non-alphanumerics, to newlines).
232 WARNING: This switch does not provide general BSD or System V
233 compatibility. For example, it doesn't disable the interpretation
234 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
235 some unfortunate coincidence you use such constructs in scripts
236 expecting to use some other version of tr, the scripts will break. */
237 static bool truncate_set1
= false;
239 /* An alias for (!delete && non_option_args == 2).
240 It is set in main and used there and in validate(). */
241 static bool translating
;
243 static char io_buf
[BUFSIZ
];
245 static char const *const char_class_name
[] =
247 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
248 "lower", "print", "punct", "space", "upper", "xdigit"
251 /* Array of boolean values. A character 'c' is a member of the
252 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
253 set is defined by the last (possibly, the only) string argument
254 on the command line when the squeeze option is given. */
255 static bool in_squeeze_set
[N_CHARS
];
257 /* Array of boolean values. A character 'c' is a member of the
258 delete set if and only if in_delete_set[c] is true. The delete
259 set is defined by the first (or only) string argument on the
260 command line when the delete option is given. */
261 static bool in_delete_set
[N_CHARS
];
263 /* Array of character values defining the translation (if any) that
264 tr is to perform. Translation is performed only when there are
265 two specification strings and the delete switch is not given. */
266 static char xlate
[N_CHARS
];
268 static struct option
const long_options
[] =
270 {"complement", no_argument
, NULL
, 'c'},
271 {"delete", no_argument
, NULL
, 'd'},
272 {"squeeze-repeats", no_argument
, NULL
, 's'},
273 {"truncate-set1", no_argument
, NULL
, 't'},
274 {GETOPT_HELP_OPTION_DECL
},
275 {GETOPT_VERSION_OPTION_DECL
},
282 if (status
!= EXIT_SUCCESS
)
287 Usage: %s [OPTION]... SET1 [SET2]\n\
291 Translate, squeeze, and/or delete characters from standard input,\n\
292 writing to standard output.\n\
294 -c, -C, --complement use the complement of SET1\n\
295 -d, --delete delete characters in SET1, do not translate\n\
296 -s, --squeeze-repeats replace each input sequence of a repeated character\n\
297 that is listed in SET1 with a single occurrence\n\
299 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
301 fputs (HELP_OPTION_DESCRIPTION
, stdout
);
302 fputs (VERSION_OPTION_DESCRIPTION
, stdout
);
305 SETs are specified as strings of characters. Most represent themselves.\n\
306 Interpreted sequences are:\n\
308 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
315 \\t horizontal tab\n\
319 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
320 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
321 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
322 [:alnum:] all letters and digits\n\
323 [:alpha:] all letters\n\
324 [:blank:] all horizontal whitespace\n\
325 [:cntrl:] all control characters\n\
326 [:digit:] all digits\n\
329 [:graph:] all printable characters, not including space\n\
330 [:lower:] all lower case letters\n\
331 [:print:] all printable characters, including space\n\
332 [:punct:] all punctuation characters\n\
333 [:space:] all horizontal or vertical whitespace\n\
334 [:upper:] all upper case letters\n\
335 [:xdigit:] all hexadecimal digits\n\
336 [=CHAR=] all characters which are equivalent to CHAR\n\
340 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
341 -t may be used only when translating. SET2 is extended to length of\n\
342 SET1 by repeating its last character as necessary. Excess characters\n\
343 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
344 expand in ascending order; used in SET2 while translating, they may\n\
345 only be used in pairs to specify case conversion. -s uses SET1 if not\n\
346 translating nor deleting; else squeezing uses SET2 and occurs after\n\
347 translation or deletion.\n\
349 emit_ancillary_info (PROGRAM_NAME
);
354 /* Return nonzero if the character C is a member of the
355 equivalence class containing the character EQUIV_CLASS. */
358 is_equiv_class_member (unsigned char equiv_class
, unsigned char c
)
360 return (equiv_class
== c
);
363 /* Return true if the character C is a member of the
364 character class CHAR_CLASS. */
366 static bool _GL_ATTRIBUTE_PURE
367 is_char_class_member (enum Char_class char_class
, unsigned char c
)
374 result
= isalnum (c
);
377 result
= isalpha (c
);
380 result
= isblank (c
);
383 result
= iscntrl (c
);
386 result
= isdigit (c
);
389 result
= isgraph (c
);
392 result
= islower (c
);
395 result
= isprint (c
);
398 result
= ispunct (c
);
401 result
= isspace (c
);
404 result
= isupper (c
);
407 result
= isxdigit (c
);
418 es_free (struct E_string
*es
)
424 /* Perform the first pass over each range-spec argument S, converting all
425 \c and \ddd escapes to their one-byte representations. If an invalid
426 quote sequence is found print an error message and return false;
427 Otherwise set *ES to the resulting string and return true.
428 The resulting array of characters may contain zero-bytes;
429 however, on input, S is assumed to be null-terminated, and hence
430 cannot contain actual (non-escaped) zero bytes. */
433 unquote (char const *s
, struct E_string
*es
)
436 size_t len
= strlen (s
);
438 es
->s
= xmalloc (len
);
439 es
->escaped
= xcalloc (len
, sizeof es
->escaped
[0]);
442 for (i
= 0; s
[i
]; i
++)
450 es
->escaped
[j
] = true;
486 oct_digit
= s
[i
+ 2] - '0';
487 if (0 <= oct_digit
&& oct_digit
<= 7)
489 c
= 8 * c
+ oct_digit
;
491 oct_digit
= s
[i
+ 2] - '0';
492 if (0 <= oct_digit
&& oct_digit
<= 7)
494 if (8 * c
+ oct_digit
< N_CHARS
)
496 c
= 8 * c
+ oct_digit
;
501 /* A 3-digit octal number larger than \377 won't
502 fit in 8 bits. So we stop when adding the
503 next digit would put us over the limit and
504 give a warning about the ambiguity. POSIX
505 isn't clear on this, and we interpret this
506 lack of clarity as meaning the resulting behavior
507 is undefined, which means we're allowed to issue
509 error (0, 0, _("warning: the ambiguous octal escape\
510 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
511 s
[i
], s
[i
+ 1], s
[i
+ 2],
512 s
[i
], s
[i
+ 1], s
[i
+ 2]);
518 error (0, 0, _("warning: an unescaped backslash "
519 "at end of string is not portable"));
520 /* POSIX is not clear about this. */
521 es
->escaped
[j
] = false;
541 /* If CLASS_STR is a valid character class string, return its index
542 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
544 static enum Char_class _GL_ATTRIBUTE_PURE
545 look_up_char_class (char const *class_str
, size_t len
)
549 for (i
= 0; i
< ARRAY_CARDINALITY (char_class_name
); i
++)
550 if (STREQ_LEN (class_str
, char_class_name
[i
], len
)
551 && strlen (char_class_name
[i
]) == len
)
556 /* Return a newly allocated string with a printable version of C.
557 This function is used solely for formatting error messages. */
560 make_printable_char (unsigned char c
)
562 char *buf
= xmalloc (5);
571 sprintf (buf
, "\\%03o", c
);
576 /* Return a newly allocated copy of S which is suitable for printing.
577 LEN is the number of characters in S. Most non-printing
578 (isprint) characters are represented by a backslash followed by
579 3 octal digits. However, the characters represented by \c escapes
580 where c is one of [abfnrtv] are represented by their 2-character \c
581 sequences. This function is used solely for printing error messages. */
584 make_printable_str (char const *s
, size_t len
)
586 /* Worst case is that every character expands to a backslash
587 followed by a 3-character octal escape sequence. */
588 char *printable_buf
= xnmalloc (len
+ 1, 4);
589 char *p
= printable_buf
;
592 for (i
= 0; i
< len
; i
++)
595 char const *tmp
= NULL
;
596 unsigned char c
= s
[i
];
631 sprintf (buf
, "\\%03o", c
);
637 return printable_buf
;
640 /* Append a newly allocated structure representing a
641 character C to the specification list LIST. */
644 append_normal_char (struct Spec_list
*list
, unsigned char c
)
646 struct List_element
*new;
648 new = xmalloc (sizeof *new);
650 new->type
= RE_NORMAL_CHAR
;
651 new->u
.normal_char
= c
;
653 list
->tail
->next
= new;
657 /* Append a newly allocated structure representing the range
658 of characters from FIRST to LAST to the specification list LIST.
659 Return false if LAST precedes FIRST in the collating sequence,
660 true otherwise. This means that '[c-c]' is acceptable. */
663 append_range (struct Spec_list
*list
, unsigned char first
, unsigned char last
)
665 struct List_element
*new;
669 char *tmp1
= make_printable_char (first
);
670 char *tmp2
= make_printable_char (last
);
673 _("range-endpoints of '%s-%s' are in reverse collating sequence order"),
679 new = xmalloc (sizeof *new);
681 new->type
= RE_RANGE
;
682 new->u
.range
.first_char
= first
;
683 new->u
.range
.last_char
= last
;
685 list
->tail
->next
= new;
690 /* If CHAR_CLASS_STR is a valid character class string, append a
691 newly allocated structure representing that character class to the end
692 of the specification list LIST and return true. If CHAR_CLASS_STR is not
693 a valid string return false. */
696 append_char_class (struct Spec_list
*list
,
697 char const *char_class_str
, size_t len
)
699 enum Char_class char_class
;
700 struct List_element
*new;
702 char_class
= look_up_char_class (char_class_str
, len
);
703 if (char_class
== CC_NO_CLASS
)
705 new = xmalloc (sizeof *new);
707 new->type
= RE_CHAR_CLASS
;
708 new->u
.char_class
= char_class
;
710 list
->tail
->next
= new;
715 /* Append a newly allocated structure representing a [c*n]
716 repeated character construct to the specification list LIST.
717 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
718 is a non-negative repeat count. */
721 append_repeated_char (struct Spec_list
*list
, unsigned char the_char
,
724 struct List_element
*new;
726 new = xmalloc (sizeof *new);
728 new->type
= RE_REPEATED_CHAR
;
729 new->u
.repeated_char
.the_repeated_char
= the_char
;
730 new->u
.repeated_char
.repeat_count
= repeat_count
;
732 list
->tail
->next
= new;
736 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
737 the length of that string, LEN, if LEN is exactly one, append
738 a newly allocated structure representing the specified
739 equivalence class to the specification list, LIST and return true.
740 If LEN is not 1, return false. */
743 append_equiv_class (struct Spec_list
*list
,
744 char const *equiv_class_str
, size_t len
)
746 struct List_element
*new;
750 new = xmalloc (sizeof *new);
752 new->type
= RE_EQUIV_CLASS
;
753 new->u
.equiv_code
= *equiv_class_str
;
755 list
->tail
->next
= new;
760 /* Search forward starting at START_IDX for the 2-char sequence
761 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
762 a sequence is found, set *RESULT_IDX to the index of the first
763 character and return true. Otherwise return false. P may contain
767 find_closing_delim (const struct E_string
*es
, size_t start_idx
,
768 char pre_bracket_char
, size_t *result_idx
)
772 for (i
= start_idx
; i
< es
->len
- 1; i
++)
773 if (es
->s
[i
] == pre_bracket_char
&& es
->s
[i
+ 1] == ']'
774 && !es
->escaped
[i
] && !es
->escaped
[i
+ 1])
782 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
783 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
784 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
785 and return zero. If the second character following
786 the opening bracket is not '*' or if no closing bracket can be
787 found, return -1. If a closing bracket is found and the
788 second char is '*', but the string between the '*' and ']' isn't
789 empty, an octal number, or a decimal number, print an error message
793 find_bracketed_repeat (const struct E_string
*es
, size_t start_idx
,
794 unsigned char *char_to_repeat
, count
*repeat_count
,
795 size_t *closing_bracket_idx
)
799 assert (start_idx
+ 1 < es
->len
);
800 if (!es_match (es
, start_idx
+ 1, '*'))
803 for (i
= start_idx
+ 2; i
< es
->len
&& !es
->escaped
[i
]; i
++)
807 size_t digit_str_len
= i
- start_idx
- 2;
809 *char_to_repeat
= es
->s
[start_idx
];
810 if (digit_str_len
== 0)
812 /* We've matched [c*] -- no explicit repeat count. */
817 /* Here, we have found [c*s] where s should be a string
818 of octal (if it starts with '0') or decimal digits. */
819 char const *digit_str
= &es
->s
[start_idx
+ 2];
821 if ((xstrtoumax (digit_str
, &d_end
, *digit_str
== '0' ? 8 : 10,
824 || REPEAT_COUNT_MAXIMUM
< *repeat_count
825 || digit_str
+ digit_str_len
!= d_end
)
827 char *tmp
= make_printable_str (digit_str
, digit_str_len
);
829 _("invalid repeat count %s in [c*n] construct"),
835 *closing_bracket_idx
= i
;
839 return -1; /* No bracket found. */
842 /* Return true if the string at ES->s[IDX] matches the regular
843 expression '\*[0-9]*\]', false otherwise. The string does not
844 match if any of its characters are escaped. */
846 static bool _GL_ATTRIBUTE_PURE
847 star_digits_closebracket (const struct E_string
*es
, size_t idx
)
851 if (!es_match (es
, idx
, '*'))
854 for (i
= idx
+ 1; i
< es
->len
; i
++)
855 if (!ISDIGIT (to_uchar (es
->s
[i
])) || es
->escaped
[i
])
856 return es_match (es
, i
, ']');
860 /* Convert string UNESCAPED_STRING (which has been preprocessed to
861 convert backslash-escape sequences) of length LEN characters into
862 a linked list of the following 5 types of constructs:
863 - [:str:] Character class where 'str' is one of the 12 valid strings.
864 - [=c=] Equivalence class where 'c' is any single character.
865 - [c*n] Repeat the single character 'c' 'n' times. n may be omitted.
866 However, if 'n' is present, it must be a non-negative octal or
868 - r-s Range of characters from 'r' to 's'. The second endpoint must
869 not precede the first in the current collating sequence.
870 - c Any other character is interpreted as itself. */
873 build_spec_list (const struct E_string
*es
, struct Spec_list
*result
)
880 /* The main for-loop below recognizes the 4 multi-character constructs.
881 A character that matches (in its context) none of the multi-character
882 constructs is classified as 'normal'. Since all multi-character
883 constructs have at least 3 characters, any strings of length 2 or
884 less are composed solely of normal characters. Hence, the index of
885 the outer for-loop runs only as far as LEN-2. */
887 for (i
= 0; i
+ 2 < es
->len
; /* empty */)
889 if (es_match (es
, i
, '['))
891 bool matched_multi_char_construct
;
892 size_t closing_bracket_idx
;
893 unsigned char char_to_repeat
;
897 matched_multi_char_construct
= true;
898 if (es_match (es
, i
+ 1, ':') || es_match (es
, i
+ 1, '='))
900 size_t closing_delim_idx
;
902 if (find_closing_delim (es
, i
+ 2, p
[i
+ 1], &closing_delim_idx
))
904 size_t opnd_str_len
= closing_delim_idx
- 1 - (i
+ 2) + 1;
905 char const *opnd_str
= p
+ i
+ 2;
907 if (opnd_str_len
== 0)
910 error (0, 0, _("missing character class name '[::]'"));
913 _("missing equivalence class character '[==]'"));
919 /* FIXME: big comment. */
920 if (!append_char_class (result
, opnd_str
, opnd_str_len
))
922 if (star_digits_closebracket (es
, i
+ 2))
923 goto try_bracketed_repeat
;
926 char *tmp
= make_printable_str (opnd_str
,
928 error (0, 0, _("invalid character class %s"),
937 /* FIXME: big comment. */
938 if (!append_equiv_class (result
, opnd_str
, opnd_str_len
))
940 if (star_digits_closebracket (es
, i
+ 2))
941 goto try_bracketed_repeat
;
944 char *tmp
= make_printable_str (opnd_str
,
947 _("%s: equivalence class operand must be a single character"),
955 i
= closing_delim_idx
+ 2;
958 /* Else fall through. This could be [:*] or [=*]. */
961 try_bracketed_repeat
:
963 /* Determine whether this is a bracketed repeat range
964 matching the RE \[.\*(dec_or_oct_number)?\]. */
965 err
= find_bracketed_repeat (es
, i
+ 1, &char_to_repeat
,
967 &closing_bracket_idx
);
970 append_repeated_char (result
, char_to_repeat
, repeat_count
);
971 i
= closing_bracket_idx
+ 1;
975 matched_multi_char_construct
= false;
979 /* Found a string that looked like [c*n] but the
980 numeric part was invalid. */
984 if (matched_multi_char_construct
)
987 /* We reach this point if P does not match [:str:], [=c=],
988 [c*n], or [c*]. Now, see if P looks like a range '[-c'
989 (from '[' to 'c'). */
992 /* Look ahead one char for ranges like a-z. */
993 if (es_match (es
, i
+ 1, '-'))
995 if (!append_range (result
, p
[i
], p
[i
+ 2]))
1001 append_normal_char (result
, p
[i
]);
1006 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1007 for (; i
< es
->len
; i
++)
1008 append_normal_char (result
, p
[i
]);
1013 /* Advance past the current construct.
1014 S->tail must be non-NULL. */
1016 skip_construct (struct Spec_list
*s
)
1018 s
->tail
= s
->tail
->next
;
1019 s
->state
= NEW_ELEMENT
;
1022 /* Given a Spec_list S (with its saved state implicit in the values
1023 of its members 'tail' and 'state'), return the next single character
1024 in the expansion of S's constructs. If the last character of S was
1025 returned on the previous call or if S was empty, this function
1026 returns -1. For example, successive calls to get_next where S
1027 represents the spec-string 'a-d[y*3]' will return the sequence
1028 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1029 which the returned character comes is [:upper:] or [:lower:], the
1030 parameter CLASS is given a value to indicate which it was. Otherwise
1031 CLASS is set to UL_NONE. This value is used only when constructing
1032 the translation table to verify that any occurrences of upper and
1033 lower class constructs in the spec-strings appear in the same relative
1037 get_next (struct Spec_list
*s
, enum Upper_Lower_class
*class)
1039 struct List_element
*p
;
1046 if (s
->state
== BEGIN_STATE
)
1048 s
->tail
= s
->head
->next
;
1049 s
->state
= NEW_ELEMENT
;
1058 case RE_NORMAL_CHAR
:
1059 return_val
= p
->u
.normal_char
;
1060 s
->state
= NEW_ELEMENT
;
1065 if (s
->state
== NEW_ELEMENT
)
1066 s
->state
= p
->u
.range
.first_char
;
1069 return_val
= s
->state
;
1070 if (s
->state
== p
->u
.range
.last_char
)
1073 s
->state
= NEW_ELEMENT
;
1080 switch (p
->u
.char_class
)
1093 if (s
->state
== NEW_ELEMENT
)
1095 for (i
= 0; i
< N_CHARS
; i
++)
1096 if (is_char_class_member (p
->u
.char_class
, i
))
1098 assert (i
< N_CHARS
);
1101 assert (is_char_class_member (p
->u
.char_class
, s
->state
));
1102 return_val
= s
->state
;
1103 for (i
= s
->state
+ 1; i
< N_CHARS
; i
++)
1104 if (is_char_class_member (p
->u
.char_class
, i
))
1111 s
->state
= NEW_ELEMENT
;
1115 case RE_EQUIV_CLASS
:
1116 /* FIXME: this assumes that each character is alone in its own
1117 equivalence class (which appears to be correct for my
1118 LC_COLLATE. But I don't know of any function that allows
1119 one to determine a character's equivalence class. */
1121 return_val
= p
->u
.equiv_code
;
1122 s
->state
= NEW_ELEMENT
;
1126 case RE_REPEATED_CHAR
:
1127 /* Here, a repeat count of n == 0 means don't repeat at all. */
1128 if (p
->u
.repeated_char
.repeat_count
== 0)
1131 s
->state
= NEW_ELEMENT
;
1132 return_val
= get_next (s
, class);
1136 if (s
->state
== NEW_ELEMENT
)
1141 return_val
= p
->u
.repeated_char
.the_repeated_char
;
1142 if (s
->state
== p
->u
.repeated_char
.repeat_count
)
1145 s
->state
= NEW_ELEMENT
;
1158 /* This is a minor kludge. This function is called from
1159 get_spec_stats to determine the cardinality of a set derived
1160 from a complemented string. It's a kludge in that some of the
1161 same operations are (duplicated) performed in set_initialize. */
1164 card_of_complement (struct Spec_list
*s
)
1167 int cardinality
= N_CHARS
;
1168 bool in_set
[N_CHARS
] = { 0, };
1170 s
->state
= BEGIN_STATE
;
1171 while ((c
= get_next (s
, NULL
)) != -1)
1173 cardinality
-= (!in_set
[c
]);
1179 /* Discard the lengths associated with a case conversion,
1180 as using the actual number of upper or lower case characters
1181 is problematic when they don't match in some locales.
1182 Also ensure the case conversion classes in string2 are
1183 aligned correctly with those in string1.
1184 Note POSIX says the behavior of 'tr "[:upper:]" "[:upper:]"'
1185 is undefined. Therefore we allow it (unlike Solaris)
1186 and treat it as a no-op. */
1189 validate_case_classes (struct Spec_list
*s1
, struct Spec_list
*s2
)
1196 count old_s1_len
= s1
->length
;
1197 count old_s2_len
= s2
->length
;
1198 struct List_element
*s1_tail
= s1
->tail
;
1199 struct List_element
*s2_tail
= s2
->tail
;
1200 bool s1_new_element
= true;
1201 bool s2_new_element
= true;
1203 if (!s2
->has_char_class
)
1206 for (i
= 0; i
< N_CHARS
; i
++)
1214 s1
->state
= BEGIN_STATE
;
1215 s2
->state
= BEGIN_STATE
;
1217 while (c1
!= -1 && c2
!= -1)
1219 enum Upper_Lower_class class_s1
, class_s2
;
1221 c1
= get_next (s1
, &class_s1
);
1222 c2
= get_next (s2
, &class_s2
);
1224 /* If c2 transitions to a new case class, then
1225 c1 must also transition at the same time. */
1226 if (s2_new_element
&& class_s2
!= UL_NONE
1227 && !(s1_new_element
&& class_s1
!= UL_NONE
))
1228 error (EXIT_FAILURE
, 0,
1229 _("misaligned [:upper:] and/or [:lower:] construct"));
1231 /* If case converting, quickly skip over the elements. */
1232 if (class_s2
!= UL_NONE
)
1234 skip_construct (s1
);
1235 skip_construct (s2
);
1236 /* Discount insignificant/problematic lengths. */
1237 s1
->length
-= (class_s1
== UL_UPPER
? n_upper
: n_lower
) - 1;
1238 s2
->length
-= (class_s2
== UL_UPPER
? n_upper
: n_lower
) - 1;
1241 s1_new_element
= s1
->state
== NEW_ELEMENT
; /* Next element is new. */
1242 s2_new_element
= s2
->state
== NEW_ELEMENT
; /* Next element is new. */
1245 assert (old_s1_len
>= s1
->length
&& old_s2_len
>= s2
->length
);
1251 /* Gather statistics about the spec-list S in preparation for the tests
1252 in validate that determine the consistency of the specs. This function
1253 is called at most twice; once for string1, and again for any string2.
1254 LEN_S1 < 0 indicates that this is the first call and that S represents
1255 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1256 constructs in string1, and we can use its value to resolve any
1257 indefinite repeat construct in S (which represents string2). Hence,
1258 this function has the side-effect that it converts a valid [c*]
1259 construct in string2 to [c*n] where n is large enough (or 0) to give
1260 string2 the same length as string1. For example, with the command
1261 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1262 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1265 get_spec_stats (struct Spec_list
*s
)
1267 struct List_element
*p
;
1270 s
->n_indefinite_repeats
= 0;
1271 s
->has_equiv_class
= false;
1272 s
->has_restricted_char_class
= false;
1273 s
->has_char_class
= false;
1274 for (p
= s
->head
->next
; p
; p
= p
->next
)
1282 case RE_NORMAL_CHAR
:
1287 assert (p
->u
.range
.last_char
>= p
->u
.range
.first_char
);
1288 len
= p
->u
.range
.last_char
- p
->u
.range
.first_char
+ 1;
1292 s
->has_char_class
= true;
1293 for (i
= 0; i
< N_CHARS
; i
++)
1294 if (is_char_class_member (p
->u
.char_class
, i
))
1296 switch (p
->u
.char_class
)
1302 s
->has_restricted_char_class
= true;
1307 case RE_EQUIV_CLASS
:
1308 for (i
= 0; i
< N_CHARS
; i
++)
1309 if (is_equiv_class_member (p
->u
.equiv_code
, i
))
1311 s
->has_equiv_class
= true;
1314 case RE_REPEATED_CHAR
:
1315 if (p
->u
.repeated_char
.repeat_count
> 0)
1316 len
= p
->u
.repeated_char
.repeat_count
;
1319 s
->indefinite_repeat_element
= p
;
1320 ++(s
->n_indefinite_repeats
);
1329 /* Check for arithmetic overflow in computing length. Also, reject
1330 any length greater than the maximum repeat count, in case the
1331 length is later used to compute the repeat count for an
1332 indefinite element. */
1333 new_length
= length
+ len
;
1334 if (! (length
<= new_length
&& new_length
<= REPEAT_COUNT_MAXIMUM
))
1335 error (EXIT_FAILURE
, 0, _("too many characters in set"));
1336 length
= new_length
;
1343 get_s1_spec_stats (struct Spec_list
*s1
)
1345 get_spec_stats (s1
);
1347 s1
->length
= card_of_complement (s1
);
1351 get_s2_spec_stats (struct Spec_list
*s2
, count len_s1
)
1353 get_spec_stats (s2
);
1354 if (len_s1
>= s2
->length
&& s2
->n_indefinite_repeats
== 1)
1356 s2
->indefinite_repeat_element
->u
.repeated_char
.repeat_count
=
1357 len_s1
- s2
->length
;
1358 s2
->length
= len_s1
;
1363 spec_init (struct Spec_list
*spec_list
)
1365 struct List_element
*new = xmalloc (sizeof *new);
1366 spec_list
->head
= spec_list
->tail
= new;
1367 spec_list
->head
->next
= NULL
;
1370 /* This function makes two passes over the argument string S. The first
1371 one converts all \c and \ddd escapes to their one-byte representations.
1372 The second constructs a linked specification list, SPEC_LIST, of the
1373 characters and constructs that comprise the argument string. If either
1374 of these passes detects an error, this function returns false. */
1377 parse_str (char const *s
, struct Spec_list
*spec_list
)
1380 bool ok
= unquote (s
, &es
) && build_spec_list (&es
, spec_list
);
1385 /* Given two specification lists, S1 and S2, and assuming that
1386 S1->length > S2->length, append a single [c*n] element to S2 where c
1387 is the last character in the expansion of S2 and n is the difference
1388 between the two lengths.
1389 Upon successful completion, S2->length is set to S1->length. The only
1390 way this function can fail to make S2 as long as S1 is when S2 has
1391 zero-length, since in that case, there is no last character to repeat.
1392 So S2->length is required to be at least 1. */
1396 string2_extend (const struct Spec_list
*s1
, struct Spec_list
*s2
)
1398 struct List_element
*p
;
1399 unsigned char char_to_repeat
;
1401 assert (translating
);
1402 assert (s1
->length
> s2
->length
);
1403 assert (s2
->length
> 0);
1408 case RE_NORMAL_CHAR
:
1409 char_to_repeat
= p
->u
.normal_char
;
1412 char_to_repeat
= p
->u
.range
.last_char
;
1415 /* Note BSD allows extending of classes in string2. For example:
1416 tr '[:upper:]0-9' '[:lower:]'
1417 That's not portable however, contradicts POSIX and is dependent
1418 on your collating sequence. */
1419 error (EXIT_FAILURE
, 0,
1420 _("when translating with string1 longer than string2,\nthe\
1421 latter string must not end with a character class"));
1422 abort (); /* inform gcc that the above use of error never returns. */
1425 case RE_REPEATED_CHAR
:
1426 char_to_repeat
= p
->u
.repeated_char
.the_repeated_char
;
1429 case RE_EQUIV_CLASS
:
1430 /* This shouldn't happen, because validate exits with an error
1431 if it finds an equiv class in string2 when translating. */
1440 append_repeated_char (s2
, char_to_repeat
, s1
->length
- s2
->length
);
1441 s2
->length
= s1
->length
;
1444 /* Return true if S is a non-empty list in which exactly one
1445 character (but potentially, many instances of it) appears.
1446 E.g., [X*] or xxxxxxxx. */
1449 homogeneous_spec_list (struct Spec_list
*s
)
1453 s
->state
= BEGIN_STATE
;
1455 if ((b
= get_next (s
, NULL
)) == -1)
1458 while ((c
= get_next (s
, NULL
)) != -1)
1465 /* Die with an error message if S1 and S2 describe strings that
1466 are not valid with the given command line switches.
1467 A side effect of this function is that if a valid [c*] or
1468 [c*0] construct appears in string2, it is converted to [c*n]
1469 with a value for n that makes s2->length == s1->length. By
1470 the same token, if the --truncate-set1 option is not
1471 given, S2 may be extended. */
1474 validate (struct Spec_list
*s1
, struct Spec_list
*s2
)
1476 get_s1_spec_stats (s1
);
1477 if (s1
->n_indefinite_repeats
> 0)
1479 error (EXIT_FAILURE
, 0,
1480 _("the [c*] repeat construct may not appear in string1"));
1485 get_s2_spec_stats (s2
, s1
->length
);
1487 if (s2
->n_indefinite_repeats
> 1)
1489 error (EXIT_FAILURE
, 0,
1490 _("only one [c*] repeat construct may appear in string2"));
1495 if (s2
->has_equiv_class
)
1497 error (EXIT_FAILURE
, 0,
1498 _("[=c=] expressions may not appear in string2\
1499 when translating"));
1502 if (s2
->has_restricted_char_class
)
1504 error (EXIT_FAILURE
, 0,
1505 _("when translating, the only character classes that may\
1506 appear in\nstring2 are 'upper' and 'lower'"));
1509 validate_case_classes (s1
, s2
);
1511 if (s1
->length
> s2
->length
)
1515 /* string2 must be non-empty unless --truncate-set1 is
1516 given or string1 is empty. */
1518 if (s2
->length
== 0)
1519 error (EXIT_FAILURE
, 0,
1520 _("when not truncating set1, string2 must be non-empty"));
1521 string2_extend (s1
, s2
);
1525 if (complement
&& s1
->has_char_class
1526 && ! (s2
->length
== s1
->length
&& homogeneous_spec_list (s2
)))
1528 error (EXIT_FAILURE
, 0,
1529 _("when translating with complemented character classes,\
1530 \nstring2 must map all characters in the domain to one"));
1534 /* Not translating. */
1536 if (s2
->n_indefinite_repeats
> 0)
1537 error (EXIT_FAILURE
, 0,
1538 _("the [c*] construct may appear in string2 only\
1539 when translating"));
1544 /* Read buffers of SIZE bytes via the function READER (if READER is
1545 NULL, read from stdin) until EOF. When non-NULL, READER is either
1546 read_and_delete or read_and_xlate. After each buffer is read, it is
1547 processed and written to stdout. The buffers are processed so that
1548 multiple consecutive occurrences of the same character in the input
1549 stream are replaced by a single occurrence of that character if the
1550 character is in the squeeze set. */
1553 squeeze_filter (char *buf
, size_t size
, size_t (*reader
) (char *, size_t))
1555 /* A value distinct from any character that may have been stored in a
1556 buffer as the result of a block-read in the function squeeze_filter. */
1557 const int NOT_A_CHAR
= INT_MAX
;
1559 int char_to_squeeze
= NOT_A_CHAR
;
1569 nr
= reader (buf
, size
);
1577 if (char_to_squeeze
== NOT_A_CHAR
)
1580 /* Here, by being a little tricky, we can get a significant
1581 performance increase in most cases when the input is
1582 reasonably large. Since tr will modify the input only
1583 if two consecutive (and identical) input characters are
1584 in the squeeze set, we can step by two through the data
1585 when searching for a character in the squeeze set. This
1586 means there may be a little more work in a few cases and
1587 perhaps twice as much work in the worst cases where most
1588 of the input is removed by squeezing repeats. But most
1589 uses of this functionality seem to remove less than 20-30%
1591 for (; i
< nr
&& !in_squeeze_set
[to_uchar (buf
[i
])]; i
+= 2)
1594 /* There is a special case when i == nr and we've just
1595 skipped a character (the last one in buf) that is in
1597 if (i
== nr
&& in_squeeze_set
[to_uchar (buf
[i
- 1])])
1601 out_len
= nr
- begin
;
1604 char_to_squeeze
= buf
[i
];
1605 /* We're about to output buf[begin..i]. */
1606 out_len
= i
- begin
+ 1;
1608 /* But since we stepped by 2 in the loop above,
1609 out_len may be one too large. */
1610 if (i
> 0 && buf
[i
- 1] == char_to_squeeze
)
1613 /* Advance i to the index of first character to be
1614 considered when looking for a char different from
1619 && fwrite (&buf
[begin
], 1, out_len
, stdout
) != out_len
)
1620 error (EXIT_FAILURE
, errno
, _("write error"));
1623 if (char_to_squeeze
!= NOT_A_CHAR
)
1625 /* Advance i to index of first char != char_to_squeeze
1626 (or to nr if all the rest of the characters in this
1627 buffer are the same as char_to_squeeze). */
1628 for (; i
< nr
&& buf
[i
] == char_to_squeeze
; i
++)
1631 char_to_squeeze
= NOT_A_CHAR
;
1632 /* If (i >= nr) we've squeezed the last character in this buffer.
1633 So now we have to read a new buffer and continue comparing
1634 characters against char_to_squeeze. */
1640 plain_read (char *buf
, size_t size
)
1642 size_t nr
= safe_read (STDIN_FILENO
, buf
, size
);
1643 if (nr
== SAFE_READ_ERROR
)
1644 error (EXIT_FAILURE
, errno
, _("read error"));
1648 /* Read buffers of SIZE bytes from stdin until one is found that
1649 contains at least one character not in the delete set. Store
1650 in the array BUF, all characters from that buffer that are not
1651 in the delete set, and return the number of characters saved
1655 read_and_delete (char *buf
, size_t size
)
1659 /* This enclosing do-while loop is to make sure that
1660 we don't return zero (indicating EOF) when we've
1661 just deleted all the characters in a buffer. */
1665 size_t nr
= plain_read (buf
, size
);
1670 /* This first loop may be a waste of code, but gives much
1671 better performance when no characters are deleted in
1672 the beginning of a buffer. It just avoids the copying
1673 of buf[i] into buf[n_saved] when it would be a NOP. */
1675 for (i
= 0; i
< nr
&& !in_delete_set
[to_uchar (buf
[i
])]; i
++)
1679 for (++i
; i
< nr
; i
++)
1680 if (!in_delete_set
[to_uchar (buf
[i
])])
1681 buf
[n_saved
++] = buf
[i
];
1683 while (n_saved
== 0);
1688 /* Read at most SIZE bytes from stdin into the array BUF. Then
1689 perform the in-place and one-to-one mapping specified by the global
1690 array 'xlate'. Return the number of characters read, or 0 upon EOF. */
1693 read_and_xlate (char *buf
, size_t size
)
1695 size_t bytes_read
= plain_read (buf
, size
);
1698 for (i
= 0; i
< bytes_read
; i
++)
1699 buf
[i
] = xlate
[to_uchar (buf
[i
])];
1704 /* Initialize a boolean membership set, IN_SET, with the character
1705 values obtained by traversing the linked list of constructs S
1706 using the function 'get_next'. IN_SET is expected to have been
1707 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1708 is true the resulting set is complemented. */
1711 set_initialize (struct Spec_list
*s
, bool complement_this_set
, bool *in_set
)
1716 s
->state
= BEGIN_STATE
;
1717 while ((c
= get_next (s
, NULL
)) != -1)
1719 if (complement_this_set
)
1720 for (i
= 0; i
< N_CHARS
; i
++)
1721 in_set
[i
] = (!in_set
[i
]);
1725 main (int argc
, char **argv
)
1728 int non_option_args
;
1731 struct Spec_list buf1
, buf2
;
1732 struct Spec_list
*s1
= &buf1
;
1733 struct Spec_list
*s2
= &buf2
;
1735 initialize_main (&argc
, &argv
);
1736 set_program_name (argv
[0]);
1737 setlocale (LC_ALL
, "");
1738 bindtextdomain (PACKAGE
, LOCALEDIR
);
1739 textdomain (PACKAGE
);
1741 atexit (close_stdout
);
1743 while ((c
= getopt_long (argc
, argv
, "+cCdst", long_options
, NULL
)) != -1)
1757 squeeze_repeats
= true;
1761 truncate_set1
= true;
1764 case_GETOPT_HELP_CHAR
;
1766 case_GETOPT_VERSION_CHAR (PROGRAM_NAME
, AUTHORS
);
1769 usage (EXIT_FAILURE
);
1774 non_option_args
= argc
- optind
;
1775 translating
= (non_option_args
== 2 && !delete);
1776 min_operands
= 1 + (delete == squeeze_repeats
);
1777 max_operands
= 1 + (delete <= squeeze_repeats
);
1779 if (non_option_args
< min_operands
)
1781 if (non_option_args
== 0)
1782 error (0, 0, _("missing operand"));
1785 error (0, 0, _("missing operand after %s"), quote (argv
[argc
- 1]));
1786 fprintf (stderr
, "%s\n",
1788 ? N_("Two strings must be given when "
1789 "both deleting and squeezing repeats.")
1790 : N_("Two strings must be given when translating.")));
1792 usage (EXIT_FAILURE
);
1795 if (max_operands
< non_option_args
)
1797 error (0, 0, _("extra operand %s"), quote (argv
[optind
+ max_operands
]));
1798 if (non_option_args
== 2)
1799 fprintf (stderr
, "%s\n",
1800 _("Only one string may be given when "
1801 "deleting without squeezing repeats."));
1802 usage (EXIT_FAILURE
);
1806 if (!parse_str (argv
[optind
], s1
))
1807 return EXIT_FAILURE
;
1809 if (non_option_args
== 2)
1812 if (!parse_str (argv
[optind
+ 1], s2
))
1813 return EXIT_FAILURE
;
1820 /* Use binary I/O, since 'tr' is sometimes used to transliterate
1821 non-printable characters, or characters which are stripped away
1822 by text-mode reads (like CR and ^Z). */
1823 if (O_BINARY
&& ! isatty (STDIN_FILENO
))
1824 xfreopen (NULL
, "rb", stdin
);
1825 if (O_BINARY
&& ! isatty (STDOUT_FILENO
))
1826 xfreopen (NULL
, "wb", stdout
);
1828 fadvise (stdin
, FADVISE_SEQUENTIAL
);
1830 if (squeeze_repeats
&& non_option_args
== 1)
1832 set_initialize (s1
, complement
, in_squeeze_set
);
1833 squeeze_filter (io_buf
, sizeof io_buf
, plain_read
);
1835 else if (delete && non_option_args
== 1)
1837 set_initialize (s1
, complement
, in_delete_set
);
1841 size_t nr
= read_and_delete (io_buf
, sizeof io_buf
);
1844 if (fwrite (io_buf
, 1, nr
, stdout
) != nr
)
1845 error (EXIT_FAILURE
, errno
, _("write error"));
1848 else if (squeeze_repeats
&& delete && non_option_args
== 2)
1850 set_initialize (s1
, complement
, in_delete_set
);
1851 set_initialize (s2
, false, in_squeeze_set
);
1852 squeeze_filter (io_buf
, sizeof io_buf
, read_and_delete
);
1854 else if (translating
)
1859 bool *in_s1
= in_delete_set
;
1861 set_initialize (s1
, false, in_s1
);
1862 s2
->state
= BEGIN_STATE
;
1863 for (i
= 0; i
< N_CHARS
; i
++)
1865 for (i
= 0; i
< N_CHARS
; i
++)
1869 int ch
= get_next (s2
, NULL
);
1870 assert (ch
!= -1 || truncate_set1
);
1873 /* This will happen when tr is invoked like e.g.
1874 tr -cs A-Za-z0-9 '\012'. */
1885 enum Upper_Lower_class class_s1
;
1886 enum Upper_Lower_class class_s2
;
1888 for (i
= 0; i
< N_CHARS
; i
++)
1890 s1
->state
= BEGIN_STATE
;
1891 s2
->state
= BEGIN_STATE
;
1894 c1
= get_next (s1
, &class_s1
);
1895 c2
= get_next (s2
, &class_s2
);
1897 if (class_s1
== UL_LOWER
&& class_s2
== UL_UPPER
)
1899 for (i
= 0; i
< N_CHARS
; i
++)
1901 xlate
[i
] = toupper (i
);
1903 else if (class_s1
== UL_UPPER
&& class_s2
== UL_LOWER
)
1905 for (i
= 0; i
< N_CHARS
; i
++)
1907 xlate
[i
] = tolower (i
);
1911 /* The following should have been checked by validate... */
1912 if (c1
== -1 || c2
== -1)
1917 /* When case-converting, skip the elements as an optimization. */
1918 if (class_s2
!= UL_NONE
)
1920 skip_construct (s1
);
1921 skip_construct (s2
);
1924 assert (c1
== -1 || truncate_set1
);
1926 if (squeeze_repeats
)
1928 set_initialize (s2
, false, in_squeeze_set
);
1929 squeeze_filter (io_buf
, sizeof io_buf
, read_and_xlate
);
1935 size_t bytes_read
= read_and_xlate (io_buf
, sizeof io_buf
);
1936 if (bytes_read
== 0)
1938 if (fwrite (io_buf
, 1, bytes_read
, stdout
) != bytes_read
)
1939 error (EXIT_FAILURE
, errno
, _("write error"));
1944 if (close (STDIN_FILENO
) != 0)
1945 error (EXIT_FAILURE
, errno
, _("standard input"));
1947 return EXIT_SUCCESS
;