cpu/intel/model_206ax: Replace `generate_cstate_entries`
[coreboot.git] / src / cpu / intel / model_206ax / acpi.c
blob6c12261a2ba57cc775c3a9c0d9e3e5fd7352c9f7
1 /* SPDX-License-Identifier: GPL-2.0-only */
3 #include <console/console.h>
4 #include <acpi/acpi.h>
5 #include <acpi/acpigen.h>
6 #include <arch/cpu.h>
7 #include <cpu/x86/msr.h>
8 #include <cpu/intel/speedstep.h>
9 #include <cpu/intel/turbo.h>
10 #include <device/device.h>
11 #include <stdint.h>
13 #include "model_206ax.h"
14 #include "chip.h"
16 static int get_logical_cores_per_package(void)
18 msr_t msr = rdmsr(MSR_CORE_THREAD_COUNT);
19 return msr.lo & 0xffff;
22 static void generate_C_state_entries(void)
24 struct cpu_info *info;
25 struct cpu_driver *cpu;
26 struct device *lapic;
27 struct cpu_intel_model_206ax_config *conf = NULL;
29 /* Find the SpeedStep CPU in the device tree using magic APIC ID */
30 lapic = dev_find_lapic(SPEEDSTEP_APIC_MAGIC);
31 if (!lapic)
32 return;
33 conf = lapic->chip_info;
34 if (!conf)
35 return;
37 /* Find CPU map of supported C-states */
38 info = cpu_info();
39 if (!info)
40 return;
41 cpu = find_cpu_driver(info->cpu);
42 if (!cpu || !cpu->cstates)
43 return;
45 const int acpi_cstates[3] = { conf->acpi_c1, conf->acpi_c2, conf->acpi_c3 };
47 acpi_cstate_t acpi_cstate_map[ARRAY_SIZE(acpi_cstates)] = { 0 };
49 /* Count number of active C-states */
50 int count = 0;
52 for (int i = 0; i < ARRAY_SIZE(acpi_cstates); i++) {
53 if (acpi_cstates[i] > 0) {
54 acpi_cstate_map[count] = cpu->cstates[acpi_cstates[i]];
55 acpi_cstate_map[count].ctype = i + 1;
56 count++;
59 acpigen_write_CST_package(acpi_cstate_map, count);
62 static acpi_tstate_t tss_table_fine[] = {
63 { 100, 1000, 0, 0x00, 0 },
64 { 94, 940, 0, 0x1f, 0 },
65 { 88, 880, 0, 0x1e, 0 },
66 { 82, 820, 0, 0x1d, 0 },
67 { 75, 760, 0, 0x1c, 0 },
68 { 69, 700, 0, 0x1b, 0 },
69 { 63, 640, 0, 0x1a, 0 },
70 { 57, 580, 0, 0x19, 0 },
71 { 50, 520, 0, 0x18, 0 },
72 { 44, 460, 0, 0x17, 0 },
73 { 38, 400, 0, 0x16, 0 },
74 { 32, 340, 0, 0x15, 0 },
75 { 25, 280, 0, 0x14, 0 },
76 { 19, 220, 0, 0x13, 0 },
77 { 13, 160, 0, 0x12, 0 },
80 static acpi_tstate_t tss_table_coarse[] = {
81 { 100, 1000, 0, 0x00, 0 },
82 { 88, 875, 0, 0x1f, 0 },
83 { 75, 750, 0, 0x1e, 0 },
84 { 63, 625, 0, 0x1d, 0 },
85 { 50, 500, 0, 0x1c, 0 },
86 { 38, 375, 0, 0x1b, 0 },
87 { 25, 250, 0, 0x1a, 0 },
88 { 13, 125, 0, 0x19, 0 },
91 static void generate_T_state_entries(int core, int cores_per_package)
93 /* Indicate SW_ALL coordination for T-states */
94 acpigen_write_TSD_package(core, cores_per_package, SW_ALL);
96 /* Indicate FFixedHW so OS will use MSR */
97 acpigen_write_empty_PTC();
99 /* Set a T-state limit that can be modified in NVS */
100 acpigen_write_TPC("\\TLVL");
103 * CPUID.(EAX=6):EAX[5] indicates support
104 * for extended throttle levels.
106 if (cpuid_eax(6) & (1 << 5))
107 acpigen_write_TSS_package(
108 ARRAY_SIZE(tss_table_fine), tss_table_fine);
109 else
110 acpigen_write_TSS_package(
111 ARRAY_SIZE(tss_table_coarse), tss_table_coarse);
114 static int calculate_power(int tdp, int p1_ratio, int ratio)
116 u32 m;
117 u32 power;
120 * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2
122 * Power = (ratio / p1_ratio) * m * tdp
125 m = (110000 - ((p1_ratio - ratio) * 625)) / 11;
126 m = (m * m) / 1000;
128 power = ((ratio * 100000 / p1_ratio) / 100);
129 power *= (m / 100) * (tdp / 1000);
130 power /= 1000;
132 return (int)power;
135 static void generate_P_state_entries(int core, int cores_per_package)
137 int ratio_min, ratio_max, ratio_turbo, ratio_step;
138 int coord_type, power_max, power_unit, num_entries;
139 int ratio, power, clock, clock_max;
140 msr_t msr;
142 /* Determine P-state coordination type from MISC_PWR_MGMT[0] */
143 msr = rdmsr(MSR_MISC_PWR_MGMT);
144 if (msr.lo & MISC_PWR_MGMT_EIST_HW_DIS)
145 coord_type = SW_ANY;
146 else
147 coord_type = HW_ALL;
149 /* Get bus ratio limits and calculate clock speeds */
150 msr = rdmsr(MSR_PLATFORM_INFO);
151 ratio_min = (msr.hi >> (40-32)) & 0xff; /* Max Efficiency Ratio */
153 /* Determine if this CPU has configurable TDP */
154 if (cpu_config_tdp_levels()) {
155 /* Set max ratio to nominal TDP ratio */
156 msr = rdmsr(MSR_CONFIG_TDP_NOMINAL);
157 ratio_max = msr.lo & 0xff;
158 } else {
159 /* Max Non-Turbo Ratio */
160 ratio_max = (msr.lo >> 8) & 0xff;
162 clock_max = ratio_max * SANDYBRIDGE_BCLK;
164 /* Calculate CPU TDP in mW */
165 msr = rdmsr(MSR_PKG_POWER_SKU_UNIT);
166 power_unit = 2 << ((msr.lo & 0xf) - 1);
167 msr = rdmsr(MSR_PKG_POWER_SKU);
168 power_max = ((msr.lo & 0x7fff) / power_unit) * 1000;
170 /* Write _PCT indicating use of FFixedHW */
171 acpigen_write_empty_PCT();
173 /* Write _PPC with no limit on supported P-state */
174 acpigen_write_PPC_NVS();
176 /* Write PSD indicating configured coordination type */
177 acpigen_write_PSD_package(core, cores_per_package, coord_type);
179 /* Add P-state entries in _PSS table */
180 acpigen_write_name("_PSS");
182 /* Determine ratio points */
183 ratio_step = PSS_RATIO_STEP;
184 num_entries = (ratio_max - ratio_min) / ratio_step;
185 while (num_entries > PSS_MAX_ENTRIES-1) {
186 ratio_step <<= 1;
187 num_entries >>= 1;
190 /* P[T] is Turbo state if enabled */
191 if (get_turbo_state() == TURBO_ENABLED) {
192 /* _PSS package count including Turbo */
193 acpigen_write_package(num_entries + 2);
195 msr = rdmsr(MSR_TURBO_RATIO_LIMIT);
196 ratio_turbo = msr.lo & 0xff;
198 /* Add entry for Turbo ratio */
199 acpigen_write_PSS_package(
200 clock_max + 1, /*MHz*/
201 power_max, /*mW*/
202 PSS_LATENCY_TRANSITION, /*lat1*/
203 PSS_LATENCY_BUSMASTER, /*lat2*/
204 ratio_turbo << 8, /*control*/
205 ratio_turbo << 8); /*status*/
206 } else {
207 /* _PSS package count without Turbo */
208 acpigen_write_package(num_entries + 1);
211 /* First regular entry is max non-turbo ratio */
212 acpigen_write_PSS_package(
213 clock_max, /*MHz*/
214 power_max, /*mW*/
215 PSS_LATENCY_TRANSITION, /*lat1*/
216 PSS_LATENCY_BUSMASTER, /*lat2*/
217 ratio_max << 8, /*control*/
218 ratio_max << 8); /*status*/
220 /* Generate the remaining entries */
221 for (ratio = ratio_min + ((num_entries - 1) * ratio_step);
222 ratio >= ratio_min; ratio -= ratio_step) {
224 /* Calculate power at this ratio */
225 power = calculate_power(power_max, ratio_max, ratio);
226 clock = ratio * SANDYBRIDGE_BCLK;
228 acpigen_write_PSS_package(
229 clock, /*MHz*/
230 power, /*mW*/
231 PSS_LATENCY_TRANSITION, /*lat1*/
232 PSS_LATENCY_BUSMASTER, /*lat2*/
233 ratio << 8, /*control*/
234 ratio << 8); /*status*/
237 /* Fix package length */
238 acpigen_pop_len();
241 void generate_cpu_entries(const struct device *device)
243 int coreID, cpuID, pcontrol_blk = PMB0_BASE, plen = 6;
244 int totalcores = dev_count_cpu();
245 int cores_per_package = get_logical_cores_per_package();
246 int numcpus = totalcores/cores_per_package;
248 printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n",
249 numcpus, cores_per_package);
251 for (cpuID = 1; cpuID <= numcpus; cpuID++) {
252 for (coreID = 1; coreID <= cores_per_package; coreID++) {
253 if (coreID > 1) {
254 pcontrol_blk = 0;
255 plen = 0;
258 /* Generate processor \_SB.CPUx */
259 acpigen_write_processor(
260 (cpuID-1)*cores_per_package+coreID-1,
261 pcontrol_blk, plen);
263 /* Generate P-state tables */
264 generate_P_state_entries(
265 cpuID-1, cores_per_package);
267 /* Generate C-state tables */
268 generate_C_state_entries();
270 /* Generate T-state tables */
271 generate_T_state_entries(
272 cpuID-1, cores_per_package);
274 acpigen_pop_len();
278 /* PPKG is usually used for thermal management
279 of the first and only package. */
280 acpigen_write_processor_package("PPKG", 0, cores_per_package);
282 /* Add a method to notify processor nodes */
283 acpigen_write_processor_cnot(cores_per_package);
286 struct chip_operations cpu_intel_model_206ax_ops = {
287 CHIP_NAME("Intel SandyBridge/IvyBridge CPU")