southbridge/ricoh,ti: Remove trailing whitespace in debug output
[coreboot.git] / util / romcc / romcc.c
blob49b4dd4720832772b5b08fc16eba84c1a07d7d09
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "73"
7 #define RELEASE_DATE "08 May 2013"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
28 /* NOTE: Before you even start thinking to touch anything
29 * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30 * insight on the original author's thoughts. We introduced
31 * this switch as romcc was about the only thing producing
32 * massive warnings in our code..
34 #define DEBUG_ROMCC_WARNINGS 0
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES 0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
55 #define DEBUG_EXPLICIT_CLOSURES 0
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
63 /* Control flow graph of a loop without goto.
65 * AAA
66 * +---/
67 * /
68 * / +--->CCC
69 * | | / \
70 * | | DDD EEE break;
71 * | | \ \
72 * | | FFF \
73 * \| / \ \
74 * |\ GGG HHH | continue;
75 * | \ \ | |
76 * | \ III | /
77 * | \ | / /
78 * | vvv /
79 * +----BBB /
80 * | /
81 * vv
82 * JJJ
85 * AAA
86 * +-----+ | +----+
87 * | \ | / |
88 * | BBB +-+ |
89 * | / \ / | |
90 * | CCC JJJ / /
91 * | / \ / /
92 * | DDD EEE / /
93 * | | +-/ /
94 * | FFF /
95 * | / \ /
96 * | GGG HHH /
97 * | | +-/
98 * | III
99 * +--+
102 * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103 * DFup(Z) = { Y <- DF(Z) | idom(Y) != X }
106 * [] == DFlocal(X) U DF(X)
107 * () == DFup(X)
109 * Dominator graph of the same nodes.
111 * AAA AAA: [ ] ()
112 * / \
113 * BBB JJJ BBB: [ JJJ ] ( JJJ ) JJJ: [ ] ()
115 * CCC CCC: [ ] ( BBB, JJJ )
116 * / \
117 * DDD EEE DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
119 * FFF FFF: [ ] ( BBB )
120 * / \
121 * GGG HHH GGG: [ ] ( BBB ) HHH: [ BBB ] ()
123 * III III: [ BBB ] ()
126 * BBB and JJJ are definitely the dominance frontier.
127 * Where do I place phi functions and how do I make that decision.
131 struct filelist {
132 const char *filename;
133 struct filelist *next;
136 struct filelist *include_filelist = NULL;
138 static void __attribute__((noreturn)) die(char *fmt, ...)
140 va_list args;
142 va_start(args, fmt);
143 vfprintf(stderr, fmt, args);
144 va_end(args);
145 fflush(stdout);
146 fflush(stderr);
147 exit(1);
150 static void *xmalloc(size_t size, const char *name)
152 void *buf;
153 buf = malloc(size);
154 if (!buf) {
155 die("Cannot malloc %ld bytes to hold %s: %s\n",
156 size + 0UL, name, strerror(errno));
158 return buf;
161 static void *xcmalloc(size_t size, const char *name)
163 void *buf;
164 buf = xmalloc(size, name);
165 memset(buf, 0, size);
166 return buf;
169 static void *xrealloc(void *ptr, size_t size, const char *name)
171 void *buf;
172 buf = realloc(ptr, size);
173 if (!buf) {
174 die("Cannot realloc %ld bytes to hold %s: %s\n",
175 size + 0UL, name, strerror(errno));
177 return buf;
180 static void xfree(const void *ptr)
182 free((void *)ptr);
185 static char *xstrdup(const char *str)
187 char *new;
188 int len;
189 len = strlen(str);
190 new = xmalloc(len + 1, "xstrdup string");
191 memcpy(new, str, len);
192 new[len] = '\0';
193 return new;
196 static void xchdir(const char *path)
198 if (chdir(path) != 0) {
199 die("chdir to `%s' failed: %s\n",
200 path, strerror(errno));
204 static int exists(const char *dirname, const char *filename)
206 char cwd[MAX_CWD_SIZE];
207 int does_exist;
209 if (getcwd(cwd, sizeof(cwd)) == 0) {
210 die("cwd buffer to small");
213 does_exist = 1;
214 if (chdir(dirname) != 0) {
215 does_exist = 0;
217 if (does_exist && (access(filename, O_RDONLY) < 0)) {
218 if ((errno != EACCES) && (errno != EROFS)) {
219 does_exist = 0;
222 xchdir(cwd);
223 return does_exist;
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
229 char cwd[MAX_CWD_SIZE];
230 char *buf;
231 off_t size, progress;
232 ssize_t result;
233 FILE* file;
235 if (!filename) {
236 *r_size = 0;
237 return 0;
239 if (getcwd(cwd, sizeof(cwd)) == 0) {
240 die("cwd buffer to small");
242 xchdir(dirname);
243 file = fopen(filename, "rb");
244 xchdir(cwd);
245 if (file == NULL) {
246 die("Cannot open '%s' : %s\n",
247 filename, strerror(errno));
249 fseek(file, 0, SEEK_END);
250 size = ftell(file);
251 fseek(file, 0, SEEK_SET);
252 *r_size = size +1;
253 buf = xmalloc(size +2, filename);
254 buf[size] = '\n'; /* Make certain the file is newline terminated */
255 buf[size+1] = '\0'; /* Null terminate the file for good measure */
256 progress = 0;
257 while(progress < size) {
258 result = fread(buf + progress, 1, size - progress, file);
259 if (result < 0) {
260 if ((errno == EINTR) || (errno == EAGAIN))
261 continue;
262 die("read on %s of %ld bytes failed: %s\n",
263 filename, (size - progress)+ 0UL, strerror(errno));
265 progress += result;
267 fclose(file);
268 return buf;
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t schar_t;
276 typedef uint8_t uchar_t;
277 typedef int8_t char_t;
278 typedef int16_t short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t long_t;
283 #define ulong_t uint32_t
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN SCHAR_T_MIN
289 #define CHAR_T_MAX SCHAR_T_MAX
290 #define SHRT_T_MIN (-32768)
291 #define SHRT_T_MAX 32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN (-LONG_T_MAX - 1)
294 #define INT_T_MAX 2147483647
295 #define UINT_T_MAX 4294967295U
296 #define LONG_T_MIN (-LONG_T_MAX - 1)
297 #define LONG_T_MAX 2147483647
298 #define ULONG_T_MAX 4294967295U
300 #define SIZEOF_I8 8
301 #define SIZEOF_I16 16
302 #define SIZEOF_I32 32
303 #define SIZEOF_I64 64
305 #define SIZEOF_CHAR 8
306 #define SIZEOF_SHORT 16
307 #define SIZEOF_INT 32
308 #define SIZEOF_LONG (sizeof(long_t)*SIZEOF_CHAR)
311 #define ALIGNOF_CHAR 8
312 #define ALIGNOF_SHORT 16
313 #define ALIGNOF_INT 32
314 #define ALIGNOF_LONG (sizeof(long_t)*SIZEOF_CHAR)
316 #define REG_SIZEOF_REG 32
317 #define REG_SIZEOF_CHAR REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT REG_SIZEOF_REG
319 #define REG_SIZEOF_INT REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG REG_SIZEOF_REG
322 #define REG_ALIGNOF_REG REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG REG_SIZEOF_REG
328 /* Additional definitions for clarity.
329 * I currently assume a long is the largest native
330 * machine word and that a pointer fits into it.
332 #define SIZEOF_WORD SIZEOF_LONG
333 #define SIZEOF_POINTER SIZEOF_LONG
334 #define ALIGNOF_WORD ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
339 struct file_state {
340 struct file_state *prev;
341 const char *basename;
342 char *dirname;
343 const char *buf;
344 off_t size;
345 const char *pos;
346 int line;
347 const char *line_start;
348 int report_line;
349 const char *report_name;
350 const char *report_dir;
351 int macro : 1;
352 int trigraphs : 1;
353 int join_lines : 1;
355 struct hash_entry;
356 struct token {
357 int tok;
358 struct hash_entry *ident;
359 const char *pos;
360 int str_len;
361 union {
362 ulong_t integer;
363 const char *str;
364 int notmacro;
365 } val;
368 /* I have two classes of types:
369 * Operational types.
370 * Logical types. (The type the C standard says the operation is of)
372 * The operational types are:
373 * chars
374 * shorts
375 * ints
376 * longs
378 * floats
379 * doubles
380 * long doubles
382 * pointer
386 /* Machine model.
387 * No memory is useable by the compiler.
388 * There is no floating point support.
389 * All operations take place in general purpose registers.
390 * There is one type of general purpose register.
391 * Unsigned longs are stored in that general purpose register.
394 /* Operations on general purpose registers.
397 #define OP_SDIVT 0
398 #define OP_UDIVT 1
399 #define OP_SMUL 2
400 #define OP_UMUL 3
401 #define OP_SDIV 4
402 #define OP_UDIV 5
403 #define OP_SMOD 6
404 #define OP_UMOD 7
405 #define OP_ADD 8
406 #define OP_SUB 9
407 #define OP_SL 10
408 #define OP_USR 11
409 #define OP_SSR 12
410 #define OP_AND 13
411 #define OP_XOR 14
412 #define OP_OR 15
413 #define OP_POS 16 /* Dummy positive operator don't use it */
414 #define OP_NEG 17
415 #define OP_INVERT 18
417 #define OP_EQ 20
418 #define OP_NOTEQ 21
419 #define OP_SLESS 22
420 #define OP_ULESS 23
421 #define OP_SMORE 24
422 #define OP_UMORE 25
423 #define OP_SLESSEQ 26
424 #define OP_ULESSEQ 27
425 #define OP_SMOREEQ 28
426 #define OP_UMOREEQ 29
428 #define OP_LFALSE 30 /* Test if the expression is logically false */
429 #define OP_LTRUE 31 /* Test if the expression is logcially true */
431 #define OP_LOAD 32
432 #define OP_STORE 33
433 /* For OP_STORE ->type holds the type
434 * RHS(0) holds the destination address
435 * RHS(1) holds the value to store.
438 #define OP_UEXTRACT 34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440 * RHS(0) holds the psuedo register to extract from
441 * ->type holds the size of the bitfield.
442 * ->u.bitfield.size holds the size of the bitfield.
443 * ->u.bitfield.offset holds the offset to extract from
445 #define OP_SEXTRACT 35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447 * RHS(0) holds the psuedo register to extract from
448 * ->type holds the size of the bitfield.
449 * ->u.bitfield.size holds the size of the bitfield.
450 * ->u.bitfield.offset holds the offset to extract from
452 #define OP_DEPOSIT 36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454 * RHS(0) holds the value to replace a bitifield in.
455 * RHS(1) holds the replacement value
456 * ->u.bitfield.size holds the size of the bitfield.
457 * ->u.bitfield.offset holds the deposit into
460 #define OP_NOOP 37
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST 50
466 /* For OP_INTCONST ->type holds the type.
467 * ->u.cval holds the constant value.
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471 * information. u.blob holds a pointer to the raw binary
472 * data for the constant initializer.
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476 * MISC(0) holds the reference to the static variable.
477 * ->u.cval holds an offset from that value.
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481 * For some reason we don't know what value this type has.
482 * This allows for variables that have don't have values
483 * assigned yet, or variables whose value we simply do not know.
486 #define OP_WRITE 60
487 /* OP_WRITE moves one pseudo register to another.
488 * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489 * RHS(0) holds the psuedo to move.
492 #define OP_READ 61
493 /* OP_READ reads the value of a variable and makes
494 * it available for the pseudo operation.
495 * Useful for things like def-use chains.
496 * RHS(0) holds points to the triple to read from.
498 #define OP_COPY 62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
501 #define OP_CONVERT 63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503 * And then the type is converted appropriately.
505 #define OP_PIECE 64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507 * MISC(0) is the instruction
508 * u.cval is the LHS piece of the instruction to return.
510 #define OP_ASM 65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512 * of a C asm directive.
513 * RHS(x) holds input value x to the assembly sequence.
514 * LHS(x) holds the output value x from the assembly sequence.
515 * u.blob holds the string of assembly instructions.
518 #define OP_DEREF 66
519 /* OP_DEREF generates an lvalue from a pointer.
520 * RHS(0) holds the pointer value.
521 * OP_DEREF serves as a place holder to indicate all necessary
522 * checks have been done to indicate a value is an lvalue.
524 #define OP_DOT 67
525 /* OP_DOT references a submember of a structure lvalue.
526 * MISC(0) holds the lvalue.
527 * ->u.field holds the name of the field we want.
529 * Not seen after structures are flattened.
531 #define OP_INDEX 68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533 * MISC(0) holds the lvalue.
534 * ->u.cval holds the index into the lvalue.
536 * Not seen after structures are flattened.
538 #define OP_VAL 69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540 * Useful for operators that have side effects.
541 * RHS(0) holds the expression.
542 * MISC(0) holds the subexpression of RHS(0) that is the
543 * value of the expression.
545 * Not seen outside of expressions.
548 #define OP_TUPLE 70
549 /* OP_TUPLE is an array of triples that are either variable
550 * or values for a structure or an array. It is used as
551 * a place holder when flattening compound types.
552 * The value represented by an OP_TUPLE is held in N registers.
553 * LHS(0..N-1) refer to those registers.
554 * ->use is a list of statements that use the value.
556 * Although OP_TUPLE always has register sized pieces they are not
557 * used until structures are flattened/decomposed into their register
558 * components.
559 * ???? registers ????
562 #define OP_BITREF 71
563 /* OP_BITREF describes a bitfield as an lvalue.
564 * RHS(0) holds the register value.
565 * ->type holds the type of the bitfield.
566 * ->u.bitfield.size holds the size of the bitfield.
567 * ->u.bitfield.offset holds the offset of the bitfield in the register
571 #define OP_FCALL 72
572 /* OP_FCALL performs a procedure call.
573 * MISC(0) holds a pointer to the OP_LIST of a function
574 * RHS(x) holds argument x of a function
576 * Currently not seen outside of expressions.
578 #define OP_PROG 73
579 /* OP_PROG is an expression that holds a list of statements, or
580 * expressions. The final expression is the value of the expression.
581 * RHS(0) holds the start of the list.
584 /* statements */
585 #define OP_LIST 80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587 * RHS(0) holds the list of statements.
588 * A list of all functions is maintained.
591 #define OP_BRANCH 81 /* an unconditional branch */
592 /* For branch instructions
593 * TARG(0) holds the branch target.
594 * ->next holds where to branch to if the branch is not taken.
595 * The branch target can only be a label
598 #define OP_CBRANCH 82 /* a conditional branch */
599 /* For conditional branch instructions
600 * RHS(0) holds the branch condition.
601 * TARG(0) holds the branch target.
602 * ->next holds where to branch to if the branch is not taken.
603 * The branch target can only be a label
606 #define OP_CALL 83 /* an uncontional branch that will return */
607 /* For call instructions
608 * MISC(0) holds the OP_RET that returns from the branch
609 * TARG(0) holds the branch target.
610 * ->next holds where to branch to if the branch is not taken.
611 * The branch target can only be a label
614 #define OP_RET 84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616 * RHS(0) holds the variable with the return address
617 * The branch target can only be a label
620 #define OP_LABEL 86
621 /* OP_LABEL is a triple that establishes an target for branches.
622 * ->use is the list of all branches that use this label.
625 #define OP_ADECL 87
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627 * A variable takes N registers to contain.
628 * LHS(0..N-1) refer to an OP_PIECE triple that represents
629 * the Xth register that the variable is stored in.
630 * ->use is a list of statements that use the variable.
632 * Although OP_ADECL always has register sized pieces they are not
633 * used until structures are flattened/decomposed into their register
634 * components.
637 #define OP_SDECL 88
638 /* OP_SDECL is a triple that establishes a variable of static
639 * storage duration.
640 * ->use is a list of statements that use the variable.
641 * MISC(0) holds the initializer expression.
645 #define OP_PHI 89
646 /* OP_PHI is a triple used in SSA form code.
647 * It is used when multiple code paths merge and a variable needs
648 * a single assignment from any of those code paths.
649 * The operation is a cross between OP_DECL and OP_WRITE, which
650 * is what OP_PHI is generated from.
652 * RHS(x) points to the value from code path x
653 * The number of RHS entries is the number of control paths into the block
654 * in which OP_PHI resides. The elements of the array point to point
655 * to the variables OP_PHI is derived from.
657 * MISC(0) holds a pointer to the orginal OP_DECL node.
660 #if 0
661 /* continuation helpers
663 #define OP_CPS_BRANCH 90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation
665 * RHS(x) holds argument x of the function
666 * TARG(0) holds OP_CPS_START target
668 #define OP_CPS_CBRANCH 91 /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations
670 * RHS(0) holds the branch condition
671 * RHS(x + 1) holds argument x of the function
672 * TARG(0) holds the OP_CPS_START to jump to when true
673 * ->next holds the OP_CPS_START to jump to when false
675 #define OP_CPS_CALL 92 /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677 * RHS(x) holds argument x of the function
678 * MISC(0) holds the OP_CPS_RET that returns from the branch
679 * TARG(0) holds the branch target.
680 * ->next holds where the OP_CPS_RET will return to.
682 #define OP_CPS_RET 93
683 /* OP_CPS_RET conditionally calls one of two continuations
684 * RHS(0) holds the variable with the return function address
685 * RHS(x + 1) holds argument x of the function
686 * The branch target may be any OP_CPS_START
688 #define OP_CPS_END 94
689 /* OP_CPS_END is the triple at the end of the program.
690 * For most practical purposes it is a branch.
692 #define OP_CPS_START 95
693 /* OP_CPS_START is a triple at the start of a continuation
694 * The arguments variables takes N registers to contain.
695 * LHS(0..N-1) refer to an OP_PIECE triple that represents
696 * the Xth register that the arguments are stored in.
698 #endif
700 /* Architecture specific instructions */
701 #define OP_CMP 100
702 #define OP_TEST 101
703 #define OP_SET_EQ 102
704 #define OP_SET_NOTEQ 103
705 #define OP_SET_SLESS 104
706 #define OP_SET_ULESS 105
707 #define OP_SET_SMORE 106
708 #define OP_SET_UMORE 107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
714 #define OP_JMP 112
715 #define OP_JMP_EQ 113
716 #define OP_JMP_NOTEQ 114
717 #define OP_JMP_SLESS 115
718 #define OP_JMP_ULESS 116
719 #define OP_JMP_SMORE 117
720 #define OP_JMP_UMORE 118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB 130
728 #define OP_INW 131
729 #define OP_INL 132
730 #define OP_OUTB 133
731 #define OP_OUTW 134
732 #define OP_OUTL 135
733 #define OP_BSF 136
734 #define OP_BSR 137
735 #define OP_RDMSR 138
736 #define OP_WRMSR 139
737 #define OP_HLT 140
739 struct op_info {
740 const char *name;
741 unsigned flags;
742 #define PURE 0x001 /* Triple has no side effects */
743 #define IMPURE 0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF 0x004 /* Triple is a variable definition */
746 #define BLOCK 0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH 0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH 0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH 0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH 0x0a0 /* Triple is an end instruction */
754 #define PART 0x100 /* Triple is really part of another triple */
755 #define BITFIELD 0x200 /* Triple manipulates a bitfield */
756 signed char lhs, rhs, misc, targ;
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760 .name = (NAME), \
761 .flags = (FLAGS), \
762 .lhs = (LHS), \
763 .rhs = (RHS), \
764 .misc = (MISC), \
765 .targ = (TARG), \
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT ] = OP( 2, 2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT ] = OP( 2, 2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "invert"),
788 [OP_EQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
801 [OP_LOAD ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE ] = OP( 0, 2, 0, 0, PURE | BLOCK , "store"),
804 [OP_UEXTRACT ] = OP( 0, 1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT ] = OP( 0, 1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT ] = OP( 0, 2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
808 [OP_NOOP ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
810 [OP_INTCONST ] = OP( 0, 0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST ] = OP( 0, 0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST ] = OP( 0, 0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0, 0, 0, 0, PURE | DEF, "unknown"),
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def? I currently use it as one..."
817 #endif
818 [OP_WRITE ] = OP( 0, 1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE ] = OP( 0, 0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF ] = OP( 0, 1, 0, 0, 0 | DEF | BLOCK, "deref"),
825 [OP_DOT ] = OP( 0, 0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX ] = OP( 0, 0, 1, 0, PURE | DEF | PART, "index"),
828 [OP_VAL ] = OP( 0, 1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE ] = OP(-1, 0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF ] = OP( 0, 1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG ] = OP( 0, 1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
836 [OP_LIST ] = OP( 0, 1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH ] = OP( 0, 0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL ] = OP( 0, 0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET ] = OP( 0, 1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL ] = OP( 0, 0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH, "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH, "cps_cbranch"),
850 [OP_CPS_CALL ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH, "cps_call"),
851 [OP_CPS_RET ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH, "cps_ret"),
852 [OP_CPS_END ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "cps_start"),
854 #endif
856 [OP_CMP ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP ] = OP( 0, 0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
880 [OP_INB ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR ] = OP( 2, 1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR ] = OP( 0, 3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT ] = OP( 0, 0, 0, 0, IMPURE | BLOCK, "__hlt"),
892 #undef OP
893 #define OP_MAX (sizeof(table_ops)/sizeof(table_ops[0]))
895 static const char *tops(int index)
897 static const char unknown[] = "unknown op";
898 if (index < 0) {
899 return unknown;
901 if (index >= OP_MAX) {
902 return unknown;
904 return table_ops[index].name;
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911 struct triple_set *next;
912 struct triple *member;
915 #define MAX_LHS 63
916 #define MAX_RHS 127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
920 struct occurance {
921 int count;
922 const char *filename;
923 const char *function;
924 int line;
925 int col;
926 struct occurance *parent;
928 struct bitfield {
929 ulong_t size : 8;
930 ulong_t offset : 24;
932 struct triple {
933 struct triple *next, *prev;
934 struct triple_set *use;
935 struct type *type;
936 unsigned int op : 8;
937 unsigned int template_id : 7;
938 unsigned int lhs : 6;
939 unsigned int rhs : 7;
940 unsigned int misc : 2;
941 unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943 ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR) (0)
945 #define TRIPLE_RHS_OFF(PTR) (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952 unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE (1 << 28)
957 #define TRIPLE_FLAG_INLINE (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL (1 << 26)
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961 struct occurance *occurance;
962 union {
963 ulong_t cval;
964 struct bitfield bitfield;
965 struct block *block;
966 void *blob;
967 struct hash_entry *field;
968 struct asm_info *ainfo;
969 struct triple *func;
970 struct symbol *symbol;
971 } u;
972 struct triple *param[2];
975 struct reg_info {
976 unsigned reg;
977 unsigned regcm;
979 struct ins_template {
980 struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
983 struct asm_info {
984 struct ins_template tmpl;
985 char *str;
988 struct block_set {
989 struct block_set *next;
990 struct block *member;
992 struct block {
993 struct block *work_next;
994 struct triple *first, *last;
995 int edge_count;
996 struct block_set *edges;
997 int users;
998 struct block_set *use;
999 struct block_set *idominates;
1000 struct block_set *domfrontier;
1001 struct block *idom;
1002 struct block_set *ipdominates;
1003 struct block_set *ipdomfrontier;
1004 struct block *ipdom;
1005 int vertex;
1009 struct symbol {
1010 struct symbol *next;
1011 struct hash_entry *ident;
1012 struct triple *def;
1013 struct type *type;
1014 int scope_depth;
1017 struct macro_arg {
1018 struct macro_arg *next;
1019 struct hash_entry *ident;
1021 struct macro {
1022 struct hash_entry *ident;
1023 const char *buf;
1024 int buf_len;
1025 struct macro_arg *args;
1026 int argc;
1029 struct hash_entry {
1030 struct hash_entry *next;
1031 const char *name;
1032 int name_len;
1033 int tok;
1034 struct macro *sym_define;
1035 struct symbol *sym_label;
1036 struct symbol *sym_tag;
1037 struct symbol *sym_ident;
1040 #define HASH_TABLE_SIZE 2048
1042 struct compiler_state {
1043 const char *label_prefix;
1044 const char *ofilename;
1045 unsigned long flags;
1046 unsigned long debug;
1047 unsigned long max_allocation_passes;
1049 size_t include_path_count;
1050 const char **include_paths;
1052 size_t define_count;
1053 const char **defines;
1055 size_t undef_count;
1056 const char **undefs;
1058 struct arch_state {
1059 unsigned long features;
1061 struct basic_blocks {
1062 struct triple *func;
1063 struct triple *first;
1064 struct block *first_block, *last_block;
1065 int last_vertex;
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069 struct compiler_state *compiler;
1070 struct arch_state *arch;
1071 FILE *output;
1072 FILE *errout;
1073 FILE *dbgout;
1074 struct file_state *file;
1075 struct occurance *last_occurance;
1076 const char *function;
1077 int token_base;
1078 struct token token[6];
1079 struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080 struct hash_entry *i_switch;
1081 struct hash_entry *i_case;
1082 struct hash_entry *i_continue;
1083 struct hash_entry *i_break;
1084 struct hash_entry *i_default;
1085 struct hash_entry *i_return;
1086 struct hash_entry *i_noreturn;
1087 struct hash_entry *i_unused;
1088 struct hash_entry *i_packed;
1089 /* Additional hash entries for predefined macros */
1090 struct hash_entry *i_defined;
1091 struct hash_entry *i___VA_ARGS__;
1092 struct hash_entry *i___FILE__;
1093 struct hash_entry *i___LINE__;
1094 /* Additional hash entries for predefined identifiers */
1095 struct hash_entry *i___func__;
1096 /* Additional hash entries for attributes */
1097 struct hash_entry *i_noinline;
1098 struct hash_entry *i_always_inline;
1099 int scope_depth;
1100 unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1101 int if_depth;
1102 int eat_depth, eat_targ;
1103 struct file_state *macro_file;
1104 struct triple *functions;
1105 struct triple *main_function;
1106 struct triple *first;
1107 struct triple *global_pool;
1108 struct basic_blocks bb;
1109 int functions_joined;
1112 /* visibility global/local */
1113 /* static/auto duration */
1114 /* typedef, register, inline */
1115 #define STOR_SHIFT 0
1116 #define STOR_MASK 0x001f
1117 /* Visibility */
1118 #define STOR_GLOBAL 0x0001
1119 /* Duration */
1120 #define STOR_PERM 0x0002
1121 /* Definition locality */
1122 #define STOR_NONLOCAL 0x0004 /* The definition is not in this translation unit */
1123 /* Storage specifiers */
1124 #define STOR_AUTO 0x0000
1125 #define STOR_STATIC 0x0002
1126 #define STOR_LOCAL 0x0003
1127 #define STOR_EXTERN 0x0007
1128 #define STOR_INLINE 0x0008
1129 #define STOR_REGISTER 0x0010
1130 #define STOR_TYPEDEF 0x0018
1132 #define QUAL_SHIFT 5
1133 #define QUAL_MASK 0x00e0
1134 #define QUAL_NONE 0x0000
1135 #define QUAL_CONST 0x0020
1136 #define QUAL_VOLATILE 0x0040
1137 #define QUAL_RESTRICT 0x0080
1139 #define TYPE_SHIFT 8
1140 #define TYPE_MASK 0x1f00
1141 #define TYPE_INTEGER(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1142 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1143 #define TYPE_UNSIGNED(TYPE) ((TYPE) & 0x0100)
1144 #define TYPE_SIGNED(TYPE) (!TYPE_UNSIGNED(TYPE))
1145 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1146 #define TYPE_RANK(TYPE) ((TYPE) & ~0xF1FF)
1147 #define TYPE_PTR(TYPE) (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1148 #define TYPE_DEFAULT 0x0000
1149 #define TYPE_VOID 0x0100
1150 #define TYPE_CHAR 0x0200
1151 #define TYPE_UCHAR 0x0300
1152 #define TYPE_SHORT 0x0400
1153 #define TYPE_USHORT 0x0500
1154 #define TYPE_INT 0x0600
1155 #define TYPE_UINT 0x0700
1156 #define TYPE_LONG 0x0800
1157 #define TYPE_ULONG 0x0900
1158 #define TYPE_LLONG 0x0a00 /* long long */
1159 #define TYPE_ULLONG 0x0b00
1160 #define TYPE_FLOAT 0x0c00
1161 #define TYPE_DOUBLE 0x0d00
1162 #define TYPE_LDOUBLE 0x0e00 /* long double */
1164 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1165 #define TYPE_ENUM 0x1600
1166 #define TYPE_LIST 0x1700
1167 /* TYPE_LIST is a basic building block when defining enumerations
1168 * type->field_ident holds the name of this enumeration entry.
1169 * type->right holds the entry in the list.
1172 #define TYPE_STRUCT 0x1000
1173 /* For TYPE_STRUCT
1174 * type->left holds the link list of TYPE_PRODUCT entries that
1175 * make up the structure.
1176 * type->elements hold the length of the linked list
1178 #define TYPE_UNION 0x1100
1179 /* For TYPE_UNION
1180 * type->left holds the link list of TYPE_OVERLAP entries that
1181 * make up the union.
1182 * type->elements hold the length of the linked list
1184 #define TYPE_POINTER 0x1200
1185 /* For TYPE_POINTER:
1186 * type->left holds the type pointed to.
1188 #define TYPE_FUNCTION 0x1300
1189 /* For TYPE_FUNCTION:
1190 * type->left holds the return type.
1191 * type->right holds the type of the arguments
1192 * type->elements holds the count of the arguments
1194 #define TYPE_PRODUCT 0x1400
1195 /* TYPE_PRODUCT is a basic building block when defining structures
1196 * type->left holds the type that appears first in memory.
1197 * type->right holds the type that appears next in memory.
1199 #define TYPE_OVERLAP 0x1500
1200 /* TYPE_OVERLAP is a basic building block when defining unions
1201 * type->left and type->right holds to types that overlap
1202 * each other in memory.
1204 #define TYPE_ARRAY 0x1800
1205 /* TYPE_ARRAY is a basic building block when definitng arrays.
1206 * type->left holds the type we are an array of.
1207 * type->elements holds the number of elements.
1209 #define TYPE_TUPLE 0x1900
1210 /* TYPE_TUPLE is a basic building block when defining
1211 * positionally reference type conglomerations. (i.e. closures)
1212 * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1213 * except it has no field names.
1214 * type->left holds the liked list of TYPE_PRODUCT entries that
1215 * make up the closure type.
1216 * type->elements hold the number of elements in the closure.
1218 #define TYPE_JOIN 0x1a00
1219 /* TYPE_JOIN is a basic building block when defining
1220 * positionally reference type conglomerations. (i.e. closures)
1221 * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1222 * except it has no field names.
1223 * type->left holds the liked list of TYPE_OVERLAP entries that
1224 * make up the closure type.
1225 * type->elements hold the number of elements in the closure.
1227 #define TYPE_BITFIELD 0x1b00
1228 /* TYPE_BITFIED is the type of a bitfield.
1229 * type->left holds the type basic type TYPE_BITFIELD is derived from.
1230 * type->elements holds the number of bits in the bitfield.
1232 #define TYPE_UNKNOWN 0x1c00
1233 /* TYPE_UNKNOWN is the type of an unknown value.
1234 * Used on unknown consts and other places where I don't know the type.
1237 #define ATTRIB_SHIFT 16
1238 #define ATTRIB_MASK 0xffff0000
1239 #define ATTRIB_NOINLINE 0x00010000
1240 #define ATTRIB_ALWAYS_INLINE 0x00020000
1242 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1244 struct type {
1245 unsigned int type;
1246 struct type *left, *right;
1247 ulong_t elements;
1248 struct hash_entry *field_ident;
1249 struct hash_entry *type_ident;
1252 #define TEMPLATE_BITS 7
1253 #define MAX_TEMPLATES (1<<TEMPLATE_BITS)
1254 #define MAX_REG_EQUIVS 16
1255 #define MAX_REGC 14
1256 #define MAX_REGISTERS 75
1257 #define REGISTER_BITS 7
1258 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1259 #define REG_ERROR 0
1260 #define REG_UNSET 1
1261 #define REG_UNNEEDED 2
1262 #define REG_VIRT0 (MAX_REGISTERS + 0)
1263 #define REG_VIRT1 (MAX_REGISTERS + 1)
1264 #define REG_VIRT2 (MAX_REGISTERS + 2)
1265 #define REG_VIRT3 (MAX_REGISTERS + 3)
1266 #define REG_VIRT4 (MAX_REGISTERS + 4)
1267 #define REG_VIRT5 (MAX_REGISTERS + 5)
1268 #define REG_VIRT6 (MAX_REGISTERS + 6)
1269 #define REG_VIRT7 (MAX_REGISTERS + 7)
1270 #define REG_VIRT8 (MAX_REGISTERS + 8)
1271 #define REG_VIRT9 (MAX_REGISTERS + 9)
1273 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1274 #error "MAX_VIRT_REGISTERS to small"
1275 #endif
1276 #if (MAX_REGC + REGISTER_BITS) >= 26
1277 #error "Too many id bits used"
1278 #endif
1280 /* Provision for 8 register classes */
1281 #define REG_SHIFT 0
1282 #define REGC_SHIFT REGISTER_BITS
1283 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1284 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1285 #define ID_REG(ID) ((ID) & REG_MASK)
1286 #define SET_REG(ID, REG) ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1287 #define ID_REGCM(ID) (((ID) & REGC_MASK) >> REGC_SHIFT)
1288 #define SET_REGCM(ID, REGCM) ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1289 #define SET_INFO(ID, INFO) ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1290 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1292 #define ARCH_INPUT_REGS 4
1293 #define ARCH_OUTPUT_REGS 4
1295 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1296 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1297 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1298 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1299 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1300 static void arch_reg_equivs(
1301 struct compile_state *state, unsigned *equiv, int reg);
1302 static int arch_select_free_register(
1303 struct compile_state *state, char *used, int classes);
1304 static unsigned arch_regc_size(struct compile_state *state, int class);
1305 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1306 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1307 static const char *arch_reg_str(int reg);
1308 static struct reg_info arch_reg_constraint(
1309 struct compile_state *state, struct type *type, const char *constraint);
1310 static struct reg_info arch_reg_clobber(
1311 struct compile_state *state, const char *clobber);
1312 static struct reg_info arch_reg_lhs(struct compile_state *state,
1313 struct triple *ins, int index);
1314 static struct reg_info arch_reg_rhs(struct compile_state *state,
1315 struct triple *ins, int index);
1316 static int arch_reg_size(int reg);
1317 static struct triple *transform_to_arch_instruction(
1318 struct compile_state *state, struct triple *ins);
1319 static struct triple *flatten(
1320 struct compile_state *state, struct triple *first, struct triple *ptr);
1321 static void print_dominators(struct compile_state *state,
1322 FILE *fp, struct basic_blocks *bb);
1323 static void print_dominance_frontiers(struct compile_state *state,
1324 FILE *fp, struct basic_blocks *bb);
1328 #define DEBUG_ABORT_ON_ERROR 0x00000001
1329 #define DEBUG_BASIC_BLOCKS 0x00000002
1330 #define DEBUG_FDOMINATORS 0x00000004
1331 #define DEBUG_RDOMINATORS 0x00000008
1332 #define DEBUG_TRIPLES 0x00000010
1333 #define DEBUG_INTERFERENCE 0x00000020
1334 #define DEBUG_SCC_TRANSFORM 0x00000040
1335 #define DEBUG_SCC_TRANSFORM2 0x00000080
1336 #define DEBUG_REBUILD_SSA_FORM 0x00000100
1337 #define DEBUG_INLINE 0x00000200
1338 #define DEBUG_RANGE_CONFLICTS 0x00000400
1339 #define DEBUG_RANGE_CONFLICTS2 0x00000800
1340 #define DEBUG_COLOR_GRAPH 0x00001000
1341 #define DEBUG_COLOR_GRAPH2 0x00002000
1342 #define DEBUG_COALESCING 0x00004000
1343 #define DEBUG_COALESCING2 0x00008000
1344 #define DEBUG_VERIFICATION 0x00010000
1345 #define DEBUG_CALLS 0x00020000
1346 #define DEBUG_CALLS2 0x00040000
1347 #define DEBUG_TOKENS 0x80000000
1349 #define DEBUG_DEFAULT ( \
1350 DEBUG_ABORT_ON_ERROR | \
1351 DEBUG_BASIC_BLOCKS | \
1352 DEBUG_FDOMINATORS | \
1353 DEBUG_RDOMINATORS | \
1354 DEBUG_TRIPLES | \
1357 #define DEBUG_ALL ( \
1358 DEBUG_ABORT_ON_ERROR | \
1359 DEBUG_BASIC_BLOCKS | \
1360 DEBUG_FDOMINATORS | \
1361 DEBUG_RDOMINATORS | \
1362 DEBUG_TRIPLES | \
1363 DEBUG_INTERFERENCE | \
1364 DEBUG_SCC_TRANSFORM | \
1365 DEBUG_SCC_TRANSFORM2 | \
1366 DEBUG_REBUILD_SSA_FORM | \
1367 DEBUG_INLINE | \
1368 DEBUG_RANGE_CONFLICTS | \
1369 DEBUG_RANGE_CONFLICTS2 | \
1370 DEBUG_COLOR_GRAPH | \
1371 DEBUG_COLOR_GRAPH2 | \
1372 DEBUG_COALESCING | \
1373 DEBUG_COALESCING2 | \
1374 DEBUG_VERIFICATION | \
1375 DEBUG_CALLS | \
1376 DEBUG_CALLS2 | \
1377 DEBUG_TOKENS | \
1380 #define COMPILER_INLINE_MASK 0x00000007
1381 #define COMPILER_INLINE_ALWAYS 0x00000000
1382 #define COMPILER_INLINE_NEVER 0x00000001
1383 #define COMPILER_INLINE_DEFAULTON 0x00000002
1384 #define COMPILER_INLINE_DEFAULTOFF 0x00000003
1385 #define COMPILER_INLINE_NOPENALTY 0x00000004
1386 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1387 #define COMPILER_SIMPLIFY 0x00000010
1388 #define COMPILER_SCC_TRANSFORM 0x00000020
1389 #define COMPILER_SIMPLIFY_OP 0x00000040
1390 #define COMPILER_SIMPLIFY_PHI 0x00000080
1391 #define COMPILER_SIMPLIFY_LABEL 0x00000100
1392 #define COMPILER_SIMPLIFY_BRANCH 0x00000200
1393 #define COMPILER_SIMPLIFY_COPY 0x00000400
1394 #define COMPILER_SIMPLIFY_ARITH 0x00000800
1395 #define COMPILER_SIMPLIFY_SHIFT 0x00001000
1396 #define COMPILER_SIMPLIFY_BITWISE 0x00002000
1397 #define COMPILER_SIMPLIFY_LOGICAL 0x00004000
1398 #define COMPILER_SIMPLIFY_BITFIELD 0x00008000
1400 #define COMPILER_TRIGRAPHS 0x40000000
1401 #define COMPILER_PP_ONLY 0x80000000
1403 #define COMPILER_DEFAULT_FLAGS ( \
1404 COMPILER_TRIGRAPHS | \
1405 COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1406 COMPILER_INLINE_DEFAULTON | \
1407 COMPILER_SIMPLIFY_OP | \
1408 COMPILER_SIMPLIFY_PHI | \
1409 COMPILER_SIMPLIFY_LABEL | \
1410 COMPILER_SIMPLIFY_BRANCH | \
1411 COMPILER_SIMPLIFY_COPY | \
1412 COMPILER_SIMPLIFY_ARITH | \
1413 COMPILER_SIMPLIFY_SHIFT | \
1414 COMPILER_SIMPLIFY_BITWISE | \
1415 COMPILER_SIMPLIFY_LOGICAL | \
1416 COMPILER_SIMPLIFY_BITFIELD | \
1419 #define GLOBAL_SCOPE_DEPTH 1
1420 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1422 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1426 static void init_compiler_state(struct compiler_state *compiler)
1428 memset(compiler, 0, sizeof(*compiler));
1429 compiler->label_prefix = "";
1430 compiler->ofilename = "auto.inc";
1431 compiler->flags = COMPILER_DEFAULT_FLAGS;
1432 compiler->debug = 0;
1433 compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1434 compiler->include_path_count = 1;
1435 compiler->include_paths = xcmalloc(sizeof(char *), "include_paths");
1436 compiler->define_count = 1;
1437 compiler->defines = xcmalloc(sizeof(char *), "defines");
1438 compiler->undef_count = 1;
1439 compiler->undefs = xcmalloc(sizeof(char *), "undefs");
1442 struct compiler_flag {
1443 const char *name;
1444 unsigned long flag;
1447 struct compiler_arg {
1448 const char *name;
1449 unsigned long mask;
1450 struct compiler_flag flags[16];
1453 static int set_flag(
1454 const struct compiler_flag *ptr, unsigned long *flags,
1455 int act, const char *flag)
1457 int result = -1;
1458 for(; ptr->name; ptr++) {
1459 if (strcmp(ptr->name, flag) == 0) {
1460 break;
1463 if (ptr->name) {
1464 result = 0;
1465 *flags &= ~(ptr->flag);
1466 if (act) {
1467 *flags |= ptr->flag;
1470 return result;
1473 static int set_arg(
1474 const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1476 const char *val;
1477 int result = -1;
1478 int len;
1479 val = strchr(arg, '=');
1480 if (val) {
1481 len = val - arg;
1482 val++;
1483 for(; ptr->name; ptr++) {
1484 if (strncmp(ptr->name, arg, len) == 0) {
1485 break;
1488 if (ptr->name) {
1489 *flags &= ~ptr->mask;
1490 result = set_flag(&ptr->flags[0], flags, 1, val);
1493 return result;
1497 static void flag_usage(FILE *fp, const struct compiler_flag *ptr,
1498 const char *prefix, const char *invert_prefix)
1500 for(;ptr->name; ptr++) {
1501 fprintf(fp, "%s%s\n", prefix, ptr->name);
1502 if (invert_prefix) {
1503 fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1508 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1509 const char *prefix)
1511 for(;ptr->name; ptr++) {
1512 const struct compiler_flag *flag;
1513 for(flag = &ptr->flags[0]; flag->name; flag++) {
1514 fprintf(fp, "%s%s=%s\n",
1515 prefix, ptr->name, flag->name);
1520 static int append_string(size_t *max, const char ***vec, const char *str,
1521 const char *name)
1523 size_t count;
1524 count = ++(*max);
1525 *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1526 (*vec)[count -1] = 0;
1527 (*vec)[count -2] = str;
1528 return 0;
1531 static void arg_error(char *fmt, ...);
1532 static const char *identifier(const char *str, const char *end);
1534 static int append_include_path(struct compiler_state *compiler, const char *str)
1536 int result;
1537 if (!exists(str, ".")) {
1538 arg_error("Nonexistent include path: `%s'\n",
1539 str);
1541 result = append_string(&compiler->include_path_count,
1542 &compiler->include_paths, str, "include_paths");
1543 return result;
1546 static int append_define(struct compiler_state *compiler, const char *str)
1548 const char *end, *rest;
1549 int result;
1551 end = strchr(str, '=');
1552 if (!end) {
1553 end = str + strlen(str);
1555 rest = identifier(str, end);
1556 if (rest != end) {
1557 int len = end - str - 1;
1558 arg_error("Invalid name cannot define macro: `%*.*s'\n",
1559 len, len, str);
1561 result = append_string(&compiler->define_count,
1562 &compiler->defines, str, "defines");
1563 return result;
1566 static int append_undef(struct compiler_state *compiler, const char *str)
1568 const char *end, *rest;
1569 int result;
1571 end = str + strlen(str);
1572 rest = identifier(str, end);
1573 if (rest != end) {
1574 int len = end - str - 1;
1575 arg_error("Invalid name cannot undefine macro: `%*.*s'\n",
1576 len, len, str);
1578 result = append_string(&compiler->undef_count,
1579 &compiler->undefs, str, "undefs");
1580 return result;
1583 static const struct compiler_flag romcc_flags[] = {
1584 { "trigraphs", COMPILER_TRIGRAPHS },
1585 { "pp-only", COMPILER_PP_ONLY },
1586 { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1587 { "simplify", COMPILER_SIMPLIFY },
1588 { "scc-transform", COMPILER_SCC_TRANSFORM },
1589 { "simplify-op", COMPILER_SIMPLIFY_OP },
1590 { "simplify-phi", COMPILER_SIMPLIFY_PHI },
1591 { "simplify-label", COMPILER_SIMPLIFY_LABEL },
1592 { "simplify-branch", COMPILER_SIMPLIFY_BRANCH },
1593 { "simplify-copy", COMPILER_SIMPLIFY_COPY },
1594 { "simplify-arith", COMPILER_SIMPLIFY_ARITH },
1595 { "simplify-shift", COMPILER_SIMPLIFY_SHIFT },
1596 { "simplify-bitwise", COMPILER_SIMPLIFY_BITWISE },
1597 { "simplify-logical", COMPILER_SIMPLIFY_LOGICAL },
1598 { "simplify-bitfield", COMPILER_SIMPLIFY_BITFIELD },
1599 { 0, 0 },
1601 static const struct compiler_arg romcc_args[] = {
1602 { "inline-policy", COMPILER_INLINE_MASK,
1604 { "always", COMPILER_INLINE_ALWAYS, },
1605 { "never", COMPILER_INLINE_NEVER, },
1606 { "defaulton", COMPILER_INLINE_DEFAULTON, },
1607 { "defaultoff", COMPILER_INLINE_DEFAULTOFF, },
1608 { "nopenalty", COMPILER_INLINE_NOPENALTY, },
1609 { 0, 0 },
1612 { 0, 0 },
1614 static const struct compiler_flag romcc_opt_flags[] = {
1615 { "-O", COMPILER_SIMPLIFY },
1616 { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1617 { "-E", COMPILER_PP_ONLY },
1618 { 0, 0, },
1620 static const struct compiler_flag romcc_debug_flags[] = {
1621 { "all", DEBUG_ALL },
1622 { "abort-on-error", DEBUG_ABORT_ON_ERROR },
1623 { "basic-blocks", DEBUG_BASIC_BLOCKS },
1624 { "fdominators", DEBUG_FDOMINATORS },
1625 { "rdominators", DEBUG_RDOMINATORS },
1626 { "triples", DEBUG_TRIPLES },
1627 { "interference", DEBUG_INTERFERENCE },
1628 { "scc-transform", DEBUG_SCC_TRANSFORM },
1629 { "scc-transform2", DEBUG_SCC_TRANSFORM2 },
1630 { "rebuild-ssa-form", DEBUG_REBUILD_SSA_FORM },
1631 { "inline", DEBUG_INLINE },
1632 { "live-range-conflicts", DEBUG_RANGE_CONFLICTS },
1633 { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1634 { "color-graph", DEBUG_COLOR_GRAPH },
1635 { "color-graph2", DEBUG_COLOR_GRAPH2 },
1636 { "coalescing", DEBUG_COALESCING },
1637 { "coalescing2", DEBUG_COALESCING2 },
1638 { "verification", DEBUG_VERIFICATION },
1639 { "calls", DEBUG_CALLS },
1640 { "calls2", DEBUG_CALLS2 },
1641 { "tokens", DEBUG_TOKENS },
1642 { 0, 0 },
1645 static int compiler_encode_flag(
1646 struct compiler_state *compiler, const char *flag)
1648 int act;
1649 int result;
1651 act = 1;
1652 result = -1;
1653 if (strncmp(flag, "no-", 3) == 0) {
1654 flag += 3;
1655 act = 0;
1657 if (strncmp(flag, "-O", 2) == 0) {
1658 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1660 else if (strncmp(flag, "-E", 2) == 0) {
1661 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1663 else if (strncmp(flag, "-I", 2) == 0) {
1664 result = append_include_path(compiler, flag + 2);
1666 else if (strncmp(flag, "-D", 2) == 0) {
1667 result = append_define(compiler, flag + 2);
1669 else if (strncmp(flag, "-U", 2) == 0) {
1670 result = append_undef(compiler, flag + 2);
1672 else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1673 result = 0;
1674 compiler->label_prefix = flag + 13;
1676 else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1677 unsigned long max_passes;
1678 char *end;
1679 max_passes = strtoul(flag + 22, &end, 10);
1680 if (end[0] == '\0') {
1681 result = 0;
1682 compiler->max_allocation_passes = max_passes;
1685 else if (act && strcmp(flag, "debug") == 0) {
1686 result = 0;
1687 compiler->debug |= DEBUG_DEFAULT;
1689 else if (strncmp(flag, "debug-", 6) == 0) {
1690 flag += 6;
1691 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1693 else {
1694 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1695 if (result < 0) {
1696 result = set_arg(romcc_args, &compiler->flags, flag);
1699 return result;
1702 static void compiler_usage(FILE *fp)
1704 flag_usage(fp, romcc_opt_flags, "", 0);
1705 flag_usage(fp, romcc_flags, "-f", "-fno-");
1706 arg_usage(fp, romcc_args, "-f");
1707 flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1708 fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1709 fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1710 fprintf(fp, "-I<include path>\n");
1711 fprintf(fp, "-D<macro>[=defn]\n");
1712 fprintf(fp, "-U<macro>\n");
1715 static void do_cleanup(struct compile_state *state)
1717 if (state->output) {
1718 fclose(state->output);
1719 unlink(state->compiler->ofilename);
1720 state->output = 0;
1722 if (state->dbgout) {
1723 fflush(state->dbgout);
1725 if (state->errout) {
1726 fflush(state->errout);
1730 static struct compile_state *exit_state;
1731 static void exit_cleanup(void)
1733 if (exit_state) {
1734 do_cleanup(exit_state);
1738 static int get_col(struct file_state *file)
1740 int col;
1741 const char *ptr, *end;
1742 ptr = file->line_start;
1743 end = file->pos;
1744 for(col = 0; ptr < end; ptr++) {
1745 if (*ptr != '\t') {
1746 col++;
1748 else {
1749 col = (col & ~7) + 8;
1752 return col;
1755 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1757 int col;
1758 if (triple && triple->occurance) {
1759 struct occurance *spot;
1760 for(spot = triple->occurance; spot; spot = spot->parent) {
1761 fprintf(fp, "%s:%d.%d: ",
1762 spot->filename, spot->line, spot->col);
1764 return;
1766 if (!state->file) {
1767 return;
1769 col = get_col(state->file);
1770 fprintf(fp, "%s:%d.%d: ",
1771 state->file->report_name, state->file->report_line, col);
1774 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr,
1775 const char *fmt, ...)
1777 FILE *fp = state->errout;
1778 va_list args;
1779 va_start(args, fmt);
1780 loc(fp, state, ptr);
1781 fputc('\n', fp);
1782 if (ptr) {
1783 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1785 fprintf(fp, "Internal compiler error: ");
1786 vfprintf(fp, fmt, args);
1787 fprintf(fp, "\n");
1788 va_end(args);
1789 do_cleanup(state);
1790 abort();
1794 static void internal_warning(struct compile_state *state, struct triple *ptr,
1795 const char *fmt, ...)
1797 FILE *fp = state->errout;
1798 va_list args;
1799 va_start(args, fmt);
1800 loc(fp, state, ptr);
1801 if (ptr) {
1802 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1804 fprintf(fp, "Internal compiler warning: ");
1805 vfprintf(fp, fmt, args);
1806 fprintf(fp, "\n");
1807 va_end(args);
1812 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr,
1813 const char *fmt, ...)
1815 FILE *fp = state->errout;
1816 va_list args;
1817 va_start(args, fmt);
1818 loc(fp, state, ptr);
1819 fputc('\n', fp);
1820 if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1821 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1823 vfprintf(fp, fmt, args);
1824 va_end(args);
1825 fprintf(fp, "\n");
1826 do_cleanup(state);
1827 if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1828 abort();
1830 exit(1);
1833 static void warning(struct compile_state *state, struct triple *ptr,
1834 const char *fmt, ...)
1836 FILE *fp = state->errout;
1837 va_list args;
1838 va_start(args, fmt);
1839 loc(fp, state, ptr);
1840 fprintf(fp, "warning: ");
1841 if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1842 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1844 vfprintf(fp, fmt, args);
1845 fprintf(fp, "\n");
1846 va_end(args);
1849 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1851 static void valid_op(struct compile_state *state, int op)
1853 char *fmt = "invalid op: %d";
1854 if (op >= OP_MAX) {
1855 internal_error(state, 0, fmt, op);
1857 if (op < 0) {
1858 internal_error(state, 0, fmt, op);
1862 static void valid_ins(struct compile_state *state, struct triple *ptr)
1864 valid_op(state, ptr->op);
1867 #if DEBUG_ROMCC_WARNING
1868 static void valid_param_count(struct compile_state *state, struct triple *ins)
1870 int lhs, rhs, misc, targ;
1871 valid_ins(state, ins);
1872 lhs = table_ops[ins->op].lhs;
1873 rhs = table_ops[ins->op].rhs;
1874 misc = table_ops[ins->op].misc;
1875 targ = table_ops[ins->op].targ;
1877 if ((lhs >= 0) && (ins->lhs != lhs)) {
1878 internal_error(state, ins, "Bad lhs count");
1880 if ((rhs >= 0) && (ins->rhs != rhs)) {
1881 internal_error(state, ins, "Bad rhs count");
1883 if ((misc >= 0) && (ins->misc != misc)) {
1884 internal_error(state, ins, "Bad misc count");
1886 if ((targ >= 0) && (ins->targ != targ)) {
1887 internal_error(state, ins, "Bad targ count");
1890 #endif
1892 static struct type void_type;
1893 static struct type unknown_type;
1894 static void use_triple(struct triple *used, struct triple *user)
1896 struct triple_set **ptr, *new;
1897 if (!used)
1898 return;
1899 if (!user)
1900 return;
1901 ptr = &used->use;
1902 while(*ptr) {
1903 if ((*ptr)->member == user) {
1904 return;
1906 ptr = &(*ptr)->next;
1908 /* Append new to the head of the list,
1909 * copy_func and rename_block_variables
1910 * depends on this.
1912 new = xcmalloc(sizeof(*new), "triple_set");
1913 new->member = user;
1914 new->next = used->use;
1915 used->use = new;
1918 static void unuse_triple(struct triple *used, struct triple *unuser)
1920 struct triple_set *use, **ptr;
1921 if (!used) {
1922 return;
1924 ptr = &used->use;
1925 while(*ptr) {
1926 use = *ptr;
1927 if (use->member == unuser) {
1928 *ptr = use->next;
1929 xfree(use);
1931 else {
1932 ptr = &use->next;
1937 static void put_occurance(struct occurance *occurance)
1939 if (occurance) {
1940 occurance->count -= 1;
1941 if (occurance->count <= 0) {
1942 if (occurance->parent) {
1943 put_occurance(occurance->parent);
1945 xfree(occurance);
1950 static void get_occurance(struct occurance *occurance)
1952 if (occurance) {
1953 occurance->count += 1;
1958 static struct occurance *new_occurance(struct compile_state *state)
1960 struct occurance *result, *last;
1961 const char *filename;
1962 const char *function;
1963 int line, col;
1965 function = "";
1966 filename = 0;
1967 line = 0;
1968 col = 0;
1969 if (state->file) {
1970 filename = state->file->report_name;
1971 line = state->file->report_line;
1972 col = get_col(state->file);
1974 if (state->function) {
1975 function = state->function;
1977 last = state->last_occurance;
1978 if (last &&
1979 (last->col == col) &&
1980 (last->line == line) &&
1981 (last->function == function) &&
1982 ((last->filename == filename) ||
1983 (strcmp(last->filename, filename) == 0)))
1985 get_occurance(last);
1986 return last;
1988 if (last) {
1989 state->last_occurance = 0;
1990 put_occurance(last);
1992 result = xmalloc(sizeof(*result), "occurance");
1993 result->count = 2;
1994 result->filename = filename;
1995 result->function = function;
1996 result->line = line;
1997 result->col = col;
1998 result->parent = 0;
1999 state->last_occurance = result;
2000 return result;
2003 static struct occurance *inline_occurance(struct compile_state *state,
2004 struct occurance *base, struct occurance *top)
2006 struct occurance *result, *last;
2007 if (top->parent) {
2008 internal_error(state, 0, "inlining an already inlined function?");
2010 /* If I have a null base treat it that way */
2011 if ((base->parent == 0) &&
2012 (base->col == 0) &&
2013 (base->line == 0) &&
2014 (base->function[0] == '\0') &&
2015 (base->filename[0] == '\0')) {
2016 base = 0;
2018 /* See if I can reuse the last occurance I had */
2019 last = state->last_occurance;
2020 if (last &&
2021 (last->parent == base) &&
2022 (last->col == top->col) &&
2023 (last->line == top->line) &&
2024 (last->function == top->function) &&
2025 (last->filename == top->filename)) {
2026 get_occurance(last);
2027 return last;
2029 /* I can't reuse the last occurance so free it */
2030 if (last) {
2031 state->last_occurance = 0;
2032 put_occurance(last);
2034 /* Generate a new occurance structure */
2035 get_occurance(base);
2036 result = xmalloc(sizeof(*result), "occurance");
2037 result->count = 2;
2038 result->filename = top->filename;
2039 result->function = top->function;
2040 result->line = top->line;
2041 result->col = top->col;
2042 result->parent = base;
2043 state->last_occurance = result;
2044 return result;
2047 static struct occurance dummy_occurance = {
2048 .count = 2,
2049 .filename = __FILE__,
2050 .function = "",
2051 .line = __LINE__,
2052 .col = 0,
2053 .parent = 0,
2056 /* The undef triple is used as a place holder when we are removing pointers
2057 * from a triple. Having allows certain sanity checks to pass even
2058 * when the original triple that was pointed to is gone.
2060 static struct triple unknown_triple = {
2061 .next = &unknown_triple,
2062 .prev = &unknown_triple,
2063 .use = 0,
2064 .op = OP_UNKNOWNVAL,
2065 .lhs = 0,
2066 .rhs = 0,
2067 .misc = 0,
2068 .targ = 0,
2069 .type = &unknown_type,
2070 .id = -1, /* An invalid id */
2071 .u = { .cval = 0, },
2072 .occurance = &dummy_occurance,
2073 .param = { [0] = 0, [1] = 0, },
2077 static size_t registers_of(struct compile_state *state, struct type *type);
2079 static struct triple *alloc_triple(struct compile_state *state,
2080 int op, struct type *type, int lhs_wanted, int rhs_wanted,
2081 struct occurance *occurance)
2083 size_t size, extra_count, min_count;
2084 int lhs, rhs, misc, targ;
2085 struct triple *ret, dummy;
2086 dummy.op = op;
2087 dummy.occurance = occurance;
2088 valid_op(state, op);
2089 lhs = table_ops[op].lhs;
2090 rhs = table_ops[op].rhs;
2091 misc = table_ops[op].misc;
2092 targ = table_ops[op].targ;
2094 switch(op) {
2095 case OP_FCALL:
2096 rhs = rhs_wanted;
2097 break;
2098 case OP_PHI:
2099 rhs = rhs_wanted;
2100 break;
2101 case OP_ADECL:
2102 lhs = registers_of(state, type);
2103 break;
2104 case OP_TUPLE:
2105 lhs = registers_of(state, type);
2106 break;
2107 case OP_ASM:
2108 rhs = rhs_wanted;
2109 lhs = lhs_wanted;
2110 break;
2112 if ((rhs < 0) || (rhs > MAX_RHS)) {
2113 internal_error(state, &dummy, "bad rhs count %d", rhs);
2115 if ((lhs < 0) || (lhs > MAX_LHS)) {
2116 internal_error(state, &dummy, "bad lhs count %d", lhs);
2118 if ((misc < 0) || (misc > MAX_MISC)) {
2119 internal_error(state, &dummy, "bad misc count %d", misc);
2121 if ((targ < 0) || (targ > MAX_TARG)) {
2122 internal_error(state, &dummy, "bad targs count %d", targ);
2125 min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2126 extra_count = lhs + rhs + misc + targ;
2127 extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2129 size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2130 ret = xcmalloc(size, "tripple");
2131 ret->op = op;
2132 ret->lhs = lhs;
2133 ret->rhs = rhs;
2134 ret->misc = misc;
2135 ret->targ = targ;
2136 ret->type = type;
2137 ret->next = ret;
2138 ret->prev = ret;
2139 ret->occurance = occurance;
2140 /* A simple sanity check */
2141 if ((ret->op != op) ||
2142 (ret->lhs != lhs) ||
2143 (ret->rhs != rhs) ||
2144 (ret->misc != misc) ||
2145 (ret->targ != targ) ||
2146 (ret->type != type) ||
2147 (ret->next != ret) ||
2148 (ret->prev != ret) ||
2149 (ret->occurance != occurance)) {
2150 internal_error(state, ret, "huh?");
2152 return ret;
2155 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2157 struct triple *dup;
2158 int src_lhs, src_rhs, src_size;
2159 src_lhs = src->lhs;
2160 src_rhs = src->rhs;
2161 src_size = TRIPLE_SIZE(src);
2162 get_occurance(src->occurance);
2163 dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2164 src->occurance);
2165 memcpy(dup, src, sizeof(*src));
2166 memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2167 return dup;
2170 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2172 struct triple *copy;
2173 copy = dup_triple(state, src);
2174 copy->use = 0;
2175 copy->next = copy->prev = copy;
2176 return copy;
2179 static struct triple *new_triple(struct compile_state *state,
2180 int op, struct type *type, int lhs, int rhs)
2182 struct triple *ret;
2183 struct occurance *occurance;
2184 occurance = new_occurance(state);
2185 ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2186 return ret;
2189 static struct triple *build_triple(struct compile_state *state,
2190 int op, struct type *type, struct triple *left, struct triple *right,
2191 struct occurance *occurance)
2193 struct triple *ret;
2194 size_t count;
2195 ret = alloc_triple(state, op, type, -1, -1, occurance);
2196 count = TRIPLE_SIZE(ret);
2197 if (count > 0) {
2198 ret->param[0] = left;
2200 if (count > 1) {
2201 ret->param[1] = right;
2203 return ret;
2206 static struct triple *triple(struct compile_state *state,
2207 int op, struct type *type, struct triple *left, struct triple *right)
2209 struct triple *ret;
2210 size_t count;
2211 ret = new_triple(state, op, type, -1, -1);
2212 count = TRIPLE_SIZE(ret);
2213 if (count >= 1) {
2214 ret->param[0] = left;
2216 if (count >= 2) {
2217 ret->param[1] = right;
2219 return ret;
2222 static struct triple *branch(struct compile_state *state,
2223 struct triple *targ, struct triple *test)
2225 struct triple *ret;
2226 if (test) {
2227 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2228 RHS(ret, 0) = test;
2229 } else {
2230 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2232 TARG(ret, 0) = targ;
2233 /* record the branch target was used */
2234 if (!targ || (targ->op != OP_LABEL)) {
2235 internal_error(state, 0, "branch not to label");
2237 return ret;
2240 static int triple_is_label(struct compile_state *state, struct triple *ins);
2241 static int triple_is_call(struct compile_state *state, struct triple *ins);
2242 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2243 static void insert_triple(struct compile_state *state,
2244 struct triple *first, struct triple *ptr)
2246 if (ptr) {
2247 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2248 internal_error(state, ptr, "expression already used");
2250 ptr->next = first;
2251 ptr->prev = first->prev;
2252 ptr->prev->next = ptr;
2253 ptr->next->prev = ptr;
2255 if (triple_is_cbranch(state, ptr->prev) ||
2256 triple_is_call(state, ptr->prev)) {
2257 unuse_triple(first, ptr->prev);
2258 use_triple(ptr, ptr->prev);
2263 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2265 /* This function is used to determine if u.block
2266 * is utilized to store the current block number.
2268 int stores_block;
2269 valid_ins(state, ins);
2270 stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2271 return stores_block;
2274 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2275 static struct block *block_of_triple(struct compile_state *state,
2276 struct triple *ins)
2278 struct triple *first;
2279 if (!ins || ins == &unknown_triple) {
2280 return 0;
2282 first = state->first;
2283 while(ins != first && !triple_is_branch(state, ins->prev) &&
2284 !triple_stores_block(state, ins))
2286 if (ins == ins->prev) {
2287 internal_error(state, ins, "ins == ins->prev?");
2289 ins = ins->prev;
2291 return triple_stores_block(state, ins)? ins->u.block: 0;
2294 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2295 static struct triple *pre_triple(struct compile_state *state,
2296 struct triple *base,
2297 int op, struct type *type, struct triple *left, struct triple *right)
2299 struct block *block;
2300 struct triple *ret;
2301 int i;
2302 /* If I am an OP_PIECE jump to the real instruction */
2303 if (base->op == OP_PIECE) {
2304 base = MISC(base, 0);
2306 block = block_of_triple(state, base);
2307 get_occurance(base->occurance);
2308 ret = build_triple(state, op, type, left, right, base->occurance);
2309 generate_lhs_pieces(state, ret);
2310 if (triple_stores_block(state, ret)) {
2311 ret->u.block = block;
2313 insert_triple(state, base, ret);
2314 for(i = 0; i < ret->lhs; i++) {
2315 struct triple *piece;
2316 piece = LHS(ret, i);
2317 insert_triple(state, base, piece);
2318 use_triple(ret, piece);
2319 use_triple(piece, ret);
2321 if (block && (block->first == base)) {
2322 block->first = ret;
2324 return ret;
2327 static struct triple *post_triple(struct compile_state *state,
2328 struct triple *base,
2329 int op, struct type *type, struct triple *left, struct triple *right)
2331 struct block *block;
2332 struct triple *ret, *next;
2333 int zlhs, i;
2334 /* If I am an OP_PIECE jump to the real instruction */
2335 if (base->op == OP_PIECE) {
2336 base = MISC(base, 0);
2338 /* If I have a left hand side skip over it */
2339 zlhs = base->lhs;
2340 if (zlhs) {
2341 base = LHS(base, zlhs - 1);
2344 block = block_of_triple(state, base);
2345 get_occurance(base->occurance);
2346 ret = build_triple(state, op, type, left, right, base->occurance);
2347 generate_lhs_pieces(state, ret);
2348 if (triple_stores_block(state, ret)) {
2349 ret->u.block = block;
2351 next = base->next;
2352 insert_triple(state, next, ret);
2353 zlhs = ret->lhs;
2354 for(i = 0; i < zlhs; i++) {
2355 struct triple *piece;
2356 piece = LHS(ret, i);
2357 insert_triple(state, next, piece);
2358 use_triple(ret, piece);
2359 use_triple(piece, ret);
2361 if (block && (block->last == base)) {
2362 block->last = ret;
2363 if (zlhs) {
2364 block->last = LHS(ret, zlhs - 1);
2367 return ret;
2370 static struct type *reg_type(
2371 struct compile_state *state, struct type *type, int reg);
2373 static void generate_lhs_piece(
2374 struct compile_state *state, struct triple *ins, int index)
2376 struct type *piece_type;
2377 struct triple *piece;
2378 get_occurance(ins->occurance);
2379 piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2381 if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2382 piece_type = piece_type->left;
2384 #if 0
2386 static void name_of(FILE *fp, struct type *type);
2387 FILE * fp = state->errout;
2388 fprintf(fp, "piece_type(%d): ", index);
2389 name_of(fp, piece_type);
2390 fprintf(fp, "\n");
2392 #endif
2393 piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2394 piece->u.cval = index;
2395 LHS(ins, piece->u.cval) = piece;
2396 MISC(piece, 0) = ins;
2399 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2401 int i, zlhs;
2402 zlhs = ins->lhs;
2403 for(i = 0; i < zlhs; i++) {
2404 generate_lhs_piece(state, ins, i);
2408 static struct triple *label(struct compile_state *state)
2410 /* Labels don't get a type */
2411 struct triple *result;
2412 result = triple(state, OP_LABEL, &void_type, 0, 0);
2413 return result;
2416 static struct triple *mkprog(struct compile_state *state, ...)
2418 struct triple *prog, *head, *arg;
2419 va_list args;
2420 int i;
2422 head = label(state);
2423 prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2424 RHS(prog, 0) = head;
2425 va_start(args, state);
2426 i = 0;
2427 while((arg = va_arg(args, struct triple *)) != 0) {
2428 if (++i >= 100) {
2429 internal_error(state, 0, "too many arguments to mkprog");
2431 flatten(state, head, arg);
2433 va_end(args);
2434 prog->type = head->prev->type;
2435 return prog;
2437 static void name_of(FILE *fp, struct type *type);
2438 static void display_triple(FILE *fp, struct triple *ins)
2440 struct occurance *ptr;
2441 const char *reg;
2442 char pre, post, vol;
2443 pre = post = vol = ' ';
2444 if (ins) {
2445 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2446 pre = '^';
2448 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2449 post = ',';
2451 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2452 vol = 'v';
2454 reg = arch_reg_str(ID_REG(ins->id));
2456 if (ins == 0) {
2457 fprintf(fp, "(%p) <nothing> ", ins);
2459 else if (ins->op == OP_INTCONST) {
2460 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx> ",
2461 ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2462 (unsigned long)(ins->u.cval));
2464 else if (ins->op == OP_ADDRCONST) {
2465 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2466 ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2467 MISC(ins, 0), (unsigned long)(ins->u.cval));
2469 else if (ins->op == OP_INDEX) {
2470 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2471 ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2472 RHS(ins, 0), (unsigned long)(ins->u.cval));
2474 else if (ins->op == OP_PIECE) {
2475 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2476 ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2477 MISC(ins, 0), (unsigned long)(ins->u.cval));
2479 else {
2480 int i, count;
2481 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s",
2482 ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2483 if (table_ops[ins->op].flags & BITFIELD) {
2484 fprintf(fp, " <%2d-%2d:%2d>",
2485 ins->u.bitfield.offset,
2486 ins->u.bitfield.offset + ins->u.bitfield.size,
2487 ins->u.bitfield.size);
2489 count = TRIPLE_SIZE(ins);
2490 for(i = 0; i < count; i++) {
2491 fprintf(fp, " %-10p", ins->param[i]);
2493 for(; i < 2; i++) {
2494 fprintf(fp, " ");
2497 if (ins) {
2498 struct triple_set *user;
2499 #if DEBUG_DISPLAY_TYPES
2500 fprintf(fp, " <");
2501 name_of(fp, ins->type);
2502 fprintf(fp, "> ");
2503 #endif
2504 #if DEBUG_DISPLAY_USES
2505 fprintf(fp, " [");
2506 for(user = ins->use; user; user = user->next) {
2507 fprintf(fp, " %-10p", user->member);
2509 fprintf(fp, " ]");
2510 #endif
2511 fprintf(fp, " @");
2512 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2513 fprintf(fp, " %s,%s:%d.%d",
2514 ptr->function,
2515 ptr->filename,
2516 ptr->line,
2517 ptr->col);
2519 if (ins->op == OP_ASM) {
2520 fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2523 fprintf(fp, "\n");
2524 fflush(fp);
2527 static int equiv_types(struct type *left, struct type *right);
2528 static void display_triple_changes(
2529 FILE *fp, const struct triple *new, const struct triple *orig)
2532 int new_count, orig_count;
2533 new_count = TRIPLE_SIZE(new);
2534 orig_count = TRIPLE_SIZE(orig);
2535 if ((new->op != orig->op) ||
2536 (new_count != orig_count) ||
2537 (memcmp(orig->param, new->param,
2538 orig_count * sizeof(orig->param[0])) != 0) ||
2539 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0))
2541 struct occurance *ptr;
2542 int i, min_count, indent;
2543 fprintf(fp, "(%p %p)", new, orig);
2544 if (orig->op == new->op) {
2545 fprintf(fp, " %-11s", tops(orig->op));
2546 } else {
2547 fprintf(fp, " [%-10s %-10s]",
2548 tops(new->op), tops(orig->op));
2550 min_count = new_count;
2551 if (min_count > orig_count) {
2552 min_count = orig_count;
2554 for(indent = i = 0; i < min_count; i++) {
2555 if (orig->param[i] == new->param[i]) {
2556 fprintf(fp, " %-11p",
2557 orig->param[i]);
2558 indent += 12;
2559 } else {
2560 fprintf(fp, " [%-10p %-10p]",
2561 new->param[i],
2562 orig->param[i]);
2563 indent += 24;
2566 for(; i < orig_count; i++) {
2567 fprintf(fp, " [%-9p]", orig->param[i]);
2568 indent += 12;
2570 for(; i < new_count; i++) {
2571 fprintf(fp, " [%-9p]", new->param[i]);
2572 indent += 12;
2574 if ((new->op == OP_INTCONST)||
2575 (new->op == OP_ADDRCONST)) {
2576 fprintf(fp, " <0x%08lx>",
2577 (unsigned long)(new->u.cval));
2578 indent += 13;
2580 for(;indent < 36; indent++) {
2581 putc(' ', fp);
2584 #if DEBUG_DISPLAY_TYPES
2585 fprintf(fp, " <");
2586 name_of(fp, new->type);
2587 if (!equiv_types(new->type, orig->type)) {
2588 fprintf(fp, " -- ");
2589 name_of(fp, orig->type);
2591 fprintf(fp, "> ");
2592 #endif
2594 fprintf(fp, " @");
2595 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2596 fprintf(fp, " %s,%s:%d.%d",
2597 ptr->function,
2598 ptr->filename,
2599 ptr->line,
2600 ptr->col);
2603 fprintf(fp, "\n");
2604 fflush(fp);
2608 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2610 /* Does the triple have no side effects.
2611 * I.e. Rexecuting the triple with the same arguments
2612 * gives the same value.
2614 unsigned pure;
2615 valid_ins(state, ins);
2616 pure = PURE_BITS(table_ops[ins->op].flags);
2617 if ((pure != PURE) && (pure != IMPURE)) {
2618 internal_error(state, 0, "Purity of %s not known",
2619 tops(ins->op));
2621 return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2624 static int triple_is_branch_type(struct compile_state *state,
2625 struct triple *ins, unsigned type)
2627 /* Is this one of the passed branch types? */
2628 valid_ins(state, ins);
2629 return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2632 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2634 /* Is this triple a branch instruction? */
2635 valid_ins(state, ins);
2636 return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2639 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2641 /* Is this triple a conditional branch instruction? */
2642 return triple_is_branch_type(state, ins, CBRANCH);
2645 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2647 /* Is this triple a unconditional branch instruction? */
2648 unsigned type;
2649 valid_ins(state, ins);
2650 type = BRANCH_BITS(table_ops[ins->op].flags);
2651 return (type != 0) && (type != CBRANCH);
2654 static int triple_is_call(struct compile_state *state, struct triple *ins)
2656 /* Is this triple a call instruction? */
2657 return triple_is_branch_type(state, ins, CALLBRANCH);
2660 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2662 /* Is this triple a return instruction? */
2663 return triple_is_branch_type(state, ins, RETBRANCH);
2666 #if DEBUG_ROMCC_WARNING
2667 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2669 /* Is this triple an unconditional branch and not a call or a
2670 * return? */
2671 return triple_is_branch_type(state, ins, UBRANCH);
2673 #endif
2675 static int triple_is_end(struct compile_state *state, struct triple *ins)
2677 return triple_is_branch_type(state, ins, ENDBRANCH);
2680 static int triple_is_label(struct compile_state *state, struct triple *ins)
2682 valid_ins(state, ins);
2683 return (ins->op == OP_LABEL);
2686 static struct triple *triple_to_block_start(
2687 struct compile_state *state, struct triple *start)
2689 while(!triple_is_branch(state, start->prev) &&
2690 (!triple_is_label(state, start) || !start->use)) {
2691 start = start->prev;
2693 return start;
2696 static int triple_is_def(struct compile_state *state, struct triple *ins)
2698 /* This function is used to determine which triples need
2699 * a register.
2701 int is_def;
2702 valid_ins(state, ins);
2703 is_def = (table_ops[ins->op].flags & DEF) == DEF;
2704 if (ins->lhs >= 1) {
2705 is_def = 0;
2707 return is_def;
2710 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2712 int is_structural;
2713 valid_ins(state, ins);
2714 is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2715 return is_structural;
2718 static int triple_is_part(struct compile_state *state, struct triple *ins)
2720 int is_part;
2721 valid_ins(state, ins);
2722 is_part = (table_ops[ins->op].flags & PART) == PART;
2723 return is_part;
2726 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2728 return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2731 static struct triple **triple_iter(struct compile_state *state,
2732 size_t count, struct triple **vector,
2733 struct triple *ins, struct triple **last)
2735 struct triple **ret;
2736 ret = 0;
2737 if (count) {
2738 if (!last) {
2739 ret = vector;
2741 else if ((last >= vector) && (last < (vector + count - 1))) {
2742 ret = last + 1;
2745 return ret;
2749 static struct triple **triple_lhs(struct compile_state *state,
2750 struct triple *ins, struct triple **last)
2752 return triple_iter(state, ins->lhs, &LHS(ins,0),
2753 ins, last);
2756 static struct triple **triple_rhs(struct compile_state *state,
2757 struct triple *ins, struct triple **last)
2759 return triple_iter(state, ins->rhs, &RHS(ins,0),
2760 ins, last);
2763 static struct triple **triple_misc(struct compile_state *state,
2764 struct triple *ins, struct triple **last)
2766 return triple_iter(state, ins->misc, &MISC(ins,0),
2767 ins, last);
2770 static struct triple **do_triple_targ(struct compile_state *state,
2771 struct triple *ins, struct triple **last, int call_edges, int next_edges)
2773 size_t count;
2774 struct triple **ret, **vector;
2775 int next_is_targ;
2776 ret = 0;
2777 count = ins->targ;
2778 next_is_targ = 0;
2779 if (triple_is_cbranch(state, ins)) {
2780 next_is_targ = 1;
2782 if (!call_edges && triple_is_call(state, ins)) {
2783 count = 0;
2785 if (next_edges && triple_is_call(state, ins)) {
2786 next_is_targ = 1;
2788 vector = &TARG(ins, 0);
2789 if (!ret && next_is_targ) {
2790 if (!last) {
2791 ret = &ins->next;
2792 } else if (last == &ins->next) {
2793 last = 0;
2796 if (!ret && count) {
2797 if (!last) {
2798 ret = vector;
2800 else if ((last >= vector) && (last < (vector + count - 1))) {
2801 ret = last + 1;
2803 else if (last == vector + count - 1) {
2804 last = 0;
2807 if (!ret && triple_is_ret(state, ins) && call_edges) {
2808 struct triple_set *use;
2809 for(use = ins->use; use; use = use->next) {
2810 if (!triple_is_call(state, use->member)) {
2811 continue;
2813 if (!last) {
2814 ret = &use->member->next;
2815 break;
2817 else if (last == &use->member->next) {
2818 last = 0;
2822 return ret;
2825 static struct triple **triple_targ(struct compile_state *state,
2826 struct triple *ins, struct triple **last)
2828 return do_triple_targ(state, ins, last, 1, 1);
2831 static struct triple **triple_edge_targ(struct compile_state *state,
2832 struct triple *ins, struct triple **last)
2834 return do_triple_targ(state, ins, last,
2835 state->functions_joined, !state->functions_joined);
2838 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2840 struct triple *next;
2841 int lhs, i;
2842 lhs = ins->lhs;
2843 next = ins->next;
2844 for(i = 0; i < lhs; i++) {
2845 struct triple *piece;
2846 piece = LHS(ins, i);
2847 if (next != piece) {
2848 internal_error(state, ins, "malformed lhs on %s",
2849 tops(ins->op));
2851 if (next->op != OP_PIECE) {
2852 internal_error(state, ins, "bad lhs op %s at %d on %s",
2853 tops(next->op), i, tops(ins->op));
2855 if (next->u.cval != i) {
2856 internal_error(state, ins, "bad u.cval of %d %d expected",
2857 next->u.cval, i);
2859 next = next->next;
2861 return next;
2864 /* Function piece accessor functions */
2865 static struct triple *do_farg(struct compile_state *state,
2866 struct triple *func, unsigned index)
2868 struct type *ftype;
2869 struct triple *first, *arg;
2870 unsigned i;
2872 ftype = func->type;
2873 if(index >= (ftype->elements + 2)) {
2874 internal_error(state, func, "bad argument index: %d", index);
2876 first = RHS(func, 0);
2877 arg = first->next;
2878 for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2879 /* do nothing */
2881 if (arg->op != OP_ADECL) {
2882 internal_error(state, 0, "arg not adecl?");
2884 return arg;
2886 static struct triple *fresult(struct compile_state *state, struct triple *func)
2888 return do_farg(state, func, 0);
2890 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2892 return do_farg(state, func, 1);
2894 static struct triple *farg(struct compile_state *state,
2895 struct triple *func, unsigned index)
2897 return do_farg(state, func, index + 2);
2901 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2903 struct triple *first, *ins;
2904 fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2905 first = ins = RHS(func, 0);
2906 do {
2907 if (triple_is_label(state, ins) && ins->use) {
2908 fprintf(fp, "%p:\n", ins);
2910 display_triple(fp, ins);
2912 if (triple_is_branch(state, ins)) {
2913 fprintf(fp, "\n");
2915 if (ins->next->prev != ins) {
2916 internal_error(state, ins->next, "bad prev");
2918 ins = ins->next;
2919 } while(ins != first);
2922 static void verify_use(struct compile_state *state,
2923 struct triple *user, struct triple *used)
2925 int size, i;
2926 size = TRIPLE_SIZE(user);
2927 for(i = 0; i < size; i++) {
2928 if (user->param[i] == used) {
2929 break;
2932 if (triple_is_branch(state, user)) {
2933 if (user->next == used) {
2934 i = -1;
2937 if (i == size) {
2938 internal_error(state, user, "%s(%p) does not use %s(%p)",
2939 tops(user->op), user, tops(used->op), used);
2943 static int find_rhs_use(struct compile_state *state,
2944 struct triple *user, struct triple *used)
2946 struct triple **param;
2947 int size, i;
2948 verify_use(state, user, used);
2950 #if DEBUG_ROMCC_WARNINGS
2951 #warning "AUDIT ME ->rhs"
2952 #endif
2953 size = user->rhs;
2954 param = &RHS(user, 0);
2955 for(i = 0; i < size; i++) {
2956 if (param[i] == used) {
2957 return i;
2960 return -1;
2963 static void free_triple(struct compile_state *state, struct triple *ptr)
2965 size_t size;
2966 size = sizeof(*ptr) - sizeof(ptr->param) +
2967 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2968 ptr->prev->next = ptr->next;
2969 ptr->next->prev = ptr->prev;
2970 if (ptr->use) {
2971 internal_error(state, ptr, "ptr->use != 0");
2973 put_occurance(ptr->occurance);
2974 memset(ptr, -1, size);
2975 xfree(ptr);
2978 static void release_triple(struct compile_state *state, struct triple *ptr)
2980 struct triple_set *set, *next;
2981 struct triple **expr;
2982 struct block *block;
2983 if (ptr == &unknown_triple) {
2984 return;
2986 valid_ins(state, ptr);
2987 /* Make certain the we are not the first or last element of a block */
2988 block = block_of_triple(state, ptr);
2989 if (block) {
2990 if ((block->last == ptr) && (block->first == ptr)) {
2991 block->last = block->first = 0;
2993 else if (block->last == ptr) {
2994 block->last = ptr->prev;
2996 else if (block->first == ptr) {
2997 block->first = ptr->next;
3000 /* Remove ptr from use chains where it is the user */
3001 expr = triple_rhs(state, ptr, 0);
3002 for(; expr; expr = triple_rhs(state, ptr, expr)) {
3003 if (*expr) {
3004 unuse_triple(*expr, ptr);
3007 expr = triple_lhs(state, ptr, 0);
3008 for(; expr; expr = triple_lhs(state, ptr, expr)) {
3009 if (*expr) {
3010 unuse_triple(*expr, ptr);
3013 expr = triple_misc(state, ptr, 0);
3014 for(; expr; expr = triple_misc(state, ptr, expr)) {
3015 if (*expr) {
3016 unuse_triple(*expr, ptr);
3019 expr = triple_targ(state, ptr, 0);
3020 for(; expr; expr = triple_targ(state, ptr, expr)) {
3021 if (*expr){
3022 unuse_triple(*expr, ptr);
3025 /* Reomve ptr from use chains where it is used */
3026 for(set = ptr->use; set; set = next) {
3027 next = set->next;
3028 valid_ins(state, set->member);
3029 expr = triple_rhs(state, set->member, 0);
3030 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3031 if (*expr == ptr) {
3032 *expr = &unknown_triple;
3035 expr = triple_lhs(state, set->member, 0);
3036 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3037 if (*expr == ptr) {
3038 *expr = &unknown_triple;
3041 expr = triple_misc(state, set->member, 0);
3042 for(; expr; expr = triple_misc(state, set->member, expr)) {
3043 if (*expr == ptr) {
3044 *expr = &unknown_triple;
3047 expr = triple_targ(state, set->member, 0);
3048 for(; expr; expr = triple_targ(state, set->member, expr)) {
3049 if (*expr == ptr) {
3050 *expr = &unknown_triple;
3053 unuse_triple(ptr, set->member);
3055 free_triple(state, ptr);
3058 static void print_triples(struct compile_state *state);
3059 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3061 #define TOK_UNKNOWN 0
3062 #define TOK_SPACE 1
3063 #define TOK_SEMI 2
3064 #define TOK_LBRACE 3
3065 #define TOK_RBRACE 4
3066 #define TOK_COMMA 5
3067 #define TOK_EQ 6
3068 #define TOK_COLON 7
3069 #define TOK_LBRACKET 8
3070 #define TOK_RBRACKET 9
3071 #define TOK_LPAREN 10
3072 #define TOK_RPAREN 11
3073 #define TOK_STAR 12
3074 #define TOK_DOTS 13
3075 #define TOK_MORE 14
3076 #define TOK_LESS 15
3077 #define TOK_TIMESEQ 16
3078 #define TOK_DIVEQ 17
3079 #define TOK_MODEQ 18
3080 #define TOK_PLUSEQ 19
3081 #define TOK_MINUSEQ 20
3082 #define TOK_SLEQ 21
3083 #define TOK_SREQ 22
3084 #define TOK_ANDEQ 23
3085 #define TOK_XOREQ 24
3086 #define TOK_OREQ 25
3087 #define TOK_EQEQ 26
3088 #define TOK_NOTEQ 27
3089 #define TOK_QUEST 28
3090 #define TOK_LOGOR 29
3091 #define TOK_LOGAND 30
3092 #define TOK_OR 31
3093 #define TOK_AND 32
3094 #define TOK_XOR 33
3095 #define TOK_LESSEQ 34
3096 #define TOK_MOREEQ 35
3097 #define TOK_SL 36
3098 #define TOK_SR 37
3099 #define TOK_PLUS 38
3100 #define TOK_MINUS 39
3101 #define TOK_DIV 40
3102 #define TOK_MOD 41
3103 #define TOK_PLUSPLUS 42
3104 #define TOK_MINUSMINUS 43
3105 #define TOK_BANG 44
3106 #define TOK_ARROW 45
3107 #define TOK_DOT 46
3108 #define TOK_TILDE 47
3109 #define TOK_LIT_STRING 48
3110 #define TOK_LIT_CHAR 49
3111 #define TOK_LIT_INT 50
3112 #define TOK_LIT_FLOAT 51
3113 #define TOK_MACRO 52
3114 #define TOK_CONCATENATE 53
3116 #define TOK_IDENT 54
3117 #define TOK_STRUCT_NAME 55
3118 #define TOK_ENUM_CONST 56
3119 #define TOK_TYPE_NAME 57
3121 #define TOK_AUTO 58
3122 #define TOK_BREAK 59
3123 #define TOK_CASE 60
3124 #define TOK_CHAR 61
3125 #define TOK_CONST 62
3126 #define TOK_CONTINUE 63
3127 #define TOK_DEFAULT 64
3128 #define TOK_DO 65
3129 #define TOK_DOUBLE 66
3130 #define TOK_ELSE 67
3131 #define TOK_ENUM 68
3132 #define TOK_EXTERN 69
3133 #define TOK_FLOAT 70
3134 #define TOK_FOR 71
3135 #define TOK_GOTO 72
3136 #define TOK_IF 73
3137 #define TOK_INLINE 74
3138 #define TOK_INT 75
3139 #define TOK_LONG 76
3140 #define TOK_REGISTER 77
3141 #define TOK_RESTRICT 78
3142 #define TOK_RETURN 79
3143 #define TOK_SHORT 80
3144 #define TOK_SIGNED 81
3145 #define TOK_SIZEOF 82
3146 #define TOK_STATIC 83
3147 #define TOK_STRUCT 84
3148 #define TOK_SWITCH 85
3149 #define TOK_TYPEDEF 86
3150 #define TOK_UNION 87
3151 #define TOK_UNSIGNED 88
3152 #define TOK_VOID 89
3153 #define TOK_VOLATILE 90
3154 #define TOK_WHILE 91
3155 #define TOK_ASM 92
3156 #define TOK_ATTRIBUTE 93
3157 #define TOK_ALIGNOF 94
3158 #define TOK_FIRST_KEYWORD TOK_AUTO
3159 #define TOK_LAST_KEYWORD TOK_ALIGNOF
3161 #define TOK_MDEFINE 100
3162 #define TOK_MDEFINED 101
3163 #define TOK_MUNDEF 102
3164 #define TOK_MINCLUDE 103
3165 #define TOK_MLINE 104
3166 #define TOK_MERROR 105
3167 #define TOK_MWARNING 106
3168 #define TOK_MPRAGMA 107
3169 #define TOK_MIFDEF 108
3170 #define TOK_MIFNDEF 109
3171 #define TOK_MELIF 110
3172 #define TOK_MENDIF 111
3174 #define TOK_FIRST_MACRO TOK_MDEFINE
3175 #define TOK_LAST_MACRO TOK_MENDIF
3177 #define TOK_MIF 112
3178 #define TOK_MELSE 113
3179 #define TOK_MIDENT 114
3181 #define TOK_EOL 115
3182 #define TOK_EOF 116
3184 static const char *tokens[] = {
3185 [TOK_UNKNOWN ] = ":unknown:",
3186 [TOK_SPACE ] = ":space:",
3187 [TOK_SEMI ] = ";",
3188 [TOK_LBRACE ] = "{",
3189 [TOK_RBRACE ] = "}",
3190 [TOK_COMMA ] = ",",
3191 [TOK_EQ ] = "=",
3192 [TOK_COLON ] = ":",
3193 [TOK_LBRACKET ] = "[",
3194 [TOK_RBRACKET ] = "]",
3195 [TOK_LPAREN ] = "(",
3196 [TOK_RPAREN ] = ")",
3197 [TOK_STAR ] = "*",
3198 [TOK_DOTS ] = "...",
3199 [TOK_MORE ] = ">",
3200 [TOK_LESS ] = "<",
3201 [TOK_TIMESEQ ] = "*=",
3202 [TOK_DIVEQ ] = "/=",
3203 [TOK_MODEQ ] = "%=",
3204 [TOK_PLUSEQ ] = "+=",
3205 [TOK_MINUSEQ ] = "-=",
3206 [TOK_SLEQ ] = "<<=",
3207 [TOK_SREQ ] = ">>=",
3208 [TOK_ANDEQ ] = "&=",
3209 [TOK_XOREQ ] = "^=",
3210 [TOK_OREQ ] = "|=",
3211 [TOK_EQEQ ] = "==",
3212 [TOK_NOTEQ ] = "!=",
3213 [TOK_QUEST ] = "?",
3214 [TOK_LOGOR ] = "||",
3215 [TOK_LOGAND ] = "&&",
3216 [TOK_OR ] = "|",
3217 [TOK_AND ] = "&",
3218 [TOK_XOR ] = "^",
3219 [TOK_LESSEQ ] = "<=",
3220 [TOK_MOREEQ ] = ">=",
3221 [TOK_SL ] = "<<",
3222 [TOK_SR ] = ">>",
3223 [TOK_PLUS ] = "+",
3224 [TOK_MINUS ] = "-",
3225 [TOK_DIV ] = "/",
3226 [TOK_MOD ] = "%",
3227 [TOK_PLUSPLUS ] = "++",
3228 [TOK_MINUSMINUS ] = "--",
3229 [TOK_BANG ] = "!",
3230 [TOK_ARROW ] = "->",
3231 [TOK_DOT ] = ".",
3232 [TOK_TILDE ] = "~",
3233 [TOK_LIT_STRING ] = ":string:",
3234 [TOK_IDENT ] = ":ident:",
3235 [TOK_TYPE_NAME ] = ":typename:",
3236 [TOK_LIT_CHAR ] = ":char:",
3237 [TOK_LIT_INT ] = ":integer:",
3238 [TOK_LIT_FLOAT ] = ":float:",
3239 [TOK_MACRO ] = "#",
3240 [TOK_CONCATENATE ] = "##",
3242 [TOK_AUTO ] = "auto",
3243 [TOK_BREAK ] = "break",
3244 [TOK_CASE ] = "case",
3245 [TOK_CHAR ] = "char",
3246 [TOK_CONST ] = "const",
3247 [TOK_CONTINUE ] = "continue",
3248 [TOK_DEFAULT ] = "default",
3249 [TOK_DO ] = "do",
3250 [TOK_DOUBLE ] = "double",
3251 [TOK_ELSE ] = "else",
3252 [TOK_ENUM ] = "enum",
3253 [TOK_EXTERN ] = "extern",
3254 [TOK_FLOAT ] = "float",
3255 [TOK_FOR ] = "for",
3256 [TOK_GOTO ] = "goto",
3257 [TOK_IF ] = "if",
3258 [TOK_INLINE ] = "inline",
3259 [TOK_INT ] = "int",
3260 [TOK_LONG ] = "long",
3261 [TOK_REGISTER ] = "register",
3262 [TOK_RESTRICT ] = "restrict",
3263 [TOK_RETURN ] = "return",
3264 [TOK_SHORT ] = "short",
3265 [TOK_SIGNED ] = "signed",
3266 [TOK_SIZEOF ] = "sizeof",
3267 [TOK_STATIC ] = "static",
3268 [TOK_STRUCT ] = "struct",
3269 [TOK_SWITCH ] = "switch",
3270 [TOK_TYPEDEF ] = "typedef",
3271 [TOK_UNION ] = "union",
3272 [TOK_UNSIGNED ] = "unsigned",
3273 [TOK_VOID ] = "void",
3274 [TOK_VOLATILE ] = "volatile",
3275 [TOK_WHILE ] = "while",
3276 [TOK_ASM ] = "asm",
3277 [TOK_ATTRIBUTE ] = "__attribute__",
3278 [TOK_ALIGNOF ] = "__alignof__",
3280 [TOK_MDEFINE ] = "#define",
3281 [TOK_MDEFINED ] = "#defined",
3282 [TOK_MUNDEF ] = "#undef",
3283 [TOK_MINCLUDE ] = "#include",
3284 [TOK_MLINE ] = "#line",
3285 [TOK_MERROR ] = "#error",
3286 [TOK_MWARNING ] = "#warning",
3287 [TOK_MPRAGMA ] = "#pragma",
3288 [TOK_MIFDEF ] = "#ifdef",
3289 [TOK_MIFNDEF ] = "#ifndef",
3290 [TOK_MELIF ] = "#elif",
3291 [TOK_MENDIF ] = "#endif",
3293 [TOK_MIF ] = "#if",
3294 [TOK_MELSE ] = "#else",
3295 [TOK_MIDENT ] = "#:ident:",
3296 [TOK_EOL ] = "EOL",
3297 [TOK_EOF ] = "EOF",
3300 static unsigned int hash(const char *str, int str_len)
3302 unsigned int hash;
3303 const char *end;
3304 end = str + str_len;
3305 hash = 0;
3306 for(; str < end; str++) {
3307 hash = (hash *263) + *str;
3309 hash = hash & (HASH_TABLE_SIZE -1);
3310 return hash;
3313 static struct hash_entry *lookup(
3314 struct compile_state *state, const char *name, int name_len)
3316 struct hash_entry *entry;
3317 unsigned int index;
3318 index = hash(name, name_len);
3319 entry = state->hash_table[index];
3320 while(entry &&
3321 ((entry->name_len != name_len) ||
3322 (memcmp(entry->name, name, name_len) != 0))) {
3323 entry = entry->next;
3325 if (!entry) {
3326 char *new_name;
3327 /* Get a private copy of the name */
3328 new_name = xmalloc(name_len + 1, "hash_name");
3329 memcpy(new_name, name, name_len);
3330 new_name[name_len] = '\0';
3332 /* Create a new hash entry */
3333 entry = xcmalloc(sizeof(*entry), "hash_entry");
3334 entry->next = state->hash_table[index];
3335 entry->name = new_name;
3336 entry->name_len = name_len;
3338 /* Place the new entry in the hash table */
3339 state->hash_table[index] = entry;
3341 return entry;
3344 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3346 struct hash_entry *entry;
3347 entry = tk->ident;
3348 if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3349 (entry->tok == TOK_ENUM_CONST) ||
3350 ((entry->tok >= TOK_FIRST_KEYWORD) &&
3351 (entry->tok <= TOK_LAST_KEYWORD)))) {
3352 tk->tok = entry->tok;
3356 static void ident_to_macro(struct compile_state *state, struct token *tk)
3358 struct hash_entry *entry;
3359 entry = tk->ident;
3360 if (!entry)
3361 return;
3362 if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3363 tk->tok = entry->tok;
3365 else if (entry->tok == TOK_IF) {
3366 tk->tok = TOK_MIF;
3368 else if (entry->tok == TOK_ELSE) {
3369 tk->tok = TOK_MELSE;
3371 else {
3372 tk->tok = TOK_MIDENT;
3376 static void hash_keyword(
3377 struct compile_state *state, const char *keyword, int tok)
3379 struct hash_entry *entry;
3380 entry = lookup(state, keyword, strlen(keyword));
3381 if (entry && entry->tok != TOK_UNKNOWN) {
3382 die("keyword %s already hashed", keyword);
3384 entry->tok = tok;
3387 static void romcc_symbol(
3388 struct compile_state *state, struct hash_entry *ident,
3389 struct symbol **chain, struct triple *def, struct type *type, int depth)
3391 struct symbol *sym;
3392 if (*chain && ((*chain)->scope_depth >= depth)) {
3393 error(state, 0, "%s already defined", ident->name);
3395 sym = xcmalloc(sizeof(*sym), "symbol");
3396 sym->ident = ident;
3397 sym->def = def;
3398 sym->type = type;
3399 sym->scope_depth = depth;
3400 sym->next = *chain;
3401 *chain = sym;
3404 static void symbol(
3405 struct compile_state *state, struct hash_entry *ident,
3406 struct symbol **chain, struct triple *def, struct type *type)
3408 romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3411 static void var_symbol(struct compile_state *state,
3412 struct hash_entry *ident, struct triple *def)
3414 if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3415 internal_error(state, 0, "bad var type");
3417 symbol(state, ident, &ident->sym_ident, def, def->type);
3420 static void label_symbol(struct compile_state *state,
3421 struct hash_entry *ident, struct triple *label, int depth)
3423 romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3426 static void start_scope(struct compile_state *state)
3428 state->scope_depth++;
3431 static void end_scope_syms(struct compile_state *state,
3432 struct symbol **chain, int depth)
3434 struct symbol *sym, *next;
3435 sym = *chain;
3436 while(sym && (sym->scope_depth == depth)) {
3437 next = sym->next;
3438 xfree(sym);
3439 sym = next;
3441 *chain = sym;
3444 static void end_scope(struct compile_state *state)
3446 int i;
3447 int depth;
3448 /* Walk through the hash table and remove all symbols
3449 * in the current scope.
3451 depth = state->scope_depth;
3452 for(i = 0; i < HASH_TABLE_SIZE; i++) {
3453 struct hash_entry *entry;
3454 entry = state->hash_table[i];
3455 while(entry) {
3456 end_scope_syms(state, &entry->sym_label, depth);
3457 end_scope_syms(state, &entry->sym_tag, depth);
3458 end_scope_syms(state, &entry->sym_ident, depth);
3459 entry = entry->next;
3462 state->scope_depth = depth - 1;
3465 static void register_keywords(struct compile_state *state)
3467 hash_keyword(state, "auto", TOK_AUTO);
3468 hash_keyword(state, "break", TOK_BREAK);
3469 hash_keyword(state, "case", TOK_CASE);
3470 hash_keyword(state, "char", TOK_CHAR);
3471 hash_keyword(state, "const", TOK_CONST);
3472 hash_keyword(state, "continue", TOK_CONTINUE);
3473 hash_keyword(state, "default", TOK_DEFAULT);
3474 hash_keyword(state, "do", TOK_DO);
3475 hash_keyword(state, "double", TOK_DOUBLE);
3476 hash_keyword(state, "else", TOK_ELSE);
3477 hash_keyword(state, "enum", TOK_ENUM);
3478 hash_keyword(state, "extern", TOK_EXTERN);
3479 hash_keyword(state, "float", TOK_FLOAT);
3480 hash_keyword(state, "for", TOK_FOR);
3481 hash_keyword(state, "goto", TOK_GOTO);
3482 hash_keyword(state, "if", TOK_IF);
3483 hash_keyword(state, "inline", TOK_INLINE);
3484 hash_keyword(state, "int", TOK_INT);
3485 hash_keyword(state, "long", TOK_LONG);
3486 hash_keyword(state, "register", TOK_REGISTER);
3487 hash_keyword(state, "restrict", TOK_RESTRICT);
3488 hash_keyword(state, "return", TOK_RETURN);
3489 hash_keyword(state, "short", TOK_SHORT);
3490 hash_keyword(state, "signed", TOK_SIGNED);
3491 hash_keyword(state, "sizeof", TOK_SIZEOF);
3492 hash_keyword(state, "static", TOK_STATIC);
3493 hash_keyword(state, "struct", TOK_STRUCT);
3494 hash_keyword(state, "switch", TOK_SWITCH);
3495 hash_keyword(state, "typedef", TOK_TYPEDEF);
3496 hash_keyword(state, "union", TOK_UNION);
3497 hash_keyword(state, "unsigned", TOK_UNSIGNED);
3498 hash_keyword(state, "void", TOK_VOID);
3499 hash_keyword(state, "volatile", TOK_VOLATILE);
3500 hash_keyword(state, "__volatile__", TOK_VOLATILE);
3501 hash_keyword(state, "while", TOK_WHILE);
3502 hash_keyword(state, "asm", TOK_ASM);
3503 hash_keyword(state, "__asm__", TOK_ASM);
3504 hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3505 hash_keyword(state, "__alignof__", TOK_ALIGNOF);
3508 static void register_macro_keywords(struct compile_state *state)
3510 hash_keyword(state, "define", TOK_MDEFINE);
3511 hash_keyword(state, "defined", TOK_MDEFINED);
3512 hash_keyword(state, "undef", TOK_MUNDEF);
3513 hash_keyword(state, "include", TOK_MINCLUDE);
3514 hash_keyword(state, "line", TOK_MLINE);
3515 hash_keyword(state, "error", TOK_MERROR);
3516 hash_keyword(state, "warning", TOK_MWARNING);
3517 hash_keyword(state, "pragma", TOK_MPRAGMA);
3518 hash_keyword(state, "ifdef", TOK_MIFDEF);
3519 hash_keyword(state, "ifndef", TOK_MIFNDEF);
3520 hash_keyword(state, "elif", TOK_MELIF);
3521 hash_keyword(state, "endif", TOK_MENDIF);
3525 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3527 if (ident->sym_define != 0) {
3528 struct macro *macro;
3529 struct macro_arg *arg, *anext;
3530 macro = ident->sym_define;
3531 ident->sym_define = 0;
3533 /* Free the macro arguments... */
3534 anext = macro->args;
3535 while(anext) {
3536 arg = anext;
3537 anext = arg->next;
3538 xfree(arg);
3541 /* Free the macro buffer */
3542 xfree(macro->buf);
3544 /* Now free the macro itself */
3545 xfree(macro);
3549 static void do_define_macro(struct compile_state *state,
3550 struct hash_entry *ident, const char *body,
3551 int argc, struct macro_arg *args)
3553 struct macro *macro;
3554 struct macro_arg *arg;
3555 size_t body_len;
3557 /* Find the length of the body */
3558 body_len = strlen(body);
3559 macro = ident->sym_define;
3560 if (macro != 0) {
3561 int identical_bodies, identical_args;
3562 struct macro_arg *oarg;
3563 /* Explicitly allow identical redfinitions of the same macro */
3564 identical_bodies =
3565 (macro->buf_len == body_len) &&
3566 (memcmp(macro->buf, body, body_len) == 0);
3567 identical_args = macro->argc == argc;
3568 oarg = macro->args;
3569 arg = args;
3570 while(identical_args && arg) {
3571 identical_args = oarg->ident == arg->ident;
3572 arg = arg->next;
3573 oarg = oarg->next;
3575 if (identical_bodies && identical_args) {
3576 xfree(body);
3577 return;
3579 error(state, 0, "macro %s already defined\n", ident->name);
3581 #if 0
3582 fprintf(state->errout, "#define %s: `%*.*s'\n",
3583 ident->name, body_len, body_len, body);
3584 #endif
3585 macro = xmalloc(sizeof(*macro), "macro");
3586 macro->ident = ident;
3587 macro->buf = body;
3588 macro->buf_len = body_len;
3589 macro->args = args;
3590 macro->argc = argc;
3592 ident->sym_define = macro;
3595 static void define_macro(
3596 struct compile_state *state,
3597 struct hash_entry *ident,
3598 const char *body, int body_len,
3599 int argc, struct macro_arg *args)
3601 char *buf;
3602 buf = xmalloc(body_len + 1, "macro buf");
3603 memcpy(buf, body, body_len);
3604 buf[body_len] = '\0';
3605 do_define_macro(state, ident, buf, argc, args);
3608 static void register_builtin_macro(struct compile_state *state,
3609 const char *name, const char *value)
3611 struct hash_entry *ident;
3613 if (value[0] == '(') {
3614 internal_error(state, 0, "Builtin macros with arguments not supported");
3616 ident = lookup(state, name, strlen(name));
3617 define_macro(state, ident, value, strlen(value), -1, 0);
3620 static void register_builtin_macros(struct compile_state *state)
3622 char buf[30];
3623 char scratch[30];
3624 time_t now;
3625 struct tm *tm;
3626 now = time(NULL);
3627 tm = localtime(&now);
3629 register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3630 register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3631 register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3632 register_builtin_macro(state, "__LINE__", "54321");
3634 strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3635 sprintf(buf, "\"%s\"", scratch);
3636 register_builtin_macro(state, "__DATE__", buf);
3638 strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3639 sprintf(buf, "\"%s\"", scratch);
3640 register_builtin_macro(state, "__TIME__", buf);
3642 /* I can't be a conforming implementation of C :( */
3643 register_builtin_macro(state, "__STDC__", "0");
3644 /* In particular I don't conform to C99 */
3645 register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3649 static void process_cmdline_macros(struct compile_state *state)
3651 const char **macro, *name;
3652 struct hash_entry *ident;
3653 for(macro = state->compiler->defines; (name = *macro); macro++) {
3654 const char *body;
3655 size_t name_len;
3657 name_len = strlen(name);
3658 body = strchr(name, '=');
3659 if (!body) {
3660 body = "\0";
3661 } else {
3662 name_len = body - name;
3663 body++;
3665 ident = lookup(state, name, name_len);
3666 define_macro(state, ident, body, strlen(body), -1, 0);
3668 for(macro = state->compiler->undefs; (name = *macro); macro++) {
3669 ident = lookup(state, name, strlen(name));
3670 undef_macro(state, ident);
3674 static int spacep(int c)
3676 int ret = 0;
3677 switch(c) {
3678 case ' ':
3679 case '\t':
3680 case '\f':
3681 case '\v':
3682 case '\r':
3683 ret = 1;
3684 break;
3686 return ret;
3689 static int digitp(int c)
3691 int ret = 0;
3692 switch(c) {
3693 case '0': case '1': case '2': case '3': case '4':
3694 case '5': case '6': case '7': case '8': case '9':
3695 ret = 1;
3696 break;
3698 return ret;
3700 static int digval(int c)
3702 int val = -1;
3703 if ((c >= '0') && (c <= '9')) {
3704 val = c - '0';
3706 return val;
3709 static int hexdigitp(int c)
3711 int ret = 0;
3712 switch(c) {
3713 case '0': case '1': case '2': case '3': case '4':
3714 case '5': case '6': case '7': case '8': case '9':
3715 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3716 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3717 ret = 1;
3718 break;
3720 return ret;
3722 static int hexdigval(int c)
3724 int val = -1;
3725 if ((c >= '0') && (c <= '9')) {
3726 val = c - '0';
3728 else if ((c >= 'A') && (c <= 'F')) {
3729 val = 10 + (c - 'A');
3731 else if ((c >= 'a') && (c <= 'f')) {
3732 val = 10 + (c - 'a');
3734 return val;
3737 static int octdigitp(int c)
3739 int ret = 0;
3740 switch(c) {
3741 case '0': case '1': case '2': case '3':
3742 case '4': case '5': case '6': case '7':
3743 ret = 1;
3744 break;
3746 return ret;
3748 static int octdigval(int c)
3750 int val = -1;
3751 if ((c >= '0') && (c <= '7')) {
3752 val = c - '0';
3754 return val;
3757 static int letterp(int c)
3759 int ret = 0;
3760 switch(c) {
3761 case 'a': case 'b': case 'c': case 'd': case 'e':
3762 case 'f': case 'g': case 'h': case 'i': case 'j':
3763 case 'k': case 'l': case 'm': case 'n': case 'o':
3764 case 'p': case 'q': case 'r': case 's': case 't':
3765 case 'u': case 'v': case 'w': case 'x': case 'y':
3766 case 'z':
3767 case 'A': case 'B': case 'C': case 'D': case 'E':
3768 case 'F': case 'G': case 'H': case 'I': case 'J':
3769 case 'K': case 'L': case 'M': case 'N': case 'O':
3770 case 'P': case 'Q': case 'R': case 'S': case 'T':
3771 case 'U': case 'V': case 'W': case 'X': case 'Y':
3772 case 'Z':
3773 case '_':
3774 ret = 1;
3775 break;
3777 return ret;
3780 static const char *identifier(const char *str, const char *end)
3782 if (letterp(*str)) {
3783 for(; str < end; str++) {
3784 int c;
3785 c = *str;
3786 if (!letterp(c) && !digitp(c)) {
3787 break;
3791 return str;
3794 static int char_value(struct compile_state *state,
3795 const signed char **strp, const signed char *end)
3797 const signed char *str;
3798 int c;
3799 str = *strp;
3800 c = *str++;
3801 if ((c == '\\') && (str < end)) {
3802 switch(*str) {
3803 case 'n': c = '\n'; str++; break;
3804 case 't': c = '\t'; str++; break;
3805 case 'v': c = '\v'; str++; break;
3806 case 'b': c = '\b'; str++; break;
3807 case 'r': c = '\r'; str++; break;
3808 case 'f': c = '\f'; str++; break;
3809 case 'a': c = '\a'; str++; break;
3810 case '\\': c = '\\'; str++; break;
3811 case '?': c = '?'; str++; break;
3812 case '\'': c = '\''; str++; break;
3813 case '"': c = '"'; str++; break;
3814 case 'x':
3815 c = 0;
3816 str++;
3817 while((str < end) && hexdigitp(*str)) {
3818 c <<= 4;
3819 c += hexdigval(*str);
3820 str++;
3822 break;
3823 case '0': case '1': case '2': case '3':
3824 case '4': case '5': case '6': case '7':
3825 c = 0;
3826 while((str < end) && octdigitp(*str)) {
3827 c <<= 3;
3828 c += octdigval(*str);
3829 str++;
3831 break;
3832 default:
3833 error(state, 0, "Invalid character constant");
3834 break;
3837 *strp = str;
3838 return c;
3841 static const char *next_char(struct file_state *file, const char *pos, int index)
3843 const char *end = file->buf + file->size;
3844 while(pos < end) {
3845 /* Lookup the character */
3846 int size = 1;
3847 int c = *pos;
3848 /* Is this a trigraph? */
3849 if (file->trigraphs &&
3850 (c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
3852 switch(pos[2]) {
3853 case '=': c = '#'; break;
3854 case '/': c = '\\'; break;
3855 case '\'': c = '^'; break;
3856 case '(': c = '['; break;
3857 case ')': c = ']'; break;
3858 case '!': c = '!'; break;
3859 case '<': c = '{'; break;
3860 case '>': c = '}'; break;
3861 case '-': c = '~'; break;
3863 if (c != '?') {
3864 size = 3;
3867 /* Is this an escaped newline? */
3868 if (file->join_lines &&
3869 (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3871 int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3872 /* At the start of a line just eat it */
3873 if (pos == file->pos) {
3874 file->line++;
3875 file->report_line++;
3876 file->line_start = pos + size + 1 + cr_offset;
3878 pos += size + 1 + cr_offset;
3880 /* Do I need to ga any farther? */
3881 else if (index == 0) {
3882 break;
3884 /* Process a normal character */
3885 else {
3886 pos += size;
3887 index -= 1;
3890 return pos;
3893 static int get_char(struct file_state *file, const char *pos)
3895 const char *end = file->buf + file->size;
3896 int c;
3897 c = -1;
3898 pos = next_char(file, pos, 0);
3899 if (pos < end) {
3900 /* Lookup the character */
3901 c = *pos;
3902 /* If it is a trigraph get the trigraph value */
3903 if (file->trigraphs &&
3904 (c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
3906 switch(pos[2]) {
3907 case '=': c = '#'; break;
3908 case '/': c = '\\'; break;
3909 case '\'': c = '^'; break;
3910 case '(': c = '['; break;
3911 case ')': c = ']'; break;
3912 case '!': c = '!'; break;
3913 case '<': c = '{'; break;
3914 case '>': c = '}'; break;
3915 case '-': c = '~'; break;
3919 return c;
3922 static void eat_chars(struct file_state *file, const char *targ)
3924 const char *pos = file->pos;
3925 while(pos < targ) {
3926 /* Do we have a newline? */
3927 if (pos[0] == '\n') {
3928 file->line++;
3929 file->report_line++;
3930 file->line_start = pos + 1;
3932 pos++;
3934 file->pos = pos;
3938 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3940 size_t len;
3941 len = 0;
3942 while(src < end) {
3943 src = next_char(file, src, 1);
3944 len++;
3946 return len;
3949 static void char_strcpy(char *dest,
3950 struct file_state *file, const char *src, const char *end)
3952 while(src < end) {
3953 int c;
3954 c = get_char(file, src);
3955 src = next_char(file, src, 1);
3956 *dest++ = c;
3960 static char *char_strdup(struct file_state *file,
3961 const char *start, const char *end, const char *id)
3963 char *str;
3964 size_t str_len;
3965 str_len = char_strlen(file, start, end);
3966 str = xcmalloc(str_len + 1, id);
3967 char_strcpy(str, file, start, end);
3968 str[str_len] = '\0';
3969 return str;
3972 static const char *after_digits(struct file_state *file, const char *ptr)
3974 while(digitp(get_char(file, ptr))) {
3975 ptr = next_char(file, ptr, 1);
3977 return ptr;
3980 static const char *after_octdigits(struct file_state *file, const char *ptr)
3982 while(octdigitp(get_char(file, ptr))) {
3983 ptr = next_char(file, ptr, 1);
3985 return ptr;
3988 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3990 while(hexdigitp(get_char(file, ptr))) {
3991 ptr = next_char(file, ptr, 1);
3993 return ptr;
3996 static const char *after_alnums(struct file_state *file, const char *ptr)
3998 int c;
3999 c = get_char(file, ptr);
4000 while(letterp(c) || digitp(c)) {
4001 ptr = next_char(file, ptr, 1);
4002 c = get_char(file, ptr);
4004 return ptr;
4007 static void save_string(struct file_state *file,
4008 struct token *tk, const char *start, const char *end, const char *id)
4010 char *str;
4012 /* Create a private copy of the string */
4013 str = char_strdup(file, start, end, id);
4015 /* Store the copy in the token */
4016 tk->val.str = str;
4017 tk->str_len = strlen(str);
4020 static void raw_next_token(struct compile_state *state,
4021 struct file_state *file, struct token *tk)
4023 const char *token;
4024 int c, c1, c2, c3;
4025 const char *tokp;
4026 int eat;
4027 int tok;
4029 tk->str_len = 0;
4030 tk->ident = 0;
4031 token = tokp = next_char(file, file->pos, 0);
4032 tok = TOK_UNKNOWN;
4033 c = get_char(file, tokp);
4034 tokp = next_char(file, tokp, 1);
4035 eat = 0;
4036 c1 = get_char(file, tokp);
4037 c2 = get_char(file, next_char(file, tokp, 1));
4038 c3 = get_char(file, next_char(file, tokp, 2));
4040 /* The end of the file */
4041 if (c == -1) {
4042 tok = TOK_EOF;
4044 /* Whitespace */
4045 else if (spacep(c)) {
4046 tok = TOK_SPACE;
4047 while (spacep(get_char(file, tokp))) {
4048 tokp = next_char(file, tokp, 1);
4051 /* EOL Comments */
4052 else if ((c == '/') && (c1 == '/')) {
4053 tok = TOK_SPACE;
4054 tokp = next_char(file, tokp, 1);
4055 while((c = get_char(file, tokp)) != -1) {
4056 /* Advance to the next character only after we verify
4057 * the current character is not a newline.
4058 * EOL is special to the preprocessor so we don't
4059 * want to loose any.
4061 if (c == '\n') {
4062 break;
4064 tokp = next_char(file, tokp, 1);
4067 /* Comments */
4068 else if ((c == '/') && (c1 == '*')) {
4069 tokp = next_char(file, tokp, 2);
4070 c = c2;
4071 while((c1 = get_char(file, tokp)) != -1) {
4072 tokp = next_char(file, tokp, 1);
4073 if ((c == '*') && (c1 == '/')) {
4074 tok = TOK_SPACE;
4075 break;
4077 c = c1;
4079 if (tok == TOK_UNKNOWN) {
4080 error(state, 0, "unterminated comment");
4083 /* string constants */
4084 else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4085 int multiline;
4087 multiline = 0;
4088 if (c == 'L') {
4089 tokp = next_char(file, tokp, 1);
4091 while((c = get_char(file, tokp)) != -1) {
4092 tokp = next_char(file, tokp, 1);
4093 if (c == '\n') {
4094 multiline = 1;
4096 else if (c == '\\') {
4097 tokp = next_char(file, tokp, 1);
4099 else if (c == '"') {
4100 tok = TOK_LIT_STRING;
4101 break;
4104 if (tok == TOK_UNKNOWN) {
4105 error(state, 0, "unterminated string constant");
4107 if (multiline) {
4108 warning(state, 0, "multiline string constant");
4111 /* Save the string value */
4112 save_string(file, tk, token, tokp, "literal string");
4114 /* character constants */
4115 else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4116 int multiline;
4118 multiline = 0;
4119 if (c == 'L') {
4120 tokp = next_char(file, tokp, 1);
4122 while((c = get_char(file, tokp)) != -1) {
4123 tokp = next_char(file, tokp, 1);
4124 if (c == '\n') {
4125 multiline = 1;
4127 else if (c == '\\') {
4128 tokp = next_char(file, tokp, 1);
4130 else if (c == '\'') {
4131 tok = TOK_LIT_CHAR;
4132 break;
4135 if (tok == TOK_UNKNOWN) {
4136 error(state, 0, "unterminated character constant");
4138 if (multiline) {
4139 warning(state, 0, "multiline character constant");
4142 /* Save the character value */
4143 save_string(file, tk, token, tokp, "literal character");
4145 /* integer and floating constants
4146 * Integer Constants
4147 * {digits}
4148 * 0[Xx]{hexdigits}
4149 * 0{octdigit}+
4151 * Floating constants
4152 * {digits}.{digits}[Ee][+-]?{digits}
4153 * {digits}.{digits}
4154 * {digits}[Ee][+-]?{digits}
4155 * .{digits}[Ee][+-]?{digits}
4156 * .{digits}
4158 else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4159 const char *next;
4160 int is_float;
4161 int cn;
4162 is_float = 0;
4163 if (c != '.') {
4164 next = after_digits(file, tokp);
4166 else {
4167 next = token;
4169 cn = get_char(file, next);
4170 if (cn == '.') {
4171 next = next_char(file, next, 1);
4172 next = after_digits(file, next);
4173 is_float = 1;
4175 cn = get_char(file, next);
4176 if ((cn == 'e') || (cn == 'E')) {
4177 const char *new;
4178 next = next_char(file, next, 1);
4179 cn = get_char(file, next);
4180 if ((cn == '+') || (cn == '-')) {
4181 next = next_char(file, next, 1);
4183 new = after_digits(file, next);
4184 is_float |= (new != next);
4185 next = new;
4187 if (is_float) {
4188 tok = TOK_LIT_FLOAT;
4189 cn = get_char(file, next);
4190 if ((cn == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4191 next = next_char(file, next, 1);
4194 if (!is_float && digitp(c)) {
4195 tok = TOK_LIT_INT;
4196 if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4197 next = next_char(file, tokp, 1);
4198 next = after_hexdigits(file, next);
4200 else if (c == '0') {
4201 next = after_octdigits(file, tokp);
4203 else {
4204 next = after_digits(file, tokp);
4206 /* crazy integer suffixes */
4207 cn = get_char(file, next);
4208 if ((cn == 'u') || (cn == 'U')) {
4209 next = next_char(file, next, 1);
4210 cn = get_char(file, next);
4211 if ((cn == 'l') || (cn == 'L')) {
4212 next = next_char(file, next, 1);
4213 cn = get_char(file, next);
4215 if ((cn == 'l') || (cn == 'L')) {
4216 next = next_char(file, next, 1);
4219 else if ((cn == 'l') || (cn == 'L')) {
4220 next = next_char(file, next, 1);
4221 cn = get_char(file, next);
4222 if ((cn == 'l') || (cn == 'L')) {
4223 next = next_char(file, next, 1);
4224 cn = get_char(file, next);
4226 if ((cn == 'u') || (cn == 'U')) {
4227 next = next_char(file, next, 1);
4231 tokp = next;
4233 /* Save the integer/floating point value */
4234 save_string(file, tk, token, tokp, "literal number");
4236 /* identifiers */
4237 else if (letterp(c)) {
4238 tok = TOK_IDENT;
4240 /* Find and save the identifier string */
4241 tokp = after_alnums(file, tokp);
4242 save_string(file, tk, token, tokp, "identifier");
4244 /* Look up to see which identifier it is */
4245 tk->ident = lookup(state, tk->val.str, tk->str_len);
4247 /* Free the identifier string */
4248 tk->str_len = 0;
4249 xfree(tk->val.str);
4251 /* See if this identifier can be macro expanded */
4252 tk->val.notmacro = 0;
4253 c = get_char(file, tokp);
4254 if (c == '$') {
4255 tokp = next_char(file, tokp, 1);
4256 tk->val.notmacro = 1;
4259 /* C99 alternate macro characters */
4260 else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) {
4261 eat += 3;
4262 tok = TOK_CONCATENATE;
4264 else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4265 else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4266 else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4267 else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4268 else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4269 else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4270 else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4271 else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4272 else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4273 else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4274 else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4275 else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4276 else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4277 else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4278 else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4279 else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4280 else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4281 else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4282 else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4283 else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4284 else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4285 else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4286 else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4287 else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4288 else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4289 else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4290 else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4291 else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4292 else if (c == ';') { tok = TOK_SEMI; }
4293 else if (c == '{') { tok = TOK_LBRACE; }
4294 else if (c == '}') { tok = TOK_RBRACE; }
4295 else if (c == ',') { tok = TOK_COMMA; }
4296 else if (c == '=') { tok = TOK_EQ; }
4297 else if (c == ':') { tok = TOK_COLON; }
4298 else if (c == '[') { tok = TOK_LBRACKET; }
4299 else if (c == ']') { tok = TOK_RBRACKET; }
4300 else if (c == '(') { tok = TOK_LPAREN; }
4301 else if (c == ')') { tok = TOK_RPAREN; }
4302 else if (c == '*') { tok = TOK_STAR; }
4303 else if (c == '>') { tok = TOK_MORE; }
4304 else if (c == '<') { tok = TOK_LESS; }
4305 else if (c == '?') { tok = TOK_QUEST; }
4306 else if (c == '|') { tok = TOK_OR; }
4307 else if (c == '&') { tok = TOK_AND; }
4308 else if (c == '^') { tok = TOK_XOR; }
4309 else if (c == '+') { tok = TOK_PLUS; }
4310 else if (c == '-') { tok = TOK_MINUS; }
4311 else if (c == '/') { tok = TOK_DIV; }
4312 else if (c == '%') { tok = TOK_MOD; }
4313 else if (c == '!') { tok = TOK_BANG; }
4314 else if (c == '.') { tok = TOK_DOT; }
4315 else if (c == '~') { tok = TOK_TILDE; }
4316 else if (c == '#') { tok = TOK_MACRO; }
4317 else if (c == '\n') { tok = TOK_EOL; }
4319 tokp = next_char(file, tokp, eat);
4320 eat_chars(file, tokp);
4321 tk->tok = tok;
4322 tk->pos = token;
4325 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4327 if (tk->tok != tok) {
4328 const char *name1, *name2;
4329 name1 = tokens[tk->tok];
4330 name2 = "";
4331 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4332 name2 = tk->ident->name;
4334 error(state, 0, "\tfound %s %s expected %s",
4335 name1, name2, tokens[tok]);
4339 struct macro_arg_value {
4340 struct hash_entry *ident;
4341 char *value;
4342 size_t len;
4344 static struct macro_arg_value *read_macro_args(
4345 struct compile_state *state, struct macro *macro,
4346 struct file_state *file, struct token *tk)
4348 struct macro_arg_value *argv;
4349 struct macro_arg *arg;
4350 int paren_depth;
4351 int i;
4353 if (macro->argc == 0) {
4354 do {
4355 raw_next_token(state, file, tk);
4356 } while(tk->tok == TOK_SPACE);
4357 return NULL;
4359 argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4360 for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4361 argv[i].value = 0;
4362 argv[i].len = 0;
4363 argv[i].ident = arg->ident;
4365 paren_depth = 0;
4366 i = 0;
4368 for(;;) {
4369 const char *start;
4370 size_t len;
4371 start = file->pos;
4372 raw_next_token(state, file, tk);
4374 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4375 (argv[i].ident != state->i___VA_ARGS__))
4377 i++;
4378 if (i >= macro->argc) {
4379 error(state, 0, "too many args to %s\n",
4380 macro->ident->name);
4382 continue;
4385 if (tk->tok == TOK_LPAREN) {
4386 paren_depth++;
4389 if (tk->tok == TOK_RPAREN) {
4390 if (paren_depth == 0) {
4391 break;
4393 paren_depth--;
4395 if (tk->tok == TOK_EOF) {
4396 error(state, 0, "End of file encountered while parsing macro arguments");
4399 len = char_strlen(file, start, file->pos);
4400 argv[i].value = xrealloc(
4401 argv[i].value, argv[i].len + len, "macro args");
4402 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4403 argv[i].len += len;
4405 if (i != macro->argc -1) {
4406 error(state, 0, "missing %s arg %d\n",
4407 macro->ident->name, i +2);
4409 return argv;
4413 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4415 int i;
4416 for(i = 0; i < macro->argc; i++) {
4417 xfree(argv[i].value);
4419 xfree(argv);
4422 struct macro_buf {
4423 char *str;
4424 size_t len, pos;
4427 static void grow_macro_buf(struct compile_state *state,
4428 const char *id, struct macro_buf *buf,
4429 size_t grow)
4431 if ((buf->pos + grow) >= buf->len) {
4432 buf->str = xrealloc(buf->str, buf->len + grow, id);
4433 buf->len += grow;
4437 static void append_macro_text(struct compile_state *state,
4438 const char *id, struct macro_buf *buf,
4439 const char *fstart, size_t flen)
4441 grow_macro_buf(state, id, buf, flen);
4442 memcpy(buf->str + buf->pos, fstart, flen);
4443 #if 0
4444 fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4445 buf->pos, buf->pos, buf->str,
4446 flen, flen, buf->str + buf->pos);
4447 #endif
4448 buf->pos += flen;
4452 static void append_macro_chars(struct compile_state *state,
4453 const char *id, struct macro_buf *buf,
4454 struct file_state *file, const char *start, const char *end)
4456 size_t flen;
4457 flen = char_strlen(file, start, end);
4458 grow_macro_buf(state, id, buf, flen);
4459 char_strcpy(buf->str + buf->pos, file, start, end);
4460 #if 0
4461 fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4462 buf->pos, buf->pos, buf->str,
4463 flen, flen, buf->str + buf->pos);
4464 #endif
4465 buf->pos += flen;
4468 static int compile_macro(struct compile_state *state,
4469 struct file_state **filep, struct token *tk);
4471 static void macro_expand_args(struct compile_state *state,
4472 struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4474 int i;
4476 for(i = 0; i < macro->argc; i++) {
4477 struct file_state fmacro, *file;
4478 struct macro_buf buf;
4480 fmacro.prev = 0;
4481 fmacro.basename = argv[i].ident->name;
4482 fmacro.dirname = "";
4483 fmacro.buf = (char *)argv[i].value;
4484 fmacro.size = argv[i].len;
4485 fmacro.pos = fmacro.buf;
4486 fmacro.line = 1;
4487 fmacro.line_start = fmacro.buf;
4488 fmacro.report_line = 1;
4489 fmacro.report_name = fmacro.basename;
4490 fmacro.report_dir = fmacro.dirname;
4491 fmacro.macro = 1;
4492 fmacro.trigraphs = 0;
4493 fmacro.join_lines = 0;
4495 buf.len = argv[i].len;
4496 buf.str = xmalloc(buf.len, argv[i].ident->name);
4497 buf.pos = 0;
4499 file = &fmacro;
4500 for(;;) {
4501 raw_next_token(state, file, tk);
4503 /* If we have recursed into another macro body
4504 * get out of it.
4506 if (tk->tok == TOK_EOF) {
4507 struct file_state *old;
4508 old = file;
4509 file = file->prev;
4510 if (!file) {
4511 break;
4513 /* old->basename is used keep it */
4514 xfree(old->dirname);
4515 xfree(old->buf);
4516 xfree(old);
4517 continue;
4519 else if (tk->ident && tk->ident->sym_define) {
4520 if (compile_macro(state, &file, tk)) {
4521 continue;
4525 append_macro_chars(state, macro->ident->name, &buf,
4526 file, tk->pos, file->pos);
4529 xfree(argv[i].value);
4530 argv[i].value = buf.str;
4531 argv[i].len = buf.pos;
4533 return;
4536 static void expand_macro(struct compile_state *state,
4537 struct macro *macro, struct macro_buf *buf,
4538 struct macro_arg_value *argv, struct token *tk)
4540 struct file_state fmacro;
4541 const char space[] = " ";
4542 const char *fstart;
4543 size_t flen;
4544 int i, j;
4546 /* Place the macro body in a dummy file */
4547 fmacro.prev = 0;
4548 fmacro.basename = macro->ident->name;
4549 fmacro.dirname = "";
4550 fmacro.buf = macro->buf;
4551 fmacro.size = macro->buf_len;
4552 fmacro.pos = fmacro.buf;
4553 fmacro.line = 1;
4554 fmacro.line_start = fmacro.buf;
4555 fmacro.report_line = 1;
4556 fmacro.report_name = fmacro.basename;
4557 fmacro.report_dir = fmacro.dirname;
4558 fmacro.macro = 1;
4559 fmacro.trigraphs = 0;
4560 fmacro.join_lines = 0;
4562 /* Allocate a buffer to hold the macro expansion */
4563 buf->len = macro->buf_len + 3;
4564 buf->str = xmalloc(buf->len, macro->ident->name);
4565 buf->pos = 0;
4567 fstart = fmacro.pos;
4568 raw_next_token(state, &fmacro, tk);
4569 while(tk->tok != TOK_EOF) {
4570 flen = fmacro.pos - fstart;
4571 switch(tk->tok) {
4572 case TOK_IDENT:
4573 for(i = 0; i < macro->argc; i++) {
4574 if (argv[i].ident == tk->ident) {
4575 break;
4578 if (i >= macro->argc) {
4579 break;
4581 /* Substitute macro parameter */
4582 fstart = argv[i].value;
4583 flen = argv[i].len;
4584 break;
4585 case TOK_MACRO:
4586 if (macro->argc < 0) {
4587 break;
4589 do {
4590 raw_next_token(state, &fmacro, tk);
4591 } while(tk->tok == TOK_SPACE);
4592 check_tok(state, tk, TOK_IDENT);
4593 for(i = 0; i < macro->argc; i++) {
4594 if (argv[i].ident == tk->ident) {
4595 break;
4598 if (i >= macro->argc) {
4599 error(state, 0, "parameter `%s' not found",
4600 tk->ident->name);
4602 /* Stringize token */
4603 append_macro_text(state, macro->ident->name, buf, "\"", 1);
4604 for(j = 0; j < argv[i].len; j++) {
4605 char *str = argv[i].value + j;
4606 size_t len = 1;
4607 if (*str == '\\') {
4608 str = "\\";
4609 len = 2;
4611 else if (*str == '"') {
4612 str = "\\\"";
4613 len = 2;
4615 append_macro_text(state, macro->ident->name, buf, str, len);
4617 append_macro_text(state, macro->ident->name, buf, "\"", 1);
4618 fstart = 0;
4619 flen = 0;
4620 break;
4621 case TOK_CONCATENATE:
4622 /* Concatenate tokens */
4623 /* Delete the previous whitespace token */
4624 if (buf->str[buf->pos - 1] == ' ') {
4625 buf->pos -= 1;
4627 /* Skip the next sequence of whitspace tokens */
4628 do {
4629 fstart = fmacro.pos;
4630 raw_next_token(state, &fmacro, tk);
4631 } while(tk->tok == TOK_SPACE);
4632 /* Restart at the top of the loop.
4633 * I need to process the non white space token.
4635 continue;
4636 break;
4637 case TOK_SPACE:
4638 /* Collapse multiple spaces into one */
4639 if (buf->str[buf->pos - 1] != ' ') {
4640 fstart = space;
4641 flen = 1;
4642 } else {
4643 fstart = 0;
4644 flen = 0;
4646 break;
4647 default:
4648 break;
4651 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4653 fstart = fmacro.pos;
4654 raw_next_token(state, &fmacro, tk);
4658 static void tag_macro_name(struct compile_state *state,
4659 struct macro *macro, struct macro_buf *buf,
4660 struct token *tk)
4662 /* Guard all instances of the macro name in the replacement
4663 * text from further macro expansion.
4665 struct file_state fmacro;
4666 const char *fstart;
4667 size_t flen;
4669 /* Put the old macro expansion buffer in a file */
4670 fmacro.prev = 0;
4671 fmacro.basename = macro->ident->name;
4672 fmacro.dirname = "";
4673 fmacro.buf = buf->str;
4674 fmacro.size = buf->pos;
4675 fmacro.pos = fmacro.buf;
4676 fmacro.line = 1;
4677 fmacro.line_start = fmacro.buf;
4678 fmacro.report_line = 1;
4679 fmacro.report_name = fmacro.basename;
4680 fmacro.report_dir = fmacro.dirname;
4681 fmacro.macro = 1;
4682 fmacro.trigraphs = 0;
4683 fmacro.join_lines = 0;
4685 /* Allocate a new macro expansion buffer */
4686 buf->len = macro->buf_len + 3;
4687 buf->str = xmalloc(buf->len, macro->ident->name);
4688 buf->pos = 0;
4690 fstart = fmacro.pos;
4691 raw_next_token(state, &fmacro, tk);
4692 while(tk->tok != TOK_EOF) {
4693 flen = fmacro.pos - fstart;
4694 if ((tk->tok == TOK_IDENT) &&
4695 (tk->ident == macro->ident) &&
4696 (tk->val.notmacro == 0))
4698 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4699 fstart = "$";
4700 flen = 1;
4703 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4705 fstart = fmacro.pos;
4706 raw_next_token(state, &fmacro, tk);
4708 xfree(fmacro.buf);
4711 static int compile_macro(struct compile_state *state,
4712 struct file_state **filep, struct token *tk)
4714 struct file_state *file;
4715 struct hash_entry *ident;
4716 struct macro *macro;
4717 struct macro_arg_value *argv;
4718 struct macro_buf buf;
4720 #if 0
4721 fprintf(state->errout, "macro: %s\n", tk->ident->name);
4722 #endif
4723 ident = tk->ident;
4724 macro = ident->sym_define;
4726 /* If this token comes from a macro expansion ignore it */
4727 if (tk->val.notmacro) {
4728 return 0;
4730 /* If I am a function like macro and the identifier is not followed
4731 * by a left parenthesis, do nothing.
4733 if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4734 return 0;
4737 /* Read in the macro arguments */
4738 argv = 0;
4739 if (macro->argc >= 0) {
4740 raw_next_token(state, *filep, tk);
4741 check_tok(state, tk, TOK_LPAREN);
4743 argv = read_macro_args(state, macro, *filep, tk);
4745 check_tok(state, tk, TOK_RPAREN);
4747 /* Macro expand the macro arguments */
4748 macro_expand_args(state, macro, argv, tk);
4750 buf.str = 0;
4751 buf.len = 0;
4752 buf.pos = 0;
4753 if (ident == state->i___FILE__) {
4754 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4755 buf.str = xmalloc(buf.len, ident->name);
4756 sprintf(buf.str, "\"%s\"", state->file->basename);
4757 buf.pos = strlen(buf.str);
4759 else if (ident == state->i___LINE__) {
4760 buf.len = 30;
4761 buf.str = xmalloc(buf.len, ident->name);
4762 sprintf(buf.str, "%d", state->file->line);
4763 buf.pos = strlen(buf.str);
4765 else {
4766 expand_macro(state, macro, &buf, argv, tk);
4768 /* Tag the macro name with a $ so it will no longer
4769 * be regonized as a canidate for macro expansion.
4771 tag_macro_name(state, macro, &buf, tk);
4773 #if 0
4774 fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4775 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4776 #endif
4778 free_macro_args(macro, argv);
4780 file = xmalloc(sizeof(*file), "file_state");
4781 file->prev = *filep;
4782 file->basename = xstrdup(ident->name);
4783 file->dirname = xstrdup("");
4784 file->buf = buf.str;
4785 file->size = buf.pos;
4786 file->pos = file->buf;
4787 file->line = 1;
4788 file->line_start = file->pos;
4789 file->report_line = 1;
4790 file->report_name = file->basename;
4791 file->report_dir = file->dirname;
4792 file->macro = 1;
4793 file->trigraphs = 0;
4794 file->join_lines = 0;
4795 *filep = file;
4796 return 1;
4799 static void eat_tokens(struct compile_state *state, int targ_tok)
4801 if (state->eat_depth > 0) {
4802 internal_error(state, 0, "Already eating...");
4804 state->eat_depth = state->if_depth;
4805 state->eat_targ = targ_tok;
4807 static int if_eat(struct compile_state *state)
4809 return state->eat_depth > 0;
4811 static int if_value(struct compile_state *state)
4813 int index, offset;
4814 index = state->if_depth / CHAR_BIT;
4815 offset = state->if_depth % CHAR_BIT;
4816 return !!(state->if_bytes[index] & (1 << (offset)));
4818 static void set_if_value(struct compile_state *state, int value)
4820 int index, offset;
4821 index = state->if_depth / CHAR_BIT;
4822 offset = state->if_depth % CHAR_BIT;
4824 state->if_bytes[index] &= ~(1 << offset);
4825 if (value) {
4826 state->if_bytes[index] |= (1 << offset);
4829 static void in_if(struct compile_state *state, const char *name)
4831 if (state->if_depth <= 0) {
4832 error(state, 0, "%s without #if", name);
4835 static void enter_if(struct compile_state *state)
4837 state->if_depth += 1;
4838 if (state->if_depth > MAX_PP_IF_DEPTH) {
4839 error(state, 0, "#if depth too great");
4842 static void reenter_if(struct compile_state *state, const char *name)
4844 in_if(state, name);
4845 if ((state->eat_depth == state->if_depth) &&
4846 (state->eat_targ == TOK_MELSE)) {
4847 state->eat_depth = 0;
4848 state->eat_targ = 0;
4851 static void enter_else(struct compile_state *state, const char *name)
4853 in_if(state, name);
4854 if ((state->eat_depth == state->if_depth) &&
4855 (state->eat_targ == TOK_MELSE)) {
4856 state->eat_depth = 0;
4857 state->eat_targ = 0;
4860 static void exit_if(struct compile_state *state, const char *name)
4862 in_if(state, name);
4863 if (state->eat_depth == state->if_depth) {
4864 state->eat_depth = 0;
4865 state->eat_targ = 0;
4867 state->if_depth -= 1;
4870 static void raw_token(struct compile_state *state, struct token *tk)
4872 struct file_state *file;
4873 int rescan;
4875 file = state->file;
4876 raw_next_token(state, file, tk);
4877 do {
4878 rescan = 0;
4879 file = state->file;
4880 /* Exit out of an include directive or macro call */
4881 if ((tk->tok == TOK_EOF) &&
4882 (file != state->macro_file) && file->prev)
4884 state->file = file->prev;
4885 /* file->basename is used keep it */
4886 xfree(file->dirname);
4887 xfree(file->buf);
4888 xfree(file);
4889 file = 0;
4890 raw_next_token(state, state->file, tk);
4891 rescan = 1;
4893 } while(rescan);
4896 static void pp_token(struct compile_state *state, struct token *tk)
4898 int rescan;
4900 raw_token(state, tk);
4901 do {
4902 rescan = 0;
4903 if (tk->tok == TOK_SPACE) {
4904 raw_token(state, tk);
4905 rescan = 1;
4907 else if (tk->tok == TOK_IDENT) {
4908 if (state->token_base == 0) {
4909 ident_to_keyword(state, tk);
4910 } else {
4911 ident_to_macro(state, tk);
4914 } while(rescan);
4917 static void preprocess(struct compile_state *state, struct token *tk);
4919 static void token(struct compile_state *state, struct token *tk)
4921 int rescan;
4922 pp_token(state, tk);
4923 do {
4924 rescan = 0;
4925 /* Process a macro directive */
4926 if (tk->tok == TOK_MACRO) {
4927 /* Only match preprocessor directives at the start of a line */
4928 const char *ptr;
4929 ptr = state->file->line_start;
4930 while((ptr < tk->pos)
4931 && spacep(get_char(state->file, ptr)))
4933 ptr = next_char(state->file, ptr, 1);
4935 if (ptr == tk->pos) {
4936 preprocess(state, tk);
4937 rescan = 1;
4940 /* Expand a macro call */
4941 else if (tk->ident && tk->ident->sym_define) {
4942 rescan = compile_macro(state, &state->file, tk);
4943 if (rescan) {
4944 pp_token(state, tk);
4947 /* Eat tokens disabled by the preprocessor
4948 * (Unless we are parsing a preprocessor directive
4950 else if (if_eat(state) && (state->token_base == 0)) {
4951 pp_token(state, tk);
4952 rescan = 1;
4954 /* Make certain EOL only shows up in preprocessor directives */
4955 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4956 pp_token(state, tk);
4957 rescan = 1;
4959 /* Error on unknown tokens */
4960 else if (tk->tok == TOK_UNKNOWN) {
4961 error(state, 0, "unknown token");
4963 } while(rescan);
4967 static inline struct token *get_token(struct compile_state *state, int offset)
4969 int index;
4970 index = state->token_base + offset;
4971 if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4972 internal_error(state, 0, "token array to small");
4974 return &state->token[index];
4977 static struct token *do_eat_token(struct compile_state *state, int tok)
4979 struct token *tk;
4980 int i;
4981 check_tok(state, get_token(state, 1), tok);
4983 /* Free the old token value */
4984 tk = get_token(state, 0);
4985 if (tk->str_len) {
4986 memset((void *)tk->val.str, -1, tk->str_len);
4987 xfree(tk->val.str);
4989 /* Overwrite the old token with newer tokens */
4990 for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4991 state->token[i] = state->token[i + 1];
4993 /* Clear the last token */
4994 memset(&state->token[i], 0, sizeof(state->token[i]));
4995 state->token[i].tok = -1;
4997 /* Return the token */
4998 return tk;
5001 static int raw_peek(struct compile_state *state)
5003 struct token *tk1;
5004 tk1 = get_token(state, 1);
5005 if (tk1->tok == -1) {
5006 raw_token(state, tk1);
5008 return tk1->tok;
5011 static struct token *raw_eat(struct compile_state *state, int tok)
5013 raw_peek(state);
5014 return do_eat_token(state, tok);
5017 static int pp_peek(struct compile_state *state)
5019 struct token *tk1;
5020 tk1 = get_token(state, 1);
5021 if (tk1->tok == -1) {
5022 pp_token(state, tk1);
5024 return tk1->tok;
5027 static struct token *pp_eat(struct compile_state *state, int tok)
5029 pp_peek(state);
5030 return do_eat_token(state, tok);
5033 static int peek(struct compile_state *state)
5035 struct token *tk1;
5036 tk1 = get_token(state, 1);
5037 if (tk1->tok == -1) {
5038 token(state, tk1);
5040 return tk1->tok;
5043 static int peek2(struct compile_state *state)
5045 struct token *tk1, *tk2;
5046 tk1 = get_token(state, 1);
5047 tk2 = get_token(state, 2);
5048 if (tk1->tok == -1) {
5049 token(state, tk1);
5051 if (tk2->tok == -1) {
5052 token(state, tk2);
5054 return tk2->tok;
5057 static struct token *eat(struct compile_state *state, int tok)
5059 peek(state);
5060 return do_eat_token(state, tok);
5063 static void compile_file(struct compile_state *state, const char *filename, int local)
5065 char cwd[MAX_CWD_SIZE];
5066 const char *subdir, *base;
5067 int subdir_len;
5068 struct file_state *file;
5069 char *basename;
5070 file = xmalloc(sizeof(*file), "file_state");
5072 base = strrchr(filename, '/');
5073 subdir = filename;
5074 if (base != 0) {
5075 subdir_len = base - filename;
5076 base++;
5078 else {
5079 base = filename;
5080 subdir_len = 0;
5082 basename = xmalloc(strlen(base) +1, "basename");
5083 strcpy(basename, base);
5084 file->basename = basename;
5086 if (getcwd(cwd, sizeof(cwd)) == 0) {
5087 die("cwd buffer to small");
5089 if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5090 file->dirname = xmalloc(subdir_len + 1, "dirname");
5091 memcpy(file->dirname, subdir, subdir_len);
5092 file->dirname[subdir_len] = '\0';
5094 else {
5095 const char *dir;
5096 int dirlen;
5097 const char **path;
5098 /* Find the appropriate directory... */
5099 dir = 0;
5100 if (!state->file && exists(cwd, filename)) {
5101 dir = cwd;
5103 if (local && state->file && exists(state->file->dirname, filename)) {
5104 dir = state->file->dirname;
5106 for(path = state->compiler->include_paths; !dir && *path; path++) {
5107 if (exists(*path, filename)) {
5108 dir = *path;
5111 if (!dir) {
5112 error(state, 0, "Cannot open `%s'\n", filename);
5114 dirlen = strlen(dir);
5115 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5116 memcpy(file->dirname, dir, dirlen);
5117 file->dirname[dirlen] = '/';
5118 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5119 file->dirname[dirlen + 1 + subdir_len] = '\0';
5121 file->buf = slurp_file(file->dirname, file->basename, &file->size);
5123 file->pos = file->buf;
5124 file->line_start = file->pos;
5125 file->line = 1;
5127 file->report_line = 1;
5128 file->report_name = file->basename;
5129 file->report_dir = file->dirname;
5130 file->macro = 0;
5131 file->trigraphs = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5132 file->join_lines = 1;
5134 file->prev = state->file;
5135 state->file = file;
5138 static struct triple *constant_expr(struct compile_state *state);
5139 static void integral(struct compile_state *state, struct triple *def);
5141 static int mcexpr(struct compile_state *state)
5143 struct triple *cvalue;
5144 cvalue = constant_expr(state);
5145 integral(state, cvalue);
5146 if (cvalue->op != OP_INTCONST) {
5147 error(state, 0, "integer constant expected");
5149 return cvalue->u.cval != 0;
5152 static void preprocess(struct compile_state *state, struct token *current_token)
5154 /* Doing much more with the preprocessor would require
5155 * a parser and a major restructuring.
5156 * Postpone that for later.
5158 int old_token_base;
5159 int tok;
5161 state->macro_file = state->file;
5163 old_token_base = state->token_base;
5164 state->token_base = current_token - state->token;
5166 tok = pp_peek(state);
5167 switch(tok) {
5168 case TOK_LIT_INT:
5170 struct token *tk;
5171 int override_line;
5172 tk = pp_eat(state, TOK_LIT_INT);
5173 override_line = strtoul(tk->val.str, 0, 10);
5174 /* I have a preprocessor line marker parse it */
5175 if (pp_peek(state) == TOK_LIT_STRING) {
5176 const char *token, *base;
5177 char *name, *dir;
5178 int name_len, dir_len;
5179 tk = pp_eat(state, TOK_LIT_STRING);
5180 name = xmalloc(tk->str_len, "report_name");
5181 token = tk->val.str + 1;
5182 base = strrchr(token, '/');
5183 name_len = tk->str_len -2;
5184 if (base != 0) {
5185 dir_len = base - token;
5186 base++;
5187 name_len -= base - token;
5188 } else {
5189 dir_len = 0;
5190 base = token;
5192 memcpy(name, base, name_len);
5193 name[name_len] = '\0';
5194 dir = xmalloc(dir_len + 1, "report_dir");
5195 memcpy(dir, token, dir_len);
5196 dir[dir_len] = '\0';
5197 state->file->report_line = override_line - 1;
5198 state->file->report_name = name;
5199 state->file->report_dir = dir;
5200 state->file->macro = 0;
5202 break;
5204 case TOK_MLINE:
5206 struct token *tk;
5207 pp_eat(state, TOK_MLINE);
5208 tk = eat(state, TOK_LIT_INT);
5209 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5210 if (pp_peek(state) == TOK_LIT_STRING) {
5211 const char *token, *base;
5212 char *name, *dir;
5213 int name_len, dir_len;
5214 tk = pp_eat(state, TOK_LIT_STRING);
5215 name = xmalloc(tk->str_len, "report_name");
5216 token = tk->val.str + 1;
5217 base = strrchr(token, '/');
5218 name_len = tk->str_len - 2;
5219 if (base != 0) {
5220 dir_len = base - token;
5221 base++;
5222 name_len -= base - token;
5223 } else {
5224 dir_len = 0;
5225 base = token;
5227 memcpy(name, base, name_len);
5228 name[name_len] = '\0';
5229 dir = xmalloc(dir_len + 1, "report_dir");
5230 memcpy(dir, token, dir_len);
5231 dir[dir_len] = '\0';
5232 state->file->report_name = name;
5233 state->file->report_dir = dir;
5234 state->file->macro = 0;
5236 break;
5238 case TOK_MUNDEF:
5240 struct hash_entry *ident;
5241 pp_eat(state, TOK_MUNDEF);
5242 if (if_eat(state)) /* quit early when #if'd out */
5243 break;
5245 ident = pp_eat(state, TOK_MIDENT)->ident;
5247 undef_macro(state, ident);
5248 break;
5250 case TOK_MPRAGMA:
5251 pp_eat(state, TOK_MPRAGMA);
5252 if (if_eat(state)) /* quit early when #if'd out */
5253 break;
5254 warning(state, 0, "Ignoring pragma");
5255 break;
5256 case TOK_MELIF:
5257 pp_eat(state, TOK_MELIF);
5258 reenter_if(state, "#elif");
5259 if (if_eat(state)) /* quit early when #if'd out */
5260 break;
5261 /* If the #if was taken the #elif just disables the following code */
5262 if (if_value(state)) {
5263 eat_tokens(state, TOK_MENDIF);
5265 /* If the previous #if was not taken see if the #elif enables the
5266 * trailing code.
5268 else {
5269 set_if_value(state, mcexpr(state));
5270 if (!if_value(state)) {
5271 eat_tokens(state, TOK_MELSE);
5274 break;
5275 case TOK_MIF:
5276 pp_eat(state, TOK_MIF);
5277 enter_if(state);
5278 if (if_eat(state)) /* quit early when #if'd out */
5279 break;
5280 set_if_value(state, mcexpr(state));
5281 if (!if_value(state)) {
5282 eat_tokens(state, TOK_MELSE);
5284 break;
5285 case TOK_MIFNDEF:
5287 struct hash_entry *ident;
5289 pp_eat(state, TOK_MIFNDEF);
5290 enter_if(state);
5291 if (if_eat(state)) /* quit early when #if'd out */
5292 break;
5293 ident = pp_eat(state, TOK_MIDENT)->ident;
5294 set_if_value(state, ident->sym_define == 0);
5295 if (!if_value(state)) {
5296 eat_tokens(state, TOK_MELSE);
5298 break;
5300 case TOK_MIFDEF:
5302 struct hash_entry *ident;
5303 pp_eat(state, TOK_MIFDEF);
5304 enter_if(state);
5305 if (if_eat(state)) /* quit early when #if'd out */
5306 break;
5307 ident = pp_eat(state, TOK_MIDENT)->ident;
5308 set_if_value(state, ident->sym_define != 0);
5309 if (!if_value(state)) {
5310 eat_tokens(state, TOK_MELSE);
5312 break;
5314 case TOK_MELSE:
5315 pp_eat(state, TOK_MELSE);
5316 enter_else(state, "#else");
5317 if (!if_eat(state) && if_value(state)) {
5318 eat_tokens(state, TOK_MENDIF);
5320 break;
5321 case TOK_MENDIF:
5322 pp_eat(state, TOK_MENDIF);
5323 exit_if(state, "#endif");
5324 break;
5325 case TOK_MDEFINE:
5327 struct hash_entry *ident;
5328 struct macro_arg *args, **larg;
5329 const char *mstart, *mend;
5330 int argc;
5332 pp_eat(state, TOK_MDEFINE);
5333 if (if_eat(state)) /* quit early when #if'd out */
5334 break;
5335 ident = pp_eat(state, TOK_MIDENT)->ident;
5336 argc = -1;
5337 args = 0;
5338 larg = &args;
5340 /* Parse macro parameters */
5341 if (raw_peek(state) == TOK_LPAREN) {
5342 raw_eat(state, TOK_LPAREN);
5343 argc += 1;
5345 for(;;) {
5346 struct macro_arg *narg, *arg;
5347 struct hash_entry *aident;
5348 int tok;
5350 tok = pp_peek(state);
5351 if (!args && (tok == TOK_RPAREN)) {
5352 break;
5354 else if (tok == TOK_DOTS) {
5355 pp_eat(state, TOK_DOTS);
5356 aident = state->i___VA_ARGS__;
5358 else {
5359 aident = pp_eat(state, TOK_MIDENT)->ident;
5362 narg = xcmalloc(sizeof(*arg), "macro arg");
5363 narg->ident = aident;
5365 /* Verify I don't have a duplicate identifier */
5366 for(arg = args; arg; arg = arg->next) {
5367 if (arg->ident == narg->ident) {
5368 error(state, 0, "Duplicate macro arg `%s'",
5369 narg->ident->name);
5372 /* Add the new argument to the end of the list */
5373 *larg = narg;
5374 larg = &narg->next;
5375 argc += 1;
5377 if ((aident == state->i___VA_ARGS__) ||
5378 (pp_peek(state) != TOK_COMMA)) {
5379 break;
5381 pp_eat(state, TOK_COMMA);
5383 pp_eat(state, TOK_RPAREN);
5385 /* Remove leading whitespace */
5386 while(raw_peek(state) == TOK_SPACE) {
5387 raw_eat(state, TOK_SPACE);
5390 /* Remember the start of the macro body */
5391 tok = raw_peek(state);
5392 mend = mstart = get_token(state, 1)->pos;
5394 /* Find the end of the macro */
5395 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5396 raw_eat(state, tok);
5397 /* Remember the end of the last non space token */
5398 raw_peek(state);
5399 if (tok != TOK_SPACE) {
5400 mend = get_token(state, 1)->pos;
5404 /* Now that I have found the body defined the token */
5405 do_define_macro(state, ident,
5406 char_strdup(state->file, mstart, mend, "macro buf"),
5407 argc, args);
5408 break;
5410 case TOK_MERROR:
5412 const char *start, *end;
5413 int len;
5415 pp_eat(state, TOK_MERROR);
5416 /* Find the start of the line */
5417 raw_peek(state);
5418 start = get_token(state, 1)->pos;
5420 /* Find the end of the line */
5421 while((tok = raw_peek(state)) != TOK_EOL) {
5422 raw_eat(state, tok);
5424 end = get_token(state, 1)->pos;
5425 len = end - start;
5426 if (!if_eat(state)) {
5427 error(state, 0, "%*.*s", len, len, start);
5429 break;
5431 case TOK_MWARNING:
5433 const char *start, *end;
5434 int len;
5436 pp_eat(state, TOK_MWARNING);
5438 /* Find the start of the line */
5439 raw_peek(state);
5440 start = get_token(state, 1)->pos;
5442 /* Find the end of the line */
5443 while((tok = raw_peek(state)) != TOK_EOL) {
5444 raw_eat(state, tok);
5446 end = get_token(state, 1)->pos;
5447 len = end - start;
5448 if (!if_eat(state)) {
5449 warning(state, 0, "%*.*s", len, len, start);
5451 break;
5453 case TOK_MINCLUDE:
5455 char *name;
5456 int local;
5457 local = 0;
5458 name = 0;
5460 pp_eat(state, TOK_MINCLUDE);
5461 if (if_eat(state)) {
5462 /* Find the end of the line */
5463 while((tok = raw_peek(state)) != TOK_EOL) {
5464 raw_eat(state, tok);
5466 break;
5468 tok = peek(state);
5469 if (tok == TOK_LIT_STRING) {
5470 struct token *tk;
5471 const char *token;
5472 int name_len;
5473 tk = eat(state, TOK_LIT_STRING);
5474 name = xmalloc(tk->str_len, "include");
5475 token = tk->val.str +1;
5476 name_len = tk->str_len -2;
5477 if (*token == '"') {
5478 token++;
5479 name_len--;
5481 memcpy(name, token, name_len);
5482 name[name_len] = '\0';
5483 local = 1;
5485 else if (tok == TOK_LESS) {
5486 struct macro_buf buf;
5487 eat(state, TOK_LESS);
5489 buf.len = 40;
5490 buf.str = xmalloc(buf.len, "include");
5491 buf.pos = 0;
5493 tok = peek(state);
5494 while((tok != TOK_MORE) &&
5495 (tok != TOK_EOL) && (tok != TOK_EOF))
5497 struct token *tk;
5498 tk = eat(state, tok);
5499 append_macro_chars(state, "include", &buf,
5500 state->file, tk->pos, state->file->pos);
5501 tok = peek(state);
5503 append_macro_text(state, "include", &buf, "\0", 1);
5504 if (peek(state) != TOK_MORE) {
5505 error(state, 0, "Unterminated include directive");
5507 eat(state, TOK_MORE);
5508 local = 0;
5509 name = buf.str;
5511 else {
5512 error(state, 0, "Invalid include directive");
5514 /* Error if there are any tokens after the include */
5515 if (pp_peek(state) != TOK_EOL) {
5516 error(state, 0, "garbage after include directive");
5518 if (!if_eat(state)) {
5519 compile_file(state, name, local);
5521 xfree(name);
5522 break;
5524 case TOK_EOL:
5525 /* Ignore # without a follwing ident */
5526 break;
5527 default:
5529 const char *name1, *name2;
5530 name1 = tokens[tok];
5531 name2 = "";
5532 if (tok == TOK_MIDENT) {
5533 name2 = get_token(state, 1)->ident->name;
5535 error(state, 0, "Invalid preprocessor directive: %s %s",
5536 name1, name2);
5537 break;
5540 /* Consume the rest of the macro line */
5541 do {
5542 tok = pp_peek(state);
5543 pp_eat(state, tok);
5544 } while((tok != TOK_EOF) && (tok != TOK_EOL));
5545 state->token_base = old_token_base;
5546 state->macro_file = NULL;
5547 return;
5550 /* Type helper functions */
5552 static struct type *new_type(
5553 unsigned int type, struct type *left, struct type *right)
5555 struct type *result;
5556 result = xmalloc(sizeof(*result), "type");
5557 result->type = type;
5558 result->left = left;
5559 result->right = right;
5560 result->field_ident = 0;
5561 result->type_ident = 0;
5562 result->elements = 0;
5563 return result;
5566 static struct type *clone_type(unsigned int specifiers, struct type *old)
5568 struct type *result;
5569 result = xmalloc(sizeof(*result), "type");
5570 memcpy(result, old, sizeof(*result));
5571 result->type &= TYPE_MASK;
5572 result->type |= specifiers;
5573 return result;
5576 static struct type *dup_type(struct compile_state *state, struct type *orig)
5578 struct type *new;
5579 new = xcmalloc(sizeof(*new), "type");
5580 new->type = orig->type;
5581 new->field_ident = orig->field_ident;
5582 new->type_ident = orig->type_ident;
5583 new->elements = orig->elements;
5584 if (orig->left) {
5585 new->left = dup_type(state, orig->left);
5587 if (orig->right) {
5588 new->right = dup_type(state, orig->right);
5590 return new;
5594 static struct type *invalid_type(struct compile_state *state, struct type *type)
5596 struct type *invalid, *member;
5597 invalid = 0;
5598 if (!type) {
5599 internal_error(state, 0, "type missing?");
5601 switch(type->type & TYPE_MASK) {
5602 case TYPE_VOID:
5603 case TYPE_CHAR: case TYPE_UCHAR:
5604 case TYPE_SHORT: case TYPE_USHORT:
5605 case TYPE_INT: case TYPE_UINT:
5606 case TYPE_LONG: case TYPE_ULONG:
5607 case TYPE_LLONG: case TYPE_ULLONG:
5608 case TYPE_POINTER:
5609 case TYPE_ENUM:
5610 break;
5611 case TYPE_BITFIELD:
5612 invalid = invalid_type(state, type->left);
5613 break;
5614 case TYPE_ARRAY:
5615 invalid = invalid_type(state, type->left);
5616 break;
5617 case TYPE_STRUCT:
5618 case TYPE_TUPLE:
5619 member = type->left;
5620 while(member && (invalid == 0) &&
5621 ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5622 invalid = invalid_type(state, member->left);
5623 member = member->right;
5625 if (!invalid) {
5626 invalid = invalid_type(state, member);
5628 break;
5629 case TYPE_UNION:
5630 case TYPE_JOIN:
5631 member = type->left;
5632 while(member && (invalid == 0) &&
5633 ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5634 invalid = invalid_type(state, member->left);
5635 member = member->right;
5637 if (!invalid) {
5638 invalid = invalid_type(state, member);
5640 break;
5641 default:
5642 invalid = type;
5643 break;
5645 return invalid;
5649 static struct type void_type = { .type = TYPE_VOID };
5650 static struct type char_type = { .type = TYPE_CHAR };
5651 static struct type uchar_type = { .type = TYPE_UCHAR };
5652 #if DEBUG_ROMCC_WARNING
5653 static struct type short_type = { .type = TYPE_SHORT };
5654 #endif
5655 static struct type ushort_type = { .type = TYPE_USHORT };
5656 static struct type int_type = { .type = TYPE_INT };
5657 static struct type uint_type = { .type = TYPE_UINT };
5658 static struct type long_type = { .type = TYPE_LONG };
5659 static struct type ulong_type = { .type = TYPE_ULONG };
5660 static struct type unknown_type = { .type = TYPE_UNKNOWN };
5662 static struct type void_ptr_type = {
5663 .type = TYPE_POINTER,
5664 .left = &void_type,
5667 #if DEBUG_ROMCC_WARNING
5668 static struct type void_func_type = {
5669 .type = TYPE_FUNCTION,
5670 .left = &void_type,
5671 .right = &void_type,
5673 #endif
5675 static size_t bits_to_bytes(size_t size)
5677 return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5680 static struct triple *variable(struct compile_state *state, struct type *type)
5682 struct triple *result;
5683 if ((type->type & STOR_MASK) != STOR_PERM) {
5684 result = triple(state, OP_ADECL, type, 0, 0);
5685 generate_lhs_pieces(state, result);
5687 else {
5688 result = triple(state, OP_SDECL, type, 0, 0);
5690 return result;
5693 static void stor_of(FILE *fp, struct type *type)
5695 switch(type->type & STOR_MASK) {
5696 case STOR_AUTO:
5697 fprintf(fp, "auto ");
5698 break;
5699 case STOR_STATIC:
5700 fprintf(fp, "static ");
5701 break;
5702 case STOR_LOCAL:
5703 fprintf(fp, "local ");
5704 break;
5705 case STOR_EXTERN:
5706 fprintf(fp, "extern ");
5707 break;
5708 case STOR_REGISTER:
5709 fprintf(fp, "register ");
5710 break;
5711 case STOR_TYPEDEF:
5712 fprintf(fp, "typedef ");
5713 break;
5714 case STOR_INLINE | STOR_LOCAL:
5715 fprintf(fp, "inline ");
5716 break;
5717 case STOR_INLINE | STOR_STATIC:
5718 fprintf(fp, "static inline");
5719 break;
5720 case STOR_INLINE | STOR_EXTERN:
5721 fprintf(fp, "extern inline");
5722 break;
5723 default:
5724 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5725 break;
5728 static void qual_of(FILE *fp, struct type *type)
5730 if (type->type & QUAL_CONST) {
5731 fprintf(fp, " const");
5733 if (type->type & QUAL_VOLATILE) {
5734 fprintf(fp, " volatile");
5736 if (type->type & QUAL_RESTRICT) {
5737 fprintf(fp, " restrict");
5741 static void name_of(FILE *fp, struct type *type)
5743 unsigned int base_type;
5744 base_type = type->type & TYPE_MASK;
5745 if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5746 stor_of(fp, type);
5748 switch(base_type) {
5749 case TYPE_VOID:
5750 fprintf(fp, "void");
5751 qual_of(fp, type);
5752 break;
5753 case TYPE_CHAR:
5754 fprintf(fp, "signed char");
5755 qual_of(fp, type);
5756 break;
5757 case TYPE_UCHAR:
5758 fprintf(fp, "unsigned char");
5759 qual_of(fp, type);
5760 break;
5761 case TYPE_SHORT:
5762 fprintf(fp, "signed short");
5763 qual_of(fp, type);
5764 break;
5765 case TYPE_USHORT:
5766 fprintf(fp, "unsigned short");
5767 qual_of(fp, type);
5768 break;
5769 case TYPE_INT:
5770 fprintf(fp, "signed int");
5771 qual_of(fp, type);
5772 break;
5773 case TYPE_UINT:
5774 fprintf(fp, "unsigned int");
5775 qual_of(fp, type);
5776 break;
5777 case TYPE_LONG:
5778 fprintf(fp, "signed long");
5779 qual_of(fp, type);
5780 break;
5781 case TYPE_ULONG:
5782 fprintf(fp, "unsigned long");
5783 qual_of(fp, type);
5784 break;
5785 case TYPE_POINTER:
5786 name_of(fp, type->left);
5787 fprintf(fp, " * ");
5788 qual_of(fp, type);
5789 break;
5790 case TYPE_PRODUCT:
5791 name_of(fp, type->left);
5792 fprintf(fp, ", ");
5793 name_of(fp, type->right);
5794 break;
5795 case TYPE_OVERLAP:
5796 name_of(fp, type->left);
5797 fprintf(fp, ",| ");
5798 name_of(fp, type->right);
5799 break;
5800 case TYPE_ENUM:
5801 fprintf(fp, "enum %s",
5802 (type->type_ident)? type->type_ident->name : "");
5803 qual_of(fp, type);
5804 break;
5805 case TYPE_STRUCT:
5806 fprintf(fp, "struct %s { ",
5807 (type->type_ident)? type->type_ident->name : "");
5808 name_of(fp, type->left);
5809 fprintf(fp, " } ");
5810 qual_of(fp, type);
5811 break;
5812 case TYPE_UNION:
5813 fprintf(fp, "union %s { ",
5814 (type->type_ident)? type->type_ident->name : "");
5815 name_of(fp, type->left);
5816 fprintf(fp, " } ");
5817 qual_of(fp, type);
5818 break;
5819 case TYPE_FUNCTION:
5820 name_of(fp, type->left);
5821 fprintf(fp, " (*)(");
5822 name_of(fp, type->right);
5823 fprintf(fp, ")");
5824 break;
5825 case TYPE_ARRAY:
5826 name_of(fp, type->left);
5827 fprintf(fp, " [%ld]", (long)(type->elements));
5828 break;
5829 case TYPE_TUPLE:
5830 fprintf(fp, "tuple { ");
5831 name_of(fp, type->left);
5832 fprintf(fp, " } ");
5833 qual_of(fp, type);
5834 break;
5835 case TYPE_JOIN:
5836 fprintf(fp, "join { ");
5837 name_of(fp, type->left);
5838 fprintf(fp, " } ");
5839 qual_of(fp, type);
5840 break;
5841 case TYPE_BITFIELD:
5842 name_of(fp, type->left);
5843 fprintf(fp, " : %d ", type->elements);
5844 qual_of(fp, type);
5845 break;
5846 case TYPE_UNKNOWN:
5847 fprintf(fp, "unknown_t");
5848 break;
5849 default:
5850 fprintf(fp, "????: %x", base_type);
5851 break;
5853 if (type->field_ident && type->field_ident->name) {
5854 fprintf(fp, " .%s", type->field_ident->name);
5858 static size_t align_of(struct compile_state *state, struct type *type)
5860 size_t align;
5861 align = 0;
5862 switch(type->type & TYPE_MASK) {
5863 case TYPE_VOID:
5864 align = 1;
5865 break;
5866 case TYPE_BITFIELD:
5867 align = 1;
5868 break;
5869 case TYPE_CHAR:
5870 case TYPE_UCHAR:
5871 align = ALIGNOF_CHAR;
5872 break;
5873 case TYPE_SHORT:
5874 case TYPE_USHORT:
5875 align = ALIGNOF_SHORT;
5876 break;
5877 case TYPE_INT:
5878 case TYPE_UINT:
5879 case TYPE_ENUM:
5880 align = ALIGNOF_INT;
5881 break;
5882 case TYPE_LONG:
5883 case TYPE_ULONG:
5884 align = ALIGNOF_LONG;
5885 break;
5886 case TYPE_POINTER:
5887 align = ALIGNOF_POINTER;
5888 break;
5889 case TYPE_PRODUCT:
5890 case TYPE_OVERLAP:
5892 size_t left_align, right_align;
5893 left_align = align_of(state, type->left);
5894 right_align = align_of(state, type->right);
5895 align = (left_align >= right_align) ? left_align : right_align;
5896 break;
5898 case TYPE_ARRAY:
5899 align = align_of(state, type->left);
5900 break;
5901 case TYPE_STRUCT:
5902 case TYPE_TUPLE:
5903 case TYPE_UNION:
5904 case TYPE_JOIN:
5905 align = align_of(state, type->left);
5906 break;
5907 default:
5908 error(state, 0, "alignof not yet defined for type\n");
5909 break;
5911 return align;
5914 static size_t reg_align_of(struct compile_state *state, struct type *type)
5916 size_t align;
5917 align = 0;
5918 switch(type->type & TYPE_MASK) {
5919 case TYPE_VOID:
5920 align = 1;
5921 break;
5922 case TYPE_BITFIELD:
5923 align = 1;
5924 break;
5925 case TYPE_CHAR:
5926 case TYPE_UCHAR:
5927 align = REG_ALIGNOF_CHAR;
5928 break;
5929 case TYPE_SHORT:
5930 case TYPE_USHORT:
5931 align = REG_ALIGNOF_SHORT;
5932 break;
5933 case TYPE_INT:
5934 case TYPE_UINT:
5935 case TYPE_ENUM:
5936 align = REG_ALIGNOF_INT;
5937 break;
5938 case TYPE_LONG:
5939 case TYPE_ULONG:
5940 align = REG_ALIGNOF_LONG;
5941 break;
5942 case TYPE_POINTER:
5943 align = REG_ALIGNOF_POINTER;
5944 break;
5945 case TYPE_PRODUCT:
5946 case TYPE_OVERLAP:
5948 size_t left_align, right_align;
5949 left_align = reg_align_of(state, type->left);
5950 right_align = reg_align_of(state, type->right);
5951 align = (left_align >= right_align) ? left_align : right_align;
5952 break;
5954 case TYPE_ARRAY:
5955 align = reg_align_of(state, type->left);
5956 break;
5957 case TYPE_STRUCT:
5958 case TYPE_UNION:
5959 case TYPE_TUPLE:
5960 case TYPE_JOIN:
5961 align = reg_align_of(state, type->left);
5962 break;
5963 default:
5964 error(state, 0, "alignof not yet defined for type\n");
5965 break;
5967 return align;
5970 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5972 return bits_to_bytes(align_of(state, type));
5974 static size_t size_of(struct compile_state *state, struct type *type);
5975 static size_t reg_size_of(struct compile_state *state, struct type *type);
5977 static size_t needed_padding(struct compile_state *state,
5978 struct type *type, size_t offset)
5980 size_t padding, align;
5981 align = align_of(state, type);
5982 /* Align to the next machine word if the bitfield does completely
5983 * fit into the current word.
5985 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
5986 size_t size;
5987 size = size_of(state, type);
5988 if ((offset + type->elements)/size != offset/size) {
5989 align = size;
5992 padding = 0;
5993 if (offset % align) {
5994 padding = align - (offset % align);
5996 return padding;
5999 static size_t reg_needed_padding(struct compile_state *state,
6000 struct type *type, size_t offset)
6002 size_t padding, align;
6003 align = reg_align_of(state, type);
6004 /* Align to the next register word if the bitfield does completely
6005 * fit into the current register.
6007 if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6008 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG)))
6010 align = REG_SIZEOF_REG;
6012 padding = 0;
6013 if (offset % align) {
6014 padding = align - (offset % align);
6016 return padding;
6019 static size_t size_of(struct compile_state *state, struct type *type)
6021 size_t size;
6022 size = 0;
6023 switch(type->type & TYPE_MASK) {
6024 case TYPE_VOID:
6025 size = 0;
6026 break;
6027 case TYPE_BITFIELD:
6028 size = type->elements;
6029 break;
6030 case TYPE_CHAR:
6031 case TYPE_UCHAR:
6032 size = SIZEOF_CHAR;
6033 break;
6034 case TYPE_SHORT:
6035 case TYPE_USHORT:
6036 size = SIZEOF_SHORT;
6037 break;
6038 case TYPE_INT:
6039 case TYPE_UINT:
6040 case TYPE_ENUM:
6041 size = SIZEOF_INT;
6042 break;
6043 case TYPE_LONG:
6044 case TYPE_ULONG:
6045 size = SIZEOF_LONG;
6046 break;
6047 case TYPE_POINTER:
6048 size = SIZEOF_POINTER;
6049 break;
6050 case TYPE_PRODUCT:
6052 size_t pad;
6053 size = 0;
6054 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6055 pad = needed_padding(state, type->left, size);
6056 size = size + pad + size_of(state, type->left);
6057 type = type->right;
6059 pad = needed_padding(state, type, size);
6060 size = size + pad + size_of(state, type);
6061 break;
6063 case TYPE_OVERLAP:
6065 size_t size_left, size_right;
6066 size_left = size_of(state, type->left);
6067 size_right = size_of(state, type->right);
6068 size = (size_left >= size_right)? size_left : size_right;
6069 break;
6071 case TYPE_ARRAY:
6072 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6073 internal_error(state, 0, "Invalid array type");
6074 } else {
6075 size = size_of(state, type->left) * type->elements;
6077 break;
6078 case TYPE_STRUCT:
6079 case TYPE_TUPLE:
6081 size_t pad;
6082 size = size_of(state, type->left);
6083 /* Pad structures so their size is a multiples of their alignment */
6084 pad = needed_padding(state, type, size);
6085 size = size + pad;
6086 break;
6088 case TYPE_UNION:
6089 case TYPE_JOIN:
6091 size_t pad;
6092 size = size_of(state, type->left);
6093 /* Pad unions so their size is a multiple of their alignment */
6094 pad = needed_padding(state, type, size);
6095 size = size + pad;
6096 break;
6098 default:
6099 internal_error(state, 0, "sizeof not yet defined for type");
6100 break;
6102 return size;
6105 static size_t reg_size_of(struct compile_state *state, struct type *type)
6107 size_t size;
6108 size = 0;
6109 switch(type->type & TYPE_MASK) {
6110 case TYPE_VOID:
6111 size = 0;
6112 break;
6113 case TYPE_BITFIELD:
6114 size = type->elements;
6115 break;
6116 case TYPE_CHAR:
6117 case TYPE_UCHAR:
6118 size = REG_SIZEOF_CHAR;
6119 break;
6120 case TYPE_SHORT:
6121 case TYPE_USHORT:
6122 size = REG_SIZEOF_SHORT;
6123 break;
6124 case TYPE_INT:
6125 case TYPE_UINT:
6126 case TYPE_ENUM:
6127 size = REG_SIZEOF_INT;
6128 break;
6129 case TYPE_LONG:
6130 case TYPE_ULONG:
6131 size = REG_SIZEOF_LONG;
6132 break;
6133 case TYPE_POINTER:
6134 size = REG_SIZEOF_POINTER;
6135 break;
6136 case TYPE_PRODUCT:
6138 size_t pad;
6139 size = 0;
6140 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6141 pad = reg_needed_padding(state, type->left, size);
6142 size = size + pad + reg_size_of(state, type->left);
6143 type = type->right;
6145 pad = reg_needed_padding(state, type, size);
6146 size = size + pad + reg_size_of(state, type);
6147 break;
6149 case TYPE_OVERLAP:
6151 size_t size_left, size_right;
6152 size_left = reg_size_of(state, type->left);
6153 size_right = reg_size_of(state, type->right);
6154 size = (size_left >= size_right)? size_left : size_right;
6155 break;
6157 case TYPE_ARRAY:
6158 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6159 internal_error(state, 0, "Invalid array type");
6160 } else {
6161 size = reg_size_of(state, type->left) * type->elements;
6163 break;
6164 case TYPE_STRUCT:
6165 case TYPE_TUPLE:
6167 size_t pad;
6168 size = reg_size_of(state, type->left);
6169 /* Pad structures so their size is a multiples of their alignment */
6170 pad = reg_needed_padding(state, type, size);
6171 size = size + pad;
6172 break;
6174 case TYPE_UNION:
6175 case TYPE_JOIN:
6177 size_t pad;
6178 size = reg_size_of(state, type->left);
6179 /* Pad unions so their size is a multiple of their alignment */
6180 pad = reg_needed_padding(state, type, size);
6181 size = size + pad;
6182 break;
6184 default:
6185 internal_error(state, 0, "sizeof not yet defined for type");
6186 break;
6188 return size;
6191 static size_t registers_of(struct compile_state *state, struct type *type)
6193 size_t registers;
6194 registers = reg_size_of(state, type);
6195 registers += REG_SIZEOF_REG - 1;
6196 registers /= REG_SIZEOF_REG;
6197 return registers;
6200 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6202 return bits_to_bytes(size_of(state, type));
6205 static size_t field_offset(struct compile_state *state,
6206 struct type *type, struct hash_entry *field)
6208 struct type *member;
6209 size_t size;
6211 size = 0;
6212 member = 0;
6213 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6214 member = type->left;
6215 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6216 size += needed_padding(state, member->left, size);
6217 if (member->left->field_ident == field) {
6218 member = member->left;
6219 break;
6221 size += size_of(state, member->left);
6222 member = member->right;
6224 size += needed_padding(state, member, size);
6226 else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6227 member = type->left;
6228 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6229 if (member->left->field_ident == field) {
6230 member = member->left;
6231 break;
6233 member = member->right;
6236 else {
6237 internal_error(state, 0, "field_offset only works on structures and unions");
6240 if (!member || (member->field_ident != field)) {
6241 error(state, 0, "member %s not present", field->name);
6243 return size;
6246 static size_t field_reg_offset(struct compile_state *state,
6247 struct type *type, struct hash_entry *field)
6249 struct type *member;
6250 size_t size;
6252 size = 0;
6253 member = 0;
6254 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6255 member = type->left;
6256 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6257 size += reg_needed_padding(state, member->left, size);
6258 if (member->left->field_ident == field) {
6259 member = member->left;
6260 break;
6262 size += reg_size_of(state, member->left);
6263 member = member->right;
6266 else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6267 member = type->left;
6268 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6269 if (member->left->field_ident == field) {
6270 member = member->left;
6271 break;
6273 member = member->right;
6276 else {
6277 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6280 size += reg_needed_padding(state, member, size);
6281 if (!member || (member->field_ident != field)) {
6282 error(state, 0, "member %s not present", field->name);
6284 return size;
6287 static struct type *field_type(struct compile_state *state,
6288 struct type *type, struct hash_entry *field)
6290 struct type *member;
6292 member = 0;
6293 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6294 member = type->left;
6295 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6296 if (member->left->field_ident == field) {
6297 member = member->left;
6298 break;
6300 member = member->right;
6303 else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6304 member = type->left;
6305 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6306 if (member->left->field_ident == field) {
6307 member = member->left;
6308 break;
6310 member = member->right;
6313 else {
6314 internal_error(state, 0, "field_type only works on structures and unions");
6317 if (!member || (member->field_ident != field)) {
6318 error(state, 0, "member %s not present", field->name);
6320 return member;
6323 static size_t index_offset(struct compile_state *state,
6324 struct type *type, ulong_t index)
6326 struct type *member;
6327 size_t size;
6328 size = 0;
6329 if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6330 size = size_of(state, type->left) * index;
6332 else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6333 ulong_t i;
6334 member = type->left;
6335 i = 0;
6336 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6337 size += needed_padding(state, member->left, size);
6338 if (i == index) {
6339 member = member->left;
6340 break;
6342 size += size_of(state, member->left);
6343 i++;
6344 member = member->right;
6346 size += needed_padding(state, member, size);
6347 if (i != index) {
6348 internal_error(state, 0, "Missing member index: %u", index);
6351 else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6352 ulong_t i;
6353 size = 0;
6354 member = type->left;
6355 i = 0;
6356 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6357 if (i == index) {
6358 member = member->left;
6359 break;
6361 i++;
6362 member = member->right;
6364 if (i != index) {
6365 internal_error(state, 0, "Missing member index: %u", index);
6368 else {
6369 internal_error(state, 0,
6370 "request for index %u in something not an array, tuple or join",
6371 index);
6373 return size;
6376 static size_t index_reg_offset(struct compile_state *state,
6377 struct type *type, ulong_t index)
6379 struct type *member;
6380 size_t size;
6381 size = 0;
6382 if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6383 size = reg_size_of(state, type->left) * index;
6385 else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6386 ulong_t i;
6387 member = type->left;
6388 i = 0;
6389 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6390 size += reg_needed_padding(state, member->left, size);
6391 if (i == index) {
6392 member = member->left;
6393 break;
6395 size += reg_size_of(state, member->left);
6396 i++;
6397 member = member->right;
6399 size += reg_needed_padding(state, member, size);
6400 if (i != index) {
6401 internal_error(state, 0, "Missing member index: %u", index);
6405 else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6406 ulong_t i;
6407 size = 0;
6408 member = type->left;
6409 i = 0;
6410 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6411 if (i == index) {
6412 member = member->left;
6413 break;
6415 i++;
6416 member = member->right;
6418 if (i != index) {
6419 internal_error(state, 0, "Missing member index: %u", index);
6422 else {
6423 internal_error(state, 0,
6424 "request for index %u in something not an array, tuple or join",
6425 index);
6427 return size;
6430 static struct type *index_type(struct compile_state *state,
6431 struct type *type, ulong_t index)
6433 struct type *member;
6434 if (index >= type->elements) {
6435 internal_error(state, 0, "Invalid element %u requested", index);
6437 if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6438 member = type->left;
6440 else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6441 ulong_t i;
6442 member = type->left;
6443 i = 0;
6444 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6445 if (i == index) {
6446 member = member->left;
6447 break;
6449 i++;
6450 member = member->right;
6452 if (i != index) {
6453 internal_error(state, 0, "Missing member index: %u", index);
6456 else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6457 ulong_t i;
6458 member = type->left;
6459 i = 0;
6460 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6461 if (i == index) {
6462 member = member->left;
6463 break;
6465 i++;
6466 member = member->right;
6468 if (i != index) {
6469 internal_error(state, 0, "Missing member index: %u", index);
6472 else {
6473 member = 0;
6474 internal_error(state, 0,
6475 "request for index %u in something not an array, tuple or join",
6476 index);
6478 return member;
6481 static struct type *unpack_type(struct compile_state *state, struct type *type)
6483 /* If I have a single register compound type not a bit-field
6484 * find the real type.
6486 struct type *start_type;
6487 size_t size;
6488 /* Get out early if I need multiple registers for this type */
6489 size = reg_size_of(state, type);
6490 if (size > REG_SIZEOF_REG) {
6491 return type;
6493 /* Get out early if I don't need any registers for this type */
6494 if (size == 0) {
6495 return &void_type;
6497 /* Loop until I have no more layers I can remove */
6498 do {
6499 start_type = type;
6500 switch(type->type & TYPE_MASK) {
6501 case TYPE_ARRAY:
6502 /* If I have a single element the unpacked type
6503 * is that element.
6505 if (type->elements == 1) {
6506 type = type->left;
6508 break;
6509 case TYPE_STRUCT:
6510 case TYPE_TUPLE:
6511 /* If I have a single element the unpacked type
6512 * is that element.
6514 if (type->elements == 1) {
6515 type = type->left;
6517 /* If I have multiple elements the unpacked
6518 * type is the non-void element.
6520 else {
6521 struct type *next, *member;
6522 struct type *sub_type;
6523 sub_type = 0;
6524 next = type->left;
6525 while(next) {
6526 member = next;
6527 next = 0;
6528 if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6529 next = member->right;
6530 member = member->left;
6532 if (reg_size_of(state, member) > 0) {
6533 if (sub_type) {
6534 internal_error(state, 0, "true compound type in a register");
6536 sub_type = member;
6539 if (sub_type) {
6540 type = sub_type;
6543 break;
6545 case TYPE_UNION:
6546 case TYPE_JOIN:
6547 /* If I have a single element the unpacked type
6548 * is that element.
6550 if (type->elements == 1) {
6551 type = type->left;
6553 /* I can't in general unpack union types */
6554 break;
6555 default:
6556 /* If I'm not a compound type I can't unpack it */
6557 break;
6559 } while(start_type != type);
6560 switch(type->type & TYPE_MASK) {
6561 case TYPE_STRUCT:
6562 case TYPE_ARRAY:
6563 case TYPE_TUPLE:
6564 internal_error(state, 0, "irredicible type?");
6565 break;
6567 return type;
6570 static int equiv_types(struct type *left, struct type *right);
6571 static int is_compound_type(struct type *type);
6573 static struct type *reg_type(
6574 struct compile_state *state, struct type *type, int reg_offset)
6576 struct type *member;
6577 size_t size;
6578 #if 1
6579 struct type *invalid;
6580 invalid = invalid_type(state, type);
6581 if (invalid) {
6582 fprintf(state->errout, "type: ");
6583 name_of(state->errout, type);
6584 fprintf(state->errout, "\n");
6585 fprintf(state->errout, "invalid: ");
6586 name_of(state->errout, invalid);
6587 fprintf(state->errout, "\n");
6588 internal_error(state, 0, "bad input type?");
6590 #endif
6592 size = reg_size_of(state, type);
6593 if (reg_offset > size) {
6594 member = 0;
6595 fprintf(state->errout, "type: ");
6596 name_of(state->errout, type);
6597 fprintf(state->errout, "\n");
6598 internal_error(state, 0, "offset outside of type");
6600 else {
6601 switch(type->type & TYPE_MASK) {
6602 /* Don't do anything with the basic types */
6603 case TYPE_VOID:
6604 case TYPE_CHAR: case TYPE_UCHAR:
6605 case TYPE_SHORT: case TYPE_USHORT:
6606 case TYPE_INT: case TYPE_UINT:
6607 case TYPE_LONG: case TYPE_ULONG:
6608 case TYPE_LLONG: case TYPE_ULLONG:
6609 case TYPE_FLOAT: case TYPE_DOUBLE:
6610 case TYPE_LDOUBLE:
6611 case TYPE_POINTER:
6612 case TYPE_ENUM:
6613 case TYPE_BITFIELD:
6614 member = type;
6615 break;
6616 case TYPE_ARRAY:
6617 member = type->left;
6618 size = reg_size_of(state, member);
6619 if (size > REG_SIZEOF_REG) {
6620 member = reg_type(state, member, reg_offset % size);
6622 break;
6623 case TYPE_STRUCT:
6624 case TYPE_TUPLE:
6626 size_t offset;
6627 offset = 0;
6628 member = type->left;
6629 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6630 size = reg_size_of(state, member->left);
6631 offset += reg_needed_padding(state, member->left, offset);
6632 if ((offset + size) > reg_offset) {
6633 member = member->left;
6634 break;
6636 offset += size;
6637 member = member->right;
6639 offset += reg_needed_padding(state, member, offset);
6640 member = reg_type(state, member, reg_offset - offset);
6641 break;
6643 case TYPE_UNION:
6644 case TYPE_JOIN:
6646 struct type *join, **jnext, *mnext;
6647 join = new_type(TYPE_JOIN, 0, 0);
6648 jnext = &join->left;
6649 mnext = type->left;
6650 while(mnext) {
6651 size_t size;
6652 member = mnext;
6653 mnext = 0;
6654 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6655 mnext = member->right;
6656 member = member->left;
6658 size = reg_size_of(state, member);
6659 if (size > reg_offset) {
6660 struct type *part, *hunt;
6661 part = reg_type(state, member, reg_offset);
6662 /* See if this type is already in the union */
6663 hunt = join->left;
6664 while(hunt) {
6665 struct type *test = hunt;
6666 hunt = 0;
6667 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6668 hunt = test->right;
6669 test = test->left;
6671 if (equiv_types(part, test)) {
6672 goto next;
6675 /* Nope add it */
6676 if (!*jnext) {
6677 *jnext = part;
6678 } else {
6679 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6680 jnext = &(*jnext)->right;
6682 join->elements++;
6684 next:
6687 if (join->elements == 0) {
6688 internal_error(state, 0, "No elements?");
6690 member = join;
6691 break;
6693 default:
6694 member = 0;
6695 fprintf(state->errout, "type: ");
6696 name_of(state->errout, type);
6697 fprintf(state->errout, "\n");
6698 internal_error(state, 0, "reg_type not yet defined for type");
6702 /* If I have a single register compound type not a bit-field
6703 * find the real type.
6705 member = unpack_type(state, member);
6707 size = reg_size_of(state, member);
6708 if (size > REG_SIZEOF_REG) {
6709 internal_error(state, 0, "Cannot find type of single register");
6711 #if 1
6712 invalid = invalid_type(state, member);
6713 if (invalid) {
6714 fprintf(state->errout, "type: ");
6715 name_of(state->errout, member);
6716 fprintf(state->errout, "\n");
6717 fprintf(state->errout, "invalid: ");
6718 name_of(state->errout, invalid);
6719 fprintf(state->errout, "\n");
6720 internal_error(state, 0, "returning bad type?");
6722 #endif
6723 return member;
6726 static struct type *next_field(struct compile_state *state,
6727 struct type *type, struct type *prev_member)
6729 struct type *member;
6730 if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6731 internal_error(state, 0, "next_field only works on structures");
6733 member = type->left;
6734 while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6735 if (!prev_member) {
6736 member = member->left;
6737 break;
6739 if (member->left == prev_member) {
6740 prev_member = 0;
6742 member = member->right;
6744 if (member == prev_member) {
6745 prev_member = 0;
6747 if (prev_member) {
6748 internal_error(state, 0, "prev_member %s not present",
6749 prev_member->field_ident->name);
6751 return member;
6754 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type,
6755 size_t ret_offset, size_t mem_offset, void *arg);
6757 static void walk_type_fields(struct compile_state *state,
6758 struct type *type, size_t reg_offset, size_t mem_offset,
6759 walk_type_fields_cb_t cb, void *arg);
6761 static void walk_struct_fields(struct compile_state *state,
6762 struct type *type, size_t reg_offset, size_t mem_offset,
6763 walk_type_fields_cb_t cb, void *arg)
6765 struct type *tptr;
6766 ulong_t i;
6767 if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6768 internal_error(state, 0, "walk_struct_fields only works on structures");
6770 tptr = type->left;
6771 for(i = 0; i < type->elements; i++) {
6772 struct type *mtype;
6773 mtype = tptr;
6774 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6775 mtype = mtype->left;
6777 walk_type_fields(state, mtype,
6778 reg_offset +
6779 field_reg_offset(state, type, mtype->field_ident),
6780 mem_offset +
6781 field_offset(state, type, mtype->field_ident),
6782 cb, arg);
6783 tptr = tptr->right;
6788 static void walk_type_fields(struct compile_state *state,
6789 struct type *type, size_t reg_offset, size_t mem_offset,
6790 walk_type_fields_cb_t cb, void *arg)
6792 switch(type->type & TYPE_MASK) {
6793 case TYPE_STRUCT:
6794 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6795 break;
6796 case TYPE_CHAR:
6797 case TYPE_UCHAR:
6798 case TYPE_SHORT:
6799 case TYPE_USHORT:
6800 case TYPE_INT:
6801 case TYPE_UINT:
6802 case TYPE_LONG:
6803 case TYPE_ULONG:
6804 cb(state, type, reg_offset, mem_offset, arg);
6805 break;
6806 case TYPE_VOID:
6807 break;
6808 default:
6809 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6813 static void arrays_complete(struct compile_state *state, struct type *type)
6815 if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6816 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6817 error(state, 0, "array size not specified");
6819 arrays_complete(state, type->left);
6823 static unsigned int get_basic_type(struct type *type)
6825 unsigned int basic;
6826 basic = type->type & TYPE_MASK;
6827 /* Convert enums to ints */
6828 if (basic == TYPE_ENUM) {
6829 basic = TYPE_INT;
6831 /* Convert bitfields to standard types */
6832 else if (basic == TYPE_BITFIELD) {
6833 if (type->elements <= SIZEOF_CHAR) {
6834 basic = TYPE_CHAR;
6836 else if (type->elements <= SIZEOF_SHORT) {
6837 basic = TYPE_SHORT;
6839 else if (type->elements <= SIZEOF_INT) {
6840 basic = TYPE_INT;
6842 else if (type->elements <= SIZEOF_LONG) {
6843 basic = TYPE_LONG;
6845 if (!TYPE_SIGNED(type->left->type)) {
6846 basic += 1;
6849 return basic;
6852 static unsigned int do_integral_promotion(unsigned int type)
6854 if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6855 type = TYPE_INT;
6857 return type;
6860 static unsigned int do_arithmetic_conversion(
6861 unsigned int left, unsigned int right)
6863 if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6864 return TYPE_LDOUBLE;
6866 else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6867 return TYPE_DOUBLE;
6869 else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6870 return TYPE_FLOAT;
6872 left = do_integral_promotion(left);
6873 right = do_integral_promotion(right);
6874 /* If both operands have the same size done */
6875 if (left == right) {
6876 return left;
6878 /* If both operands have the same signedness pick the larger */
6879 else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6880 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6882 /* If the signed type can hold everything use it */
6883 else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6884 return left;
6886 else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6887 return right;
6889 /* Convert to the unsigned type with the same rank as the signed type */
6890 else if (TYPE_SIGNED(left)) {
6891 return TYPE_MKUNSIGNED(left);
6893 else {
6894 return TYPE_MKUNSIGNED(right);
6898 /* see if two types are the same except for qualifiers */
6899 static int equiv_types(struct type *left, struct type *right)
6901 unsigned int type;
6902 /* Error if the basic types do not match */
6903 if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6904 return 0;
6906 type = left->type & TYPE_MASK;
6907 /* If the basic types match and it is a void type we are done */
6908 if (type == TYPE_VOID) {
6909 return 1;
6911 /* For bitfields we need to compare the sizes */
6912 else if (type == TYPE_BITFIELD) {
6913 return (left->elements == right->elements) &&
6914 (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6916 /* if the basic types match and it is an arithmetic type we are done */
6917 else if (TYPE_ARITHMETIC(type)) {
6918 return 1;
6920 /* If it is a pointer type recurse and keep testing */
6921 else if (type == TYPE_POINTER) {
6922 return equiv_types(left->left, right->left);
6924 else if (type == TYPE_ARRAY) {
6925 return (left->elements == right->elements) &&
6926 equiv_types(left->left, right->left);
6928 /* test for struct equality */
6929 else if (type == TYPE_STRUCT) {
6930 return left->type_ident == right->type_ident;
6932 /* test for union equality */
6933 else if (type == TYPE_UNION) {
6934 return left->type_ident == right->type_ident;
6936 /* Test for equivalent functions */
6937 else if (type == TYPE_FUNCTION) {
6938 return equiv_types(left->left, right->left) &&
6939 equiv_types(left->right, right->right);
6941 /* We only see TYPE_PRODUCT as part of function equivalence matching */
6942 /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6943 else if (type == TYPE_PRODUCT) {
6944 return equiv_types(left->left, right->left) &&
6945 equiv_types(left->right, right->right);
6947 /* We should see TYPE_OVERLAP when comparing joins */
6948 else if (type == TYPE_OVERLAP) {
6949 return equiv_types(left->left, right->left) &&
6950 equiv_types(left->right, right->right);
6952 /* Test for equivalence of tuples */
6953 else if (type == TYPE_TUPLE) {
6954 return (left->elements == right->elements) &&
6955 equiv_types(left->left, right->left);
6957 /* Test for equivalence of joins */
6958 else if (type == TYPE_JOIN) {
6959 return (left->elements == right->elements) &&
6960 equiv_types(left->left, right->left);
6962 else {
6963 return 0;
6967 static int equiv_ptrs(struct type *left, struct type *right)
6969 if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6970 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6971 return 0;
6973 return equiv_types(left->left, right->left);
6976 static struct type *compatible_types(struct type *left, struct type *right)
6978 struct type *result;
6979 unsigned int type, qual_type;
6980 /* Error if the basic types do not match */
6981 if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6982 return 0;
6984 type = left->type & TYPE_MASK;
6985 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
6986 result = 0;
6987 /* if the basic types match and it is an arithmetic type we are done */
6988 if (TYPE_ARITHMETIC(type)) {
6989 result = new_type(qual_type, 0, 0);
6991 /* If it is a pointer type recurse and keep testing */
6992 else if (type == TYPE_POINTER) {
6993 result = compatible_types(left->left, right->left);
6994 if (result) {
6995 result = new_type(qual_type, result, 0);
6998 /* test for struct equality */
6999 else if (type == TYPE_STRUCT) {
7000 if (left->type_ident == right->type_ident) {
7001 result = left;
7004 /* test for union equality */
7005 else if (type == TYPE_UNION) {
7006 if (left->type_ident == right->type_ident) {
7007 result = left;
7010 /* Test for equivalent functions */
7011 else if (type == TYPE_FUNCTION) {
7012 struct type *lf, *rf;
7013 lf = compatible_types(left->left, right->left);
7014 rf = compatible_types(left->right, right->right);
7015 if (lf && rf) {
7016 result = new_type(qual_type, lf, rf);
7019 /* We only see TYPE_PRODUCT as part of function equivalence matching */
7020 else if (type == TYPE_PRODUCT) {
7021 struct type *lf, *rf;
7022 lf = compatible_types(left->left, right->left);
7023 rf = compatible_types(left->right, right->right);
7024 if (lf && rf) {
7025 result = new_type(qual_type, lf, rf);
7028 else {
7029 /* Nothing else is compatible */
7031 return result;
7034 /* See if left is a equivalent to right or right is a union member of left */
7035 static int is_subset_type(struct type *left, struct type *right)
7037 if (equiv_types(left, right)) {
7038 return 1;
7040 if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7041 struct type *member, *mnext;
7042 mnext = left->left;
7043 while(mnext) {
7044 member = mnext;
7045 mnext = 0;
7046 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7047 mnext = member->right;
7048 member = member->left;
7050 if (is_subset_type( member, right)) {
7051 return 1;
7055 return 0;
7058 static struct type *compatible_ptrs(struct type *left, struct type *right)
7060 struct type *result;
7061 if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7062 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7063 return 0;
7065 result = compatible_types(left->left, right->left);
7066 if (result) {
7067 unsigned int qual_type;
7068 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7069 result = new_type(qual_type, result, 0);
7071 return result;
7074 static struct triple *integral_promotion(
7075 struct compile_state *state, struct triple *def)
7077 struct type *type;
7078 type = def->type;
7079 /* As all operations are carried out in registers
7080 * the values are converted on load I just convert
7081 * logical type of the operand.
7083 if (TYPE_INTEGER(type->type)) {
7084 unsigned int int_type;
7085 int_type = type->type & ~TYPE_MASK;
7086 int_type |= do_integral_promotion(get_basic_type(type));
7087 if (int_type != type->type) {
7088 if (def->op != OP_LOAD) {
7089 def->type = new_type(int_type, 0, 0);
7091 else {
7092 def = triple(state, OP_CONVERT,
7093 new_type(int_type, 0, 0), def, 0);
7097 return def;
7101 static void arithmetic(struct compile_state *state, struct triple *def)
7103 if (!TYPE_ARITHMETIC(def->type->type)) {
7104 error(state, 0, "arithmetic type expexted");
7108 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7110 if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7111 error(state, def, "pointer or arithmetic type expected");
7115 static int is_integral(struct triple *ins)
7117 return TYPE_INTEGER(ins->type->type);
7120 static void integral(struct compile_state *state, struct triple *def)
7122 if (!is_integral(def)) {
7123 error(state, 0, "integral type expected");
7128 static void bool(struct compile_state *state, struct triple *def)
7130 if (!TYPE_ARITHMETIC(def->type->type) &&
7131 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7132 error(state, 0, "arithmetic or pointer type expected");
7136 static int is_signed(struct type *type)
7138 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7139 type = type->left;
7141 return !!TYPE_SIGNED(type->type);
7143 static int is_compound_type(struct type *type)
7145 int is_compound;
7146 switch((type->type & TYPE_MASK)) {
7147 case TYPE_ARRAY:
7148 case TYPE_STRUCT:
7149 case TYPE_TUPLE:
7150 case TYPE_UNION:
7151 case TYPE_JOIN:
7152 is_compound = 1;
7153 break;
7154 default:
7155 is_compound = 0;
7156 break;
7158 return is_compound;
7161 /* Is this value located in a register otherwise it must be in memory */
7162 static int is_in_reg(struct compile_state *state, struct triple *def)
7164 int in_reg;
7165 if (def->op == OP_ADECL) {
7166 in_reg = 1;
7168 else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7169 in_reg = 0;
7171 else if (triple_is_part(state, def)) {
7172 in_reg = is_in_reg(state, MISC(def, 0));
7174 else {
7175 internal_error(state, def, "unknown expr storage location");
7176 in_reg = -1;
7178 return in_reg;
7181 /* Is this an auto or static variable location? Something that can
7182 * be assigned to. Otherwise it must must be a pure value, a temporary.
7184 static int is_lvalue(struct compile_state *state, struct triple *def)
7186 int ret;
7187 ret = 0;
7188 if (!def) {
7189 return 0;
7191 if ((def->op == OP_ADECL) ||
7192 (def->op == OP_SDECL) ||
7193 (def->op == OP_DEREF) ||
7194 (def->op == OP_BLOBCONST) ||
7195 (def->op == OP_LIST)) {
7196 ret = 1;
7198 else if (triple_is_part(state, def)) {
7199 ret = is_lvalue(state, MISC(def, 0));
7201 return ret;
7204 static void clvalue(struct compile_state *state, struct triple *def)
7206 if (!def) {
7207 internal_error(state, def, "nothing where lvalue expected?");
7209 if (!is_lvalue(state, def)) {
7210 error(state, def, "lvalue expected");
7213 static void lvalue(struct compile_state *state, struct triple *def)
7215 clvalue(state, def);
7216 if (def->type->type & QUAL_CONST) {
7217 error(state, def, "modifable lvalue expected");
7221 static int is_pointer(struct triple *def)
7223 return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7226 static void pointer(struct compile_state *state, struct triple *def)
7228 if (!is_pointer(def)) {
7229 error(state, def, "pointer expected");
7233 static struct triple *int_const(
7234 struct compile_state *state, struct type *type, ulong_t value)
7236 struct triple *result;
7237 switch(type->type & TYPE_MASK) {
7238 case TYPE_CHAR:
7239 case TYPE_INT: case TYPE_UINT:
7240 case TYPE_LONG: case TYPE_ULONG:
7241 break;
7242 default:
7243 internal_error(state, 0, "constant for unknown type");
7245 result = triple(state, OP_INTCONST, type, 0, 0);
7246 result->u.cval = value;
7247 return result;
7251 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7253 static struct triple *do_mk_addr_expr(struct compile_state *state,
7254 struct triple *expr, struct type *type, ulong_t offset)
7256 struct triple *result;
7257 struct type *ptr_type;
7258 clvalue(state, expr);
7260 ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7263 result = 0;
7264 if (expr->op == OP_ADECL) {
7265 error(state, expr, "address of auto variables not supported");
7267 else if (expr->op == OP_SDECL) {
7268 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7269 MISC(result, 0) = expr;
7270 result->u.cval = offset;
7272 else if (expr->op == OP_DEREF) {
7273 result = triple(state, OP_ADD, ptr_type,
7274 RHS(expr, 0),
7275 int_const(state, &ulong_type, offset));
7277 else if (expr->op == OP_BLOBCONST) {
7278 FINISHME();
7279 internal_error(state, expr, "not yet implemented");
7281 else if (expr->op == OP_LIST) {
7282 error(state, 0, "Function addresses not supported");
7284 else if (triple_is_part(state, expr)) {
7285 struct triple *part;
7286 part = expr;
7287 expr = MISC(expr, 0);
7288 if (part->op == OP_DOT) {
7289 offset += bits_to_bytes(
7290 field_offset(state, expr->type, part->u.field));
7292 else if (part->op == OP_INDEX) {
7293 offset += bits_to_bytes(
7294 index_offset(state, expr->type, part->u.cval));
7296 else {
7297 internal_error(state, part, "unhandled part type");
7299 result = do_mk_addr_expr(state, expr, type, offset);
7301 if (!result) {
7302 internal_error(state, expr, "cannot take address of expression");
7304 return result;
7307 static struct triple *mk_addr_expr(
7308 struct compile_state *state, struct triple *expr, ulong_t offset)
7310 return do_mk_addr_expr(state, expr, expr->type, offset);
7313 static struct triple *mk_deref_expr(
7314 struct compile_state *state, struct triple *expr)
7316 struct type *base_type;
7317 pointer(state, expr);
7318 base_type = expr->type->left;
7319 return triple(state, OP_DEREF, base_type, expr, 0);
7322 /* lvalue conversions always apply except when certain operators
7323 * are applied. So I apply apply it when I know no more
7324 * operators will be applied.
7326 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7328 /* Tranform an array to a pointer to the first element */
7329 if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7330 struct type *type;
7331 type = new_type(
7332 TYPE_POINTER | (def->type->type & QUAL_MASK),
7333 def->type->left, 0);
7334 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7335 struct triple *addrconst;
7336 if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7337 internal_error(state, def, "bad array constant");
7339 addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7340 MISC(addrconst, 0) = def;
7341 def = addrconst;
7343 else {
7344 def = triple(state, OP_CONVERT, type, def, 0);
7347 /* Transform a function to a pointer to it */
7348 else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7349 def = mk_addr_expr(state, def, 0);
7351 return def;
7354 static struct triple *deref_field(
7355 struct compile_state *state, struct triple *expr, struct hash_entry *field)
7357 struct triple *result;
7358 struct type *type, *member;
7359 ulong_t offset;
7360 if (!field) {
7361 internal_error(state, 0, "No field passed to deref_field");
7363 result = 0;
7364 type = expr->type;
7365 if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7366 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7367 error(state, 0, "request for member %s in something not a struct or union",
7368 field->name);
7370 member = field_type(state, type, field);
7371 if ((type->type & STOR_MASK) == STOR_PERM) {
7372 /* Do the pointer arithmetic to get a deref the field */
7373 offset = bits_to_bytes(field_offset(state, type, field));
7374 result = do_mk_addr_expr(state, expr, member, offset);
7375 result = mk_deref_expr(state, result);
7377 else {
7378 /* Find the variable for the field I want. */
7379 result = triple(state, OP_DOT, member, expr, 0);
7380 result->u.field = field;
7382 return result;
7385 static struct triple *deref_index(
7386 struct compile_state *state, struct triple *expr, size_t index)
7388 struct triple *result;
7389 struct type *type, *member;
7390 ulong_t offset;
7392 result = 0;
7393 type = expr->type;
7394 member = index_type(state, type, index);
7396 if ((type->type & STOR_MASK) == STOR_PERM) {
7397 offset = bits_to_bytes(index_offset(state, type, index));
7398 result = do_mk_addr_expr(state, expr, member, offset);
7399 result = mk_deref_expr(state, result);
7401 else {
7402 result = triple(state, OP_INDEX, member, expr, 0);
7403 result->u.cval = index;
7405 return result;
7408 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7410 int op;
7411 if (!def) {
7412 return 0;
7414 #if DEBUG_ROMCC_WARNINGS
7415 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7416 #endif
7417 /* Transform lvalues into something we can read */
7418 def = lvalue_conversion(state, def);
7419 if (!is_lvalue(state, def)) {
7420 return def;
7422 if (is_in_reg(state, def)) {
7423 op = OP_READ;
7424 } else {
7425 if (def->op == OP_SDECL) {
7426 def = mk_addr_expr(state, def, 0);
7427 def = mk_deref_expr(state, def);
7429 op = OP_LOAD;
7431 def = triple(state, op, def->type, def, 0);
7432 if (def->type->type & QUAL_VOLATILE) {
7433 def->id |= TRIPLE_FLAG_VOLATILE;
7435 return def;
7438 int is_write_compatible(struct compile_state *state,
7439 struct type *dest, struct type *rval)
7441 int compatible = 0;
7442 /* Both operands have arithmetic type */
7443 if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7444 compatible = 1;
7446 /* One operand is a pointer and the other is a pointer to void */
7447 else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7448 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7449 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7450 ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7451 compatible = 1;
7453 /* If both types are the same without qualifiers we are good */
7454 else if (equiv_ptrs(dest, rval)) {
7455 compatible = 1;
7457 /* test for struct/union equality */
7458 else if (equiv_types(dest, rval)) {
7459 compatible = 1;
7461 return compatible;
7464 static void write_compatible(struct compile_state *state,
7465 struct type *dest, struct type *rval)
7467 if (!is_write_compatible(state, dest, rval)) {
7468 FILE *fp = state->errout;
7469 fprintf(fp, "dest: ");
7470 name_of(fp, dest);
7471 fprintf(fp,"\nrval: ");
7472 name_of(fp, rval);
7473 fprintf(fp, "\n");
7474 error(state, 0, "Incompatible types in assignment");
7478 static int is_init_compatible(struct compile_state *state,
7479 struct type *dest, struct type *rval)
7481 int compatible = 0;
7482 if (is_write_compatible(state, dest, rval)) {
7483 compatible = 1;
7485 else if (equiv_types(dest, rval)) {
7486 compatible = 1;
7488 return compatible;
7491 static struct triple *write_expr(
7492 struct compile_state *state, struct triple *dest, struct triple *rval)
7494 struct triple *def;
7496 def = 0;
7497 if (!rval) {
7498 internal_error(state, 0, "missing rval");
7501 if (rval->op == OP_LIST) {
7502 internal_error(state, 0, "expression of type OP_LIST?");
7504 if (!is_lvalue(state, dest)) {
7505 internal_error(state, 0, "writing to a non lvalue?");
7507 if (dest->type->type & QUAL_CONST) {
7508 internal_error(state, 0, "modifable lvalue expexted");
7511 write_compatible(state, dest->type, rval->type);
7512 if (!equiv_types(dest->type, rval->type)) {
7513 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7516 /* Now figure out which assignment operator to use */
7517 if (is_in_reg(state, dest)) {
7518 def = triple(state, OP_WRITE, dest->type, rval, dest);
7519 if (MISC(def, 0) != dest) {
7520 internal_error(state, def, "huh?");
7522 if (RHS(def, 0) != rval) {
7523 internal_error(state, def, "huh?");
7525 } else {
7526 def = triple(state, OP_STORE, dest->type, dest, rval);
7528 if (def->type->type & QUAL_VOLATILE) {
7529 def->id |= TRIPLE_FLAG_VOLATILE;
7531 return def;
7534 static struct triple *init_expr(
7535 struct compile_state *state, struct triple *dest, struct triple *rval)
7537 struct triple *def;
7539 def = 0;
7540 if (!rval) {
7541 internal_error(state, 0, "missing rval");
7543 if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7544 rval = read_expr(state, rval);
7545 def = write_expr(state, dest, rval);
7547 else {
7548 /* Fill in the array size if necessary */
7549 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7550 ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7551 if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7552 dest->type->elements = rval->type->elements;
7555 if (!equiv_types(dest->type, rval->type)) {
7556 error(state, 0, "Incompatible types in inializer");
7558 MISC(dest, 0) = rval;
7559 insert_triple(state, dest, rval);
7560 rval->id |= TRIPLE_FLAG_FLATTENED;
7561 use_triple(MISC(dest, 0), dest);
7563 return def;
7566 struct type *arithmetic_result(
7567 struct compile_state *state, struct triple *left, struct triple *right)
7569 struct type *type;
7570 /* Sanity checks to ensure I am working with arithmetic types */
7571 arithmetic(state, left);
7572 arithmetic(state, right);
7573 type = new_type(
7574 do_arithmetic_conversion(
7575 get_basic_type(left->type),
7576 get_basic_type(right->type)),
7577 0, 0);
7578 return type;
7581 struct type *ptr_arithmetic_result(
7582 struct compile_state *state, struct triple *left, struct triple *right)
7584 struct type *type;
7585 /* Sanity checks to ensure I am working with the proper types */
7586 ptr_arithmetic(state, left);
7587 arithmetic(state, right);
7588 if (TYPE_ARITHMETIC(left->type->type) &&
7589 TYPE_ARITHMETIC(right->type->type)) {
7590 type = arithmetic_result(state, left, right);
7592 else if (TYPE_PTR(left->type->type)) {
7593 type = left->type;
7595 else {
7596 internal_error(state, 0, "huh?");
7597 type = 0;
7599 return type;
7602 /* boolean helper function */
7604 static struct triple *ltrue_expr(struct compile_state *state,
7605 struct triple *expr)
7607 switch(expr->op) {
7608 case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
7609 case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
7610 case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7611 /* If the expression is already boolean do nothing */
7612 break;
7613 default:
7614 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7615 break;
7617 return expr;
7620 static struct triple *lfalse_expr(struct compile_state *state,
7621 struct triple *expr)
7623 return triple(state, OP_LFALSE, &int_type, expr, 0);
7626 static struct triple *mkland_expr(
7627 struct compile_state *state,
7628 struct triple *left, struct triple *right)
7630 struct triple *def, *val, *var, *jmp, *mid, *end;
7631 struct triple *lstore, *rstore;
7633 /* Generate some intermediate triples */
7634 end = label(state);
7635 var = variable(state, &int_type);
7637 /* Store the left hand side value */
7638 lstore = write_expr(state, var, left);
7640 /* Jump if the value is false */
7641 jmp = branch(state, end,
7642 lfalse_expr(state, read_expr(state, var)));
7643 mid = label(state);
7645 /* Store the right hand side value */
7646 rstore = write_expr(state, var, right);
7648 /* An expression for the computed value */
7649 val = read_expr(state, var);
7651 /* Generate the prog for a logical and */
7652 def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7654 return def;
7657 static struct triple *mklor_expr(
7658 struct compile_state *state,
7659 struct triple *left, struct triple *right)
7661 struct triple *def, *val, *var, *jmp, *mid, *end;
7663 /* Generate some intermediate triples */
7664 end = label(state);
7665 var = variable(state, &int_type);
7667 /* Store the left hand side value */
7668 left = write_expr(state, var, left);
7670 /* Jump if the value is true */
7671 jmp = branch(state, end, read_expr(state, var));
7672 mid = label(state);
7674 /* Store the right hand side value */
7675 right = write_expr(state, var, right);
7677 /* An expression for the computed value*/
7678 val = read_expr(state, var);
7680 /* Generate the prog for a logical or */
7681 def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7683 return def;
7686 static struct triple *mkcond_expr(
7687 struct compile_state *state,
7688 struct triple *test, struct triple *left, struct triple *right)
7690 struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7691 struct type *result_type;
7692 unsigned int left_type, right_type;
7693 bool(state, test);
7694 left_type = left->type->type;
7695 right_type = right->type->type;
7696 result_type = 0;
7697 /* Both operands have arithmetic type */
7698 if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7699 result_type = arithmetic_result(state, left, right);
7701 /* Both operands have void type */
7702 else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7703 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7704 result_type = &void_type;
7706 /* pointers to the same type... */
7707 else if ((result_type = compatible_ptrs(left->type, right->type))) {
7710 /* Both operands are pointers and left is a pointer to void */
7711 else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7712 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7713 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7714 result_type = right->type;
7716 /* Both operands are pointers and right is a pointer to void */
7717 else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7718 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7719 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7720 result_type = left->type;
7722 if (!result_type) {
7723 error(state, 0, "Incompatible types in conditional expression");
7725 /* Generate some intermediate triples */
7726 mid = label(state);
7727 end = label(state);
7728 var = variable(state, result_type);
7730 /* Branch if the test is false */
7731 jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7732 top = label(state);
7734 /* Store the left hand side value */
7735 left = write_expr(state, var, left);
7737 /* Branch to the end */
7738 jmp2 = branch(state, end, 0);
7740 /* Store the right hand side value */
7741 right = write_expr(state, var, right);
7743 /* An expression for the computed value */
7744 val = read_expr(state, var);
7746 /* Generate the prog for a conditional expression */
7747 def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7749 return def;
7753 static int expr_depth(struct compile_state *state, struct triple *ins)
7755 #if DEBUG_ROMCC_WARNINGS
7756 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7757 #endif
7758 int count;
7759 count = 0;
7760 if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7761 count = 0;
7763 else if (ins->op == OP_DEREF) {
7764 count = expr_depth(state, RHS(ins, 0)) - 1;
7766 else if (ins->op == OP_VAL) {
7767 count = expr_depth(state, RHS(ins, 0)) - 1;
7769 else if (ins->op == OP_FCALL) {
7770 /* Don't figure the depth of a call just guess it is huge */
7771 count = 1000;
7773 else {
7774 struct triple **expr;
7775 expr = triple_rhs(state, ins, 0);
7776 for(;expr; expr = triple_rhs(state, ins, expr)) {
7777 if (*expr) {
7778 int depth;
7779 depth = expr_depth(state, *expr);
7780 if (depth > count) {
7781 count = depth;
7786 return count + 1;
7789 static struct triple *flatten_generic(
7790 struct compile_state *state, struct triple *first, struct triple *ptr,
7791 int ignored)
7793 struct rhs_vector {
7794 int depth;
7795 struct triple **ins;
7796 } vector[MAX_RHS];
7797 int i, rhs, lhs;
7798 /* Only operations with just a rhs and a lhs should come here */
7799 rhs = ptr->rhs;
7800 lhs = ptr->lhs;
7801 if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7802 internal_error(state, ptr, "unexpected args for: %d %s",
7803 ptr->op, tops(ptr->op));
7805 /* Find the depth of the rhs elements */
7806 for(i = 0; i < rhs; i++) {
7807 vector[i].ins = &RHS(ptr, i);
7808 vector[i].depth = expr_depth(state, *vector[i].ins);
7810 /* Selection sort the rhs */
7811 for(i = 0; i < rhs; i++) {
7812 int j, max = i;
7813 for(j = i + 1; j < rhs; j++ ) {
7814 if (vector[j].depth > vector[max].depth) {
7815 max = j;
7818 if (max != i) {
7819 struct rhs_vector tmp;
7820 tmp = vector[i];
7821 vector[i] = vector[max];
7822 vector[max] = tmp;
7825 /* Now flatten the rhs elements */
7826 for(i = 0; i < rhs; i++) {
7827 *vector[i].ins = flatten(state, first, *vector[i].ins);
7828 use_triple(*vector[i].ins, ptr);
7830 if (lhs) {
7831 insert_triple(state, first, ptr);
7832 ptr->id |= TRIPLE_FLAG_FLATTENED;
7833 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7835 /* Now flatten the lhs elements */
7836 for(i = 0; i < lhs; i++) {
7837 struct triple **ins = &LHS(ptr, i);
7838 *ins = flatten(state, first, *ins);
7839 use_triple(*ins, ptr);
7842 return ptr;
7845 static struct triple *flatten_prog(
7846 struct compile_state *state, struct triple *first, struct triple *ptr)
7848 struct triple *head, *body, *val;
7849 head = RHS(ptr, 0);
7850 RHS(ptr, 0) = 0;
7851 val = head->prev;
7852 body = head->next;
7853 release_triple(state, head);
7854 release_triple(state, ptr);
7855 val->next = first;
7856 body->prev = first->prev;
7857 body->prev->next = body;
7858 val->next->prev = val;
7860 if (triple_is_cbranch(state, body->prev) ||
7861 triple_is_call(state, body->prev)) {
7862 unuse_triple(first, body->prev);
7863 use_triple(body, body->prev);
7866 if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7867 internal_error(state, val, "val not flattened?");
7870 return val;
7874 static struct triple *flatten_part(
7875 struct compile_state *state, struct triple *first, struct triple *ptr)
7877 if (!triple_is_part(state, ptr)) {
7878 internal_error(state, ptr, "not a part");
7880 if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7881 internal_error(state, ptr, "unexpected args for: %d %s",
7882 ptr->op, tops(ptr->op));
7884 MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7885 use_triple(MISC(ptr, 0), ptr);
7886 return flatten_generic(state, first, ptr, 1);
7889 static struct triple *flatten(
7890 struct compile_state *state, struct triple *first, struct triple *ptr)
7892 struct triple *orig_ptr;
7893 if (!ptr)
7894 return 0;
7895 do {
7896 orig_ptr = ptr;
7897 /* Only flatten triples once */
7898 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7899 return ptr;
7901 switch(ptr->op) {
7902 case OP_VAL:
7903 RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7904 return MISC(ptr, 0);
7905 break;
7906 case OP_PROG:
7907 ptr = flatten_prog(state, first, ptr);
7908 break;
7909 case OP_FCALL:
7910 ptr = flatten_generic(state, first, ptr, 1);
7911 insert_triple(state, first, ptr);
7912 ptr->id |= TRIPLE_FLAG_FLATTENED;
7913 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7914 if (ptr->next != ptr) {
7915 use_triple(ptr->next, ptr);
7917 break;
7918 case OP_READ:
7919 case OP_LOAD:
7920 RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7921 use_triple(RHS(ptr, 0), ptr);
7922 break;
7923 case OP_WRITE:
7924 ptr = flatten_generic(state, first, ptr, 1);
7925 MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7926 use_triple(MISC(ptr, 0), ptr);
7927 break;
7928 case OP_BRANCH:
7929 use_triple(TARG(ptr, 0), ptr);
7930 break;
7931 case OP_CBRANCH:
7932 RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7933 use_triple(RHS(ptr, 0), ptr);
7934 use_triple(TARG(ptr, 0), ptr);
7935 insert_triple(state, first, ptr);
7936 ptr->id |= TRIPLE_FLAG_FLATTENED;
7937 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7938 if (ptr->next != ptr) {
7939 use_triple(ptr->next, ptr);
7941 break;
7942 case OP_CALL:
7943 MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7944 use_triple(MISC(ptr, 0), ptr);
7945 use_triple(TARG(ptr, 0), ptr);
7946 insert_triple(state, first, ptr);
7947 ptr->id |= TRIPLE_FLAG_FLATTENED;
7948 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7949 if (ptr->next != ptr) {
7950 use_triple(ptr->next, ptr);
7952 break;
7953 case OP_RET:
7954 RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7955 use_triple(RHS(ptr, 0), ptr);
7956 break;
7957 case OP_BLOBCONST:
7958 insert_triple(state, state->global_pool, ptr);
7959 ptr->id |= TRIPLE_FLAG_FLATTENED;
7960 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7961 ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7962 use_triple(MISC(ptr, 0), ptr);
7963 break;
7964 case OP_DEREF:
7965 /* Since OP_DEREF is just a marker delete it when I flatten it */
7966 ptr = RHS(ptr, 0);
7967 RHS(orig_ptr, 0) = 0;
7968 free_triple(state, orig_ptr);
7969 break;
7970 case OP_DOT:
7971 if (RHS(ptr, 0)->op == OP_DEREF) {
7972 struct triple *base, *left;
7973 ulong_t offset;
7974 base = MISC(ptr, 0);
7975 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7976 left = RHS(base, 0);
7977 ptr = triple(state, OP_ADD, left->type,
7978 read_expr(state, left),
7979 int_const(state, &ulong_type, offset));
7980 free_triple(state, base);
7982 else {
7983 ptr = flatten_part(state, first, ptr);
7985 break;
7986 case OP_INDEX:
7987 if (RHS(ptr, 0)->op == OP_DEREF) {
7988 struct triple *base, *left;
7989 ulong_t offset;
7990 base = MISC(ptr, 0);
7991 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
7992 left = RHS(base, 0);
7993 ptr = triple(state, OP_ADD, left->type,
7994 read_expr(state, left),
7995 int_const(state, &long_type, offset));
7996 free_triple(state, base);
7998 else {
7999 ptr = flatten_part(state, first, ptr);
8001 break;
8002 case OP_PIECE:
8003 ptr = flatten_part(state, first, ptr);
8004 use_triple(ptr, MISC(ptr, 0));
8005 break;
8006 case OP_ADDRCONST:
8007 MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8008 use_triple(MISC(ptr, 0), ptr);
8009 break;
8010 case OP_SDECL:
8011 first = state->global_pool;
8012 MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8013 use_triple(MISC(ptr, 0), ptr);
8014 insert_triple(state, first, ptr);
8015 ptr->id |= TRIPLE_FLAG_FLATTENED;
8016 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8017 return ptr;
8018 case OP_ADECL:
8019 ptr = flatten_generic(state, first, ptr, 0);
8020 break;
8021 default:
8022 /* Flatten the easy cases we don't override */
8023 ptr = flatten_generic(state, first, ptr, 0);
8024 break;
8026 } while(ptr && (ptr != orig_ptr));
8027 if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8028 insert_triple(state, first, ptr);
8029 ptr->id |= TRIPLE_FLAG_FLATTENED;
8030 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8032 return ptr;
8035 static void release_expr(struct compile_state *state, struct triple *expr)
8037 struct triple *head;
8038 head = label(state);
8039 flatten(state, head, expr);
8040 while(head->next != head) {
8041 release_triple(state, head->next);
8043 free_triple(state, head);
8046 static int replace_rhs_use(struct compile_state *state,
8047 struct triple *orig, struct triple *new, struct triple *use)
8049 struct triple **expr;
8050 int found;
8051 found = 0;
8052 expr = triple_rhs(state, use, 0);
8053 for(;expr; expr = triple_rhs(state, use, expr)) {
8054 if (*expr == orig) {
8055 *expr = new;
8056 found = 1;
8059 if (found) {
8060 unuse_triple(orig, use);
8061 use_triple(new, use);
8063 return found;
8066 static int replace_lhs_use(struct compile_state *state,
8067 struct triple *orig, struct triple *new, struct triple *use)
8069 struct triple **expr;
8070 int found;
8071 found = 0;
8072 expr = triple_lhs(state, use, 0);
8073 for(;expr; expr = triple_lhs(state, use, expr)) {
8074 if (*expr == orig) {
8075 *expr = new;
8076 found = 1;
8079 if (found) {
8080 unuse_triple(orig, use);
8081 use_triple(new, use);
8083 return found;
8086 static int replace_misc_use(struct compile_state *state,
8087 struct triple *orig, struct triple *new, struct triple *use)
8089 struct triple **expr;
8090 int found;
8091 found = 0;
8092 expr = triple_misc(state, use, 0);
8093 for(;expr; expr = triple_misc(state, use, expr)) {
8094 if (*expr == orig) {
8095 *expr = new;
8096 found = 1;
8099 if (found) {
8100 unuse_triple(orig, use);
8101 use_triple(new, use);
8103 return found;
8106 static int replace_targ_use(struct compile_state *state,
8107 struct triple *orig, struct triple *new, struct triple *use)
8109 struct triple **expr;
8110 int found;
8111 found = 0;
8112 expr = triple_targ(state, use, 0);
8113 for(;expr; expr = triple_targ(state, use, expr)) {
8114 if (*expr == orig) {
8115 *expr = new;
8116 found = 1;
8119 if (found) {
8120 unuse_triple(orig, use);
8121 use_triple(new, use);
8123 return found;
8126 static void replace_use(struct compile_state *state,
8127 struct triple *orig, struct triple *new, struct triple *use)
8129 int found;
8130 found = 0;
8131 found |= replace_rhs_use(state, orig, new, use);
8132 found |= replace_lhs_use(state, orig, new, use);
8133 found |= replace_misc_use(state, orig, new, use);
8134 found |= replace_targ_use(state, orig, new, use);
8135 if (!found) {
8136 internal_error(state, use, "use without use");
8140 static void propogate_use(struct compile_state *state,
8141 struct triple *orig, struct triple *new)
8143 struct triple_set *user, *next;
8144 for(user = orig->use; user; user = next) {
8145 /* Careful replace_use modifies the use chain and
8146 * removes use. So we must get a copy of the next
8147 * entry early.
8149 next = user->next;
8150 replace_use(state, orig, new, user->member);
8152 if (orig->use) {
8153 internal_error(state, orig, "used after propogate_use");
8158 * Code generators
8159 * ===========================
8162 static struct triple *mk_cast_expr(
8163 struct compile_state *state, struct type *type, struct triple *expr)
8165 struct triple *def;
8166 def = read_expr(state, expr);
8167 def = triple(state, OP_CONVERT, type, def, 0);
8168 return def;
8171 static struct triple *mk_add_expr(
8172 struct compile_state *state, struct triple *left, struct triple *right)
8174 struct type *result_type;
8175 /* Put pointer operands on the left */
8176 if (is_pointer(right)) {
8177 struct triple *tmp;
8178 tmp = left;
8179 left = right;
8180 right = tmp;
8182 left = read_expr(state, left);
8183 right = read_expr(state, right);
8184 result_type = ptr_arithmetic_result(state, left, right);
8185 if (is_pointer(left)) {
8186 struct type *ptr_math;
8187 int op;
8188 if (is_signed(right->type)) {
8189 ptr_math = &long_type;
8190 op = OP_SMUL;
8191 } else {
8192 ptr_math = &ulong_type;
8193 op = OP_UMUL;
8195 if (!equiv_types(right->type, ptr_math)) {
8196 right = mk_cast_expr(state, ptr_math, right);
8198 right = triple(state, op, ptr_math, right,
8199 int_const(state, ptr_math,
8200 size_of_in_bytes(state, left->type->left)));
8202 return triple(state, OP_ADD, result_type, left, right);
8205 static struct triple *mk_sub_expr(
8206 struct compile_state *state, struct triple *left, struct triple *right)
8208 struct type *result_type;
8209 result_type = ptr_arithmetic_result(state, left, right);
8210 left = read_expr(state, left);
8211 right = read_expr(state, right);
8212 if (is_pointer(left)) {
8213 struct type *ptr_math;
8214 int op;
8215 if (is_signed(right->type)) {
8216 ptr_math = &long_type;
8217 op = OP_SMUL;
8218 } else {
8219 ptr_math = &ulong_type;
8220 op = OP_UMUL;
8222 if (!equiv_types(right->type, ptr_math)) {
8223 right = mk_cast_expr(state, ptr_math, right);
8225 right = triple(state, op, ptr_math, right,
8226 int_const(state, ptr_math,
8227 size_of_in_bytes(state, left->type->left)));
8229 return triple(state, OP_SUB, result_type, left, right);
8232 static struct triple *mk_pre_inc_expr(
8233 struct compile_state *state, struct triple *def)
8235 struct triple *val;
8236 lvalue(state, def);
8237 val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8238 return triple(state, OP_VAL, def->type,
8239 write_expr(state, def, val),
8240 val);
8243 static struct triple *mk_pre_dec_expr(
8244 struct compile_state *state, struct triple *def)
8246 struct triple *val;
8247 lvalue(state, def);
8248 val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8249 return triple(state, OP_VAL, def->type,
8250 write_expr(state, def, val),
8251 val);
8254 static struct triple *mk_post_inc_expr(
8255 struct compile_state *state, struct triple *def)
8257 struct triple *val;
8258 lvalue(state, def);
8259 val = read_expr(state, def);
8260 return triple(state, OP_VAL, def->type,
8261 write_expr(state, def,
8262 mk_add_expr(state, val, int_const(state, &int_type, 1)))
8263 , val);
8266 static struct triple *mk_post_dec_expr(
8267 struct compile_state *state, struct triple *def)
8269 struct triple *val;
8270 lvalue(state, def);
8271 val = read_expr(state, def);
8272 return triple(state, OP_VAL, def->type,
8273 write_expr(state, def,
8274 mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8275 , val);
8278 static struct triple *mk_subscript_expr(
8279 struct compile_state *state, struct triple *left, struct triple *right)
8281 left = read_expr(state, left);
8282 right = read_expr(state, right);
8283 if (!is_pointer(left) && !is_pointer(right)) {
8284 error(state, left, "subscripted value is not a pointer");
8286 return mk_deref_expr(state, mk_add_expr(state, left, right));
8291 * Compile time evaluation
8292 * ===========================
8294 static int is_const(struct triple *ins)
8296 return IS_CONST_OP(ins->op);
8299 static int is_simple_const(struct triple *ins)
8301 /* Is this a constant that u.cval has the value.
8302 * Or equivalently is this a constant that read_const
8303 * works on.
8304 * So far only OP_INTCONST qualifies.
8306 return (ins->op == OP_INTCONST);
8309 static int constants_equal(struct compile_state *state,
8310 struct triple *left, struct triple *right)
8312 int equal;
8313 if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8314 equal = 0;
8316 else if (!is_const(left) || !is_const(right)) {
8317 equal = 0;
8319 else if (left->op != right->op) {
8320 equal = 0;
8322 else if (!equiv_types(left->type, right->type)) {
8323 equal = 0;
8325 else {
8326 equal = 0;
8327 switch(left->op) {
8328 case OP_INTCONST:
8329 if (left->u.cval == right->u.cval) {
8330 equal = 1;
8332 break;
8333 case OP_BLOBCONST:
8335 size_t lsize, rsize, bytes;
8336 lsize = size_of(state, left->type);
8337 rsize = size_of(state, right->type);
8338 if (lsize != rsize) {
8339 break;
8341 bytes = bits_to_bytes(lsize);
8342 if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8343 equal = 1;
8345 break;
8347 case OP_ADDRCONST:
8348 if ((MISC(left, 0) == MISC(right, 0)) &&
8349 (left->u.cval == right->u.cval)) {
8350 equal = 1;
8352 break;
8353 default:
8354 internal_error(state, left, "uknown constant type");
8355 break;
8358 return equal;
8361 static int is_zero(struct triple *ins)
8363 return is_simple_const(ins) && (ins->u.cval == 0);
8366 static int is_one(struct triple *ins)
8368 return is_simple_const(ins) && (ins->u.cval == 1);
8371 #if DEBUG_ROMCC_WARNING
8372 static long_t bit_count(ulong_t value)
8374 int count;
8375 int i;
8376 count = 0;
8377 for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8378 ulong_t mask;
8379 mask = 1;
8380 mask <<= i;
8381 if (value & mask) {
8382 count++;
8385 return count;
8388 #endif
8390 static long_t bsr(ulong_t value)
8392 int i;
8393 for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8394 ulong_t mask;
8395 mask = 1;
8396 mask <<= i;
8397 if (value & mask) {
8398 return i;
8401 return -1;
8404 static long_t bsf(ulong_t value)
8406 int i;
8407 for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8408 ulong_t mask;
8409 mask = 1;
8410 mask <<= 1;
8411 if (value & mask) {
8412 return i;
8415 return -1;
8418 static long_t ilog2(ulong_t value)
8420 return bsr(value);
8423 static long_t tlog2(struct triple *ins)
8425 return ilog2(ins->u.cval);
8428 static int is_pow2(struct triple *ins)
8430 ulong_t value, mask;
8431 long_t log;
8432 if (!is_const(ins)) {
8433 return 0;
8435 value = ins->u.cval;
8436 log = ilog2(value);
8437 if (log == -1) {
8438 return 0;
8440 mask = 1;
8441 mask <<= log;
8442 return ((value & mask) == value);
8445 static ulong_t read_const(struct compile_state *state,
8446 struct triple *ins, struct triple *rhs)
8448 switch(rhs->type->type &TYPE_MASK) {
8449 case TYPE_CHAR:
8450 case TYPE_SHORT:
8451 case TYPE_INT:
8452 case TYPE_LONG:
8453 case TYPE_UCHAR:
8454 case TYPE_USHORT:
8455 case TYPE_UINT:
8456 case TYPE_ULONG:
8457 case TYPE_POINTER:
8458 case TYPE_BITFIELD:
8459 break;
8460 default:
8461 fprintf(state->errout, "type: ");
8462 name_of(state->errout, rhs->type);
8463 fprintf(state->errout, "\n");
8464 internal_warning(state, rhs, "bad type to read_const");
8465 break;
8467 if (!is_simple_const(rhs)) {
8468 internal_error(state, rhs, "bad op to read_const");
8470 return rhs->u.cval;
8473 static long_t read_sconst(struct compile_state *state,
8474 struct triple *ins, struct triple *rhs)
8476 return (long_t)(rhs->u.cval);
8479 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8481 if (!is_const(rhs)) {
8482 internal_error(state, 0, "non const passed to const_true");
8484 return !is_zero(rhs);
8487 int const_eq(struct compile_state *state, struct triple *ins,
8488 struct triple *left, struct triple *right)
8490 int result;
8491 if (!is_const(left) || !is_const(right)) {
8492 internal_warning(state, ins, "non const passed to const_eq");
8493 result = -1;
8495 else if (left == right) {
8496 result = 1;
8498 else if (is_simple_const(left) && is_simple_const(right)) {
8499 ulong_t lval, rval;
8500 lval = read_const(state, ins, left);
8501 rval = read_const(state, ins, right);
8502 result = (lval == rval);
8504 else if ((left->op == OP_ADDRCONST) &&
8505 (right->op == OP_ADDRCONST)) {
8506 result = (MISC(left, 0) == MISC(right, 0)) &&
8507 (left->u.cval == right->u.cval);
8509 else {
8510 internal_warning(state, ins, "incomparable constants passed to const_eq");
8511 result = -1;
8513 return result;
8517 int const_ucmp(struct compile_state *state, struct triple *ins,
8518 struct triple *left, struct triple *right)
8520 int result;
8521 if (!is_const(left) || !is_const(right)) {
8522 internal_warning(state, ins, "non const past to const_ucmp");
8523 result = -2;
8525 else if (left == right) {
8526 result = 0;
8528 else if (is_simple_const(left) && is_simple_const(right)) {
8529 ulong_t lval, rval;
8530 lval = read_const(state, ins, left);
8531 rval = read_const(state, ins, right);
8532 result = 0;
8533 if (lval > rval) {
8534 result = 1;
8535 } else if (rval > lval) {
8536 result = -1;
8539 else if ((left->op == OP_ADDRCONST) &&
8540 (right->op == OP_ADDRCONST) &&
8541 (MISC(left, 0) == MISC(right, 0))) {
8542 result = 0;
8543 if (left->u.cval > right->u.cval) {
8544 result = 1;
8545 } else if (left->u.cval < right->u.cval) {
8546 result = -1;
8549 else {
8550 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8551 result = -2;
8553 return result;
8556 int const_scmp(struct compile_state *state, struct triple *ins,
8557 struct triple *left, struct triple *right)
8559 int result;
8560 if (!is_const(left) || !is_const(right)) {
8561 internal_warning(state, ins, "non const past to ucmp_const");
8562 result = -2;
8564 else if (left == right) {
8565 result = 0;
8567 else if (is_simple_const(left) && is_simple_const(right)) {
8568 long_t lval, rval;
8569 lval = read_sconst(state, ins, left);
8570 rval = read_sconst(state, ins, right);
8571 result = 0;
8572 if (lval > rval) {
8573 result = 1;
8574 } else if (rval > lval) {
8575 result = -1;
8578 else {
8579 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8580 result = -2;
8582 return result;
8585 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8587 struct triple **expr;
8588 expr = triple_rhs(state, ins, 0);
8589 for(;expr;expr = triple_rhs(state, ins, expr)) {
8590 if (*expr) {
8591 unuse_triple(*expr, ins);
8592 *expr = 0;
8597 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8599 struct triple **expr;
8600 expr = triple_lhs(state, ins, 0);
8601 for(;expr;expr = triple_lhs(state, ins, expr)) {
8602 unuse_triple(*expr, ins);
8603 *expr = 0;
8607 #if DEBUG_ROMCC_WARNING
8608 static void unuse_misc(struct compile_state *state, struct triple *ins)
8610 struct triple **expr;
8611 expr = triple_misc(state, ins, 0);
8612 for(;expr;expr = triple_misc(state, ins, expr)) {
8613 unuse_triple(*expr, ins);
8614 *expr = 0;
8618 static void unuse_targ(struct compile_state *state, struct triple *ins)
8620 int i;
8621 struct triple **slot;
8622 slot = &TARG(ins, 0);
8623 for(i = 0; i < ins->targ; i++) {
8624 unuse_triple(slot[i], ins);
8625 slot[i] = 0;
8629 static void check_lhs(struct compile_state *state, struct triple *ins)
8631 struct triple **expr;
8632 expr = triple_lhs(state, ins, 0);
8633 for(;expr;expr = triple_lhs(state, ins, expr)) {
8634 internal_error(state, ins, "unexpected lhs");
8638 #endif
8640 static void check_misc(struct compile_state *state, struct triple *ins)
8642 struct triple **expr;
8643 expr = triple_misc(state, ins, 0);
8644 for(;expr;expr = triple_misc(state, ins, expr)) {
8645 if (*expr) {
8646 internal_error(state, ins, "unexpected misc");
8651 static void check_targ(struct compile_state *state, struct triple *ins)
8653 struct triple **expr;
8654 expr = triple_targ(state, ins, 0);
8655 for(;expr;expr = triple_targ(state, ins, expr)) {
8656 internal_error(state, ins, "unexpected targ");
8660 static void wipe_ins(struct compile_state *state, struct triple *ins)
8662 /* Becareful which instructions you replace the wiped
8663 * instruction with, as there are not enough slots
8664 * in all instructions to hold all others.
8666 check_targ(state, ins);
8667 check_misc(state, ins);
8668 unuse_rhs(state, ins);
8669 unuse_lhs(state, ins);
8670 ins->lhs = 0;
8671 ins->rhs = 0;
8672 ins->misc = 0;
8673 ins->targ = 0;
8676 #if DEBUG_ROMCC_WARNING
8677 static void wipe_branch(struct compile_state *state, struct triple *ins)
8679 /* Becareful which instructions you replace the wiped
8680 * instruction with, as there are not enough slots
8681 * in all instructions to hold all others.
8683 unuse_rhs(state, ins);
8684 unuse_lhs(state, ins);
8685 unuse_misc(state, ins);
8686 unuse_targ(state, ins);
8687 ins->lhs = 0;
8688 ins->rhs = 0;
8689 ins->misc = 0;
8690 ins->targ = 0;
8692 #endif
8694 static void mkcopy(struct compile_state *state,
8695 struct triple *ins, struct triple *rhs)
8697 struct block *block;
8698 if (!equiv_types(ins->type, rhs->type)) {
8699 FILE *fp = state->errout;
8700 fprintf(fp, "src type: ");
8701 name_of(fp, rhs->type);
8702 fprintf(fp, "\ndst type: ");
8703 name_of(fp, ins->type);
8704 fprintf(fp, "\n");
8705 internal_error(state, ins, "mkcopy type mismatch");
8707 block = block_of_triple(state, ins);
8708 wipe_ins(state, ins);
8709 ins->op = OP_COPY;
8710 ins->rhs = 1;
8711 ins->u.block = block;
8712 RHS(ins, 0) = rhs;
8713 use_triple(RHS(ins, 0), ins);
8716 static void mkconst(struct compile_state *state,
8717 struct triple *ins, ulong_t value)
8719 if (!is_integral(ins) && !is_pointer(ins)) {
8720 fprintf(state->errout, "type: ");
8721 name_of(state->errout, ins->type);
8722 fprintf(state->errout, "\n");
8723 internal_error(state, ins, "unknown type to make constant value: %ld",
8724 value);
8726 wipe_ins(state, ins);
8727 ins->op = OP_INTCONST;
8728 ins->u.cval = value;
8731 static void mkaddr_const(struct compile_state *state,
8732 struct triple *ins, struct triple *sdecl, ulong_t value)
8734 if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8735 internal_error(state, ins, "bad base for addrconst");
8737 wipe_ins(state, ins);
8738 ins->op = OP_ADDRCONST;
8739 ins->misc = 1;
8740 MISC(ins, 0) = sdecl;
8741 ins->u.cval = value;
8742 use_triple(sdecl, ins);
8745 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8746 static void print_tuple(struct compile_state *state,
8747 struct triple *ins, struct triple *tuple)
8749 FILE *fp = state->dbgout;
8750 fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8751 name_of(fp, tuple->type);
8752 if (tuple->lhs > 0) {
8753 fprintf(fp, " lhs: ");
8754 name_of(fp, LHS(tuple, 0)->type);
8756 fprintf(fp, "\n");
8759 #endif
8761 static struct triple *decompose_with_tuple(struct compile_state *state,
8762 struct triple *ins, struct triple *tuple)
8764 struct triple *next;
8765 next = ins->next;
8766 flatten(state, next, tuple);
8767 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8768 print_tuple(state, ins, tuple);
8769 #endif
8771 if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8772 struct triple *tmp;
8773 if (tuple->lhs != 1) {
8774 internal_error(state, tuple, "plain type in multiple registers?");
8776 tmp = LHS(tuple, 0);
8777 release_triple(state, tuple);
8778 tuple = tmp;
8781 propogate_use(state, ins, tuple);
8782 release_triple(state, ins);
8784 return next;
8787 static struct triple *decompose_unknownval(struct compile_state *state,
8788 struct triple *ins)
8790 struct triple *tuple;
8791 ulong_t i;
8793 #if DEBUG_DECOMPOSE_HIRES
8794 FILE *fp = state->dbgout;
8795 fprintf(fp, "unknown type: ");
8796 name_of(fp, ins->type);
8797 fprintf(fp, "\n");
8798 #endif
8800 get_occurance(ins->occurance);
8801 tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8802 ins->occurance);
8804 for(i = 0; i < tuple->lhs; i++) {
8805 struct type *piece_type;
8806 struct triple *unknown;
8808 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8809 get_occurance(tuple->occurance);
8810 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8811 tuple->occurance);
8812 LHS(tuple, i) = unknown;
8814 return decompose_with_tuple(state, ins, tuple);
8818 static struct triple *decompose_read(struct compile_state *state,
8819 struct triple *ins)
8821 struct triple *tuple, *lval;
8822 ulong_t i;
8824 lval = RHS(ins, 0);
8826 if (lval->op == OP_PIECE) {
8827 return ins->next;
8829 get_occurance(ins->occurance);
8830 tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8831 ins->occurance);
8833 if ((tuple->lhs != lval->lhs) &&
8834 (!triple_is_def(state, lval) || (tuple->lhs != 1)))
8836 internal_error(state, ins, "lhs size inconsistency?");
8838 for(i = 0; i < tuple->lhs; i++) {
8839 struct triple *piece, *read, *bitref;
8840 if ((i != 0) || !triple_is_def(state, lval)) {
8841 piece = LHS(lval, i);
8842 } else {
8843 piece = lval;
8846 /* See if the piece is really a bitref */
8847 bitref = 0;
8848 if (piece->op == OP_BITREF) {
8849 bitref = piece;
8850 piece = RHS(bitref, 0);
8853 get_occurance(tuple->occurance);
8854 read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8855 tuple->occurance);
8856 RHS(read, 0) = piece;
8858 if (bitref) {
8859 struct triple *extract;
8860 int op;
8861 if (is_signed(bitref->type->left)) {
8862 op = OP_SEXTRACT;
8863 } else {
8864 op = OP_UEXTRACT;
8866 get_occurance(tuple->occurance);
8867 extract = alloc_triple(state, op, bitref->type, -1, -1,
8868 tuple->occurance);
8869 RHS(extract, 0) = read;
8870 extract->u.bitfield.size = bitref->u.bitfield.size;
8871 extract->u.bitfield.offset = bitref->u.bitfield.offset;
8873 read = extract;
8876 LHS(tuple, i) = read;
8878 return decompose_with_tuple(state, ins, tuple);
8881 static struct triple *decompose_write(struct compile_state *state,
8882 struct triple *ins)
8884 struct triple *tuple, *lval, *val;
8885 ulong_t i;
8887 lval = MISC(ins, 0);
8888 val = RHS(ins, 0);
8889 get_occurance(ins->occurance);
8890 tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8891 ins->occurance);
8893 if ((tuple->lhs != lval->lhs) &&
8894 (!triple_is_def(state, lval) || tuple->lhs != 1))
8896 internal_error(state, ins, "lhs size inconsistency?");
8898 for(i = 0; i < tuple->lhs; i++) {
8899 struct triple *piece, *write, *pval, *bitref;
8900 if ((i != 0) || !triple_is_def(state, lval)) {
8901 piece = LHS(lval, i);
8902 } else {
8903 piece = lval;
8905 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8906 pval = val;
8908 else {
8909 if (i > val->lhs) {
8910 internal_error(state, ins, "lhs size inconsistency?");
8912 pval = LHS(val, i);
8915 /* See if the piece is really a bitref */
8916 bitref = 0;
8917 if (piece->op == OP_BITREF) {
8918 struct triple *read, *deposit;
8919 bitref = piece;
8920 piece = RHS(bitref, 0);
8922 /* Read the destination register */
8923 get_occurance(tuple->occurance);
8924 read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8925 tuple->occurance);
8926 RHS(read, 0) = piece;
8928 /* Deposit the new bitfield value */
8929 get_occurance(tuple->occurance);
8930 deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8931 tuple->occurance);
8932 RHS(deposit, 0) = read;
8933 RHS(deposit, 1) = pval;
8934 deposit->u.bitfield.size = bitref->u.bitfield.size;
8935 deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8937 /* Now write the newly generated value */
8938 pval = deposit;
8941 get_occurance(tuple->occurance);
8942 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1,
8943 tuple->occurance);
8944 MISC(write, 0) = piece;
8945 RHS(write, 0) = pval;
8946 LHS(tuple, i) = write;
8948 return decompose_with_tuple(state, ins, tuple);
8951 struct decompose_load_info {
8952 struct occurance *occurance;
8953 struct triple *lval;
8954 struct triple *tuple;
8956 static void decompose_load_cb(struct compile_state *state,
8957 struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8959 struct decompose_load_info *info = arg;
8960 struct triple *load;
8962 if (reg_offset > info->tuple->lhs) {
8963 internal_error(state, info->tuple, "lhs to small?");
8965 get_occurance(info->occurance);
8966 load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8967 RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8968 LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8971 static struct triple *decompose_load(struct compile_state *state,
8972 struct triple *ins)
8974 struct triple *tuple;
8975 struct decompose_load_info info;
8977 if (!is_compound_type(ins->type)) {
8978 return ins->next;
8980 get_occurance(ins->occurance);
8981 tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8982 ins->occurance);
8984 info.occurance = ins->occurance;
8985 info.lval = RHS(ins, 0);
8986 info.tuple = tuple;
8987 walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
8989 return decompose_with_tuple(state, ins, tuple);
8993 struct decompose_store_info {
8994 struct occurance *occurance;
8995 struct triple *lval;
8996 struct triple *val;
8997 struct triple *tuple;
8999 static void decompose_store_cb(struct compile_state *state,
9000 struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9002 struct decompose_store_info *info = arg;
9003 struct triple *store;
9005 if (reg_offset > info->tuple->lhs) {
9006 internal_error(state, info->tuple, "lhs to small?");
9008 get_occurance(info->occurance);
9009 store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9010 RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9011 RHS(store, 1) = LHS(info->val, reg_offset);
9012 LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9015 static struct triple *decompose_store(struct compile_state *state,
9016 struct triple *ins)
9018 struct triple *tuple;
9019 struct decompose_store_info info;
9021 if (!is_compound_type(ins->type)) {
9022 return ins->next;
9024 get_occurance(ins->occurance);
9025 tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9026 ins->occurance);
9028 info.occurance = ins->occurance;
9029 info.lval = RHS(ins, 0);
9030 info.val = RHS(ins, 1);
9031 info.tuple = tuple;
9032 walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9034 return decompose_with_tuple(state, ins, tuple);
9037 static struct triple *decompose_dot(struct compile_state *state,
9038 struct triple *ins)
9040 struct triple *tuple, *lval;
9041 struct type *type;
9042 size_t reg_offset;
9043 int i, idx;
9045 lval = MISC(ins, 0);
9046 reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9047 idx = reg_offset/REG_SIZEOF_REG;
9048 type = field_type(state, lval->type, ins->u.field);
9049 #if DEBUG_DECOMPOSE_HIRES
9051 FILE *fp = state->dbgout;
9052 fprintf(fp, "field type: ");
9053 name_of(fp, type);
9054 fprintf(fp, "\n");
9056 #endif
9058 get_occurance(ins->occurance);
9059 tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
9060 ins->occurance);
9062 if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9063 (tuple->lhs != 1))
9065 internal_error(state, ins, "multi register bitfield?");
9068 for(i = 0; i < tuple->lhs; i++, idx++) {
9069 struct triple *piece;
9070 if (!triple_is_def(state, lval)) {
9071 if (idx > lval->lhs) {
9072 internal_error(state, ins, "inconsistent lhs count");
9074 piece = LHS(lval, idx);
9075 } else {
9076 if (idx != 0) {
9077 internal_error(state, ins, "bad reg_offset into def");
9079 if (i != 0) {
9080 internal_error(state, ins, "bad reg count from def");
9082 piece = lval;
9085 /* Remember the offset of the bitfield */
9086 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9087 get_occurance(ins->occurance);
9088 piece = build_triple(state, OP_BITREF, type, piece, 0,
9089 ins->occurance);
9090 piece->u.bitfield.size = size_of(state, type);
9091 piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9093 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9094 internal_error(state, ins,
9095 "request for a nonbitfield sub register?");
9098 LHS(tuple, i) = piece;
9101 return decompose_with_tuple(state, ins, tuple);
9104 static struct triple *decompose_index(struct compile_state *state,
9105 struct triple *ins)
9107 struct triple *tuple, *lval;
9108 struct type *type;
9109 int i, idx;
9111 lval = MISC(ins, 0);
9112 idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9113 type = index_type(state, lval->type, ins->u.cval);
9114 #if DEBUG_DECOMPOSE_HIRES
9116 FILE *fp = state->dbgout;
9117 fprintf(fp, "index type: ");
9118 name_of(fp, type);
9119 fprintf(fp, "\n");
9121 #endif
9123 get_occurance(ins->occurance);
9124 tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
9125 ins->occurance);
9127 for(i = 0; i < tuple->lhs; i++, idx++) {
9128 struct triple *piece;
9129 if (!triple_is_def(state, lval)) {
9130 if (idx > lval->lhs) {
9131 internal_error(state, ins, "inconsistent lhs count");
9133 piece = LHS(lval, idx);
9134 } else {
9135 if (idx != 0) {
9136 internal_error(state, ins, "bad reg_offset into def");
9138 if (i != 0) {
9139 internal_error(state, ins, "bad reg count from def");
9141 piece = lval;
9143 LHS(tuple, i) = piece;
9146 return decompose_with_tuple(state, ins, tuple);
9149 static void decompose_compound_types(struct compile_state *state)
9151 struct triple *ins, *next, *first;
9152 first = state->first;
9153 ins = first;
9155 /* Pass one expand compound values into pseudo registers.
9157 next = first;
9158 do {
9159 ins = next;
9160 next = ins->next;
9161 switch(ins->op) {
9162 case OP_UNKNOWNVAL:
9163 next = decompose_unknownval(state, ins);
9164 break;
9166 case OP_READ:
9167 next = decompose_read(state, ins);
9168 break;
9170 case OP_WRITE:
9171 next = decompose_write(state, ins);
9172 break;
9175 /* Be very careful with the load/store logic. These
9176 * operations must convert from the in register layout
9177 * to the in memory layout, which is nontrivial.
9179 case OP_LOAD:
9180 next = decompose_load(state, ins);
9181 break;
9182 case OP_STORE:
9183 next = decompose_store(state, ins);
9184 break;
9186 case OP_DOT:
9187 next = decompose_dot(state, ins);
9188 break;
9189 case OP_INDEX:
9190 next = decompose_index(state, ins);
9191 break;
9194 #if DEBUG_DECOMPOSE_HIRES
9195 fprintf(fp, "decompose next: %p \n", next);
9196 fflush(fp);
9197 fprintf(fp, "next->op: %d %s\n",
9198 next->op, tops(next->op));
9199 /* High resolution debugging mode */
9200 print_triples(state);
9201 #endif
9202 } while (next != first);
9204 /* Pass two remove the tuples.
9206 ins = first;
9207 do {
9208 next = ins->next;
9209 if (ins->op == OP_TUPLE) {
9210 if (ins->use) {
9211 internal_error(state, ins, "tuple used");
9213 else {
9214 release_triple(state, ins);
9217 ins = next;
9218 } while(ins != first);
9219 ins = first;
9220 do {
9221 next = ins->next;
9222 if (ins->op == OP_BITREF) {
9223 if (ins->use) {
9224 internal_error(state, ins, "bitref used");
9226 else {
9227 release_triple(state, ins);
9230 ins = next;
9231 } while(ins != first);
9233 /* Pass three verify the state and set ->id to 0.
9235 next = first;
9236 do {
9237 ins = next;
9238 next = ins->next;
9239 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9240 if (triple_stores_block(state, ins)) {
9241 ins->u.block = 0;
9243 if (triple_is_def(state, ins)) {
9244 if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9245 internal_error(state, ins, "multi register value remains?");
9248 if (ins->op == OP_DOT) {
9249 internal_error(state, ins, "OP_DOT remains?");
9251 if (ins->op == OP_INDEX) {
9252 internal_error(state, ins, "OP_INDEX remains?");
9254 if (ins->op == OP_BITREF) {
9255 internal_error(state, ins, "OP_BITREF remains?");
9257 if (ins->op == OP_TUPLE) {
9258 internal_error(state, ins, "OP_TUPLE remains?");
9260 } while(next != first);
9263 /* For those operations that cannot be simplified */
9264 static void simplify_noop(struct compile_state *state, struct triple *ins)
9266 return;
9269 static void simplify_smul(struct compile_state *state, struct triple *ins)
9271 if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9272 struct triple *tmp;
9273 tmp = RHS(ins, 0);
9274 RHS(ins, 0) = RHS(ins, 1);
9275 RHS(ins, 1) = tmp;
9277 if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9278 long_t left, right;
9279 left = read_sconst(state, ins, RHS(ins, 0));
9280 right = read_sconst(state, ins, RHS(ins, 1));
9281 mkconst(state, ins, left * right);
9283 else if (is_zero(RHS(ins, 1))) {
9284 mkconst(state, ins, 0);
9286 else if (is_one(RHS(ins, 1))) {
9287 mkcopy(state, ins, RHS(ins, 0));
9289 else if (is_pow2(RHS(ins, 1))) {
9290 struct triple *val;
9291 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9292 ins->op = OP_SL;
9293 insert_triple(state, state->global_pool, val);
9294 unuse_triple(RHS(ins, 1), ins);
9295 use_triple(val, ins);
9296 RHS(ins, 1) = val;
9300 static void simplify_umul(struct compile_state *state, struct triple *ins)
9302 if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9303 struct triple *tmp;
9304 tmp = RHS(ins, 0);
9305 RHS(ins, 0) = RHS(ins, 1);
9306 RHS(ins, 1) = tmp;
9308 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9309 ulong_t left, right;
9310 left = read_const(state, ins, RHS(ins, 0));
9311 right = read_const(state, ins, RHS(ins, 1));
9312 mkconst(state, ins, left * right);
9314 else if (is_zero(RHS(ins, 1))) {
9315 mkconst(state, ins, 0);
9317 else if (is_one(RHS(ins, 1))) {
9318 mkcopy(state, ins, RHS(ins, 0));
9320 else if (is_pow2(RHS(ins, 1))) {
9321 struct triple *val;
9322 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9323 ins->op = OP_SL;
9324 insert_triple(state, state->global_pool, val);
9325 unuse_triple(RHS(ins, 1), ins);
9326 use_triple(val, ins);
9327 RHS(ins, 1) = val;
9331 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9333 if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9334 long_t left, right;
9335 left = read_sconst(state, ins, RHS(ins, 0));
9336 right = read_sconst(state, ins, RHS(ins, 1));
9337 mkconst(state, ins, left / right);
9339 else if (is_zero(RHS(ins, 0))) {
9340 mkconst(state, ins, 0);
9342 else if (is_zero(RHS(ins, 1))) {
9343 error(state, ins, "division by zero");
9345 else if (is_one(RHS(ins, 1))) {
9346 mkcopy(state, ins, RHS(ins, 0));
9348 else if (is_pow2(RHS(ins, 1))) {
9349 struct triple *val;
9350 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9351 ins->op = OP_SSR;
9352 insert_triple(state, state->global_pool, val);
9353 unuse_triple(RHS(ins, 1), ins);
9354 use_triple(val, ins);
9355 RHS(ins, 1) = val;
9359 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9361 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9362 ulong_t left, right;
9363 left = read_const(state, ins, RHS(ins, 0));
9364 right = read_const(state, ins, RHS(ins, 1));
9365 mkconst(state, ins, left / right);
9367 else if (is_zero(RHS(ins, 0))) {
9368 mkconst(state, ins, 0);
9370 else if (is_zero(RHS(ins, 1))) {
9371 error(state, ins, "division by zero");
9373 else if (is_one(RHS(ins, 1))) {
9374 mkcopy(state, ins, RHS(ins, 0));
9376 else if (is_pow2(RHS(ins, 1))) {
9377 struct triple *val;
9378 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9379 ins->op = OP_USR;
9380 insert_triple(state, state->global_pool, val);
9381 unuse_triple(RHS(ins, 1), ins);
9382 use_triple(val, ins);
9383 RHS(ins, 1) = val;
9387 static void simplify_smod(struct compile_state *state, struct triple *ins)
9389 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9390 long_t left, right;
9391 left = read_const(state, ins, RHS(ins, 0));
9392 right = read_const(state, ins, RHS(ins, 1));
9393 mkconst(state, ins, left % right);
9395 else if (is_zero(RHS(ins, 0))) {
9396 mkconst(state, ins, 0);
9398 else if (is_zero(RHS(ins, 1))) {
9399 error(state, ins, "division by zero");
9401 else if (is_one(RHS(ins, 1))) {
9402 mkconst(state, ins, 0);
9404 else if (is_pow2(RHS(ins, 1))) {
9405 struct triple *val;
9406 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9407 ins->op = OP_AND;
9408 insert_triple(state, state->global_pool, val);
9409 unuse_triple(RHS(ins, 1), ins);
9410 use_triple(val, ins);
9411 RHS(ins, 1) = val;
9415 static void simplify_umod(struct compile_state *state, struct triple *ins)
9417 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9418 ulong_t left, right;
9419 left = read_const(state, ins, RHS(ins, 0));
9420 right = read_const(state, ins, RHS(ins, 1));
9421 mkconst(state, ins, left % right);
9423 else if (is_zero(RHS(ins, 0))) {
9424 mkconst(state, ins, 0);
9426 else if (is_zero(RHS(ins, 1))) {
9427 error(state, ins, "division by zero");
9429 else if (is_one(RHS(ins, 1))) {
9430 mkconst(state, ins, 0);
9432 else if (is_pow2(RHS(ins, 1))) {
9433 struct triple *val;
9434 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9435 ins->op = OP_AND;
9436 insert_triple(state, state->global_pool, val);
9437 unuse_triple(RHS(ins, 1), ins);
9438 use_triple(val, ins);
9439 RHS(ins, 1) = val;
9443 static void simplify_add(struct compile_state *state, struct triple *ins)
9445 /* start with the pointer on the left */
9446 if (is_pointer(RHS(ins, 1))) {
9447 struct triple *tmp;
9448 tmp = RHS(ins, 0);
9449 RHS(ins, 0) = RHS(ins, 1);
9450 RHS(ins, 1) = tmp;
9452 if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9453 if (RHS(ins, 0)->op == OP_INTCONST) {
9454 ulong_t left, right;
9455 left = read_const(state, ins, RHS(ins, 0));
9456 right = read_const(state, ins, RHS(ins, 1));
9457 mkconst(state, ins, left + right);
9459 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9460 struct triple *sdecl;
9461 ulong_t left, right;
9462 sdecl = MISC(RHS(ins, 0), 0);
9463 left = RHS(ins, 0)->u.cval;
9464 right = RHS(ins, 1)->u.cval;
9465 mkaddr_const(state, ins, sdecl, left + right);
9467 else {
9468 internal_warning(state, ins, "Optimize me!");
9471 else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9472 struct triple *tmp;
9473 tmp = RHS(ins, 1);
9474 RHS(ins, 1) = RHS(ins, 0);
9475 RHS(ins, 0) = tmp;
9479 static void simplify_sub(struct compile_state *state, struct triple *ins)
9481 if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9482 if (RHS(ins, 0)->op == OP_INTCONST) {
9483 ulong_t left, right;
9484 left = read_const(state, ins, RHS(ins, 0));
9485 right = read_const(state, ins, RHS(ins, 1));
9486 mkconst(state, ins, left - right);
9488 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9489 struct triple *sdecl;
9490 ulong_t left, right;
9491 sdecl = MISC(RHS(ins, 0), 0);
9492 left = RHS(ins, 0)->u.cval;
9493 right = RHS(ins, 1)->u.cval;
9494 mkaddr_const(state, ins, sdecl, left - right);
9496 else {
9497 internal_warning(state, ins, "Optimize me!");
9502 static void simplify_sl(struct compile_state *state, struct triple *ins)
9504 if (is_simple_const(RHS(ins, 1))) {
9505 ulong_t right;
9506 right = read_const(state, ins, RHS(ins, 1));
9507 if (right >= (size_of(state, ins->type))) {
9508 warning(state, ins, "left shift count >= width of type");
9511 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9512 ulong_t left, right;
9513 left = read_const(state, ins, RHS(ins, 0));
9514 right = read_const(state, ins, RHS(ins, 1));
9515 mkconst(state, ins, left << right);
9519 static void simplify_usr(struct compile_state *state, struct triple *ins)
9521 if (is_simple_const(RHS(ins, 1))) {
9522 ulong_t right;
9523 right = read_const(state, ins, RHS(ins, 1));
9524 if (right >= (size_of(state, ins->type))) {
9525 warning(state, ins, "right shift count >= width of type");
9528 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9529 ulong_t left, right;
9530 left = read_const(state, ins, RHS(ins, 0));
9531 right = read_const(state, ins, RHS(ins, 1));
9532 mkconst(state, ins, left >> right);
9536 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9538 if (is_simple_const(RHS(ins, 1))) {
9539 ulong_t right;
9540 right = read_const(state, ins, RHS(ins, 1));
9541 if (right >= (size_of(state, ins->type))) {
9542 warning(state, ins, "right shift count >= width of type");
9545 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9546 long_t left, right;
9547 left = read_sconst(state, ins, RHS(ins, 0));
9548 right = read_sconst(state, ins, RHS(ins, 1));
9549 mkconst(state, ins, left >> right);
9553 static void simplify_and(struct compile_state *state, struct triple *ins)
9555 struct triple *left, *right;
9556 left = RHS(ins, 0);
9557 right = RHS(ins, 1);
9559 if (is_simple_const(left) && is_simple_const(right)) {
9560 ulong_t lval, rval;
9561 lval = read_const(state, ins, left);
9562 rval = read_const(state, ins, right);
9563 mkconst(state, ins, lval & rval);
9565 else if (is_zero(right) || is_zero(left)) {
9566 mkconst(state, ins, 0);
9570 static void simplify_or(struct compile_state *state, struct triple *ins)
9572 struct triple *left, *right;
9573 left = RHS(ins, 0);
9574 right = RHS(ins, 1);
9576 if (is_simple_const(left) && is_simple_const(right)) {
9577 ulong_t lval, rval;
9578 lval = read_const(state, ins, left);
9579 rval = read_const(state, ins, right);
9580 mkconst(state, ins, lval | rval);
9582 #if 0 /* I need to handle type mismatches here... */
9583 else if (is_zero(right)) {
9584 mkcopy(state, ins, left);
9586 else if (is_zero(left)) {
9587 mkcopy(state, ins, right);
9589 #endif
9592 static void simplify_xor(struct compile_state *state, struct triple *ins)
9594 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9595 ulong_t left, right;
9596 left = read_const(state, ins, RHS(ins, 0));
9597 right = read_const(state, ins, RHS(ins, 1));
9598 mkconst(state, ins, left ^ right);
9602 static void simplify_pos(struct compile_state *state, struct triple *ins)
9604 if (is_const(RHS(ins, 0))) {
9605 mkconst(state, ins, RHS(ins, 0)->u.cval);
9607 else {
9608 mkcopy(state, ins, RHS(ins, 0));
9612 static void simplify_neg(struct compile_state *state, struct triple *ins)
9614 if (is_simple_const(RHS(ins, 0))) {
9615 ulong_t left;
9616 left = read_const(state, ins, RHS(ins, 0));
9617 mkconst(state, ins, -left);
9619 else if (RHS(ins, 0)->op == OP_NEG) {
9620 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9624 static void simplify_invert(struct compile_state *state, struct triple *ins)
9626 if (is_simple_const(RHS(ins, 0))) {
9627 ulong_t left;
9628 left = read_const(state, ins, RHS(ins, 0));
9629 mkconst(state, ins, ~left);
9633 static void simplify_eq(struct compile_state *state, struct triple *ins)
9635 struct triple *left, *right;
9636 left = RHS(ins, 0);
9637 right = RHS(ins, 1);
9639 if (is_const(left) && is_const(right)) {
9640 int val;
9641 val = const_eq(state, ins, left, right);
9642 if (val >= 0) {
9643 mkconst(state, ins, val == 1);
9646 else if (left == right) {
9647 mkconst(state, ins, 1);
9651 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9653 struct triple *left, *right;
9654 left = RHS(ins, 0);
9655 right = RHS(ins, 1);
9657 if (is_const(left) && is_const(right)) {
9658 int val;
9659 val = const_eq(state, ins, left, right);
9660 if (val >= 0) {
9661 mkconst(state, ins, val != 1);
9664 if (left == right) {
9665 mkconst(state, ins, 0);
9669 static void simplify_sless(struct compile_state *state, struct triple *ins)
9671 struct triple *left, *right;
9672 left = RHS(ins, 0);
9673 right = RHS(ins, 1);
9675 if (is_const(left) && is_const(right)) {
9676 int val;
9677 val = const_scmp(state, ins, left, right);
9678 if ((val >= -1) && (val <= 1)) {
9679 mkconst(state, ins, val < 0);
9682 else if (left == right) {
9683 mkconst(state, ins, 0);
9687 static void simplify_uless(struct compile_state *state, struct triple *ins)
9689 struct triple *left, *right;
9690 left = RHS(ins, 0);
9691 right = RHS(ins, 1);
9693 if (is_const(left) && is_const(right)) {
9694 int val;
9695 val = const_ucmp(state, ins, left, right);
9696 if ((val >= -1) && (val <= 1)) {
9697 mkconst(state, ins, val < 0);
9700 else if (is_zero(right)) {
9701 mkconst(state, ins, 0);
9703 else if (left == right) {
9704 mkconst(state, ins, 0);
9708 static void simplify_smore(struct compile_state *state, struct triple *ins)
9710 struct triple *left, *right;
9711 left = RHS(ins, 0);
9712 right = RHS(ins, 1);
9714 if (is_const(left) && is_const(right)) {
9715 int val;
9716 val = const_scmp(state, ins, left, right);
9717 if ((val >= -1) && (val <= 1)) {
9718 mkconst(state, ins, val > 0);
9721 else if (left == right) {
9722 mkconst(state, ins, 0);
9726 static void simplify_umore(struct compile_state *state, struct triple *ins)
9728 struct triple *left, *right;
9729 left = RHS(ins, 0);
9730 right = RHS(ins, 1);
9732 if (is_const(left) && is_const(right)) {
9733 int val;
9734 val = const_ucmp(state, ins, left, right);
9735 if ((val >= -1) && (val <= 1)) {
9736 mkconst(state, ins, val > 0);
9739 else if (is_zero(left)) {
9740 mkconst(state, ins, 0);
9742 else if (left == right) {
9743 mkconst(state, ins, 0);
9748 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9750 struct triple *left, *right;
9751 left = RHS(ins, 0);
9752 right = RHS(ins, 1);
9754 if (is_const(left) && is_const(right)) {
9755 int val;
9756 val = const_scmp(state, ins, left, right);
9757 if ((val >= -1) && (val <= 1)) {
9758 mkconst(state, ins, val <= 0);
9761 else if (left == right) {
9762 mkconst(state, ins, 1);
9766 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9768 struct triple *left, *right;
9769 left = RHS(ins, 0);
9770 right = RHS(ins, 1);
9772 if (is_const(left) && is_const(right)) {
9773 int val;
9774 val = const_ucmp(state, ins, left, right);
9775 if ((val >= -1) && (val <= 1)) {
9776 mkconst(state, ins, val <= 0);
9779 else if (is_zero(left)) {
9780 mkconst(state, ins, 1);
9782 else if (left == right) {
9783 mkconst(state, ins, 1);
9787 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9789 struct triple *left, *right;
9790 left = RHS(ins, 0);
9791 right = RHS(ins, 1);
9793 if (is_const(left) && is_const(right)) {
9794 int val;
9795 val = const_scmp(state, ins, left, right);
9796 if ((val >= -1) && (val <= 1)) {
9797 mkconst(state, ins, val >= 0);
9800 else if (left == right) {
9801 mkconst(state, ins, 1);
9805 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9807 struct triple *left, *right;
9808 left = RHS(ins, 0);
9809 right = RHS(ins, 1);
9811 if (is_const(left) && is_const(right)) {
9812 int val;
9813 val = const_ucmp(state, ins, left, right);
9814 if ((val >= -1) && (val <= 1)) {
9815 mkconst(state, ins, val >= 0);
9818 else if (is_zero(right)) {
9819 mkconst(state, ins, 1);
9821 else if (left == right) {
9822 mkconst(state, ins, 1);
9826 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9828 struct triple *rhs;
9829 rhs = RHS(ins, 0);
9831 if (is_const(rhs)) {
9832 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9834 /* Otherwise if I am the only user... */
9835 else if ((rhs->use) &&
9836 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9837 int need_copy = 1;
9838 /* Invert a boolean operation */
9839 switch(rhs->op) {
9840 case OP_LTRUE: rhs->op = OP_LFALSE; break;
9841 case OP_LFALSE: rhs->op = OP_LTRUE; break;
9842 case OP_EQ: rhs->op = OP_NOTEQ; break;
9843 case OP_NOTEQ: rhs->op = OP_EQ; break;
9844 case OP_SLESS: rhs->op = OP_SMOREEQ; break;
9845 case OP_ULESS: rhs->op = OP_UMOREEQ; break;
9846 case OP_SMORE: rhs->op = OP_SLESSEQ; break;
9847 case OP_UMORE: rhs->op = OP_ULESSEQ; break;
9848 case OP_SLESSEQ: rhs->op = OP_SMORE; break;
9849 case OP_ULESSEQ: rhs->op = OP_UMORE; break;
9850 case OP_SMOREEQ: rhs->op = OP_SLESS; break;
9851 case OP_UMOREEQ: rhs->op = OP_ULESS; break;
9852 default:
9853 need_copy = 0;
9854 break;
9856 if (need_copy) {
9857 mkcopy(state, ins, rhs);
9862 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9864 struct triple *rhs;
9865 rhs = RHS(ins, 0);
9867 if (is_const(rhs)) {
9868 mkconst(state, ins, const_ltrue(state, ins, rhs));
9870 else switch(rhs->op) {
9871 case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
9872 case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
9873 case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9874 mkcopy(state, ins, rhs);
9879 static void simplify_load(struct compile_state *state, struct triple *ins)
9881 struct triple *addr, *sdecl, *blob;
9883 /* If I am doing a load with a constant pointer from a constant
9884 * table get the value.
9886 addr = RHS(ins, 0);
9887 if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9888 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9889 (blob->op == OP_BLOBCONST)) {
9890 unsigned char buffer[SIZEOF_WORD];
9891 size_t reg_size, mem_size;
9892 const char *src, *end;
9893 ulong_t val;
9894 reg_size = reg_size_of(state, ins->type);
9895 if (reg_size > REG_SIZEOF_REG) {
9896 internal_error(state, ins, "load size greater than register");
9898 mem_size = size_of(state, ins->type);
9899 end = blob->u.blob;
9900 end += bits_to_bytes(size_of(state, sdecl->type));
9901 src = blob->u.blob;
9902 src += addr->u.cval;
9904 if (src > end) {
9905 error(state, ins, "Load address out of bounds");
9908 memset(buffer, 0, sizeof(buffer));
9909 memcpy(buffer, src, bits_to_bytes(mem_size));
9911 switch(mem_size) {
9912 case SIZEOF_I8: val = *((uint8_t *) buffer); break;
9913 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9914 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9915 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9916 default:
9917 internal_error(state, ins, "mem_size: %d not handled",
9918 mem_size);
9919 val = 0;
9920 break;
9922 mkconst(state, ins, val);
9926 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9928 if (is_simple_const(RHS(ins, 0))) {
9929 ulong_t val;
9930 ulong_t mask;
9931 val = read_const(state, ins, RHS(ins, 0));
9932 mask = 1;
9933 mask <<= ins->u.bitfield.size;
9934 mask -= 1;
9935 val >>= ins->u.bitfield.offset;
9936 val &= mask;
9937 mkconst(state, ins, val);
9941 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9943 if (is_simple_const(RHS(ins, 0))) {
9944 ulong_t val;
9945 ulong_t mask;
9946 long_t sval;
9947 val = read_const(state, ins, RHS(ins, 0));
9948 mask = 1;
9949 mask <<= ins->u.bitfield.size;
9950 mask -= 1;
9951 val >>= ins->u.bitfield.offset;
9952 val &= mask;
9953 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9954 sval = val;
9955 sval >>= (SIZEOF_LONG - ins->u.bitfield.size);
9956 mkconst(state, ins, sval);
9960 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9962 if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9963 ulong_t targ, val;
9964 ulong_t mask;
9965 targ = read_const(state, ins, RHS(ins, 0));
9966 val = read_const(state, ins, RHS(ins, 1));
9967 mask = 1;
9968 mask <<= ins->u.bitfield.size;
9969 mask -= 1;
9970 mask <<= ins->u.bitfield.offset;
9971 targ &= ~mask;
9972 val <<= ins->u.bitfield.offset;
9973 val &= mask;
9974 targ |= val;
9975 mkconst(state, ins, targ);
9979 static void simplify_copy(struct compile_state *state, struct triple *ins)
9981 struct triple *right;
9982 right = RHS(ins, 0);
9983 if (is_subset_type(ins->type, right->type)) {
9984 ins->type = right->type;
9986 if (equiv_types(ins->type, right->type)) {
9987 ins->op = OP_COPY;/* I don't need to convert if the types match */
9988 } else {
9989 if (ins->op == OP_COPY) {
9990 internal_error(state, ins, "type mismatch on copy");
9993 if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
9994 struct triple *sdecl;
9995 ulong_t offset;
9996 sdecl = MISC(right, 0);
9997 offset = right->u.cval;
9998 mkaddr_const(state, ins, sdecl, offset);
10000 else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10001 switch(right->op) {
10002 case OP_INTCONST:
10004 ulong_t left;
10005 left = read_const(state, ins, right);
10006 /* Ensure I have not overflowed the destination. */
10007 if (size_of(state, right->type) > size_of(state, ins->type)) {
10008 ulong_t mask;
10009 mask = 1;
10010 mask <<= size_of(state, ins->type);
10011 mask -= 1;
10012 left &= mask;
10014 /* Ensure I am properly sign extended */
10015 if (size_of(state, right->type) < size_of(state, ins->type) &&
10016 is_signed(right->type)) {
10017 long_t val;
10018 int shift;
10019 shift = SIZEOF_LONG - size_of(state, right->type);
10020 val = left;
10021 val <<= shift;
10022 val >>= shift;
10023 left = val;
10025 mkconst(state, ins, left);
10026 break;
10028 default:
10029 internal_error(state, ins, "uknown constant");
10030 break;
10035 static int phi_present(struct block *block)
10037 struct triple *ptr;
10038 if (!block) {
10039 return 0;
10041 ptr = block->first;
10042 do {
10043 if (ptr->op == OP_PHI) {
10044 return 1;
10046 ptr = ptr->next;
10047 } while(ptr != block->last);
10048 return 0;
10051 static int phi_dependency(struct block *block)
10053 /* A block has a phi dependency if a phi function
10054 * depends on that block to exist, and makes a block
10055 * that is otherwise useless unsafe to remove.
10057 if (block) {
10058 struct block_set *edge;
10059 for(edge = block->edges; edge; edge = edge->next) {
10060 if (phi_present(edge->member)) {
10061 return 1;
10065 return 0;
10068 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10070 struct triple *targ;
10071 targ = TARG(ins, 0);
10072 /* During scc_transform temporary triples are allocated that
10073 * loop back onto themselves. If I see one don't advance the
10074 * target.
10076 while(triple_is_structural(state, targ) &&
10077 (targ->next != targ) && (targ->next != state->first)) {
10078 targ = targ->next;
10080 return targ;
10084 static void simplify_branch(struct compile_state *state, struct triple *ins)
10086 int simplified, loops;
10087 if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10088 internal_error(state, ins, "not branch");
10090 if (ins->use != 0) {
10091 internal_error(state, ins, "branch use");
10093 /* The challenge here with simplify branch is that I need to
10094 * make modifications to the control flow graph as well
10095 * as to the branch instruction itself. That is handled
10096 * by rebuilding the basic blocks after simplify all is called.
10099 /* If we have a branch to an unconditional branch update
10100 * our target. But watch out for dependencies from phi
10101 * functions.
10102 * Also only do this a limited number of times so
10103 * we don't get into an infinite loop.
10105 loops = 0;
10106 do {
10107 struct triple *targ;
10108 simplified = 0;
10109 targ = branch_target(state, ins);
10110 if ((targ != ins) && (targ->op == OP_BRANCH) &&
10111 !phi_dependency(targ->u.block))
10113 unuse_triple(TARG(ins, 0), ins);
10114 TARG(ins, 0) = TARG(targ, 0);
10115 use_triple(TARG(ins, 0), ins);
10116 simplified = 1;
10118 } while(simplified && (++loops < 20));
10120 /* If we have a conditional branch with a constant condition
10121 * make it an unconditional branch.
10123 if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10124 struct triple *targ;
10125 ulong_t value;
10126 value = read_const(state, ins, RHS(ins, 0));
10127 unuse_triple(RHS(ins, 0), ins);
10128 targ = TARG(ins, 0);
10129 ins->rhs = 0;
10130 ins->targ = 1;
10131 ins->op = OP_BRANCH;
10132 if (value) {
10133 unuse_triple(ins->next, ins);
10134 TARG(ins, 0) = targ;
10136 else {
10137 unuse_triple(targ, ins);
10138 TARG(ins, 0) = ins->next;
10142 /* If we have a branch to the next instruction,
10143 * make it a noop.
10145 if (TARG(ins, 0) == ins->next) {
10146 unuse_triple(TARG(ins, 0), ins);
10147 if (ins->op == OP_CBRANCH) {
10148 unuse_triple(RHS(ins, 0), ins);
10149 unuse_triple(ins->next, ins);
10151 ins->lhs = 0;
10152 ins->rhs = 0;
10153 ins->misc = 0;
10154 ins->targ = 0;
10155 ins->op = OP_NOOP;
10156 if (ins->use) {
10157 internal_error(state, ins, "noop use != 0");
10162 static void simplify_label(struct compile_state *state, struct triple *ins)
10164 /* Ignore volatile labels */
10165 if (!triple_is_pure(state, ins, ins->id)) {
10166 return;
10168 if (ins->use == 0) {
10169 ins->op = OP_NOOP;
10171 else if (ins->prev->op == OP_LABEL) {
10172 /* In general it is not safe to merge one label that
10173 * imediately follows another. The problem is that the empty
10174 * looking block may have phi functions that depend on it.
10176 if (!phi_dependency(ins->prev->u.block)) {
10177 struct triple_set *user, *next;
10178 ins->op = OP_NOOP;
10179 for(user = ins->use; user; user = next) {
10180 struct triple *use, **expr;
10181 next = user->next;
10182 use = user->member;
10183 expr = triple_targ(state, use, 0);
10184 for(;expr; expr = triple_targ(state, use, expr)) {
10185 if (*expr == ins) {
10186 *expr = ins->prev;
10187 unuse_triple(ins, use);
10188 use_triple(ins->prev, use);
10193 if (ins->use) {
10194 internal_error(state, ins, "noop use != 0");
10200 static void simplify_phi(struct compile_state *state, struct triple *ins)
10202 struct triple **slot;
10203 struct triple *value;
10204 int zrhs, i;
10205 ulong_t cvalue;
10206 slot = &RHS(ins, 0);
10207 zrhs = ins->rhs;
10208 if (zrhs == 0) {
10209 return;
10211 /* See if all of the rhs members of a phi have the same value */
10212 if (slot[0] && is_simple_const(slot[0])) {
10213 cvalue = read_const(state, ins, slot[0]);
10214 for(i = 1; i < zrhs; i++) {
10215 if ( !slot[i] ||
10216 !is_simple_const(slot[i]) ||
10217 !equiv_types(slot[0]->type, slot[i]->type) ||
10218 (cvalue != read_const(state, ins, slot[i]))) {
10219 break;
10222 if (i == zrhs) {
10223 mkconst(state, ins, cvalue);
10224 return;
10228 /* See if all of rhs members of a phi are the same */
10229 value = slot[0];
10230 for(i = 1; i < zrhs; i++) {
10231 if (slot[i] != value) {
10232 break;
10235 if (i == zrhs) {
10236 /* If the phi has a single value just copy it */
10237 if (!is_subset_type(ins->type, value->type)) {
10238 internal_error(state, ins, "bad input type to phi");
10240 /* Make the types match */
10241 if (!equiv_types(ins->type, value->type)) {
10242 ins->type = value->type;
10244 /* Now make the actual copy */
10245 mkcopy(state, ins, value);
10246 return;
10251 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10253 if (is_simple_const(RHS(ins, 0))) {
10254 ulong_t left;
10255 left = read_const(state, ins, RHS(ins, 0));
10256 mkconst(state, ins, bsf(left));
10260 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10262 if (is_simple_const(RHS(ins, 0))) {
10263 ulong_t left;
10264 left = read_const(state, ins, RHS(ins, 0));
10265 mkconst(state, ins, bsr(left));
10270 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10271 static const struct simplify_table {
10272 simplify_t func;
10273 unsigned long flag;
10274 } table_simplify[] = {
10275 #define simplify_sdivt simplify_noop
10276 #define simplify_udivt simplify_noop
10277 #define simplify_piece simplify_noop
10279 [OP_SDIVT ] = { simplify_sdivt, COMPILER_SIMPLIFY_ARITH },
10280 [OP_UDIVT ] = { simplify_udivt, COMPILER_SIMPLIFY_ARITH },
10281 [OP_SMUL ] = { simplify_smul, COMPILER_SIMPLIFY_ARITH },
10282 [OP_UMUL ] = { simplify_umul, COMPILER_SIMPLIFY_ARITH },
10283 [OP_SDIV ] = { simplify_sdiv, COMPILER_SIMPLIFY_ARITH },
10284 [OP_UDIV ] = { simplify_udiv, COMPILER_SIMPLIFY_ARITH },
10285 [OP_SMOD ] = { simplify_smod, COMPILER_SIMPLIFY_ARITH },
10286 [OP_UMOD ] = { simplify_umod, COMPILER_SIMPLIFY_ARITH },
10287 [OP_ADD ] = { simplify_add, COMPILER_SIMPLIFY_ARITH },
10288 [OP_SUB ] = { simplify_sub, COMPILER_SIMPLIFY_ARITH },
10289 [OP_SL ] = { simplify_sl, COMPILER_SIMPLIFY_SHIFT },
10290 [OP_USR ] = { simplify_usr, COMPILER_SIMPLIFY_SHIFT },
10291 [OP_SSR ] = { simplify_ssr, COMPILER_SIMPLIFY_SHIFT },
10292 [OP_AND ] = { simplify_and, COMPILER_SIMPLIFY_BITWISE },
10293 [OP_XOR ] = { simplify_xor, COMPILER_SIMPLIFY_BITWISE },
10294 [OP_OR ] = { simplify_or, COMPILER_SIMPLIFY_BITWISE },
10295 [OP_POS ] = { simplify_pos, COMPILER_SIMPLIFY_ARITH },
10296 [OP_NEG ] = { simplify_neg, COMPILER_SIMPLIFY_ARITH },
10297 [OP_INVERT ] = { simplify_invert, COMPILER_SIMPLIFY_BITWISE },
10299 [OP_EQ ] = { simplify_eq, COMPILER_SIMPLIFY_LOGICAL },
10300 [OP_NOTEQ ] = { simplify_noteq, COMPILER_SIMPLIFY_LOGICAL },
10301 [OP_SLESS ] = { simplify_sless, COMPILER_SIMPLIFY_LOGICAL },
10302 [OP_ULESS ] = { simplify_uless, COMPILER_SIMPLIFY_LOGICAL },
10303 [OP_SMORE ] = { simplify_smore, COMPILER_SIMPLIFY_LOGICAL },
10304 [OP_UMORE ] = { simplify_umore, COMPILER_SIMPLIFY_LOGICAL },
10305 [OP_SLESSEQ ] = { simplify_slesseq, COMPILER_SIMPLIFY_LOGICAL },
10306 [OP_ULESSEQ ] = { simplify_ulesseq, COMPILER_SIMPLIFY_LOGICAL },
10307 [OP_SMOREEQ ] = { simplify_smoreeq, COMPILER_SIMPLIFY_LOGICAL },
10308 [OP_UMOREEQ ] = { simplify_umoreeq, COMPILER_SIMPLIFY_LOGICAL },
10309 [OP_LFALSE ] = { simplify_lfalse, COMPILER_SIMPLIFY_LOGICAL },
10310 [OP_LTRUE ] = { simplify_ltrue, COMPILER_SIMPLIFY_LOGICAL },
10312 [OP_LOAD ] = { simplify_load, COMPILER_SIMPLIFY_OP },
10313 [OP_STORE ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10315 [OP_UEXTRACT ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10316 [OP_SEXTRACT ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10317 [OP_DEPOSIT ] = { simplify_deposit, COMPILER_SIMPLIFY_BITFIELD },
10319 [OP_NOOP ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10321 [OP_INTCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10322 [OP_BLOBCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10323 [OP_ADDRCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10324 [OP_UNKNOWNVAL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10326 [OP_WRITE ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10327 [OP_READ ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10328 [OP_COPY ] = { simplify_copy, COMPILER_SIMPLIFY_COPY },
10329 [OP_CONVERT ] = { simplify_copy, COMPILER_SIMPLIFY_COPY },
10330 [OP_PIECE ] = { simplify_piece, COMPILER_SIMPLIFY_OP },
10331 [OP_ASM ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10333 [OP_DOT ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10334 [OP_INDEX ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10336 [OP_LIST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10337 [OP_BRANCH ] = { simplify_branch, COMPILER_SIMPLIFY_BRANCH },
10338 [OP_CBRANCH ] = { simplify_branch, COMPILER_SIMPLIFY_BRANCH },
10339 [OP_CALL ] = { simplify_noop, COMPILER_SIMPLIFY_BRANCH },
10340 [OP_RET ] = { simplify_noop, COMPILER_SIMPLIFY_BRANCH },
10341 [OP_LABEL ] = { simplify_label, COMPILER_SIMPLIFY_LABEL },
10342 [OP_ADECL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10343 [OP_SDECL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10344 [OP_PHI ] = { simplify_phi, COMPILER_SIMPLIFY_PHI },
10346 [OP_INB ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10347 [OP_INW ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10348 [OP_INL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10349 [OP_OUTB ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10350 [OP_OUTW ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10351 [OP_OUTL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10352 [OP_BSF ] = { simplify_bsf, COMPILER_SIMPLIFY_OP },
10353 [OP_BSR ] = { simplify_bsr, COMPILER_SIMPLIFY_OP },
10354 [OP_RDMSR ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10355 [OP_WRMSR ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10356 [OP_HLT ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
10359 static inline void debug_simplify(struct compile_state *state,
10360 simplify_t do_simplify, struct triple *ins)
10362 #if DEBUG_SIMPLIFY_HIRES
10363 if (state->functions_joined && (do_simplify != simplify_noop)) {
10364 /* High resolution debugging mode */
10365 fprintf(state->dbgout, "simplifing: ");
10366 display_triple(state->dbgout, ins);
10368 #endif
10369 do_simplify(state, ins);
10370 #if DEBUG_SIMPLIFY_HIRES
10371 if (state->functions_joined && (do_simplify != simplify_noop)) {
10372 /* High resolution debugging mode */
10373 fprintf(state->dbgout, "simplified: ");
10374 display_triple(state->dbgout, ins);
10376 #endif
10378 static void simplify(struct compile_state *state, struct triple *ins)
10380 int op;
10381 simplify_t do_simplify;
10382 if (ins == &unknown_triple) {
10383 internal_error(state, ins, "simplifying the unknown triple?");
10385 do {
10386 op = ins->op;
10387 do_simplify = 0;
10388 if ((op < 0) || (op >= sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10389 do_simplify = 0;
10391 else {
10392 do_simplify = table_simplify[op].func;
10394 if (do_simplify &&
10395 !(state->compiler->flags & table_simplify[op].flag)) {
10396 do_simplify = simplify_noop;
10398 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10399 do_simplify = simplify_noop;
10402 if (!do_simplify) {
10403 internal_error(state, ins, "cannot simplify op: %d %s",
10404 op, tops(op));
10405 return;
10407 debug_simplify(state, do_simplify, ins);
10408 } while(ins->op != op);
10411 static void rebuild_ssa_form(struct compile_state *state);
10413 static void simplify_all(struct compile_state *state)
10415 struct triple *ins, *first;
10416 if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10417 return;
10419 first = state->first;
10420 ins = first->prev;
10421 do {
10422 simplify(state, ins);
10423 ins = ins->prev;
10424 } while(ins != first->prev);
10425 ins = first;
10426 do {
10427 simplify(state, ins);
10428 ins = ins->next;
10429 }while(ins != first);
10430 rebuild_ssa_form(state);
10432 print_blocks(state, __func__, state->dbgout);
10436 * Builtins....
10437 * ============================
10440 static void register_builtin_function(struct compile_state *state,
10441 const char *name, int op, struct type *rtype, ...)
10443 struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10444 struct triple *def, *result, *work, *first, *retvar, *ret;
10445 struct hash_entry *ident;
10446 struct file_state file;
10447 int parameters;
10448 int name_len;
10449 va_list args;
10450 int i;
10452 /* Dummy file state to get debug handling right */
10453 memset(&file, 0, sizeof(file));
10454 file.basename = "<built-in>";
10455 file.line = 1;
10456 file.report_line = 1;
10457 file.report_name = file.basename;
10458 file.prev = state->file;
10459 state->file = &file;
10460 state->function = name;
10462 /* Find the Parameter count */
10463 valid_op(state, op);
10464 parameters = table_ops[op].rhs;
10465 if (parameters < 0 ) {
10466 internal_error(state, 0, "Invalid builtin parameter count");
10469 /* Find the function type */
10470 ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10471 ftype->elements = parameters;
10472 next = &ftype->right;
10473 va_start(args, rtype);
10474 for(i = 0; i < parameters; i++) {
10475 atype = va_arg(args, struct type *);
10476 if (!*next) {
10477 *next = atype;
10478 } else {
10479 *next = new_type(TYPE_PRODUCT, *next, atype);
10480 next = &((*next)->right);
10483 if (!*next) {
10484 *next = &void_type;
10486 va_end(args);
10488 /* Get the initial closure type */
10489 ctype = new_type(TYPE_JOIN, &void_type, 0);
10490 ctype->elements = 1;
10492 /* Get the return type */
10493 crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10494 crtype->elements = 2;
10496 /* Generate the needed triples */
10497 def = triple(state, OP_LIST, ftype, 0, 0);
10498 first = label(state);
10499 RHS(def, 0) = first;
10500 result = flatten(state, first, variable(state, crtype));
10501 retvar = flatten(state, first, variable(state, &void_ptr_type));
10502 ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10504 /* Now string them together */
10505 param = ftype->right;
10506 for(i = 0; i < parameters; i++) {
10507 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10508 atype = param->left;
10509 } else {
10510 atype = param;
10512 flatten(state, first, variable(state, atype));
10513 param = param->right;
10515 work = new_triple(state, op, rtype, -1, parameters);
10516 generate_lhs_pieces(state, work);
10517 for(i = 0; i < parameters; i++) {
10518 RHS(work, i) = read_expr(state, farg(state, def, i));
10520 if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10521 work = write_expr(state, deref_index(state, result, 1), work);
10523 work = flatten(state, first, work);
10524 flatten(state, first, label(state));
10525 ret = flatten(state, first, ret);
10526 name_len = strlen(name);
10527 ident = lookup(state, name, name_len);
10528 ftype->type_ident = ident;
10529 symbol(state, ident, &ident->sym_ident, def, ftype);
10531 state->file = file.prev;
10532 state->function = 0;
10533 state->main_function = 0;
10535 if (!state->functions) {
10536 state->functions = def;
10537 } else {
10538 insert_triple(state, state->functions, def);
10540 if (state->compiler->debug & DEBUG_INLINE) {
10541 FILE *fp = state->dbgout;
10542 fprintf(fp, "\n");
10543 loc(fp, state, 0);
10544 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10545 display_func(state, fp, def);
10546 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10550 static struct type *partial_struct(struct compile_state *state,
10551 const char *field_name, struct type *type, struct type *rest)
10553 struct hash_entry *field_ident;
10554 struct type *result;
10555 int field_name_len;
10557 field_name_len = strlen(field_name);
10558 field_ident = lookup(state, field_name, field_name_len);
10560 result = clone_type(0, type);
10561 result->field_ident = field_ident;
10563 if (rest) {
10564 result = new_type(TYPE_PRODUCT, result, rest);
10566 return result;
10569 static struct type *register_builtin_type(struct compile_state *state,
10570 const char *name, struct type *type)
10572 struct hash_entry *ident;
10573 int name_len;
10575 name_len = strlen(name);
10576 ident = lookup(state, name, name_len);
10578 if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10579 ulong_t elements = 0;
10580 struct type *field;
10581 type = new_type(TYPE_STRUCT, type, 0);
10582 field = type->left;
10583 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10584 elements++;
10585 field = field->right;
10587 elements++;
10588 symbol(state, ident, &ident->sym_tag, 0, type);
10589 type->type_ident = ident;
10590 type->elements = elements;
10592 symbol(state, ident, &ident->sym_ident, 0, type);
10593 ident->tok = TOK_TYPE_NAME;
10594 return type;
10598 static void register_builtins(struct compile_state *state)
10600 struct type *div_type, *ldiv_type;
10601 struct type *udiv_type, *uldiv_type;
10602 struct type *msr_type;
10604 div_type = register_builtin_type(state, "__builtin_div_t",
10605 partial_struct(state, "quot", &int_type,
10606 partial_struct(state, "rem", &int_type, 0)));
10607 ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10608 partial_struct(state, "quot", &long_type,
10609 partial_struct(state, "rem", &long_type, 0)));
10610 udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10611 partial_struct(state, "quot", &uint_type,
10612 partial_struct(state, "rem", &uint_type, 0)));
10613 uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10614 partial_struct(state, "quot", &ulong_type,
10615 partial_struct(state, "rem", &ulong_type, 0)));
10617 register_builtin_function(state, "__builtin_div", OP_SDIVT, div_type,
10618 &int_type, &int_type);
10619 register_builtin_function(state, "__builtin_ldiv", OP_SDIVT, ldiv_type,
10620 &long_type, &long_type);
10621 register_builtin_function(state, "__builtin_udiv", OP_UDIVT, udiv_type,
10622 &uint_type, &uint_type);
10623 register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10624 &ulong_type, &ulong_type);
10626 register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type,
10627 &ushort_type);
10628 register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10629 &ushort_type);
10630 register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,
10631 &ushort_type);
10633 register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type,
10634 &uchar_type, &ushort_type);
10635 register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type,
10636 &ushort_type, &ushort_type);
10637 register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type,
10638 &uint_type, &ushort_type);
10640 register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type,
10641 &int_type);
10642 register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type,
10643 &int_type);
10645 msr_type = register_builtin_type(state, "__builtin_msr_t",
10646 partial_struct(state, "lo", &ulong_type,
10647 partial_struct(state, "hi", &ulong_type, 0)));
10649 register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10650 &ulong_type);
10651 register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10652 &ulong_type, &ulong_type, &ulong_type);
10654 register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type,
10655 &void_type);
10658 static struct type *declarator(
10659 struct compile_state *state, struct type *type,
10660 struct hash_entry **ident, int need_ident);
10661 static void decl(struct compile_state *state, struct triple *first);
10662 static struct type *specifier_qualifier_list(struct compile_state *state);
10663 #if DEBUG_ROMCC_WARNING
10664 static int isdecl_specifier(int tok);
10665 #endif
10666 static struct type *decl_specifiers(struct compile_state *state);
10667 static int istype(int tok);
10668 static struct triple *expr(struct compile_state *state);
10669 static struct triple *assignment_expr(struct compile_state *state);
10670 static struct type *type_name(struct compile_state *state);
10671 static void statement(struct compile_state *state, struct triple *first);
10673 static struct triple *call_expr(
10674 struct compile_state *state, struct triple *func)
10676 struct triple *def;
10677 struct type *param, *type;
10678 ulong_t pvals, index;
10680 if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10681 error(state, 0, "Called object is not a function");
10683 if (func->op != OP_LIST) {
10684 internal_error(state, 0, "improper function");
10686 eat(state, TOK_LPAREN);
10687 /* Find the return type without any specifiers */
10688 type = clone_type(0, func->type->left);
10689 /* Count the number of rhs entries for OP_FCALL */
10690 param = func->type->right;
10691 pvals = 0;
10692 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10693 pvals++;
10694 param = param->right;
10696 if ((param->type & TYPE_MASK) != TYPE_VOID) {
10697 pvals++;
10699 def = new_triple(state, OP_FCALL, type, -1, pvals);
10700 MISC(def, 0) = func;
10702 param = func->type->right;
10703 for(index = 0; index < pvals; index++) {
10704 struct triple *val;
10705 struct type *arg_type;
10706 val = read_expr(state, assignment_expr(state));
10707 arg_type = param;
10708 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10709 arg_type = param->left;
10711 write_compatible(state, arg_type, val->type);
10712 RHS(def, index) = val;
10713 if (index != (pvals - 1)) {
10714 eat(state, TOK_COMMA);
10715 param = param->right;
10718 eat(state, TOK_RPAREN);
10719 return def;
10723 static struct triple *character_constant(struct compile_state *state)
10725 struct triple *def;
10726 struct token *tk;
10727 const signed char *str, *end;
10728 int c;
10729 int str_len;
10730 tk = eat(state, TOK_LIT_CHAR);
10731 str = (signed char *)tk->val.str + 1;
10732 str_len = tk->str_len - 2;
10733 if (str_len <= 0) {
10734 error(state, 0, "empty character constant");
10736 end = str + str_len;
10737 c = char_value(state, &str, end);
10738 if (str != end) {
10739 error(state, 0, "multibyte character constant not supported");
10741 def = int_const(state, &char_type, (ulong_t)((long_t)c));
10742 return def;
10745 static struct triple *string_constant(struct compile_state *state)
10747 struct triple *def;
10748 struct token *tk;
10749 struct type *type;
10750 const signed char *str, *end;
10751 signed char *buf, *ptr;
10752 int str_len;
10754 buf = 0;
10755 type = new_type(TYPE_ARRAY, &char_type, 0);
10756 type->elements = 0;
10757 /* The while loop handles string concatenation */
10758 do {
10759 tk = eat(state, TOK_LIT_STRING);
10760 str = (signed char *)tk->val.str + 1;
10761 str_len = tk->str_len - 2;
10762 if (str_len < 0) {
10763 error(state, 0, "negative string constant length");
10765 /* ignore empty string tokens */
10766 if ('"' == *str && 0 == str[1])
10767 continue;
10768 end = str + str_len;
10769 ptr = buf;
10770 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10771 memcpy(buf, ptr, type->elements);
10772 ptr = buf + type->elements;
10773 do {
10774 *ptr++ = char_value(state, &str, end);
10775 } while(str < end);
10776 type->elements = ptr - buf;
10777 } while(peek(state) == TOK_LIT_STRING);
10778 *ptr = '\0';
10779 type->elements += 1;
10780 def = triple(state, OP_BLOBCONST, type, 0, 0);
10781 def->u.blob = buf;
10783 return def;
10787 static struct triple *integer_constant(struct compile_state *state)
10789 struct triple *def;
10790 unsigned long val;
10791 struct token *tk;
10792 char *end;
10793 int u, l, decimal;
10794 struct type *type;
10796 tk = eat(state, TOK_LIT_INT);
10797 errno = 0;
10798 decimal = (tk->val.str[0] != '0');
10799 val = strtoul(tk->val.str, &end, 0);
10800 if (errno == ERANGE) {
10801 error(state, 0, "Integer constant out of range");
10803 u = l = 0;
10804 if ((*end == 'u') || (*end == 'U')) {
10805 u = 1;
10806 end++;
10808 if ((*end == 'l') || (*end == 'L')) {
10809 l = 1;
10810 end++;
10812 if ((*end == 'u') || (*end == 'U')) {
10813 u = 1;
10814 end++;
10816 if (*end) {
10817 error(state, 0, "Junk at end of integer constant");
10819 if (u && l) {
10820 type = &ulong_type;
10822 else if (l) {
10823 type = &long_type;
10824 if (!decimal && (val > LONG_T_MAX)) {
10825 type = &ulong_type;
10828 else if (u) {
10829 type = &uint_type;
10830 if (val > UINT_T_MAX) {
10831 type = &ulong_type;
10834 else {
10835 type = &int_type;
10836 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10837 type = &uint_type;
10839 else if (!decimal && (val > LONG_T_MAX)) {
10840 type = &ulong_type;
10842 else if (val > INT_T_MAX) {
10843 type = &long_type;
10846 def = int_const(state, type, val);
10847 return def;
10850 static struct triple *primary_expr(struct compile_state *state)
10852 struct triple *def;
10853 int tok;
10854 tok = peek(state);
10855 switch(tok) {
10856 case TOK_IDENT:
10858 struct hash_entry *ident;
10859 /* Here ident is either:
10860 * a varable name
10861 * a function name
10863 ident = eat(state, TOK_IDENT)->ident;
10864 if (!ident->sym_ident) {
10865 error(state, 0, "%s undeclared", ident->name);
10867 def = ident->sym_ident->def;
10868 break;
10870 case TOK_ENUM_CONST:
10872 struct hash_entry *ident;
10873 /* Here ident is an enumeration constant */
10874 ident = eat(state, TOK_ENUM_CONST)->ident;
10875 if (!ident->sym_ident) {
10876 error(state, 0, "%s undeclared", ident->name);
10878 def = ident->sym_ident->def;
10879 break;
10881 case TOK_MIDENT:
10883 struct hash_entry *ident;
10884 ident = eat(state, TOK_MIDENT)->ident;
10885 warning(state, 0, "Replacing undefined macro: %s with 0",
10886 ident->name);
10887 def = int_const(state, &int_type, 0);
10888 break;
10890 case TOK_LPAREN:
10891 eat(state, TOK_LPAREN);
10892 def = expr(state);
10893 eat(state, TOK_RPAREN);
10894 break;
10895 case TOK_LIT_INT:
10896 def = integer_constant(state);
10897 break;
10898 case TOK_LIT_FLOAT:
10899 eat(state, TOK_LIT_FLOAT);
10900 error(state, 0, "Floating point constants not supported");
10901 def = 0;
10902 FINISHME();
10903 break;
10904 case TOK_LIT_CHAR:
10905 def = character_constant(state);
10906 break;
10907 case TOK_LIT_STRING:
10908 def = string_constant(state);
10909 break;
10910 default:
10911 def = 0;
10912 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10914 return def;
10917 static struct triple *postfix_expr(struct compile_state *state)
10919 struct triple *def;
10920 int postfix;
10921 def = primary_expr(state);
10922 do {
10923 struct triple *left;
10924 int tok;
10925 postfix = 1;
10926 left = def;
10927 switch((tok = peek(state))) {
10928 case TOK_LBRACKET:
10929 eat(state, TOK_LBRACKET);
10930 def = mk_subscript_expr(state, left, expr(state));
10931 eat(state, TOK_RBRACKET);
10932 break;
10933 case TOK_LPAREN:
10934 def = call_expr(state, def);
10935 break;
10936 case TOK_DOT:
10938 struct hash_entry *field;
10939 eat(state, TOK_DOT);
10940 field = eat(state, TOK_IDENT)->ident;
10941 def = deref_field(state, def, field);
10942 break;
10944 case TOK_ARROW:
10946 struct hash_entry *field;
10947 eat(state, TOK_ARROW);
10948 field = eat(state, TOK_IDENT)->ident;
10949 def = mk_deref_expr(state, read_expr(state, def));
10950 def = deref_field(state, def, field);
10951 break;
10953 case TOK_PLUSPLUS:
10954 eat(state, TOK_PLUSPLUS);
10955 def = mk_post_inc_expr(state, left);
10956 break;
10957 case TOK_MINUSMINUS:
10958 eat(state, TOK_MINUSMINUS);
10959 def = mk_post_dec_expr(state, left);
10960 break;
10961 default:
10962 postfix = 0;
10963 break;
10965 } while(postfix);
10966 return def;
10969 static struct triple *cast_expr(struct compile_state *state);
10971 static struct triple *unary_expr(struct compile_state *state)
10973 struct triple *def, *right;
10974 int tok;
10975 switch((tok = peek(state))) {
10976 case TOK_PLUSPLUS:
10977 eat(state, TOK_PLUSPLUS);
10978 def = mk_pre_inc_expr(state, unary_expr(state));
10979 break;
10980 case TOK_MINUSMINUS:
10981 eat(state, TOK_MINUSMINUS);
10982 def = mk_pre_dec_expr(state, unary_expr(state));
10983 break;
10984 case TOK_AND:
10985 eat(state, TOK_AND);
10986 def = mk_addr_expr(state, cast_expr(state), 0);
10987 break;
10988 case TOK_STAR:
10989 eat(state, TOK_STAR);
10990 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
10991 break;
10992 case TOK_PLUS:
10993 eat(state, TOK_PLUS);
10994 right = read_expr(state, cast_expr(state));
10995 arithmetic(state, right);
10996 def = integral_promotion(state, right);
10997 break;
10998 case TOK_MINUS:
10999 eat(state, TOK_MINUS);
11000 right = read_expr(state, cast_expr(state));
11001 arithmetic(state, right);
11002 def = integral_promotion(state, right);
11003 def = triple(state, OP_NEG, def->type, def, 0);
11004 break;
11005 case TOK_TILDE:
11006 eat(state, TOK_TILDE);
11007 right = read_expr(state, cast_expr(state));
11008 integral(state, right);
11009 def = integral_promotion(state, right);
11010 def = triple(state, OP_INVERT, def->type, def, 0);
11011 break;
11012 case TOK_BANG:
11013 eat(state, TOK_BANG);
11014 right = read_expr(state, cast_expr(state));
11015 bool(state, right);
11016 def = lfalse_expr(state, right);
11017 break;
11018 case TOK_SIZEOF:
11020 struct type *type;
11021 int tok1, tok2;
11022 eat(state, TOK_SIZEOF);
11023 tok1 = peek(state);
11024 tok2 = peek2(state);
11025 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11026 eat(state, TOK_LPAREN);
11027 type = type_name(state);
11028 eat(state, TOK_RPAREN);
11030 else {
11031 struct triple *expr;
11032 expr = unary_expr(state);
11033 type = expr->type;
11034 release_expr(state, expr);
11036 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11037 break;
11039 case TOK_ALIGNOF:
11041 struct type *type;
11042 int tok1, tok2;
11043 eat(state, TOK_ALIGNOF);
11044 tok1 = peek(state);
11045 tok2 = peek2(state);
11046 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11047 eat(state, TOK_LPAREN);
11048 type = type_name(state);
11049 eat(state, TOK_RPAREN);
11051 else {
11052 struct triple *expr;
11053 expr = unary_expr(state);
11054 type = expr->type;
11055 release_expr(state, expr);
11057 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11058 break;
11060 case TOK_MDEFINED:
11062 /* We only come here if we are called from the preprocessor */
11063 struct hash_entry *ident;
11064 int parens;
11065 eat(state, TOK_MDEFINED);
11066 parens = 0;
11067 if (pp_peek(state) == TOK_LPAREN) {
11068 pp_eat(state, TOK_LPAREN);
11069 parens = 1;
11071 ident = pp_eat(state, TOK_MIDENT)->ident;
11072 if (parens) {
11073 eat(state, TOK_RPAREN);
11075 def = int_const(state, &int_type, ident->sym_define != 0);
11076 break;
11078 default:
11079 def = postfix_expr(state);
11080 break;
11082 return def;
11085 static struct triple *cast_expr(struct compile_state *state)
11087 struct triple *def;
11088 int tok1, tok2;
11089 tok1 = peek(state);
11090 tok2 = peek2(state);
11091 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11092 struct type *type;
11093 eat(state, TOK_LPAREN);
11094 type = type_name(state);
11095 eat(state, TOK_RPAREN);
11096 def = mk_cast_expr(state, type, cast_expr(state));
11098 else {
11099 def = unary_expr(state);
11101 return def;
11104 static struct triple *mult_expr(struct compile_state *state)
11106 struct triple *def;
11107 int done;
11108 def = cast_expr(state);
11109 do {
11110 struct triple *left, *right;
11111 struct type *result_type;
11112 int tok, op, sign;
11113 done = 0;
11114 tok = peek(state);
11115 switch(tok) {
11116 case TOK_STAR:
11117 case TOK_DIV:
11118 case TOK_MOD:
11119 left = read_expr(state, def);
11120 arithmetic(state, left);
11122 eat(state, tok);
11124 right = read_expr(state, cast_expr(state));
11125 arithmetic(state, right);
11127 result_type = arithmetic_result(state, left, right);
11128 sign = is_signed(result_type);
11129 op = -1;
11130 switch(tok) {
11131 case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11132 case TOK_DIV: op = sign? OP_SDIV : OP_UDIV; break;
11133 case TOK_MOD: op = sign? OP_SMOD : OP_UMOD; break;
11135 def = triple(state, op, result_type, left, right);
11136 break;
11137 default:
11138 done = 1;
11139 break;
11141 } while(!done);
11142 return def;
11145 static struct triple *add_expr(struct compile_state *state)
11147 struct triple *def;
11148 int done;
11149 def = mult_expr(state);
11150 do {
11151 done = 0;
11152 switch( peek(state)) {
11153 case TOK_PLUS:
11154 eat(state, TOK_PLUS);
11155 def = mk_add_expr(state, def, mult_expr(state));
11156 break;
11157 case TOK_MINUS:
11158 eat(state, TOK_MINUS);
11159 def = mk_sub_expr(state, def, mult_expr(state));
11160 break;
11161 default:
11162 done = 1;
11163 break;
11165 } while(!done);
11166 return def;
11169 static struct triple *shift_expr(struct compile_state *state)
11171 struct triple *def;
11172 int done;
11173 def = add_expr(state);
11174 do {
11175 struct triple *left, *right;
11176 int tok, op;
11177 done = 0;
11178 switch((tok = peek(state))) {
11179 case TOK_SL:
11180 case TOK_SR:
11181 left = read_expr(state, def);
11182 integral(state, left);
11183 left = integral_promotion(state, left);
11185 eat(state, tok);
11187 right = read_expr(state, add_expr(state));
11188 integral(state, right);
11189 right = integral_promotion(state, right);
11191 op = (tok == TOK_SL)? OP_SL :
11192 is_signed(left->type)? OP_SSR: OP_USR;
11194 def = triple(state, op, left->type, left, right);
11195 break;
11196 default:
11197 done = 1;
11198 break;
11200 } while(!done);
11201 return def;
11204 static struct triple *relational_expr(struct compile_state *state)
11206 #if DEBUG_ROMCC_WARNINGS
11207 #warning "Extend relational exprs to work on more than arithmetic types"
11208 #endif
11209 struct triple *def;
11210 int done;
11211 def = shift_expr(state);
11212 do {
11213 struct triple *left, *right;
11214 struct type *arg_type;
11215 int tok, op, sign;
11216 done = 0;
11217 switch((tok = peek(state))) {
11218 case TOK_LESS:
11219 case TOK_MORE:
11220 case TOK_LESSEQ:
11221 case TOK_MOREEQ:
11222 left = read_expr(state, def);
11223 arithmetic(state, left);
11225 eat(state, tok);
11227 right = read_expr(state, shift_expr(state));
11228 arithmetic(state, right);
11230 arg_type = arithmetic_result(state, left, right);
11231 sign = is_signed(arg_type);
11232 op = -1;
11233 switch(tok) {
11234 case TOK_LESS: op = sign? OP_SLESS : OP_ULESS; break;
11235 case TOK_MORE: op = sign? OP_SMORE : OP_UMORE; break;
11236 case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11237 case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11239 def = triple(state, op, &int_type, left, right);
11240 break;
11241 default:
11242 done = 1;
11243 break;
11245 } while(!done);
11246 return def;
11249 static struct triple *equality_expr(struct compile_state *state)
11251 #if DEBUG_ROMCC_WARNINGS
11252 #warning "Extend equality exprs to work on more than arithmetic types"
11253 #endif
11254 struct triple *def;
11255 int done;
11256 def = relational_expr(state);
11257 do {
11258 struct triple *left, *right;
11259 int tok, op;
11260 done = 0;
11261 switch((tok = peek(state))) {
11262 case TOK_EQEQ:
11263 case TOK_NOTEQ:
11264 left = read_expr(state, def);
11265 arithmetic(state, left);
11266 eat(state, tok);
11267 right = read_expr(state, relational_expr(state));
11268 arithmetic(state, right);
11269 op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11270 def = triple(state, op, &int_type, left, right);
11271 break;
11272 default:
11273 done = 1;
11274 break;
11276 } while(!done);
11277 return def;
11280 static struct triple *and_expr(struct compile_state *state)
11282 struct triple *def;
11283 def = equality_expr(state);
11284 while(peek(state) == TOK_AND) {
11285 struct triple *left, *right;
11286 struct type *result_type;
11287 left = read_expr(state, def);
11288 integral(state, left);
11289 eat(state, TOK_AND);
11290 right = read_expr(state, equality_expr(state));
11291 integral(state, right);
11292 result_type = arithmetic_result(state, left, right);
11293 def = triple(state, OP_AND, result_type, left, right);
11295 return def;
11298 static struct triple *xor_expr(struct compile_state *state)
11300 struct triple *def;
11301 def = and_expr(state);
11302 while(peek(state) == TOK_XOR) {
11303 struct triple *left, *right;
11304 struct type *result_type;
11305 left = read_expr(state, def);
11306 integral(state, left);
11307 eat(state, TOK_XOR);
11308 right = read_expr(state, and_expr(state));
11309 integral(state, right);
11310 result_type = arithmetic_result(state, left, right);
11311 def = triple(state, OP_XOR, result_type, left, right);
11313 return def;
11316 static struct triple *or_expr(struct compile_state *state)
11318 struct triple *def;
11319 def = xor_expr(state);
11320 while(peek(state) == TOK_OR) {
11321 struct triple *left, *right;
11322 struct type *result_type;
11323 left = read_expr(state, def);
11324 integral(state, left);
11325 eat(state, TOK_OR);
11326 right = read_expr(state, xor_expr(state));
11327 integral(state, right);
11328 result_type = arithmetic_result(state, left, right);
11329 def = triple(state, OP_OR, result_type, left, right);
11331 return def;
11334 static struct triple *land_expr(struct compile_state *state)
11336 struct triple *def;
11337 def = or_expr(state);
11338 while(peek(state) == TOK_LOGAND) {
11339 struct triple *left, *right;
11340 left = read_expr(state, def);
11341 bool(state, left);
11342 eat(state, TOK_LOGAND);
11343 right = read_expr(state, or_expr(state));
11344 bool(state, right);
11346 def = mkland_expr(state,
11347 ltrue_expr(state, left),
11348 ltrue_expr(state, right));
11350 return def;
11353 static struct triple *lor_expr(struct compile_state *state)
11355 struct triple *def;
11356 def = land_expr(state);
11357 while(peek(state) == TOK_LOGOR) {
11358 struct triple *left, *right;
11359 left = read_expr(state, def);
11360 bool(state, left);
11361 eat(state, TOK_LOGOR);
11362 right = read_expr(state, land_expr(state));
11363 bool(state, right);
11365 def = mklor_expr(state,
11366 ltrue_expr(state, left),
11367 ltrue_expr(state, right));
11369 return def;
11372 static struct triple *conditional_expr(struct compile_state *state)
11374 struct triple *def;
11375 def = lor_expr(state);
11376 if (peek(state) == TOK_QUEST) {
11377 struct triple *test, *left, *right;
11378 bool(state, def);
11379 test = ltrue_expr(state, read_expr(state, def));
11380 eat(state, TOK_QUEST);
11381 left = read_expr(state, expr(state));
11382 eat(state, TOK_COLON);
11383 right = read_expr(state, conditional_expr(state));
11385 def = mkcond_expr(state, test, left, right);
11387 return def;
11390 struct cv_triple {
11391 struct triple *val;
11392 int id;
11395 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11396 struct triple *dest, struct triple *val)
11398 if (cv[dest->id].val) {
11399 free_triple(state, cv[dest->id].val);
11401 cv[dest->id].val = val;
11403 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11404 struct triple *src)
11406 return cv[src->id].val;
11409 static struct triple *eval_const_expr(
11410 struct compile_state *state, struct triple *expr)
11412 struct triple *def;
11413 if (is_const(expr)) {
11414 def = expr;
11416 else {
11417 /* If we don't start out as a constant simplify into one */
11418 struct triple *head, *ptr;
11419 struct cv_triple *cv;
11420 int i, count;
11421 head = label(state); /* dummy initial triple */
11422 flatten(state, head, expr);
11423 count = 1;
11424 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11425 count++;
11427 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11428 i = 1;
11429 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11430 cv[i].val = 0;
11431 cv[i].id = ptr->id;
11432 ptr->id = i;
11433 i++;
11435 ptr = head->next;
11436 do {
11437 valid_ins(state, ptr);
11438 if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11439 internal_error(state, ptr,
11440 "unexpected %s in constant expression",
11441 tops(ptr->op));
11443 else if (ptr->op == OP_LIST) {
11445 else if (triple_is_structural(state, ptr)) {
11446 ptr = ptr->next;
11448 else if (triple_is_ubranch(state, ptr)) {
11449 ptr = TARG(ptr, 0);
11451 else if (triple_is_cbranch(state, ptr)) {
11452 struct triple *cond_val;
11453 cond_val = get_cv(state, cv, RHS(ptr, 0));
11454 if (!cond_val || !is_const(cond_val) ||
11455 (cond_val->op != OP_INTCONST))
11457 internal_error(state, ptr, "bad branch condition");
11459 if (cond_val->u.cval == 0) {
11460 ptr = ptr->next;
11461 } else {
11462 ptr = TARG(ptr, 0);
11465 else if (triple_is_branch(state, ptr)) {
11466 error(state, ptr, "bad branch type in constant expression");
11468 else if (ptr->op == OP_WRITE) {
11469 struct triple *val;
11470 val = get_cv(state, cv, RHS(ptr, 0));
11472 set_cv(state, cv, MISC(ptr, 0),
11473 copy_triple(state, val));
11474 set_cv(state, cv, ptr,
11475 copy_triple(state, val));
11476 ptr = ptr->next;
11478 else if (ptr->op == OP_READ) {
11479 set_cv(state, cv, ptr,
11480 copy_triple(state,
11481 get_cv(state, cv, RHS(ptr, 0))));
11482 ptr = ptr->next;
11484 else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11485 struct triple *val, **rhs;
11486 val = copy_triple(state, ptr);
11487 rhs = triple_rhs(state, val, 0);
11488 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11489 if (!*rhs) {
11490 internal_error(state, ptr, "Missing rhs");
11492 *rhs = get_cv(state, cv, *rhs);
11494 simplify(state, val);
11495 set_cv(state, cv, ptr, val);
11496 ptr = ptr->next;
11498 else {
11499 error(state, ptr, "impure operation in constant expression");
11502 } while(ptr != head);
11504 /* Get the result value */
11505 def = get_cv(state, cv, head->prev);
11506 cv[head->prev->id].val = 0;
11508 /* Free the temporary values */
11509 for(i = 0; i < count; i++) {
11510 if (cv[i].val) {
11511 free_triple(state, cv[i].val);
11512 cv[i].val = 0;
11515 xfree(cv);
11516 /* Free the intermediate expressions */
11517 while(head->next != head) {
11518 release_triple(state, head->next);
11520 free_triple(state, head);
11522 if (!is_const(def)) {
11523 error(state, expr, "Not a constant expression");
11525 return def;
11528 static struct triple *constant_expr(struct compile_state *state)
11530 return eval_const_expr(state, conditional_expr(state));
11533 static struct triple *assignment_expr(struct compile_state *state)
11535 struct triple *def, *left, *right;
11536 int tok, op, sign;
11537 /* The C grammer in K&R shows assignment expressions
11538 * only taking unary expressions as input on their
11539 * left hand side. But specifies the precedence of
11540 * assignemnt as the lowest operator except for comma.
11542 * Allowing conditional expressions on the left hand side
11543 * of an assignement results in a grammar that accepts
11544 * a larger set of statements than standard C. As long
11545 * as the subset of the grammar that is standard C behaves
11546 * correctly this should cause no problems.
11548 * For the extra token strings accepted by the grammar
11549 * none of them should produce a valid lvalue, so they
11550 * should not produce functioning programs.
11552 * GCC has this bug as well, so surprises should be minimal.
11554 def = conditional_expr(state);
11555 left = def;
11556 switch((tok = peek(state))) {
11557 case TOK_EQ:
11558 lvalue(state, left);
11559 eat(state, TOK_EQ);
11560 def = write_expr(state, left,
11561 read_expr(state, assignment_expr(state)));
11562 break;
11563 case TOK_TIMESEQ:
11564 case TOK_DIVEQ:
11565 case TOK_MODEQ:
11566 lvalue(state, left);
11567 arithmetic(state, left);
11568 eat(state, tok);
11569 right = read_expr(state, assignment_expr(state));
11570 arithmetic(state, right);
11572 sign = is_signed(left->type);
11573 op = -1;
11574 switch(tok) {
11575 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11576 case TOK_DIVEQ: op = sign? OP_SDIV : OP_UDIV; break;
11577 case TOK_MODEQ: op = sign? OP_SMOD : OP_UMOD; break;
11579 def = write_expr(state, left,
11580 triple(state, op, left->type,
11581 read_expr(state, left), right));
11582 break;
11583 case TOK_PLUSEQ:
11584 lvalue(state, left);
11585 eat(state, TOK_PLUSEQ);
11586 def = write_expr(state, left,
11587 mk_add_expr(state, left, assignment_expr(state)));
11588 break;
11589 case TOK_MINUSEQ:
11590 lvalue(state, left);
11591 eat(state, TOK_MINUSEQ);
11592 def = write_expr(state, left,
11593 mk_sub_expr(state, left, assignment_expr(state)));
11594 break;
11595 case TOK_SLEQ:
11596 case TOK_SREQ:
11597 case TOK_ANDEQ:
11598 case TOK_XOREQ:
11599 case TOK_OREQ:
11600 lvalue(state, left);
11601 integral(state, left);
11602 eat(state, tok);
11603 right = read_expr(state, assignment_expr(state));
11604 integral(state, right);
11605 right = integral_promotion(state, right);
11606 sign = is_signed(left->type);
11607 op = -1;
11608 switch(tok) {
11609 case TOK_SLEQ: op = OP_SL; break;
11610 case TOK_SREQ: op = sign? OP_SSR: OP_USR; break;
11611 case TOK_ANDEQ: op = OP_AND; break;
11612 case TOK_XOREQ: op = OP_XOR; break;
11613 case TOK_OREQ: op = OP_OR; break;
11615 def = write_expr(state, left,
11616 triple(state, op, left->type,
11617 read_expr(state, left), right));
11618 break;
11620 return def;
11623 static struct triple *expr(struct compile_state *state)
11625 struct triple *def;
11626 def = assignment_expr(state);
11627 while(peek(state) == TOK_COMMA) {
11628 eat(state, TOK_COMMA);
11629 def = mkprog(state, def, assignment_expr(state), 0UL);
11631 return def;
11634 static void expr_statement(struct compile_state *state, struct triple *first)
11636 if (peek(state) != TOK_SEMI) {
11637 /* lvalue conversions always apply except when certian operators
11638 * are applied. I apply the lvalue conversions here
11639 * as I know no more operators will be applied.
11641 flatten(state, first, lvalue_conversion(state, expr(state)));
11643 eat(state, TOK_SEMI);
11646 static void if_statement(struct compile_state *state, struct triple *first)
11648 struct triple *test, *jmp1, *jmp2, *middle, *end;
11650 jmp1 = jmp2 = middle = 0;
11651 eat(state, TOK_IF);
11652 eat(state, TOK_LPAREN);
11653 test = expr(state);
11654 bool(state, test);
11655 /* Cleanup and invert the test */
11656 test = lfalse_expr(state, read_expr(state, test));
11657 eat(state, TOK_RPAREN);
11658 /* Generate the needed pieces */
11659 middle = label(state);
11660 jmp1 = branch(state, middle, test);
11661 /* Thread the pieces together */
11662 flatten(state, first, test);
11663 flatten(state, first, jmp1);
11664 flatten(state, first, label(state));
11665 statement(state, first);
11666 if (peek(state) == TOK_ELSE) {
11667 eat(state, TOK_ELSE);
11668 /* Generate the rest of the pieces */
11669 end = label(state);
11670 jmp2 = branch(state, end, 0);
11671 /* Thread them together */
11672 flatten(state, first, jmp2);
11673 flatten(state, first, middle);
11674 statement(state, first);
11675 flatten(state, first, end);
11677 else {
11678 flatten(state, first, middle);
11682 static void for_statement(struct compile_state *state, struct triple *first)
11684 struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11685 struct triple *label1, *label2, *label3;
11686 struct hash_entry *ident;
11688 eat(state, TOK_FOR);
11689 eat(state, TOK_LPAREN);
11690 head = test = tail = jmp1 = jmp2 = 0;
11691 if (peek(state) != TOK_SEMI) {
11692 head = expr(state);
11694 eat(state, TOK_SEMI);
11695 if (peek(state) != TOK_SEMI) {
11696 test = expr(state);
11697 bool(state, test);
11698 test = ltrue_expr(state, read_expr(state, test));
11700 eat(state, TOK_SEMI);
11701 if (peek(state) != TOK_RPAREN) {
11702 tail = expr(state);
11704 eat(state, TOK_RPAREN);
11705 /* Generate the needed pieces */
11706 label1 = label(state);
11707 label2 = label(state);
11708 label3 = label(state);
11709 if (test) {
11710 jmp1 = branch(state, label3, 0);
11711 jmp2 = branch(state, label1, test);
11713 else {
11714 jmp2 = branch(state, label1, 0);
11716 end = label(state);
11717 /* Remember where break and continue go */
11718 start_scope(state);
11719 ident = state->i_break;
11720 symbol(state, ident, &ident->sym_ident, end, end->type);
11721 ident = state->i_continue;
11722 symbol(state, ident, &ident->sym_ident, label2, label2->type);
11723 /* Now include the body */
11724 flatten(state, first, head);
11725 flatten(state, first, jmp1);
11726 flatten(state, first, label1);
11727 statement(state, first);
11728 flatten(state, first, label2);
11729 flatten(state, first, tail);
11730 flatten(state, first, label3);
11731 flatten(state, first, test);
11732 flatten(state, first, jmp2);
11733 flatten(state, first, end);
11734 /* Cleanup the break/continue scope */
11735 end_scope(state);
11738 static void while_statement(struct compile_state *state, struct triple *first)
11740 struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11741 struct hash_entry *ident;
11742 eat(state, TOK_WHILE);
11743 eat(state, TOK_LPAREN);
11744 test = expr(state);
11745 bool(state, test);
11746 test = ltrue_expr(state, read_expr(state, test));
11747 eat(state, TOK_RPAREN);
11748 /* Generate the needed pieces */
11749 label1 = label(state);
11750 label2 = label(state);
11751 jmp1 = branch(state, label2, 0);
11752 jmp2 = branch(state, label1, test);
11753 end = label(state);
11754 /* Remember where break and continue go */
11755 start_scope(state);
11756 ident = state->i_break;
11757 symbol(state, ident, &ident->sym_ident, end, end->type);
11758 ident = state->i_continue;
11759 symbol(state, ident, &ident->sym_ident, label2, label2->type);
11760 /* Thread them together */
11761 flatten(state, first, jmp1);
11762 flatten(state, first, label1);
11763 statement(state, first);
11764 flatten(state, first, label2);
11765 flatten(state, first, test);
11766 flatten(state, first, jmp2);
11767 flatten(state, first, end);
11768 /* Cleanup the break/continue scope */
11769 end_scope(state);
11772 static void do_statement(struct compile_state *state, struct triple *first)
11774 struct triple *label1, *label2, *test, *end;
11775 struct hash_entry *ident;
11776 eat(state, TOK_DO);
11777 /* Generate the needed pieces */
11778 label1 = label(state);
11779 label2 = label(state);
11780 end = label(state);
11781 /* Remember where break and continue go */
11782 start_scope(state);
11783 ident = state->i_break;
11784 symbol(state, ident, &ident->sym_ident, end, end->type);
11785 ident = state->i_continue;
11786 symbol(state, ident, &ident->sym_ident, label2, label2->type);
11787 /* Now include the body */
11788 flatten(state, first, label1);
11789 statement(state, first);
11790 /* Cleanup the break/continue scope */
11791 end_scope(state);
11792 /* Eat the rest of the loop */
11793 eat(state, TOK_WHILE);
11794 eat(state, TOK_LPAREN);
11795 test = read_expr(state, expr(state));
11796 bool(state, test);
11797 eat(state, TOK_RPAREN);
11798 eat(state, TOK_SEMI);
11799 /* Thread the pieces together */
11800 test = ltrue_expr(state, test);
11801 flatten(state, first, label2);
11802 flatten(state, first, test);
11803 flatten(state, first, branch(state, label1, test));
11804 flatten(state, first, end);
11808 static void return_statement(struct compile_state *state, struct triple *first)
11810 struct triple *jmp, *mv, *dest, *var, *val;
11811 int last;
11812 eat(state, TOK_RETURN);
11814 #if DEBUG_ROMCC_WARNINGS
11815 #warning "FIXME implement a more general excess branch elimination"
11816 #endif
11817 val = 0;
11818 /* If we have a return value do some more work */
11819 if (peek(state) != TOK_SEMI) {
11820 val = read_expr(state, expr(state));
11822 eat(state, TOK_SEMI);
11824 /* See if this last statement in a function */
11825 last = ((peek(state) == TOK_RBRACE) &&
11826 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11828 /* Find the return variable */
11829 var = fresult(state, state->main_function);
11831 /* Find the return destination */
11832 dest = state->i_return->sym_ident->def;
11833 mv = jmp = 0;
11834 /* If needed generate a jump instruction */
11835 if (!last) {
11836 jmp = branch(state, dest, 0);
11838 /* If needed generate an assignment instruction */
11839 if (val) {
11840 mv = write_expr(state, deref_index(state, var, 1), val);
11842 /* Now put the code together */
11843 if (mv) {
11844 flatten(state, first, mv);
11845 flatten(state, first, jmp);
11847 else if (jmp) {
11848 flatten(state, first, jmp);
11852 static void break_statement(struct compile_state *state, struct triple *first)
11854 struct triple *dest;
11855 eat(state, TOK_BREAK);
11856 eat(state, TOK_SEMI);
11857 if (!state->i_break->sym_ident) {
11858 error(state, 0, "break statement not within loop or switch");
11860 dest = state->i_break->sym_ident->def;
11861 flatten(state, first, branch(state, dest, 0));
11864 static void continue_statement(struct compile_state *state, struct triple *first)
11866 struct triple *dest;
11867 eat(state, TOK_CONTINUE);
11868 eat(state, TOK_SEMI);
11869 if (!state->i_continue->sym_ident) {
11870 error(state, 0, "continue statement outside of a loop");
11872 dest = state->i_continue->sym_ident->def;
11873 flatten(state, first, branch(state, dest, 0));
11876 static void goto_statement(struct compile_state *state, struct triple *first)
11878 struct hash_entry *ident;
11879 eat(state, TOK_GOTO);
11880 ident = eat(state, TOK_IDENT)->ident;
11881 if (!ident->sym_label) {
11882 /* If this is a forward branch allocate the label now,
11883 * it will be flattend in the appropriate location later.
11885 struct triple *ins;
11886 ins = label(state);
11887 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11889 eat(state, TOK_SEMI);
11891 flatten(state, first, branch(state, ident->sym_label->def, 0));
11894 static void labeled_statement(struct compile_state *state, struct triple *first)
11896 struct triple *ins;
11897 struct hash_entry *ident;
11899 ident = eat(state, TOK_IDENT)->ident;
11900 if (ident->sym_label && ident->sym_label->def) {
11901 ins = ident->sym_label->def;
11902 put_occurance(ins->occurance);
11903 ins->occurance = new_occurance(state);
11905 else {
11906 ins = label(state);
11907 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11909 if (ins->id & TRIPLE_FLAG_FLATTENED) {
11910 error(state, 0, "label %s already defined", ident->name);
11912 flatten(state, first, ins);
11914 eat(state, TOK_COLON);
11915 statement(state, first);
11918 static void switch_statement(struct compile_state *state, struct triple *first)
11920 struct triple *value, *top, *end, *dbranch;
11921 struct hash_entry *ident;
11923 /* See if we have a valid switch statement */
11924 eat(state, TOK_SWITCH);
11925 eat(state, TOK_LPAREN);
11926 value = expr(state);
11927 integral(state, value);
11928 value = read_expr(state, value);
11929 eat(state, TOK_RPAREN);
11930 /* Generate the needed pieces */
11931 top = label(state);
11932 end = label(state);
11933 dbranch = branch(state, end, 0);
11934 /* Remember where case branches and break goes */
11935 start_scope(state);
11936 ident = state->i_switch;
11937 symbol(state, ident, &ident->sym_ident, value, value->type);
11938 ident = state->i_case;
11939 symbol(state, ident, &ident->sym_ident, top, top->type);
11940 ident = state->i_break;
11941 symbol(state, ident, &ident->sym_ident, end, end->type);
11942 ident = state->i_default;
11943 symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11944 /* Thread them together */
11945 flatten(state, first, value);
11946 flatten(state, first, top);
11947 flatten(state, first, dbranch);
11948 statement(state, first);
11949 flatten(state, first, end);
11950 /* Cleanup the switch scope */
11951 end_scope(state);
11954 static void case_statement(struct compile_state *state, struct triple *first)
11956 struct triple *cvalue, *dest, *test, *jmp;
11957 struct triple *ptr, *value, *top, *dbranch;
11959 /* See if w have a valid case statement */
11960 eat(state, TOK_CASE);
11961 cvalue = constant_expr(state);
11962 integral(state, cvalue);
11963 if (cvalue->op != OP_INTCONST) {
11964 error(state, 0, "integer constant expected");
11966 eat(state, TOK_COLON);
11967 if (!state->i_case->sym_ident) {
11968 error(state, 0, "case statement not within a switch");
11971 /* Lookup the interesting pieces */
11972 top = state->i_case->sym_ident->def;
11973 value = state->i_switch->sym_ident->def;
11974 dbranch = state->i_default->sym_ident->def;
11976 /* See if this case label has already been used */
11977 for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11978 if (ptr->op != OP_EQ) {
11979 continue;
11981 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
11982 error(state, 0, "duplicate case %d statement",
11983 cvalue->u.cval);
11986 /* Generate the needed pieces */
11987 dest = label(state);
11988 test = triple(state, OP_EQ, &int_type, value, cvalue);
11989 jmp = branch(state, dest, test);
11990 /* Thread the pieces together */
11991 flatten(state, dbranch, test);
11992 flatten(state, dbranch, jmp);
11993 flatten(state, dbranch, label(state));
11994 flatten(state, first, dest);
11995 statement(state, first);
11998 static void default_statement(struct compile_state *state, struct triple *first)
12000 struct triple *dest;
12001 struct triple *dbranch, *end;
12003 /* See if we have a valid default statement */
12004 eat(state, TOK_DEFAULT);
12005 eat(state, TOK_COLON);
12007 if (!state->i_case->sym_ident) {
12008 error(state, 0, "default statement not within a switch");
12011 /* Lookup the interesting pieces */
12012 dbranch = state->i_default->sym_ident->def;
12013 end = state->i_break->sym_ident->def;
12015 /* See if a default statement has already happened */
12016 if (TARG(dbranch, 0) != end) {
12017 error(state, 0, "duplicate default statement");
12020 /* Generate the needed pieces */
12021 dest = label(state);
12023 /* Blame the branch on the default statement */
12024 put_occurance(dbranch->occurance);
12025 dbranch->occurance = new_occurance(state);
12027 /* Thread the pieces together */
12028 TARG(dbranch, 0) = dest;
12029 use_triple(dest, dbranch);
12030 flatten(state, first, dest);
12031 statement(state, first);
12034 static void asm_statement(struct compile_state *state, struct triple *first)
12036 struct asm_info *info;
12037 struct {
12038 struct triple *constraint;
12039 struct triple *expr;
12040 } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12041 struct triple *def, *asm_str;
12042 int out, in, clobbers, more, colons, i;
12043 int flags;
12045 flags = 0;
12046 eat(state, TOK_ASM);
12047 /* For now ignore the qualifiers */
12048 switch(peek(state)) {
12049 case TOK_CONST:
12050 eat(state, TOK_CONST);
12051 break;
12052 case TOK_VOLATILE:
12053 eat(state, TOK_VOLATILE);
12054 flags |= TRIPLE_FLAG_VOLATILE;
12055 break;
12057 eat(state, TOK_LPAREN);
12058 asm_str = string_constant(state);
12060 colons = 0;
12061 out = in = clobbers = 0;
12062 /* Outputs */
12063 if ((colons == 0) && (peek(state) == TOK_COLON)) {
12064 eat(state, TOK_COLON);
12065 colons++;
12066 more = (peek(state) == TOK_LIT_STRING);
12067 while(more) {
12068 struct triple *var;
12069 struct triple *constraint;
12070 char *str;
12071 more = 0;
12072 if (out > MAX_LHS) {
12073 error(state, 0, "Maximum output count exceeded.");
12075 constraint = string_constant(state);
12076 str = constraint->u.blob;
12077 if (str[0] != '=') {
12078 error(state, 0, "Output constraint does not start with =");
12080 constraint->u.blob = str + 1;
12081 eat(state, TOK_LPAREN);
12082 var = conditional_expr(state);
12083 eat(state, TOK_RPAREN);
12085 lvalue(state, var);
12086 out_param[out].constraint = constraint;
12087 out_param[out].expr = var;
12088 if (peek(state) == TOK_COMMA) {
12089 eat(state, TOK_COMMA);
12090 more = 1;
12092 out++;
12095 /* Inputs */
12096 if ((colons == 1) && (peek(state) == TOK_COLON)) {
12097 eat(state, TOK_COLON);
12098 colons++;
12099 more = (peek(state) == TOK_LIT_STRING);
12100 while(more) {
12101 struct triple *val;
12102 struct triple *constraint;
12103 char *str;
12104 more = 0;
12105 if (in > MAX_RHS) {
12106 error(state, 0, "Maximum input count exceeded.");
12108 constraint = string_constant(state);
12109 str = constraint->u.blob;
12110 if (digitp(str[0] && str[1] == '\0')) {
12111 int val;
12112 val = digval(str[0]);
12113 if ((val < 0) || (val >= out)) {
12114 error(state, 0, "Invalid input constraint %d", val);
12117 eat(state, TOK_LPAREN);
12118 val = conditional_expr(state);
12119 eat(state, TOK_RPAREN);
12121 in_param[in].constraint = constraint;
12122 in_param[in].expr = val;
12123 if (peek(state) == TOK_COMMA) {
12124 eat(state, TOK_COMMA);
12125 more = 1;
12127 in++;
12131 /* Clobber */
12132 if ((colons == 2) && (peek(state) == TOK_COLON)) {
12133 eat(state, TOK_COLON);
12134 colons++;
12135 more = (peek(state) == TOK_LIT_STRING);
12136 while(more) {
12137 struct triple *clobber;
12138 more = 0;
12139 if ((clobbers + out) > MAX_LHS) {
12140 error(state, 0, "Maximum clobber limit exceeded.");
12142 clobber = string_constant(state);
12144 clob_param[clobbers].constraint = clobber;
12145 if (peek(state) == TOK_COMMA) {
12146 eat(state, TOK_COMMA);
12147 more = 1;
12149 clobbers++;
12152 eat(state, TOK_RPAREN);
12153 eat(state, TOK_SEMI);
12156 info = xcmalloc(sizeof(*info), "asm_info");
12157 info->str = asm_str->u.blob;
12158 free_triple(state, asm_str);
12160 def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12161 def->u.ainfo = info;
12162 def->id |= flags;
12164 /* Find the register constraints */
12165 for(i = 0; i < out; i++) {
12166 struct triple *constraint;
12167 constraint = out_param[i].constraint;
12168 info->tmpl.lhs[i] = arch_reg_constraint(state,
12169 out_param[i].expr->type, constraint->u.blob);
12170 free_triple(state, constraint);
12172 for(; i - out < clobbers; i++) {
12173 struct triple *constraint;
12174 constraint = clob_param[i - out].constraint;
12175 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12176 free_triple(state, constraint);
12178 for(i = 0; i < in; i++) {
12179 struct triple *constraint;
12180 const char *str;
12181 constraint = in_param[i].constraint;
12182 str = constraint->u.blob;
12183 if (digitp(str[0]) && str[1] == '\0') {
12184 struct reg_info cinfo;
12185 int val;
12186 val = digval(str[0]);
12187 cinfo.reg = info->tmpl.lhs[val].reg;
12188 cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12189 cinfo.regcm &= info->tmpl.lhs[val].regcm;
12190 if (cinfo.reg == REG_UNSET) {
12191 cinfo.reg = REG_VIRT0 + val;
12193 if (cinfo.regcm == 0) {
12194 error(state, 0, "No registers for %d", val);
12196 info->tmpl.lhs[val] = cinfo;
12197 info->tmpl.rhs[i] = cinfo;
12199 } else {
12200 info->tmpl.rhs[i] = arch_reg_constraint(state,
12201 in_param[i].expr->type, str);
12203 free_triple(state, constraint);
12206 /* Now build the helper expressions */
12207 for(i = 0; i < in; i++) {
12208 RHS(def, i) = read_expr(state, in_param[i].expr);
12210 flatten(state, first, def);
12211 for(i = 0; i < (out + clobbers); i++) {
12212 struct type *type;
12213 struct triple *piece;
12214 if (i < out) {
12215 type = out_param[i].expr->type;
12216 } else {
12217 size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12218 if (size >= SIZEOF_LONG) {
12219 type = &ulong_type;
12221 else if (size >= SIZEOF_INT) {
12222 type = &uint_type;
12224 else if (size >= SIZEOF_SHORT) {
12225 type = &ushort_type;
12227 else {
12228 type = &uchar_type;
12231 piece = triple(state, OP_PIECE, type, def, 0);
12232 piece->u.cval = i;
12233 LHS(def, i) = piece;
12234 flatten(state, first, piece);
12236 /* And write the helpers to their destinations */
12237 for(i = 0; i < out; i++) {
12238 struct triple *piece;
12239 piece = LHS(def, i);
12240 flatten(state, first,
12241 write_expr(state, out_param[i].expr, piece));
12246 static int isdecl(int tok)
12248 switch(tok) {
12249 case TOK_AUTO:
12250 case TOK_REGISTER:
12251 case TOK_STATIC:
12252 case TOK_EXTERN:
12253 case TOK_TYPEDEF:
12254 case TOK_CONST:
12255 case TOK_RESTRICT:
12256 case TOK_VOLATILE:
12257 case TOK_VOID:
12258 case TOK_CHAR:
12259 case TOK_SHORT:
12260 case TOK_INT:
12261 case TOK_LONG:
12262 case TOK_FLOAT:
12263 case TOK_DOUBLE:
12264 case TOK_SIGNED:
12265 case TOK_UNSIGNED:
12266 case TOK_STRUCT:
12267 case TOK_UNION:
12268 case TOK_ENUM:
12269 case TOK_TYPE_NAME: /* typedef name */
12270 return 1;
12271 default:
12272 return 0;
12276 static void compound_statement(struct compile_state *state, struct triple *first)
12278 eat(state, TOK_LBRACE);
12279 start_scope(state);
12281 /* statement-list opt */
12282 while (peek(state) != TOK_RBRACE) {
12283 statement(state, first);
12285 end_scope(state);
12286 eat(state, TOK_RBRACE);
12289 static void statement(struct compile_state *state, struct triple *first)
12291 int tok;
12292 tok = peek(state);
12293 if (tok == TOK_LBRACE) {
12294 compound_statement(state, first);
12296 else if (tok == TOK_IF) {
12297 if_statement(state, first);
12299 else if (tok == TOK_FOR) {
12300 for_statement(state, first);
12302 else if (tok == TOK_WHILE) {
12303 while_statement(state, first);
12305 else if (tok == TOK_DO) {
12306 do_statement(state, first);
12308 else if (tok == TOK_RETURN) {
12309 return_statement(state, first);
12311 else if (tok == TOK_BREAK) {
12312 break_statement(state, first);
12314 else if (tok == TOK_CONTINUE) {
12315 continue_statement(state, first);
12317 else if (tok == TOK_GOTO) {
12318 goto_statement(state, first);
12320 else if (tok == TOK_SWITCH) {
12321 switch_statement(state, first);
12323 else if (tok == TOK_ASM) {
12324 asm_statement(state, first);
12326 else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12327 labeled_statement(state, first);
12329 else if (tok == TOK_CASE) {
12330 case_statement(state, first);
12332 else if (tok == TOK_DEFAULT) {
12333 default_statement(state, first);
12335 else if (isdecl(tok)) {
12336 /* This handles C99 intermixing of statements and decls */
12337 decl(state, first);
12339 else {
12340 expr_statement(state, first);
12344 static struct type *param_decl(struct compile_state *state)
12346 struct type *type;
12347 struct hash_entry *ident;
12348 /* Cheat so the declarator will know we are not global */
12349 start_scope(state);
12350 ident = 0;
12351 type = decl_specifiers(state);
12352 type = declarator(state, type, &ident, 0);
12353 type->field_ident = ident;
12354 end_scope(state);
12355 return type;
12358 static struct type *param_type_list(struct compile_state *state, struct type *type)
12360 struct type *ftype, **next;
12361 ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12362 next = &ftype->right;
12363 ftype->elements = 1;
12364 while(peek(state) == TOK_COMMA) {
12365 eat(state, TOK_COMMA);
12366 if (peek(state) == TOK_DOTS) {
12367 eat(state, TOK_DOTS);
12368 error(state, 0, "variadic functions not supported");
12370 else {
12371 *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12372 next = &((*next)->right);
12373 ftype->elements++;
12376 return ftype;
12379 static struct type *type_name(struct compile_state *state)
12381 struct type *type;
12382 type = specifier_qualifier_list(state);
12383 /* abstract-declarator (may consume no tokens) */
12384 type = declarator(state, type, 0, 0);
12385 return type;
12388 static struct type *direct_declarator(
12389 struct compile_state *state, struct type *type,
12390 struct hash_entry **pident, int need_ident)
12392 struct hash_entry *ident;
12393 struct type *outer;
12394 int op;
12395 outer = 0;
12396 arrays_complete(state, type);
12397 switch(peek(state)) {
12398 case TOK_IDENT:
12399 ident = eat(state, TOK_IDENT)->ident;
12400 if (!ident) {
12401 error(state, 0, "Unexpected identifier found");
12403 /* The name of what we are declaring */
12404 *pident = ident;
12405 break;
12406 case TOK_LPAREN:
12407 eat(state, TOK_LPAREN);
12408 outer = declarator(state, type, pident, need_ident);
12409 eat(state, TOK_RPAREN);
12410 break;
12411 default:
12412 if (need_ident) {
12413 error(state, 0, "Identifier expected");
12415 break;
12417 do {
12418 op = 1;
12419 arrays_complete(state, type);
12420 switch(peek(state)) {
12421 case TOK_LPAREN:
12422 eat(state, TOK_LPAREN);
12423 type = param_type_list(state, type);
12424 eat(state, TOK_RPAREN);
12425 break;
12426 case TOK_LBRACKET:
12428 unsigned int qualifiers;
12429 struct triple *value;
12430 value = 0;
12431 eat(state, TOK_LBRACKET);
12432 if (peek(state) != TOK_RBRACKET) {
12433 value = constant_expr(state);
12434 integral(state, value);
12436 eat(state, TOK_RBRACKET);
12438 qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12439 type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12440 if (value) {
12441 type->elements = value->u.cval;
12442 free_triple(state, value);
12443 } else {
12444 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12445 op = 0;
12448 break;
12449 default:
12450 op = 0;
12451 break;
12453 } while(op);
12454 if (outer) {
12455 struct type *inner;
12456 arrays_complete(state, type);
12457 FINISHME();
12458 for(inner = outer; inner->left; inner = inner->left)
12460 inner->left = type;
12461 type = outer;
12463 return type;
12466 static struct type *declarator(
12467 struct compile_state *state, struct type *type,
12468 struct hash_entry **pident, int need_ident)
12470 while(peek(state) == TOK_STAR) {
12471 eat(state, TOK_STAR);
12472 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12474 type = direct_declarator(state, type, pident, need_ident);
12475 return type;
12478 static struct type *typedef_name(
12479 struct compile_state *state, unsigned int specifiers)
12481 struct hash_entry *ident;
12482 struct type *type;
12483 ident = eat(state, TOK_TYPE_NAME)->ident;
12484 type = ident->sym_ident->type;
12485 specifiers |= type->type & QUAL_MASK;
12486 if ((specifiers & (STOR_MASK | QUAL_MASK)) !=
12487 (type->type & (STOR_MASK | QUAL_MASK))) {
12488 type = clone_type(specifiers, type);
12490 return type;
12493 static struct type *enum_specifier(
12494 struct compile_state *state, unsigned int spec)
12496 struct hash_entry *ident;
12497 ulong_t base;
12498 int tok;
12499 struct type *enum_type;
12500 enum_type = 0;
12501 ident = 0;
12502 eat(state, TOK_ENUM);
12503 tok = peek(state);
12504 if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12505 ident = eat(state, tok)->ident;
12507 base = 0;
12508 if (!ident || (peek(state) == TOK_LBRACE)) {
12509 struct type **next;
12510 eat(state, TOK_LBRACE);
12511 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12512 enum_type->type_ident = ident;
12513 next = &enum_type->right;
12514 do {
12515 struct hash_entry *eident;
12516 struct triple *value;
12517 struct type *entry;
12518 eident = eat(state, TOK_IDENT)->ident;
12519 if (eident->sym_ident) {
12520 error(state, 0, "%s already declared",
12521 eident->name);
12523 eident->tok = TOK_ENUM_CONST;
12524 if (peek(state) == TOK_EQ) {
12525 struct triple *val;
12526 eat(state, TOK_EQ);
12527 val = constant_expr(state);
12528 integral(state, val);
12529 base = val->u.cval;
12531 value = int_const(state, &int_type, base);
12532 symbol(state, eident, &eident->sym_ident, value, &int_type);
12533 entry = new_type(TYPE_LIST, 0, 0);
12534 entry->field_ident = eident;
12535 *next = entry;
12536 next = &entry->right;
12537 base += 1;
12538 if (peek(state) == TOK_COMMA) {
12539 eat(state, TOK_COMMA);
12541 } while(peek(state) != TOK_RBRACE);
12542 eat(state, TOK_RBRACE);
12543 if (ident) {
12544 symbol(state, ident, &ident->sym_tag, 0, enum_type);
12547 if (ident && ident->sym_tag &&
12548 ident->sym_tag->type &&
12549 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12550 enum_type = clone_type(spec, ident->sym_tag->type);
12552 else if (ident && !enum_type) {
12553 error(state, 0, "enum %s undeclared", ident->name);
12555 return enum_type;
12558 static struct type *struct_declarator(
12559 struct compile_state *state, struct type *type, struct hash_entry **ident)
12561 if (peek(state) != TOK_COLON) {
12562 type = declarator(state, type, ident, 1);
12564 if (peek(state) == TOK_COLON) {
12565 struct triple *value;
12566 eat(state, TOK_COLON);
12567 value = constant_expr(state);
12568 if (value->op != OP_INTCONST) {
12569 error(state, 0, "Invalid constant expression");
12571 if (value->u.cval > size_of(state, type)) {
12572 error(state, 0, "bitfield larger than base type");
12574 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12575 error(state, 0, "bitfield base not an integer type");
12577 type = new_type(TYPE_BITFIELD, type, 0);
12578 type->elements = value->u.cval;
12580 return type;
12583 static struct type *struct_or_union_specifier(
12584 struct compile_state *state, unsigned int spec)
12586 struct type *struct_type;
12587 struct hash_entry *ident;
12588 unsigned int type_main;
12589 unsigned int type_join;
12590 int tok;
12591 struct_type = 0;
12592 ident = 0;
12593 switch(peek(state)) {
12594 case TOK_STRUCT:
12595 eat(state, TOK_STRUCT);
12596 type_main = TYPE_STRUCT;
12597 type_join = TYPE_PRODUCT;
12598 break;
12599 case TOK_UNION:
12600 eat(state, TOK_UNION);
12601 type_main = TYPE_UNION;
12602 type_join = TYPE_OVERLAP;
12603 break;
12604 default:
12605 eat(state, TOK_STRUCT);
12606 type_main = TYPE_STRUCT;
12607 type_join = TYPE_PRODUCT;
12608 break;
12610 tok = peek(state);
12611 if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12612 ident = eat(state, tok)->ident;
12614 if (!ident || (peek(state) == TOK_LBRACE)) {
12615 ulong_t elements;
12616 struct type **next;
12617 elements = 0;
12618 eat(state, TOK_LBRACE);
12619 next = &struct_type;
12620 do {
12621 struct type *base_type;
12622 int done;
12623 base_type = specifier_qualifier_list(state);
12624 do {
12625 struct type *type;
12626 struct hash_entry *fident;
12627 done = 1;
12628 type = struct_declarator(state, base_type, &fident);
12629 elements++;
12630 if (peek(state) == TOK_COMMA) {
12631 done = 0;
12632 eat(state, TOK_COMMA);
12634 type = clone_type(0, type);
12635 type->field_ident = fident;
12636 if (*next) {
12637 *next = new_type(type_join, *next, type);
12638 next = &((*next)->right);
12639 } else {
12640 *next = type;
12642 } while(!done);
12643 eat(state, TOK_SEMI);
12644 } while(peek(state) != TOK_RBRACE);
12645 eat(state, TOK_RBRACE);
12646 struct_type = new_type(type_main | spec, struct_type, 0);
12647 struct_type->type_ident = ident;
12648 struct_type->elements = elements;
12649 if (ident) {
12650 symbol(state, ident, &ident->sym_tag, 0, struct_type);
12653 if (ident && ident->sym_tag &&
12654 ident->sym_tag->type &&
12655 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12656 struct_type = clone_type(spec, ident->sym_tag->type);
12658 else if (ident && !struct_type) {
12659 error(state, 0, "%s %s undeclared",
12660 (type_main == TYPE_STRUCT)?"struct" : "union",
12661 ident->name);
12663 return struct_type;
12666 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12668 unsigned int specifiers;
12669 switch(peek(state)) {
12670 case TOK_AUTO:
12671 eat(state, TOK_AUTO);
12672 specifiers = STOR_AUTO;
12673 break;
12674 case TOK_REGISTER:
12675 eat(state, TOK_REGISTER);
12676 specifiers = STOR_REGISTER;
12677 break;
12678 case TOK_STATIC:
12679 eat(state, TOK_STATIC);
12680 specifiers = STOR_STATIC;
12681 break;
12682 case TOK_EXTERN:
12683 eat(state, TOK_EXTERN);
12684 specifiers = STOR_EXTERN;
12685 break;
12686 case TOK_TYPEDEF:
12687 eat(state, TOK_TYPEDEF);
12688 specifiers = STOR_TYPEDEF;
12689 break;
12690 default:
12691 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12692 specifiers = STOR_LOCAL;
12694 else {
12695 specifiers = STOR_AUTO;
12698 return specifiers;
12701 static unsigned int function_specifier_opt(struct compile_state *state)
12703 /* Ignore the inline keyword */
12704 unsigned int specifiers;
12705 specifiers = 0;
12706 switch(peek(state)) {
12707 case TOK_INLINE:
12708 eat(state, TOK_INLINE);
12709 specifiers = STOR_INLINE;
12711 return specifiers;
12714 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12716 int tok = peek(state);
12717 switch(tok) {
12718 case TOK_COMMA:
12719 case TOK_LPAREN:
12720 /* The empty attribute ignore it */
12721 break;
12722 case TOK_IDENT:
12723 case TOK_ENUM_CONST:
12724 case TOK_TYPE_NAME:
12726 struct hash_entry *ident;
12727 ident = eat(state, TOK_IDENT)->ident;
12729 if (ident == state->i_noinline) {
12730 if (attributes & ATTRIB_ALWAYS_INLINE) {
12731 error(state, 0, "both always_inline and noinline attribtes");
12733 attributes |= ATTRIB_NOINLINE;
12735 else if (ident == state->i_always_inline) {
12736 if (attributes & ATTRIB_NOINLINE) {
12737 error(state, 0, "both noinline and always_inline attribtes");
12739 attributes |= ATTRIB_ALWAYS_INLINE;
12741 else if (ident == state->i_noreturn) {
12742 // attribute((noreturn)) does nothing (yet?)
12744 else if (ident == state->i_unused) {
12745 // attribute((unused)) does nothing (yet?)
12747 else if (ident == state->i_packed) {
12748 // attribute((packed)) does nothing (yet?)
12750 else {
12751 error(state, 0, "Unknown attribute:%s", ident->name);
12753 break;
12755 default:
12756 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12757 break;
12759 return attributes;
12762 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12764 type = attrib(state, type);
12765 while(peek(state) == TOK_COMMA) {
12766 eat(state, TOK_COMMA);
12767 type = attrib(state, type);
12769 return type;
12772 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12774 if (peek(state) == TOK_ATTRIBUTE) {
12775 eat(state, TOK_ATTRIBUTE);
12776 eat(state, TOK_LPAREN);
12777 eat(state, TOK_LPAREN);
12778 type = attribute_list(state, type);
12779 eat(state, TOK_RPAREN);
12780 eat(state, TOK_RPAREN);
12782 return type;
12785 static unsigned int type_qualifiers(struct compile_state *state)
12787 unsigned int specifiers;
12788 int done;
12789 done = 0;
12790 specifiers = QUAL_NONE;
12791 do {
12792 switch(peek(state)) {
12793 case TOK_CONST:
12794 eat(state, TOK_CONST);
12795 specifiers |= QUAL_CONST;
12796 break;
12797 case TOK_VOLATILE:
12798 eat(state, TOK_VOLATILE);
12799 specifiers |= QUAL_VOLATILE;
12800 break;
12801 case TOK_RESTRICT:
12802 eat(state, TOK_RESTRICT);
12803 specifiers |= QUAL_RESTRICT;
12804 break;
12805 default:
12806 done = 1;
12807 break;
12809 } while(!done);
12810 return specifiers;
12813 static struct type *type_specifier(
12814 struct compile_state *state, unsigned int spec)
12816 struct type *type;
12817 int tok;
12818 type = 0;
12819 switch((tok = peek(state))) {
12820 case TOK_VOID:
12821 eat(state, TOK_VOID);
12822 type = new_type(TYPE_VOID | spec, 0, 0);
12823 break;
12824 case TOK_CHAR:
12825 eat(state, TOK_CHAR);
12826 type = new_type(TYPE_CHAR | spec, 0, 0);
12827 break;
12828 case TOK_SHORT:
12829 eat(state, TOK_SHORT);
12830 if (peek(state) == TOK_INT) {
12831 eat(state, TOK_INT);
12833 type = new_type(TYPE_SHORT | spec, 0, 0);
12834 break;
12835 case TOK_INT:
12836 eat(state, TOK_INT);
12837 type = new_type(TYPE_INT | spec, 0, 0);
12838 break;
12839 case TOK_LONG:
12840 eat(state, TOK_LONG);
12841 switch(peek(state)) {
12842 case TOK_LONG:
12843 eat(state, TOK_LONG);
12844 error(state, 0, "long long not supported");
12845 break;
12846 case TOK_DOUBLE:
12847 eat(state, TOK_DOUBLE);
12848 error(state, 0, "long double not supported");
12849 break;
12850 case TOK_INT:
12851 eat(state, TOK_INT);
12852 type = new_type(TYPE_LONG | spec, 0, 0);
12853 break;
12854 default:
12855 type = new_type(TYPE_LONG | spec, 0, 0);
12856 break;
12858 break;
12859 case TOK_FLOAT:
12860 eat(state, TOK_FLOAT);
12861 error(state, 0, "type float not supported");
12862 break;
12863 case TOK_DOUBLE:
12864 eat(state, TOK_DOUBLE);
12865 error(state, 0, "type double not supported");
12866 break;
12867 case TOK_SIGNED:
12868 eat(state, TOK_SIGNED);
12869 switch(peek(state)) {
12870 case TOK_LONG:
12871 eat(state, TOK_LONG);
12872 switch(peek(state)) {
12873 case TOK_LONG:
12874 eat(state, TOK_LONG);
12875 error(state, 0, "type long long not supported");
12876 break;
12877 case TOK_INT:
12878 eat(state, TOK_INT);
12879 type = new_type(TYPE_LONG | spec, 0, 0);
12880 break;
12881 default:
12882 type = new_type(TYPE_LONG | spec, 0, 0);
12883 break;
12885 break;
12886 case TOK_INT:
12887 eat(state, TOK_INT);
12888 type = new_type(TYPE_INT | spec, 0, 0);
12889 break;
12890 case TOK_SHORT:
12891 eat(state, TOK_SHORT);
12892 type = new_type(TYPE_SHORT | spec, 0, 0);
12893 break;
12894 case TOK_CHAR:
12895 eat(state, TOK_CHAR);
12896 type = new_type(TYPE_CHAR | spec, 0, 0);
12897 break;
12898 default:
12899 type = new_type(TYPE_INT | spec, 0, 0);
12900 break;
12902 break;
12903 case TOK_UNSIGNED:
12904 eat(state, TOK_UNSIGNED);
12905 switch(peek(state)) {
12906 case TOK_LONG:
12907 eat(state, TOK_LONG);
12908 switch(peek(state)) {
12909 case TOK_LONG:
12910 eat(state, TOK_LONG);
12911 error(state, 0, "unsigned long long not supported");
12912 break;
12913 case TOK_INT:
12914 eat(state, TOK_INT);
12915 type = new_type(TYPE_ULONG | spec, 0, 0);
12916 break;
12917 default:
12918 type = new_type(TYPE_ULONG | spec, 0, 0);
12919 break;
12921 break;
12922 case TOK_INT:
12923 eat(state, TOK_INT);
12924 type = new_type(TYPE_UINT | spec, 0, 0);
12925 break;
12926 case TOK_SHORT:
12927 eat(state, TOK_SHORT);
12928 type = new_type(TYPE_USHORT | spec, 0, 0);
12929 break;
12930 case TOK_CHAR:
12931 eat(state, TOK_CHAR);
12932 type = new_type(TYPE_UCHAR | spec, 0, 0);
12933 break;
12934 default:
12935 type = new_type(TYPE_UINT | spec, 0, 0);
12936 break;
12938 break;
12939 /* struct or union specifier */
12940 case TOK_STRUCT:
12941 case TOK_UNION:
12942 type = struct_or_union_specifier(state, spec);
12943 break;
12944 /* enum-spefifier */
12945 case TOK_ENUM:
12946 type = enum_specifier(state, spec);
12947 break;
12948 /* typedef name */
12949 case TOK_TYPE_NAME:
12950 type = typedef_name(state, spec);
12951 break;
12952 default:
12953 error(state, 0, "bad type specifier %s",
12954 tokens[tok]);
12955 break;
12957 return type;
12960 static int istype(int tok)
12962 switch(tok) {
12963 case TOK_CONST:
12964 case TOK_RESTRICT:
12965 case TOK_VOLATILE:
12966 case TOK_VOID:
12967 case TOK_CHAR:
12968 case TOK_SHORT:
12969 case TOK_INT:
12970 case TOK_LONG:
12971 case TOK_FLOAT:
12972 case TOK_DOUBLE:
12973 case TOK_SIGNED:
12974 case TOK_UNSIGNED:
12975 case TOK_STRUCT:
12976 case TOK_UNION:
12977 case TOK_ENUM:
12978 case TOK_TYPE_NAME:
12979 return 1;
12980 default:
12981 return 0;
12986 static struct type *specifier_qualifier_list(struct compile_state *state)
12988 struct type *type;
12989 unsigned int specifiers = 0;
12991 /* type qualifiers */
12992 specifiers |= type_qualifiers(state);
12994 /* type specifier */
12995 type = type_specifier(state, specifiers);
12997 return type;
13000 #if DEBUG_ROMCC_WARNING
13001 static int isdecl_specifier(int tok)
13003 switch(tok) {
13004 /* storage class specifier */
13005 case TOK_AUTO:
13006 case TOK_REGISTER:
13007 case TOK_STATIC:
13008 case TOK_EXTERN:
13009 case TOK_TYPEDEF:
13010 /* type qualifier */
13011 case TOK_CONST:
13012 case TOK_RESTRICT:
13013 case TOK_VOLATILE:
13014 /* type specifiers */
13015 case TOK_VOID:
13016 case TOK_CHAR:
13017 case TOK_SHORT:
13018 case TOK_INT:
13019 case TOK_LONG:
13020 case TOK_FLOAT:
13021 case TOK_DOUBLE:
13022 case TOK_SIGNED:
13023 case TOK_UNSIGNED:
13024 /* struct or union specifier */
13025 case TOK_STRUCT:
13026 case TOK_UNION:
13027 /* enum-spefifier */
13028 case TOK_ENUM:
13029 /* typedef name */
13030 case TOK_TYPE_NAME:
13031 /* function specifiers */
13032 case TOK_INLINE:
13033 return 1;
13034 default:
13035 return 0;
13038 #endif
13040 static struct type *decl_specifiers(struct compile_state *state)
13042 struct type *type;
13043 unsigned int specifiers;
13044 /* I am overly restrictive in the arragement of specifiers supported.
13045 * C is overly flexible in this department it makes interpreting
13046 * the parse tree difficult.
13048 specifiers = 0;
13050 /* storage class specifier */
13051 specifiers |= storage_class_specifier_opt(state);
13053 /* function-specifier */
13054 specifiers |= function_specifier_opt(state);
13056 /* attributes */
13057 specifiers |= attributes_opt(state, 0);
13059 /* type qualifier */
13060 specifiers |= type_qualifiers(state);
13062 /* type specifier */
13063 type = type_specifier(state, specifiers);
13064 return type;
13067 struct field_info {
13068 struct type *type;
13069 size_t offset;
13072 static struct field_info designator(struct compile_state *state, struct type *type)
13074 int tok;
13075 struct field_info info;
13076 info.offset = ~0U;
13077 info.type = 0;
13078 do {
13079 switch(peek(state)) {
13080 case TOK_LBRACKET:
13082 struct triple *value;
13083 if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13084 error(state, 0, "Array designator not in array initializer");
13086 eat(state, TOK_LBRACKET);
13087 value = constant_expr(state);
13088 eat(state, TOK_RBRACKET);
13090 info.type = type->left;
13091 info.offset = value->u.cval * size_of(state, info.type);
13092 break;
13094 case TOK_DOT:
13096 struct hash_entry *field;
13097 if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13098 ((type->type & TYPE_MASK) != TYPE_UNION))
13100 error(state, 0, "Struct designator not in struct initializer");
13102 eat(state, TOK_DOT);
13103 field = eat(state, TOK_IDENT)->ident;
13104 info.offset = field_offset(state, type, field);
13105 info.type = field_type(state, type, field);
13106 break;
13108 default:
13109 error(state, 0, "Invalid designator");
13111 tok = peek(state);
13112 } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13113 eat(state, TOK_EQ);
13114 return info;
13117 static struct triple *initializer(
13118 struct compile_state *state, struct type *type)
13120 struct triple *result;
13121 #if DEBUG_ROMCC_WARNINGS
13122 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13123 #endif
13124 if (peek(state) != TOK_LBRACE) {
13125 result = assignment_expr(state);
13126 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13127 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13128 ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13129 (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13130 (equiv_types(type->left, result->type->left))) {
13131 type->elements = result->type->elements;
13133 if (is_lvalue(state, result) &&
13134 ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13135 (type->type & TYPE_MASK) != TYPE_ARRAY)
13137 result = lvalue_conversion(state, result);
13139 if (!is_init_compatible(state, type, result->type)) {
13140 error(state, 0, "Incompatible types in initializer");
13142 if (!equiv_types(type, result->type)) {
13143 result = mk_cast_expr(state, type, result);
13146 else {
13147 int comma;
13148 size_t max_offset;
13149 struct field_info info;
13150 void *buf;
13151 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13152 ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13153 internal_error(state, 0, "unknown initializer type");
13155 info.offset = 0;
13156 info.type = type->left;
13157 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13158 info.type = next_field(state, type, 0);
13160 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13161 max_offset = 0;
13162 } else {
13163 max_offset = size_of(state, type);
13165 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13166 eat(state, TOK_LBRACE);
13167 do {
13168 struct triple *value;
13169 struct type *value_type;
13170 size_t value_size;
13171 void *dest;
13172 int tok;
13173 comma = 0;
13174 tok = peek(state);
13175 if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13176 info = designator(state, type);
13178 if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13179 (info.offset >= max_offset)) {
13180 error(state, 0, "element beyond bounds");
13182 value_type = info.type;
13183 value = eval_const_expr(state, initializer(state, value_type));
13184 value_size = size_of(state, value_type);
13185 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13186 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13187 (max_offset <= info.offset)) {
13188 void *old_buf;
13189 size_t old_size;
13190 old_buf = buf;
13191 old_size = max_offset;
13192 max_offset = info.offset + value_size;
13193 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13194 memcpy(buf, old_buf, bits_to_bytes(old_size));
13195 xfree(old_buf);
13197 dest = ((char *)buf) + bits_to_bytes(info.offset);
13198 #if DEBUG_INITIALIZER
13199 fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n",
13200 dest - buf,
13201 bits_to_bytes(max_offset),
13202 bits_to_bytes(value_size),
13203 value->op);
13204 #endif
13205 if (value->op == OP_BLOBCONST) {
13206 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13208 else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13209 #if DEBUG_INITIALIZER
13210 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13211 #endif
13212 *((uint8_t *)dest) = value->u.cval & 0xff;
13214 else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13215 *((uint16_t *)dest) = value->u.cval & 0xffff;
13217 else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13218 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13220 else {
13221 internal_error(state, 0, "unhandled constant initializer");
13223 free_triple(state, value);
13224 if (peek(state) == TOK_COMMA) {
13225 eat(state, TOK_COMMA);
13226 comma = 1;
13228 info.offset += value_size;
13229 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13230 info.type = next_field(state, type, info.type);
13231 info.offset = field_offset(state, type,
13232 info.type->field_ident);
13234 } while(comma && (peek(state) != TOK_RBRACE));
13235 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13236 ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13237 type->elements = max_offset / size_of(state, type->left);
13239 eat(state, TOK_RBRACE);
13240 result = triple(state, OP_BLOBCONST, type, 0, 0);
13241 result->u.blob = buf;
13243 return result;
13246 static void resolve_branches(struct compile_state *state, struct triple *first)
13248 /* Make a second pass and finish anything outstanding
13249 * with respect to branches. The only outstanding item
13250 * is to see if there are goto to labels that have not
13251 * been defined and to error about them.
13253 int i;
13254 struct triple *ins;
13255 /* Also error on branches that do not use their targets */
13256 ins = first;
13257 do {
13258 if (!triple_is_ret(state, ins)) {
13259 struct triple **expr ;
13260 struct triple_set *set;
13261 expr = triple_targ(state, ins, 0);
13262 for(; expr; expr = triple_targ(state, ins, expr)) {
13263 struct triple *targ;
13264 targ = *expr;
13265 for(set = targ?targ->use:0; set; set = set->next) {
13266 if (set->member == ins) {
13267 break;
13270 if (!set) {
13271 internal_error(state, ins, "targ not used");
13275 ins = ins->next;
13276 } while(ins != first);
13277 /* See if there are goto to labels that have not been defined */
13278 for(i = 0; i < HASH_TABLE_SIZE; i++) {
13279 struct hash_entry *entry;
13280 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13281 struct triple *ins;
13282 if (!entry->sym_label) {
13283 continue;
13285 ins = entry->sym_label->def;
13286 if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13287 error(state, ins, "label `%s' used but not defined",
13288 entry->name);
13294 static struct triple *function_definition(
13295 struct compile_state *state, struct type *type)
13297 struct triple *def, *tmp, *first, *end, *retvar, *ret;
13298 struct triple *fname;
13299 struct type *fname_type;
13300 struct hash_entry *ident;
13301 struct type *param, *crtype, *ctype;
13302 int i;
13303 if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13304 error(state, 0, "Invalid function header");
13307 /* Verify the function type */
13308 if (((type->right->type & TYPE_MASK) != TYPE_VOID) &&
13309 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13310 (type->right->field_ident == 0)) {
13311 error(state, 0, "Invalid function parameters");
13313 param = type->right;
13314 i = 0;
13315 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13316 i++;
13317 if (!param->left->field_ident) {
13318 error(state, 0, "No identifier for parameter %d\n", i);
13320 param = param->right;
13322 i++;
13323 if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13324 error(state, 0, "No identifier for paramter %d\n", i);
13327 /* Get a list of statements for this function. */
13328 def = triple(state, OP_LIST, type, 0, 0);
13330 /* Start a new scope for the passed parameters */
13331 start_scope(state);
13333 /* Put a label at the very start of a function */
13334 first = label(state);
13335 RHS(def, 0) = first;
13337 /* Put a label at the very end of a function */
13338 end = label(state);
13339 flatten(state, first, end);
13340 /* Remember where return goes */
13341 ident = state->i_return;
13342 symbol(state, ident, &ident->sym_ident, end, end->type);
13344 /* Get the initial closure type */
13345 ctype = new_type(TYPE_JOIN, &void_type, 0);
13346 ctype->elements = 1;
13348 /* Add a variable for the return value */
13349 crtype = new_type(TYPE_TUPLE,
13350 /* Remove all type qualifiers from the return type */
13351 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13352 crtype->elements = 2;
13353 flatten(state, end, variable(state, crtype));
13355 /* Allocate a variable for the return address */
13356 retvar = flatten(state, end, variable(state, &void_ptr_type));
13358 /* Add in the return instruction */
13359 ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13360 ret = flatten(state, first, ret);
13362 /* Walk through the parameters and create symbol table entries
13363 * for them.
13365 param = type->right;
13366 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13367 ident = param->left->field_ident;
13368 tmp = variable(state, param->left);
13369 var_symbol(state, ident, tmp);
13370 flatten(state, end, tmp);
13371 param = param->right;
13373 if ((param->type & TYPE_MASK) != TYPE_VOID) {
13374 /* And don't forget the last parameter */
13375 ident = param->field_ident;
13376 tmp = variable(state, param);
13377 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13378 flatten(state, end, tmp);
13381 /* Add the declaration static const char __func__ [] = "func-name" */
13382 fname_type = new_type(TYPE_ARRAY,
13383 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13384 fname_type->type |= QUAL_CONST | STOR_STATIC;
13385 fname_type->elements = strlen(state->function) + 1;
13387 fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13388 fname->u.blob = (void *)state->function;
13389 fname = flatten(state, end, fname);
13391 ident = state->i___func__;
13392 symbol(state, ident, &ident->sym_ident, fname, fname_type);
13394 /* Remember which function I am compiling.
13395 * Also assume the last defined function is the main function.
13397 state->main_function = def;
13399 /* Now get the actual function definition */
13400 compound_statement(state, end);
13402 /* Finish anything unfinished with branches */
13403 resolve_branches(state, first);
13405 /* Remove the parameter scope */
13406 end_scope(state);
13409 /* Remember I have defined a function */
13410 if (!state->functions) {
13411 state->functions = def;
13412 } else {
13413 insert_triple(state, state->functions, def);
13415 if (state->compiler->debug & DEBUG_INLINE) {
13416 FILE *fp = state->dbgout;
13417 fprintf(fp, "\n");
13418 loc(fp, state, 0);
13419 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13420 display_func(state, fp, def);
13421 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13424 return def;
13427 static struct triple *do_decl(struct compile_state *state,
13428 struct type *type, struct hash_entry *ident)
13430 struct triple *def;
13431 def = 0;
13432 /* Clean up the storage types used */
13433 switch (type->type & STOR_MASK) {
13434 case STOR_AUTO:
13435 case STOR_STATIC:
13436 /* These are the good types I am aiming for */
13437 break;
13438 case STOR_REGISTER:
13439 type->type &= ~STOR_MASK;
13440 type->type |= STOR_AUTO;
13441 break;
13442 case STOR_LOCAL:
13443 case STOR_EXTERN:
13444 type->type &= ~STOR_MASK;
13445 type->type |= STOR_STATIC;
13446 break;
13447 case STOR_TYPEDEF:
13448 if (!ident) {
13449 error(state, 0, "typedef without name");
13451 symbol(state, ident, &ident->sym_ident, 0, type);
13452 ident->tok = TOK_TYPE_NAME;
13453 return 0;
13454 break;
13455 default:
13456 internal_error(state, 0, "Undefined storage class");
13458 if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13459 // ignore function prototypes
13460 return def;
13462 if (ident &&
13463 ((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13464 ((type->type & STOR_MASK) != STOR_STATIC))
13465 error(state, 0, "non static arrays not supported");
13466 if (ident &&
13467 ((type->type & STOR_MASK) == STOR_STATIC) &&
13468 ((type->type & QUAL_CONST) == 0)) {
13469 error(state, 0, "non const static variables not supported");
13471 if (ident) {
13472 def = variable(state, type);
13473 var_symbol(state, ident, def);
13475 return def;
13478 static void decl(struct compile_state *state, struct triple *first)
13480 struct type *base_type, *type;
13481 struct hash_entry *ident;
13482 struct triple *def;
13483 int global;
13484 global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13485 base_type = decl_specifiers(state);
13486 ident = 0;
13487 type = declarator(state, base_type, &ident, 0);
13488 type->type = attributes_opt(state, type->type);
13489 if (global && ident && (peek(state) == TOK_LBRACE)) {
13490 /* function */
13491 type->type_ident = ident;
13492 state->function = ident->name;
13493 def = function_definition(state, type);
13494 symbol(state, ident, &ident->sym_ident, def, type);
13495 state->function = 0;
13497 else {
13498 int done;
13499 flatten(state, first, do_decl(state, type, ident));
13500 /* type or variable definition */
13501 do {
13502 done = 1;
13503 if (peek(state) == TOK_EQ) {
13504 if (!ident) {
13505 error(state, 0, "cannot assign to a type");
13507 eat(state, TOK_EQ);
13508 flatten(state, first,
13509 init_expr(state,
13510 ident->sym_ident->def,
13511 initializer(state, type)));
13513 arrays_complete(state, type);
13514 if (peek(state) == TOK_COMMA) {
13515 eat(state, TOK_COMMA);
13516 ident = 0;
13517 type = declarator(state, base_type, &ident, 0);
13518 flatten(state, first, do_decl(state, type, ident));
13519 done = 0;
13521 } while(!done);
13522 eat(state, TOK_SEMI);
13526 static void decls(struct compile_state *state)
13528 struct triple *list;
13529 int tok;
13530 list = label(state);
13531 while(1) {
13532 tok = peek(state);
13533 if (tok == TOK_EOF) {
13534 return;
13536 if (tok == TOK_SPACE) {
13537 eat(state, TOK_SPACE);
13539 decl(state, list);
13540 if (list->next != list) {
13541 error(state, 0, "global variables not supported");
13547 * Function inlining
13549 struct triple_reg_set {
13550 struct triple_reg_set *next;
13551 struct triple *member;
13552 struct triple *new;
13554 struct reg_block {
13555 struct block *block;
13556 struct triple_reg_set *in;
13557 struct triple_reg_set *out;
13558 int vertex;
13560 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13561 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13562 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13563 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13564 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13565 void (*cb)(struct compile_state *state, struct block *block, void *arg),
13566 void *arg);
13567 static void print_block(
13568 struct compile_state *state, struct block *block, void *arg);
13569 static int do_triple_set(struct triple_reg_set **head,
13570 struct triple *member, struct triple *new_member);
13571 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13572 static struct reg_block *compute_variable_lifetimes(
13573 struct compile_state *state, struct basic_blocks *bb);
13574 static void free_variable_lifetimes(struct compile_state *state,
13575 struct basic_blocks *bb, struct reg_block *blocks);
13576 #if DEBUG_EXPLICIT_CLOSURES
13577 static void print_live_variables(struct compile_state *state,
13578 struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13579 #endif
13582 static struct triple *call(struct compile_state *state,
13583 struct triple *retvar, struct triple *ret_addr,
13584 struct triple *targ, struct triple *ret)
13586 struct triple *call;
13588 if (!retvar || !is_lvalue(state, retvar)) {
13589 internal_error(state, 0, "writing to a non lvalue?");
13591 write_compatible(state, retvar->type, &void_ptr_type);
13593 call = new_triple(state, OP_CALL, &void_type, 1, 0);
13594 TARG(call, 0) = targ;
13595 MISC(call, 0) = ret;
13596 if (!targ || (targ->op != OP_LABEL)) {
13597 internal_error(state, 0, "call not to a label");
13599 if (!ret || (ret->op != OP_RET)) {
13600 internal_error(state, 0, "call not matched with return");
13602 return call;
13605 static void walk_functions(struct compile_state *state,
13606 void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13607 void *arg)
13609 struct triple *func, *first;
13610 func = first = state->functions;
13611 do {
13612 cb(state, func, arg);
13613 func = func->next;
13614 } while(func != first);
13617 static void reverse_walk_functions(struct compile_state *state,
13618 void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13619 void *arg)
13621 struct triple *func, *first;
13622 func = first = state->functions;
13623 do {
13624 func = func->prev;
13625 cb(state, func, arg);
13626 } while(func != first);
13630 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13632 struct triple *ptr, *first;
13633 if (func->u.cval == 0) {
13634 return;
13636 ptr = first = RHS(func, 0);
13637 do {
13638 if (ptr->op == OP_FCALL) {
13639 struct triple *called_func;
13640 called_func = MISC(ptr, 0);
13641 /* Mark the called function as used */
13642 if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13643 called_func->u.cval++;
13645 /* Remove the called function from the list */
13646 called_func->prev->next = called_func->next;
13647 called_func->next->prev = called_func->prev;
13649 /* Place the called function before me on the list */
13650 called_func->next = func;
13651 called_func->prev = func->prev;
13652 called_func->prev->next = called_func;
13653 called_func->next->prev = called_func;
13655 ptr = ptr->next;
13656 } while(ptr != first);
13657 func->id |= TRIPLE_FLAG_FLATTENED;
13660 static void mark_live_functions(struct compile_state *state)
13662 /* Ensure state->main_function is the last function in
13663 * the list of functions.
13665 if ((state->main_function->next != state->functions) ||
13666 (state->functions->prev != state->main_function)) {
13667 internal_error(state, 0,
13668 "state->main_function is not at the end of the function list ");
13670 state->main_function->u.cval = 1;
13671 reverse_walk_functions(state, mark_live, 0);
13674 static int local_triple(struct compile_state *state,
13675 struct triple *func, struct triple *ins)
13677 int local = (ins->id & TRIPLE_FLAG_LOCAL);
13678 #if 0
13679 if (!local) {
13680 FILE *fp = state->errout;
13681 fprintf(fp, "global: ");
13682 display_triple(fp, ins);
13684 #endif
13685 return local;
13688 struct triple *copy_func(struct compile_state *state, struct triple *ofunc,
13689 struct occurance *base_occurance)
13691 struct triple *nfunc;
13692 struct triple *nfirst, *ofirst;
13693 struct triple *new, *old;
13695 if (state->compiler->debug & DEBUG_INLINE) {
13696 FILE *fp = state->dbgout;
13697 fprintf(fp, "\n");
13698 loc(fp, state, 0);
13699 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13700 display_func(state, fp, ofunc);
13701 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13704 /* Make a new copy of the old function */
13705 nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13706 nfirst = 0;
13707 ofirst = old = RHS(ofunc, 0);
13708 do {
13709 struct triple *new;
13710 struct occurance *occurance;
13711 int old_lhs, old_rhs;
13712 old_lhs = old->lhs;
13713 old_rhs = old->rhs;
13714 occurance = inline_occurance(state, base_occurance, old->occurance);
13715 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13716 MISC(old, 0)->u.cval += 1;
13718 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13719 occurance);
13720 if (!triple_stores_block(state, new)) {
13721 memcpy(&new->u, &old->u, sizeof(new->u));
13723 if (!nfirst) {
13724 RHS(nfunc, 0) = nfirst = new;
13726 else {
13727 insert_triple(state, nfirst, new);
13729 new->id |= TRIPLE_FLAG_FLATTENED;
13730 new->id |= old->id & TRIPLE_FLAG_COPY;
13732 /* During the copy remember new as user of old */
13733 use_triple(old, new);
13735 /* Remember which instructions are local */
13736 old->id |= TRIPLE_FLAG_LOCAL;
13737 old = old->next;
13738 } while(old != ofirst);
13740 /* Make a second pass to fix up any unresolved references */
13741 old = ofirst;
13742 new = nfirst;
13743 do {
13744 struct triple **oexpr, **nexpr;
13745 int count, i;
13746 /* Lookup where the copy is, to join pointers */
13747 count = TRIPLE_SIZE(old);
13748 for(i = 0; i < count; i++) {
13749 oexpr = &old->param[i];
13750 nexpr = &new->param[i];
13751 if (*oexpr && !*nexpr) {
13752 if (!local_triple(state, ofunc, *oexpr)) {
13753 *nexpr = *oexpr;
13755 else if ((*oexpr)->use) {
13756 *nexpr = (*oexpr)->use->member;
13758 if (*nexpr == old) {
13759 internal_error(state, 0, "new == old?");
13761 use_triple(*nexpr, new);
13763 if (!*nexpr && *oexpr) {
13764 internal_error(state, 0, "Could not copy %d", i);
13767 old = old->next;
13768 new = new->next;
13769 } while((old != ofirst) && (new != nfirst));
13771 /* Make a third pass to cleanup the extra useses */
13772 old = ofirst;
13773 new = nfirst;
13774 do {
13775 unuse_triple(old, new);
13776 /* Forget which instructions are local */
13777 old->id &= ~TRIPLE_FLAG_LOCAL;
13778 old = old->next;
13779 new = new->next;
13780 } while ((old != ofirst) && (new != nfirst));
13781 return nfunc;
13784 static void expand_inline_call(
13785 struct compile_state *state, struct triple *me, struct triple *fcall)
13787 /* Inline the function call */
13788 struct type *ptype;
13789 struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13790 struct triple *end, *nend;
13791 int pvals, i;
13793 /* Find the triples */
13794 ofunc = MISC(fcall, 0);
13795 if (ofunc->op != OP_LIST) {
13796 internal_error(state, 0, "improper function");
13798 nfunc = copy_func(state, ofunc, fcall->occurance);
13799 /* Prepend the parameter reading into the new function list */
13800 ptype = nfunc->type->right;
13801 pvals = fcall->rhs;
13802 for(i = 0; i < pvals; i++) {
13803 struct type *atype;
13804 struct triple *arg, *param;
13805 atype = ptype;
13806 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13807 atype = ptype->left;
13809 param = farg(state, nfunc, i);
13810 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13811 internal_error(state, fcall, "param %d type mismatch", i);
13813 arg = RHS(fcall, i);
13814 flatten(state, fcall, write_expr(state, param, arg));
13815 ptype = ptype->right;
13817 result = 0;
13818 if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13819 result = read_expr(state,
13820 deref_index(state, fresult(state, nfunc), 1));
13822 if (state->compiler->debug & DEBUG_INLINE) {
13823 FILE *fp = state->dbgout;
13824 fprintf(fp, "\n");
13825 loc(fp, state, 0);
13826 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13827 display_func(state, fp, nfunc);
13828 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13832 * Get rid of the extra triples
13834 /* Remove the read of the return address */
13835 ins = RHS(nfunc, 0)->prev->prev;
13836 if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13837 internal_error(state, ins, "Not return addres read?");
13839 release_triple(state, ins);
13840 /* Remove the return instruction */
13841 ins = RHS(nfunc, 0)->prev;
13842 if (ins->op != OP_RET) {
13843 internal_error(state, ins, "Not return?");
13845 release_triple(state, ins);
13846 /* Remove the retaddres variable */
13847 retvar = fretaddr(state, nfunc);
13848 if ((retvar->lhs != 1) ||
13849 (retvar->op != OP_ADECL) ||
13850 (retvar->next->op != OP_PIECE) ||
13851 (MISC(retvar->next, 0) != retvar)) {
13852 internal_error(state, retvar, "Not the return address?");
13854 release_triple(state, retvar->next);
13855 release_triple(state, retvar);
13857 /* Remove the label at the start of the function */
13858 ins = RHS(nfunc, 0);
13859 if (ins->op != OP_LABEL) {
13860 internal_error(state, ins, "Not label?");
13862 nfirst = ins->next;
13863 free_triple(state, ins);
13864 /* Release the new function header */
13865 RHS(nfunc, 0) = 0;
13866 free_triple(state, nfunc);
13868 /* Append the new function list onto the return list */
13869 end = fcall->prev;
13870 nend = nfirst->prev;
13871 end->next = nfirst;
13872 nfirst->prev = end;
13873 nend->next = fcall;
13874 fcall->prev = nend;
13876 /* Now the result reading code */
13877 if (result) {
13878 result = flatten(state, fcall, result);
13879 propogate_use(state, fcall, result);
13882 /* Release the original fcall instruction */
13883 release_triple(state, fcall);
13885 return;
13890 * Type of the result variable.
13892 * result
13894 * +----------+------------+
13895 * | |
13896 * union of closures result_type
13898 * +------------------+---------------+
13899 * | |
13900 * closure1 ... closuerN
13901 * | |
13902 * +----+--+-+--------+-----+ +----+----+---+-----+
13903 * | | | | | | | | |
13904 * var1 var2 var3 ... varN result var1 var2 ... varN result
13906 * +--------+---------+
13907 * | |
13908 * union of closures result_type
13910 * +-----+-------------------+
13911 * | |
13912 * closure1 ... closureN
13913 * | |
13914 * +-----+---+----+----+ +----+---+----+-----+
13915 * | | | | | | | |
13916 * var1 var2 ... varN result var1 var2 ... varN result
13919 static int add_closure_type(struct compile_state *state,
13920 struct triple *func, struct type *closure_type)
13922 struct type *type, *ctype, **next;
13923 struct triple *var, *new_var;
13924 int i;
13926 #if 0
13927 FILE *fp = state->errout;
13928 fprintf(fp, "original_type: ");
13929 name_of(fp, fresult(state, func)->type);
13930 fprintf(fp, "\n");
13931 #endif
13932 /* find the original type */
13933 var = fresult(state, func);
13934 type = var->type;
13935 if (type->elements != 2) {
13936 internal_error(state, var, "bad return type");
13939 /* Find the complete closure type and update it */
13940 ctype = type->left->left;
13941 next = &ctype->left;
13942 while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13943 next = &(*next)->right;
13945 *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13946 ctype->elements += 1;
13948 #if 0
13949 fprintf(fp, "new_type: ");
13950 name_of(fp, type);
13951 fprintf(fp, "\n");
13952 fprintf(fp, "ctype: %p %d bits: %d ",
13953 ctype, ctype->elements, reg_size_of(state, ctype));
13954 name_of(fp, ctype);
13955 fprintf(fp, "\n");
13956 #endif
13958 /* Regenerate the variable with the new type definition */
13959 new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13960 new_var->id |= TRIPLE_FLAG_FLATTENED;
13961 for(i = 0; i < new_var->lhs; i++) {
13962 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13965 /* Point everyone at the new variable */
13966 propogate_use(state, var, new_var);
13968 /* Release the original variable */
13969 for(i = 0; i < var->lhs; i++) {
13970 release_triple(state, LHS(var, i));
13972 release_triple(state, var);
13974 /* Return the index of the added closure type */
13975 return ctype->elements - 1;
13978 static struct triple *closure_expr(struct compile_state *state,
13979 struct triple *func, int closure_idx, int var_idx)
13981 return deref_index(state,
13982 deref_index(state,
13983 deref_index(state, fresult(state, func), 0),
13984 closure_idx),
13985 var_idx);
13989 static void insert_triple_set(
13990 struct triple_reg_set **head, struct triple *member)
13992 struct triple_reg_set *new;
13993 new = xcmalloc(sizeof(*new), "triple_set");
13994 new->member = member;
13995 new->new = 0;
13996 new->next = *head;
13997 *head = new;
14000 static int ordered_triple_set(
14001 struct triple_reg_set **head, struct triple *member)
14003 struct triple_reg_set **ptr;
14004 if (!member)
14005 return 0;
14006 ptr = head;
14007 while(*ptr) {
14008 if (member == (*ptr)->member) {
14009 return 0;
14011 /* keep the list ordered */
14012 if (member->id < (*ptr)->member->id) {
14013 break;
14015 ptr = &(*ptr)->next;
14017 insert_triple_set(ptr, member);
14018 return 1;
14022 static void free_closure_variables(struct compile_state *state,
14023 struct triple_reg_set **enclose)
14025 struct triple_reg_set *entry, *next;
14026 for(entry = *enclose; entry; entry = next) {
14027 next = entry->next;
14028 do_triple_unset(enclose, entry->member);
14032 static int lookup_closure_index(struct compile_state *state,
14033 struct triple *me, struct triple *val)
14035 struct triple *first, *ins, *next;
14036 first = RHS(me, 0);
14037 ins = next = first;
14038 do {
14039 struct triple *result;
14040 struct triple *index0, *index1, *index2, *read, *write;
14041 ins = next;
14042 next = ins->next;
14043 if (ins->op != OP_CALL) {
14044 continue;
14046 /* I am at a previous call point examine it closely */
14047 if (ins->next->op != OP_LABEL) {
14048 internal_error(state, ins, "call not followed by label");
14050 /* Does this call does not enclose any variables? */
14051 if ((ins->next->next->op != OP_INDEX) ||
14052 (ins->next->next->u.cval != 0) ||
14053 (result = MISC(ins->next->next, 0)) ||
14054 (result->id & TRIPLE_FLAG_LOCAL)) {
14055 continue;
14057 index0 = ins->next->next;
14058 /* The pattern is:
14059 * 0 index result < 0 >
14060 * 1 index 0 < ? >
14061 * 2 index 1 < ? >
14062 * 3 read 2
14063 * 4 write 3 var
14065 for(index0 = ins->next->next;
14066 (index0->op == OP_INDEX) &&
14067 (MISC(index0, 0) == result) &&
14068 (index0->u.cval == 0) ;
14069 index0 = write->next)
14071 index1 = index0->next;
14072 index2 = index1->next;
14073 read = index2->next;
14074 write = read->next;
14075 if ((index0->op != OP_INDEX) ||
14076 (index1->op != OP_INDEX) ||
14077 (index2->op != OP_INDEX) ||
14078 (read->op != OP_READ) ||
14079 (write->op != OP_WRITE) ||
14080 (MISC(index1, 0) != index0) ||
14081 (MISC(index2, 0) != index1) ||
14082 (RHS(read, 0) != index2) ||
14083 (RHS(write, 0) != read)) {
14084 internal_error(state, index0, "bad var read");
14086 if (MISC(write, 0) == val) {
14087 return index2->u.cval;
14090 } while(next != first);
14091 return -1;
14094 static inline int enclose_triple(struct triple *ins)
14096 return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14099 static void compute_closure_variables(struct compile_state *state,
14100 struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14102 struct triple_reg_set *set, *vars, **last_var;
14103 struct basic_blocks bb;
14104 struct reg_block *rb;
14105 struct block *block;
14106 struct triple *old_result, *first, *ins;
14107 size_t count, idx;
14108 unsigned long used_indicies;
14109 int i, max_index;
14110 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14111 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14112 struct {
14113 unsigned id;
14114 int index;
14115 } *info;
14118 /* Find the basic blocks of this function */
14119 bb.func = me;
14120 bb.first = RHS(me, 0);
14121 old_result = 0;
14122 if (!triple_is_ret(state, bb.first->prev)) {
14123 bb.func = 0;
14124 } else {
14125 old_result = fresult(state, me);
14127 analyze_basic_blocks(state, &bb);
14129 /* Find which variables are currently alive in a given block */
14130 rb = compute_variable_lifetimes(state, &bb);
14132 /* Find the variables that are currently alive */
14133 block = block_of_triple(state, fcall);
14134 if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14135 internal_error(state, fcall, "No reg block? block: %p", block);
14138 #if DEBUG_EXPLICIT_CLOSURES
14139 print_live_variables(state, &bb, rb, state->dbgout);
14140 fflush(state->dbgout);
14141 #endif
14143 /* Count the number of triples in the function */
14144 first = RHS(me, 0);
14145 ins = first;
14146 count = 0;
14147 do {
14148 count++;
14149 ins = ins->next;
14150 } while(ins != first);
14152 /* Allocate some memory to temorary hold the id info */
14153 info = xcmalloc(sizeof(*info) * (count +1), "info");
14155 /* Mark the local function */
14156 first = RHS(me, 0);
14157 ins = first;
14158 idx = 1;
14159 do {
14160 info[idx].id = ins->id;
14161 ins->id = TRIPLE_FLAG_LOCAL | idx;
14162 idx++;
14163 ins = ins->next;
14164 } while(ins != first);
14167 * Build the list of variables to enclose.
14169 * A target it to put the same variable in the
14170 * same slot for ever call of a given function.
14171 * After coloring this removes all of the variable
14172 * manipulation code.
14174 * The list of variables to enclose is built ordered
14175 * program order because except in corner cases this
14176 * gives me the stability of assignment I need.
14178 * To gurantee that stability I lookup the variables
14179 * to see where they have been used before and
14180 * I build my final list with the assigned indicies.
14182 vars = 0;
14183 if (enclose_triple(old_result)) {
14184 ordered_triple_set(&vars, old_result);
14186 for(set = rb[block->vertex].out; set; set = set->next) {
14187 if (!enclose_triple(set->member)) {
14188 continue;
14190 if ((set->member == fcall) || (set->member == old_result)) {
14191 continue;
14193 if (!local_triple(state, me, set->member)) {
14194 internal_error(state, set->member, "not local?");
14196 ordered_triple_set(&vars, set->member);
14199 /* Lookup the current indicies of the live varialbe */
14200 used_indicies = 0;
14201 max_index = -1;
14202 for(set = vars; set ; set = set->next) {
14203 struct triple *ins;
14204 int index;
14205 ins = set->member;
14206 index = lookup_closure_index(state, me, ins);
14207 info[ID_BITS(ins->id)].index = index;
14208 if (index < 0) {
14209 continue;
14211 if (index >= MAX_INDICIES) {
14212 internal_error(state, ins, "index unexpectedly large");
14214 if (used_indicies & (1 << index)) {
14215 internal_error(state, ins, "index previously used?");
14217 /* Remember which indicies have been used */
14218 used_indicies |= (1 << index);
14219 if (index > max_index) {
14220 max_index = index;
14224 /* Walk through the live variables and make certain
14225 * everything is assigned an index.
14227 for(set = vars; set; set = set->next) {
14228 struct triple *ins;
14229 int index;
14230 ins = set->member;
14231 index = info[ID_BITS(ins->id)].index;
14232 if (index >= 0) {
14233 continue;
14235 /* Find the lowest unused index value */
14236 for(index = 0; index < MAX_INDICIES; index++) {
14237 if (!(used_indicies & (1 << index))) {
14238 break;
14241 if (index == MAX_INDICIES) {
14242 internal_error(state, ins, "no free indicies?");
14244 info[ID_BITS(ins->id)].index = index;
14245 /* Remember which indicies have been used */
14246 used_indicies |= (1 << index);
14247 if (index > max_index) {
14248 max_index = index;
14252 /* Build the return list of variables with positions matching
14253 * their indicies.
14255 *enclose = 0;
14256 last_var = enclose;
14257 for(i = 0; i <= max_index; i++) {
14258 struct triple *var;
14259 var = 0;
14260 if (used_indicies & (1 << i)) {
14261 for(set = vars; set; set = set->next) {
14262 int index;
14263 index = info[ID_BITS(set->member->id)].index;
14264 if (index == i) {
14265 var = set->member;
14266 break;
14269 if (!var) {
14270 internal_error(state, me, "missing variable");
14273 insert_triple_set(last_var, var);
14274 last_var = &(*last_var)->next;
14277 #if DEBUG_EXPLICIT_CLOSURES
14278 /* Print out the variables to be enclosed */
14279 loc(state->dbgout, state, fcall);
14280 fprintf(state->dbgout, "Alive: \n");
14281 for(set = *enclose; set; set = set->next) {
14282 display_triple(state->dbgout, set->member);
14284 fflush(state->dbgout);
14285 #endif
14287 /* Clear the marks */
14288 ins = first;
14289 do {
14290 ins->id = info[ID_BITS(ins->id)].id;
14291 ins = ins->next;
14292 } while(ins != first);
14294 /* Release the ordered list of live variables */
14295 free_closure_variables(state, &vars);
14297 /* Release the storage of the old ids */
14298 xfree(info);
14300 /* Release the variable lifetime information */
14301 free_variable_lifetimes(state, &bb, rb);
14303 /* Release the basic blocks of this function */
14304 free_basic_blocks(state, &bb);
14307 static void expand_function_call(
14308 struct compile_state *state, struct triple *me, struct triple *fcall)
14310 /* Generate an ordinary function call */
14311 struct type *closure_type, **closure_next;
14312 struct triple *func, *func_first, *func_last, *retvar;
14313 struct triple *first;
14314 struct type *ptype, *rtype;
14315 struct triple *ret_addr, *ret_loc;
14316 struct triple_reg_set *enclose, *set;
14317 int closure_idx, pvals, i;
14319 #if DEBUG_EXPLICIT_CLOSURES
14320 FILE *fp = state->dbgout;
14321 fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14322 display_func(state, fp, MISC(fcall, 0));
14323 display_func(state, fp, me);
14324 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14325 #endif
14327 /* Find the triples */
14328 func = MISC(fcall, 0);
14329 func_first = RHS(func, 0);
14330 retvar = fretaddr(state, func);
14331 func_last = func_first->prev;
14332 first = fcall->next;
14334 /* Find what I need to enclose */
14335 compute_closure_variables(state, me, fcall, &enclose);
14337 /* Compute the closure type */
14338 closure_type = new_type(TYPE_TUPLE, 0, 0);
14339 closure_type->elements = 0;
14340 closure_next = &closure_type->left;
14341 for(set = enclose; set ; set = set->next) {
14342 struct type *type;
14343 type = &void_type;
14344 if (set->member) {
14345 type = set->member->type;
14347 if (!*closure_next) {
14348 *closure_next = type;
14349 } else {
14350 *closure_next = new_type(TYPE_PRODUCT, *closure_next,
14351 type);
14352 closure_next = &(*closure_next)->right;
14354 closure_type->elements += 1;
14356 if (closure_type->elements == 0) {
14357 closure_type->type = TYPE_VOID;
14361 #if DEBUG_EXPLICIT_CLOSURES
14362 fprintf(state->dbgout, "closure type: ");
14363 name_of(state->dbgout, closure_type);
14364 fprintf(state->dbgout, "\n");
14365 #endif
14367 /* Update the called functions closure variable */
14368 closure_idx = add_closure_type(state, func, closure_type);
14370 /* Generate some needed triples */
14371 ret_loc = label(state);
14372 ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14374 /* Pass the parameters to the new function */
14375 ptype = func->type->right;
14376 pvals = fcall->rhs;
14377 for(i = 0; i < pvals; i++) {
14378 struct type *atype;
14379 struct triple *arg, *param;
14380 atype = ptype;
14381 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14382 atype = ptype->left;
14384 param = farg(state, func, i);
14385 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14386 internal_error(state, fcall, "param type mismatch");
14388 arg = RHS(fcall, i);
14389 flatten(state, first, write_expr(state, param, arg));
14390 ptype = ptype->right;
14392 rtype = func->type->left;
14394 /* Thread the triples together */
14395 ret_loc = flatten(state, first, ret_loc);
14397 /* Save the active variables in the result variable */
14398 for(i = 0, set = enclose; set ; set = set->next, i++) {
14399 if (!set->member) {
14400 continue;
14402 flatten(state, ret_loc,
14403 write_expr(state,
14404 closure_expr(state, func, closure_idx, i),
14405 read_expr(state, set->member)));
14408 /* Initialize the return value */
14409 if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14410 flatten(state, ret_loc,
14411 write_expr(state,
14412 deref_index(state, fresult(state, func), 1),
14413 new_triple(state, OP_UNKNOWNVAL, rtype, 0, 0)));
14416 ret_addr = flatten(state, ret_loc, ret_addr);
14417 flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14418 flatten(state, ret_loc,
14419 call(state, retvar, ret_addr, func_first, func_last));
14421 /* Find the result */
14422 if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14423 struct triple * result;
14424 result = flatten(state, first,
14425 read_expr(state,
14426 deref_index(state, fresult(state, func), 1)));
14428 propogate_use(state, fcall, result);
14431 /* Release the original fcall instruction */
14432 release_triple(state, fcall);
14434 /* Restore the active variables from the result variable */
14435 for(i = 0, set = enclose; set ; set = set->next, i++) {
14436 struct triple_set *use, *next;
14437 struct triple *new;
14438 struct basic_blocks bb;
14439 if (!set->member || (set->member == fcall)) {
14440 continue;
14442 /* Generate an expression for the value */
14443 new = flatten(state, first,
14444 read_expr(state,
14445 closure_expr(state, func, closure_idx, i)));
14448 /* If the original is an lvalue restore the preserved value */
14449 if (is_lvalue(state, set->member)) {
14450 flatten(state, first,
14451 write_expr(state, set->member, new));
14452 continue;
14455 * If the original is a value update the dominated uses.
14458 /* Analyze the basic blocks so I can see who dominates whom */
14459 bb.func = me;
14460 bb.first = RHS(me, 0);
14461 if (!triple_is_ret(state, bb.first->prev)) {
14462 bb.func = 0;
14464 analyze_basic_blocks(state, &bb);
14467 #if DEBUG_EXPLICIT_CLOSURES
14468 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14469 set->member, new);
14470 #endif
14471 /* If fcall dominates the use update the expression */
14472 for(use = set->member->use; use; use = next) {
14473 /* Replace use modifies the use chain and
14474 * removes use, so I must take a copy of the
14475 * next entry early.
14477 next = use->next;
14478 if (!tdominates(state, fcall, use->member)) {
14479 continue;
14481 replace_use(state, set->member, new, use->member);
14484 /* Release the basic blocks, the instructions will be
14485 * different next time, and flatten/insert_triple does
14486 * not update the block values so I can't cache the analysis.
14488 free_basic_blocks(state, &bb);
14491 /* Release the closure variable list */
14492 free_closure_variables(state, &enclose);
14494 if (state->compiler->debug & DEBUG_INLINE) {
14495 FILE *fp = state->dbgout;
14496 fprintf(fp, "\n");
14497 loc(fp, state, 0);
14498 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14499 display_func(state, fp, func);
14500 display_func(state, fp, me);
14501 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14504 return;
14507 static int do_inline(struct compile_state *state, struct triple *func)
14509 int do_inline;
14510 int policy;
14512 policy = state->compiler->flags & COMPILER_INLINE_MASK;
14513 switch(policy) {
14514 case COMPILER_INLINE_ALWAYS:
14515 do_inline = 1;
14516 if (func->type->type & ATTRIB_NOINLINE) {
14517 error(state, func, "noinline with always_inline compiler option");
14519 break;
14520 case COMPILER_INLINE_NEVER:
14521 do_inline = 0;
14522 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14523 error(state, func, "always_inline with noinline compiler option");
14525 break;
14526 case COMPILER_INLINE_DEFAULTON:
14527 switch(func->type->type & STOR_MASK) {
14528 case STOR_STATIC | STOR_INLINE:
14529 case STOR_LOCAL | STOR_INLINE:
14530 case STOR_EXTERN | STOR_INLINE:
14531 do_inline = 1;
14532 break;
14533 default:
14534 do_inline = 1;
14535 break;
14537 break;
14538 case COMPILER_INLINE_DEFAULTOFF:
14539 switch(func->type->type & STOR_MASK) {
14540 case STOR_STATIC | STOR_INLINE:
14541 case STOR_LOCAL | STOR_INLINE:
14542 case STOR_EXTERN | STOR_INLINE:
14543 do_inline = 1;
14544 break;
14545 default:
14546 do_inline = 0;
14547 break;
14549 break;
14550 case COMPILER_INLINE_NOPENALTY:
14551 switch(func->type->type & STOR_MASK) {
14552 case STOR_STATIC | STOR_INLINE:
14553 case STOR_LOCAL | STOR_INLINE:
14554 case STOR_EXTERN | STOR_INLINE:
14555 do_inline = 1;
14556 break;
14557 default:
14558 do_inline = (func->u.cval == 1);
14559 break;
14561 break;
14562 default:
14563 do_inline = 0;
14564 internal_error(state, 0, "Unimplemented inline policy");
14565 break;
14567 /* Force inlining */
14568 if (func->type->type & ATTRIB_NOINLINE) {
14569 do_inline = 0;
14571 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14572 do_inline = 1;
14574 return do_inline;
14577 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14579 struct triple *first, *ptr, *next;
14580 /* If the function is not used don't bother */
14581 if (me->u.cval <= 0) {
14582 return;
14584 if (state->compiler->debug & DEBUG_CALLS2) {
14585 FILE *fp = state->dbgout;
14586 fprintf(fp, "in: %s\n",
14587 me->type->type_ident->name);
14590 first = RHS(me, 0);
14591 ptr = next = first;
14592 do {
14593 struct triple *func, *prev;
14594 ptr = next;
14595 prev = ptr->prev;
14596 next = ptr->next;
14597 if (ptr->op != OP_FCALL) {
14598 continue;
14600 func = MISC(ptr, 0);
14601 /* See if the function should be inlined */
14602 if (!do_inline(state, func)) {
14603 /* Put a label after the fcall */
14604 post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14605 continue;
14607 if (state->compiler->debug & DEBUG_CALLS) {
14608 FILE *fp = state->dbgout;
14609 if (state->compiler->debug & DEBUG_CALLS2) {
14610 loc(fp, state, ptr);
14612 fprintf(fp, "inlining %s\n",
14613 func->type->type_ident->name);
14614 fflush(fp);
14617 /* Update the function use counts */
14618 func->u.cval -= 1;
14620 /* Replace the fcall with the called function */
14621 expand_inline_call(state, me, ptr);
14623 next = prev->next;
14624 } while (next != first);
14626 ptr = next = first;
14627 do {
14628 struct triple *prev, *func;
14629 ptr = next;
14630 prev = ptr->prev;
14631 next = ptr->next;
14632 if (ptr->op != OP_FCALL) {
14633 continue;
14635 func = MISC(ptr, 0);
14636 if (state->compiler->debug & DEBUG_CALLS) {
14637 FILE *fp = state->dbgout;
14638 if (state->compiler->debug & DEBUG_CALLS2) {
14639 loc(fp, state, ptr);
14641 fprintf(fp, "calling %s\n",
14642 func->type->type_ident->name);
14643 fflush(fp);
14645 /* Replace the fcall with the instruction sequence
14646 * needed to make the call.
14648 expand_function_call(state, me, ptr);
14649 next = prev->next;
14650 } while(next != first);
14653 static void inline_functions(struct compile_state *state, struct triple *func)
14655 inline_function(state, func, 0);
14656 reverse_walk_functions(state, inline_function, 0);
14659 static void insert_function(struct compile_state *state,
14660 struct triple *func, void *arg)
14662 struct triple *first, *end, *ffirst, *fend;
14664 if (state->compiler->debug & DEBUG_INLINE) {
14665 FILE *fp = state->errout;
14666 fprintf(fp, "%s func count: %d\n",
14667 func->type->type_ident->name, func->u.cval);
14669 if (func->u.cval == 0) {
14670 return;
14673 /* Find the end points of the lists */
14674 first = arg;
14675 end = first->prev;
14676 ffirst = RHS(func, 0);
14677 fend = ffirst->prev;
14679 /* splice the lists together */
14680 end->next = ffirst;
14681 ffirst->prev = end;
14682 fend->next = first;
14683 first->prev = fend;
14686 struct triple *input_asm(struct compile_state *state)
14688 struct asm_info *info;
14689 struct triple *def;
14690 int i, out;
14692 info = xcmalloc(sizeof(*info), "asm_info");
14693 info->str = "";
14695 out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14696 memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14698 def = new_triple(state, OP_ASM, &void_type, out, 0);
14699 def->u.ainfo = info;
14700 def->id |= TRIPLE_FLAG_VOLATILE;
14702 for(i = 0; i < out; i++) {
14703 struct triple *piece;
14704 piece = triple(state, OP_PIECE, &int_type, def, 0);
14705 piece->u.cval = i;
14706 LHS(def, i) = piece;
14709 return def;
14712 struct triple *output_asm(struct compile_state *state)
14714 struct asm_info *info;
14715 struct triple *def;
14716 int in;
14718 info = xcmalloc(sizeof(*info), "asm_info");
14719 info->str = "";
14721 in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14722 memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14724 def = new_triple(state, OP_ASM, &void_type, 0, in);
14725 def->u.ainfo = info;
14726 def->id |= TRIPLE_FLAG_VOLATILE;
14728 return def;
14731 static void join_functions(struct compile_state *state)
14733 struct triple *start, *end, *call, *in, *out, *func;
14734 struct file_state file;
14735 struct type *pnext, *param;
14736 struct type *result_type, *args_type;
14737 int idx;
14739 /* Be clear the functions have not been joined yet */
14740 state->functions_joined = 0;
14742 /* Dummy file state to get debug handing right */
14743 memset(&file, 0, sizeof(file));
14744 file.basename = "";
14745 file.line = 0;
14746 file.report_line = 0;
14747 file.report_name = file.basename;
14748 file.prev = state->file;
14749 state->file = &file;
14750 state->function = "";
14752 if (!state->main_function) {
14753 error(state, 0, "No functions to compile\n");
14756 /* The type of arguments */
14757 args_type = state->main_function->type->right;
14758 /* The return type without any specifiers */
14759 result_type = clone_type(0, state->main_function->type->left);
14762 /* Verify the external arguments */
14763 if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14764 error(state, state->main_function,
14765 "Too many external input arguments");
14767 if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14768 error(state, state->main_function,
14769 "Too many external output arguments");
14772 /* Lay down the basic program structure */
14773 end = label(state);
14774 start = label(state);
14775 start = flatten(state, state->first, start);
14776 end = flatten(state, state->first, end);
14777 in = input_asm(state);
14778 out = output_asm(state);
14779 call = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14780 MISC(call, 0) = state->main_function;
14781 in = flatten(state, state->first, in);
14782 call = flatten(state, state->first, call);
14783 out = flatten(state, state->first, out);
14786 /* Read the external input arguments */
14787 pnext = args_type;
14788 idx = 0;
14789 while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14790 struct triple *expr;
14791 param = pnext;
14792 pnext = 0;
14793 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14794 pnext = param->right;
14795 param = param->left;
14797 if (registers_of(state, param) != 1) {
14798 error(state, state->main_function,
14799 "Arg: %d %s requires multiple registers",
14800 idx + 1, param->field_ident->name);
14802 expr = read_expr(state, LHS(in, idx));
14803 RHS(call, idx) = expr;
14804 expr = flatten(state, call, expr);
14805 use_triple(expr, call);
14807 idx++;
14811 /* Write the external output arguments */
14812 pnext = result_type;
14813 if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14814 pnext = result_type->left;
14816 for(idx = 0; idx < out->rhs; idx++) {
14817 struct triple *expr;
14818 param = pnext;
14819 pnext = 0;
14820 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14821 pnext = param->right;
14822 param = param->left;
14824 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14825 param = 0;
14827 if (param) {
14828 if (registers_of(state, param) != 1) {
14829 error(state, state->main_function,
14830 "Result: %d %s requires multiple registers",
14831 idx, param->field_ident->name);
14833 expr = read_expr(state, call);
14834 if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14835 expr = deref_field(state, expr, param->field_ident);
14837 } else {
14838 expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14840 flatten(state, out, expr);
14841 RHS(out, idx) = expr;
14842 use_triple(expr, out);
14845 /* Allocate a dummy containing function */
14846 func = triple(state, OP_LIST,
14847 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14848 func->type->type_ident = lookup(state, "", 0);
14849 RHS(func, 0) = state->first;
14850 func->u.cval = 1;
14852 /* See which functions are called, and how often */
14853 mark_live_functions(state);
14854 inline_functions(state, func);
14855 walk_functions(state, insert_function, end);
14857 if (start->next != end) {
14858 flatten(state, start, branch(state, end, 0));
14861 /* OK now the functions have been joined. */
14862 state->functions_joined = 1;
14864 /* Done now cleanup */
14865 state->file = file.prev;
14866 state->function = 0;
14870 * Data structurs for optimation.
14874 static int do_use_block(
14875 struct block *used, struct block_set **head, struct block *user,
14876 int front)
14878 struct block_set **ptr, *new;
14879 if (!used)
14880 return 0;
14881 if (!user)
14882 return 0;
14883 ptr = head;
14884 while(*ptr) {
14885 if ((*ptr)->member == user) {
14886 return 0;
14888 ptr = &(*ptr)->next;
14890 new = xcmalloc(sizeof(*new), "block_set");
14891 new->member = user;
14892 if (front) {
14893 new->next = *head;
14894 *head = new;
14896 else {
14897 new->next = 0;
14898 *ptr = new;
14900 return 1;
14902 static int do_unuse_block(
14903 struct block *used, struct block_set **head, struct block *unuser)
14905 struct block_set *use, **ptr;
14906 int count;
14907 count = 0;
14908 ptr = head;
14909 while(*ptr) {
14910 use = *ptr;
14911 if (use->member == unuser) {
14912 *ptr = use->next;
14913 memset(use, -1, sizeof(*use));
14914 xfree(use);
14915 count += 1;
14917 else {
14918 ptr = &use->next;
14921 return count;
14924 static void use_block(struct block *used, struct block *user)
14926 int count;
14927 /* Append new to the head of the list, print_block
14928 * depends on this.
14930 count = do_use_block(used, &used->use, user, 1);
14931 used->users += count;
14933 static void unuse_block(struct block *used, struct block *unuser)
14935 int count;
14936 count = do_unuse_block(used, &used->use, unuser);
14937 used->users -= count;
14940 static void add_block_edge(struct block *block, struct block *edge, int front)
14942 int count;
14943 count = do_use_block(block, &block->edges, edge, front);
14944 block->edge_count += count;
14947 static void remove_block_edge(struct block *block, struct block *edge)
14949 int count;
14950 count = do_unuse_block(block, &block->edges, edge);
14951 block->edge_count -= count;
14954 static void idom_block(struct block *idom, struct block *user)
14956 do_use_block(idom, &idom->idominates, user, 0);
14959 static void unidom_block(struct block *idom, struct block *unuser)
14961 do_unuse_block(idom, &idom->idominates, unuser);
14964 static void domf_block(struct block *block, struct block *domf)
14966 do_use_block(block, &block->domfrontier, domf, 0);
14969 static void undomf_block(struct block *block, struct block *undomf)
14971 do_unuse_block(block, &block->domfrontier, undomf);
14974 static void ipdom_block(struct block *ipdom, struct block *user)
14976 do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14979 static void unipdom_block(struct block *ipdom, struct block *unuser)
14981 do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14984 static void ipdomf_block(struct block *block, struct block *ipdomf)
14986 do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14989 static void unipdomf_block(struct block *block, struct block *unipdomf)
14991 do_unuse_block(block, &block->ipdomfrontier, unipdomf);
14994 static int walk_triples(
14995 struct compile_state *state,
14996 int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
14997 void *arg)
14999 struct triple *ptr;
15000 int result;
15001 ptr = state->first;
15002 do {
15003 result = cb(state, ptr, arg);
15004 if (ptr->next->prev != ptr) {
15005 internal_error(state, ptr->next, "bad prev");
15007 ptr = ptr->next;
15008 } while((result == 0) && (ptr != state->first));
15009 return result;
15012 #define PRINT_LIST 1
15013 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15015 FILE *fp = arg;
15016 int op;
15017 op = ins->op;
15018 if (op == OP_LIST) {
15019 #if !PRINT_LIST
15020 return 0;
15021 #endif
15023 if ((op == OP_LABEL) && (ins->use)) {
15024 fprintf(fp, "\n%p:\n", ins);
15026 display_triple(fp, ins);
15028 if (triple_is_branch(state, ins) && ins->use &&
15029 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15030 internal_error(state, ins, "branch used?");
15032 if (triple_is_branch(state, ins)) {
15033 fprintf(fp, "\n");
15035 return 0;
15038 static void print_triples(struct compile_state *state)
15040 if (state->compiler->debug & DEBUG_TRIPLES) {
15041 FILE *fp = state->dbgout;
15042 fprintf(fp, "--------------- triples ---------------\n");
15043 walk_triples(state, do_print_triple, fp);
15044 fprintf(fp, "\n");
15048 struct cf_block {
15049 struct block *block;
15051 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15053 struct block_set *edge;
15054 if (!block || (cf[block->vertex].block == block)) {
15055 return;
15057 cf[block->vertex].block = block;
15058 for(edge = block->edges; edge; edge = edge->next) {
15059 find_cf_blocks(cf, edge->member);
15063 static void print_control_flow(struct compile_state *state,
15064 FILE *fp, struct basic_blocks *bb)
15066 struct cf_block *cf;
15067 int i;
15068 fprintf(fp, "\ncontrol flow\n");
15069 cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15070 find_cf_blocks(cf, bb->first_block);
15072 for(i = 1; i <= bb->last_vertex; i++) {
15073 struct block *block;
15074 struct block_set *edge;
15075 block = cf[i].block;
15076 if (!block)
15077 continue;
15078 fprintf(fp, "(%p) %d:", block, block->vertex);
15079 for(edge = block->edges; edge; edge = edge->next) {
15080 fprintf(fp, " %d", edge->member->vertex);
15082 fprintf(fp, "\n");
15085 xfree(cf);
15088 static void free_basic_block(struct compile_state *state, struct block *block)
15090 struct block_set *edge, *entry;
15091 struct block *child;
15092 if (!block) {
15093 return;
15095 if (block->vertex == -1) {
15096 return;
15098 block->vertex = -1;
15099 for(edge = block->edges; edge; edge = edge->next) {
15100 if (edge->member) {
15101 unuse_block(edge->member, block);
15104 if (block->idom) {
15105 unidom_block(block->idom, block);
15107 block->idom = 0;
15108 if (block->ipdom) {
15109 unipdom_block(block->ipdom, block);
15111 block->ipdom = 0;
15112 while((entry = block->use)) {
15113 child = entry->member;
15114 unuse_block(block, child);
15115 if (child && (child->vertex != -1)) {
15116 for(edge = child->edges; edge; edge = edge->next) {
15117 edge->member = 0;
15121 while((entry = block->idominates)) {
15122 child = entry->member;
15123 unidom_block(block, child);
15124 if (child && (child->vertex != -1)) {
15125 child->idom = 0;
15128 while((entry = block->domfrontier)) {
15129 child = entry->member;
15130 undomf_block(block, child);
15132 while((entry = block->ipdominates)) {
15133 child = entry->member;
15134 unipdom_block(block, child);
15135 if (child && (child->vertex != -1)) {
15136 child->ipdom = 0;
15139 while((entry = block->ipdomfrontier)) {
15140 child = entry->member;
15141 unipdomf_block(block, child);
15143 if (block->users != 0) {
15144 internal_error(state, 0, "block still has users");
15146 while((edge = block->edges)) {
15147 child = edge->member;
15148 remove_block_edge(block, child);
15150 if (child && (child->vertex != -1)) {
15151 free_basic_block(state, child);
15154 memset(block, -1, sizeof(*block));
15155 #ifndef WIN32
15156 xfree(block);
15157 #endif
15160 static void free_basic_blocks(struct compile_state *state,
15161 struct basic_blocks *bb)
15163 struct triple *first, *ins;
15164 free_basic_block(state, bb->first_block);
15165 bb->last_vertex = 0;
15166 bb->first_block = bb->last_block = 0;
15167 first = bb->first;
15168 ins = first;
15169 do {
15170 if (triple_stores_block(state, ins)) {
15171 ins->u.block = 0;
15173 ins = ins->next;
15174 } while(ins != first);
15178 static struct block *basic_block(struct compile_state *state,
15179 struct basic_blocks *bb, struct triple *first)
15181 struct block *block;
15182 struct triple *ptr;
15183 if (!triple_is_label(state, first)) {
15184 internal_error(state, first, "block does not start with a label");
15186 /* See if this basic block has already been setup */
15187 if (first->u.block != 0) {
15188 return first->u.block;
15190 /* Allocate another basic block structure */
15191 bb->last_vertex += 1;
15192 block = xcmalloc(sizeof(*block), "block");
15193 block->first = block->last = first;
15194 block->vertex = bb->last_vertex;
15195 ptr = first;
15196 do {
15197 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) {
15198 break;
15200 block->last = ptr;
15201 /* If ptr->u is not used remember where the baic block is */
15202 if (triple_stores_block(state, ptr)) {
15203 ptr->u.block = block;
15205 if (triple_is_branch(state, ptr)) {
15206 break;
15208 ptr = ptr->next;
15209 } while (ptr != bb->first);
15210 if ((ptr == bb->first) ||
15211 ((ptr->next == bb->first) && (
15212 triple_is_end(state, ptr) ||
15213 triple_is_ret(state, ptr))))
15215 /* The block has no outflowing edges */
15217 else if (triple_is_label(state, ptr)) {
15218 struct block *next;
15219 next = basic_block(state, bb, ptr);
15220 add_block_edge(block, next, 0);
15221 use_block(next, block);
15223 else if (triple_is_branch(state, ptr)) {
15224 struct triple **expr, *first;
15225 struct block *child;
15226 /* Find the branch targets.
15227 * I special case the first branch as that magically
15228 * avoids some difficult cases for the register allocator.
15230 expr = triple_edge_targ(state, ptr, 0);
15231 if (!expr) {
15232 internal_error(state, ptr, "branch without targets");
15234 first = *expr;
15235 expr = triple_edge_targ(state, ptr, expr);
15236 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15237 if (!*expr) continue;
15238 child = basic_block(state, bb, *expr);
15239 use_block(child, block);
15240 add_block_edge(block, child, 0);
15242 if (first) {
15243 child = basic_block(state, bb, first);
15244 use_block(child, block);
15245 add_block_edge(block, child, 1);
15247 /* Be certain the return block of a call is
15248 * in a basic block. When it is not find
15249 * start of the block, insert a label if
15250 * necessary and build the basic block.
15251 * Then add a fake edge from the start block
15252 * to the return block of the function.
15254 if (state->functions_joined && triple_is_call(state, ptr)
15255 && !block_of_triple(state, MISC(ptr, 0))) {
15256 struct block *tail;
15257 struct triple *start;
15258 start = triple_to_block_start(state, MISC(ptr, 0));
15259 if (!triple_is_label(state, start)) {
15260 start = pre_triple(state,
15261 start, OP_LABEL, &void_type, 0, 0);
15263 tail = basic_block(state, bb, start);
15264 add_block_edge(child, tail, 0);
15265 use_block(tail, child);
15269 else {
15270 internal_error(state, 0, "Bad basic block split");
15272 #if 0
15274 struct block_set *edge;
15275 FILE *fp = state->errout;
15276 fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15277 block, block->vertex,
15278 block->first, block->last);
15279 for(edge = block->edges; edge; edge = edge->next) {
15280 fprintf(fp, " %10p [%2d]",
15281 edge->member ? edge->member->first : 0,
15282 edge->member ? edge->member->vertex : -1);
15284 fprintf(fp, "\n");
15286 #endif
15287 return block;
15291 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15292 void (*cb)(struct compile_state *state, struct block *block, void *arg),
15293 void *arg)
15295 struct triple *ptr, *first;
15296 struct block *last_block;
15297 last_block = 0;
15298 first = bb->first;
15299 ptr = first;
15300 do {
15301 if (triple_stores_block(state, ptr)) {
15302 struct block *block;
15303 block = ptr->u.block;
15304 if (block && (block != last_block)) {
15305 cb(state, block, arg);
15307 last_block = block;
15309 ptr = ptr->next;
15310 } while(ptr != first);
15313 static void print_block(
15314 struct compile_state *state, struct block *block, void *arg)
15316 struct block_set *user, *edge;
15317 struct triple *ptr;
15318 FILE *fp = arg;
15320 fprintf(fp, "\nblock: %p (%d) ",
15321 block,
15322 block->vertex);
15324 for(edge = block->edges; edge; edge = edge->next) {
15325 fprintf(fp, " %p<-%p",
15326 edge->member,
15327 (edge->member && edge->member->use)?
15328 edge->member->use->member : 0);
15330 fprintf(fp, "\n");
15331 if (block->first->op == OP_LABEL) {
15332 fprintf(fp, "%p:\n", block->first);
15334 for(ptr = block->first; ; ) {
15335 display_triple(fp, ptr);
15336 if (ptr == block->last)
15337 break;
15338 ptr = ptr->next;
15339 if (ptr == block->first) {
15340 internal_error(state, 0, "missing block last?");
15343 fprintf(fp, "users %d: ", block->users);
15344 for(user = block->use; user; user = user->next) {
15345 fprintf(fp, "%p (%d) ",
15346 user->member,
15347 user->member->vertex);
15349 fprintf(fp,"\n\n");
15353 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15355 fprintf(fp, "--------------- blocks ---------------\n");
15356 walk_blocks(state, &state->bb, print_block, fp);
15358 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15360 if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15361 fprintf(fp, "After %s\n", func);
15362 romcc_print_blocks(state, fp);
15363 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15364 print_dominators(state, fp, &state->bb);
15365 print_dominance_frontiers(state, fp, &state->bb);
15367 print_control_flow(state, fp, &state->bb);
15371 static void prune_nonblock_triples(struct compile_state *state,
15372 struct basic_blocks *bb)
15374 struct block *block;
15375 struct triple *first, *ins, *next;
15376 /* Delete the triples not in a basic block */
15377 block = 0;
15378 first = bb->first;
15379 ins = first;
15380 do {
15381 next = ins->next;
15382 if (ins->op == OP_LABEL) {
15383 block = ins->u.block;
15385 if (!block) {
15386 struct triple_set *use;
15387 for(use = ins->use; use; use = use->next) {
15388 struct block *block;
15389 block = block_of_triple(state, use->member);
15390 if (block != 0) {
15391 internal_error(state, ins, "pruning used ins?");
15394 release_triple(state, ins);
15396 if (block && block->last == ins) {
15397 block = 0;
15399 ins = next;
15400 } while(ins != first);
15403 static void setup_basic_blocks(struct compile_state *state,
15404 struct basic_blocks *bb)
15406 if (!triple_stores_block(state, bb->first)) {
15407 internal_error(state, 0, "ins will not store block?");
15409 /* Initialize the state */
15410 bb->first_block = bb->last_block = 0;
15411 bb->last_vertex = 0;
15412 free_basic_blocks(state, bb);
15414 /* Find the basic blocks */
15415 bb->first_block = basic_block(state, bb, bb->first);
15417 /* Be certain the last instruction of a function, or the
15418 * entire program is in a basic block. When it is not find
15419 * the start of the block, insert a label if necessary and build
15420 * basic block. Then add a fake edge from the start block
15421 * to the final block.
15423 if (!block_of_triple(state, bb->first->prev)) {
15424 struct triple *start;
15425 struct block *tail;
15426 start = triple_to_block_start(state, bb->first->prev);
15427 if (!triple_is_label(state, start)) {
15428 start = pre_triple(state,
15429 start, OP_LABEL, &void_type, 0, 0);
15431 tail = basic_block(state, bb, start);
15432 add_block_edge(bb->first_block, tail, 0);
15433 use_block(tail, bb->first_block);
15436 /* Find the last basic block.
15438 bb->last_block = block_of_triple(state, bb->first->prev);
15440 /* Delete the triples not in a basic block */
15441 prune_nonblock_triples(state, bb);
15443 #if 0
15444 /* If we are debugging print what I have just done */
15445 if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15446 print_blocks(state, state->dbgout);
15447 print_control_flow(state, bb);
15449 #endif
15453 struct sdom_block {
15454 struct block *block;
15455 struct sdom_block *sdominates;
15456 struct sdom_block *sdom_next;
15457 struct sdom_block *sdom;
15458 struct sdom_block *label;
15459 struct sdom_block *parent;
15460 struct sdom_block *ancestor;
15461 int vertex;
15465 static void unsdom_block(struct sdom_block *block)
15467 struct sdom_block **ptr;
15468 if (!block->sdom_next) {
15469 return;
15471 ptr = &block->sdom->sdominates;
15472 while(*ptr) {
15473 if ((*ptr) == block) {
15474 *ptr = block->sdom_next;
15475 return;
15477 ptr = &(*ptr)->sdom_next;
15481 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15483 unsdom_block(block);
15484 block->sdom = sdom;
15485 block->sdom_next = sdom->sdominates;
15486 sdom->sdominates = block;
15491 static int initialize_sdblock(struct sdom_block *sd,
15492 struct block *parent, struct block *block, int vertex)
15494 struct block_set *edge;
15495 if (!block || (sd[block->vertex].block == block)) {
15496 return vertex;
15498 vertex += 1;
15499 /* Renumber the blocks in a convinient fashion */
15500 block->vertex = vertex;
15501 sd[vertex].block = block;
15502 sd[vertex].sdom = &sd[vertex];
15503 sd[vertex].label = &sd[vertex];
15504 sd[vertex].parent = parent? &sd[parent->vertex] : 0;
15505 sd[vertex].ancestor = 0;
15506 sd[vertex].vertex = vertex;
15507 for(edge = block->edges; edge; edge = edge->next) {
15508 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15510 return vertex;
15513 static int initialize_spdblock(
15514 struct compile_state *state, struct sdom_block *sd,
15515 struct block *parent, struct block *block, int vertex)
15517 struct block_set *user;
15518 if (!block || (sd[block->vertex].block == block)) {
15519 return vertex;
15521 vertex += 1;
15522 /* Renumber the blocks in a convinient fashion */
15523 block->vertex = vertex;
15524 sd[vertex].block = block;
15525 sd[vertex].sdom = &sd[vertex];
15526 sd[vertex].label = &sd[vertex];
15527 sd[vertex].parent = parent? &sd[parent->vertex] : 0;
15528 sd[vertex].ancestor = 0;
15529 sd[vertex].vertex = vertex;
15530 for(user = block->use; user; user = user->next) {
15531 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15533 return vertex;
15536 static int setup_spdblocks(struct compile_state *state,
15537 struct basic_blocks *bb, struct sdom_block *sd)
15539 struct block *block;
15540 int vertex;
15541 /* Setup as many sdpblocks as possible without using fake edges */
15542 vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15544 /* Walk through the graph and find unconnected blocks. Add a
15545 * fake edge from the unconnected blocks to the end of the
15546 * graph.
15548 block = bb->first_block->last->next->u.block;
15549 for(; block && block != bb->first_block; block = block->last->next->u.block) {
15550 if (sd[block->vertex].block == block) {
15551 continue;
15553 #if DEBUG_SDP_BLOCKS
15555 FILE *fp = state->errout;
15556 fprintf(fp, "Adding %d\n", vertex +1);
15558 #endif
15559 add_block_edge(block, bb->last_block, 0);
15560 use_block(bb->last_block, block);
15562 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15564 return vertex;
15567 static void compress_ancestors(struct sdom_block *v)
15569 /* This procedure assumes ancestor(v) != 0 */
15570 /* if (ancestor(ancestor(v)) != 0) {
15571 * compress(ancestor(ancestor(v)));
15572 * if (semi(label(ancestor(v))) < semi(label(v))) {
15573 * label(v) = label(ancestor(v));
15575 * ancestor(v) = ancestor(ancestor(v));
15578 if (!v->ancestor) {
15579 return;
15581 if (v->ancestor->ancestor) {
15582 compress_ancestors(v->ancestor->ancestor);
15583 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15584 v->label = v->ancestor->label;
15586 v->ancestor = v->ancestor->ancestor;
15590 static void compute_sdom(struct compile_state *state,
15591 struct basic_blocks *bb, struct sdom_block *sd)
15593 int i;
15594 /* // step 2
15595 * for each v <= pred(w) {
15596 * u = EVAL(v);
15597 * if (semi[u] < semi[w] {
15598 * semi[w] = semi[u];
15601 * add w to bucket(vertex(semi[w]));
15602 * LINK(parent(w), w);
15604 * // step 3
15605 * for each v <= bucket(parent(w)) {
15606 * delete v from bucket(parent(w));
15607 * u = EVAL(v);
15608 * dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15611 for(i = bb->last_vertex; i >= 2; i--) {
15612 struct sdom_block *v, *parent, *next;
15613 struct block_set *user;
15614 struct block *block;
15615 block = sd[i].block;
15616 parent = sd[i].parent;
15617 /* Step 2 */
15618 for(user = block->use; user; user = user->next) {
15619 struct sdom_block *v, *u;
15620 v = &sd[user->member->vertex];
15621 u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15622 if (u->sdom->vertex < sd[i].sdom->vertex) {
15623 sd[i].sdom = u->sdom;
15626 sdom_block(sd[i].sdom, &sd[i]);
15627 sd[i].ancestor = parent;
15628 /* Step 3 */
15629 for(v = parent->sdominates; v; v = next) {
15630 struct sdom_block *u;
15631 next = v->sdom_next;
15632 unsdom_block(v);
15633 u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15634 v->block->idom = (u->sdom->vertex < v->sdom->vertex)?
15635 u->block : parent->block;
15640 static void compute_spdom(struct compile_state *state,
15641 struct basic_blocks *bb, struct sdom_block *sd)
15643 int i;
15644 /* // step 2
15645 * for each v <= pred(w) {
15646 * u = EVAL(v);
15647 * if (semi[u] < semi[w] {
15648 * semi[w] = semi[u];
15651 * add w to bucket(vertex(semi[w]));
15652 * LINK(parent(w), w);
15654 * // step 3
15655 * for each v <= bucket(parent(w)) {
15656 * delete v from bucket(parent(w));
15657 * u = EVAL(v);
15658 * dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15661 for(i = bb->last_vertex; i >= 2; i--) {
15662 struct sdom_block *u, *v, *parent, *next;
15663 struct block_set *edge;
15664 struct block *block;
15665 block = sd[i].block;
15666 parent = sd[i].parent;
15667 /* Step 2 */
15668 for(edge = block->edges; edge; edge = edge->next) {
15669 v = &sd[edge->member->vertex];
15670 u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15671 if (u->sdom->vertex < sd[i].sdom->vertex) {
15672 sd[i].sdom = u->sdom;
15675 sdom_block(sd[i].sdom, &sd[i]);
15676 sd[i].ancestor = parent;
15677 /* Step 3 */
15678 for(v = parent->sdominates; v; v = next) {
15679 struct sdom_block *u;
15680 next = v->sdom_next;
15681 unsdom_block(v);
15682 u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15683 v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)?
15684 u->block : parent->block;
15689 static void compute_idom(struct compile_state *state,
15690 struct basic_blocks *bb, struct sdom_block *sd)
15692 int i;
15693 for(i = 2; i <= bb->last_vertex; i++) {
15694 struct block *block;
15695 block = sd[i].block;
15696 if (block->idom->vertex != sd[i].sdom->vertex) {
15697 block->idom = block->idom->idom;
15699 idom_block(block->idom, block);
15701 sd[1].block->idom = 0;
15704 static void compute_ipdom(struct compile_state *state,
15705 struct basic_blocks *bb, struct sdom_block *sd)
15707 int i;
15708 for(i = 2; i <= bb->last_vertex; i++) {
15709 struct block *block;
15710 block = sd[i].block;
15711 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15712 block->ipdom = block->ipdom->ipdom;
15714 ipdom_block(block->ipdom, block);
15716 sd[1].block->ipdom = 0;
15719 /* Theorem 1:
15720 * Every vertex of a flowgraph G = (V, E, r) except r has
15721 * a unique immediate dominator.
15722 * The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15723 * rooted at r, called the dominator tree of G, such that
15724 * v dominates w if and only if v is a proper ancestor of w in
15725 * the dominator tree.
15727 /* Lemma 1:
15728 * If v and w are vertices of G such that v <= w,
15729 * than any path from v to w must contain a common ancestor
15730 * of v and w in T.
15732 /* Lemma 2: For any vertex w != r, idom(w) -> w */
15733 /* Lemma 3: For any vertex w != r, sdom(w) -> w */
15734 /* Lemma 4: For any vertex w != r, idom(w) -> sdom(w) */
15735 /* Theorem 2:
15736 * Let w != r. Suppose every u for which sdom(w) -> u -> w satisfies
15737 * sdom(u) >= sdom(w). Then idom(w) = sdom(w).
15739 /* Theorem 3:
15740 * Let w != r and let u be a vertex for which sdom(u) is
15741 * minimum amoung vertices u satisfying sdom(w) -> u -> w.
15742 * Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15744 /* Lemma 5: Let vertices v,w satisfy v -> w.
15745 * Then v -> idom(w) or idom(w) -> idom(v)
15748 static void find_immediate_dominators(struct compile_state *state,
15749 struct basic_blocks *bb)
15751 struct sdom_block *sd;
15752 /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15753 * vi > w for (1 <= i <= k - 1}
15755 /* Theorem 4:
15756 * For any vertex w != r.
15757 * sdom(w) = min(
15758 * {v|(v,w) <= E and v < w } U
15759 * {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15761 /* Corollary 1:
15762 * Let w != r and let u be a vertex for which sdom(u) is
15763 * minimum amoung vertices u satisfying sdom(w) -> u -> w.
15764 * Then:
15765 * { sdom(w) if sdom(w) = sdom(u),
15766 * idom(w) = {
15767 * { idom(u) otherwise
15769 /* The algorithm consists of the following 4 steps.
15770 * Step 1. Carry out a depth-first search of the problem graph.
15771 * Number the vertices from 1 to N as they are reached during
15772 * the search. Initialize the variables used in succeeding steps.
15773 * Step 2. Compute the semidominators of all vertices by applying
15774 * theorem 4. Carry out the computation vertex by vertex in
15775 * decreasing order by number.
15776 * Step 3. Implicitly define the immediate dominator of each vertex
15777 * by applying Corollary 1.
15778 * Step 4. Explicitly define the immediate dominator of each vertex,
15779 * carrying out the computation vertex by vertex in increasing order
15780 * by number.
15782 /* Step 1 initialize the basic block information */
15783 sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15784 initialize_sdblock(sd, 0, bb->first_block, 0);
15785 #if 0
15786 sd[1].size = 0;
15787 sd[1].label = 0;
15788 sd[1].sdom = 0;
15789 #endif
15790 /* Step 2 compute the semidominators */
15791 /* Step 3 implicitly define the immediate dominator of each vertex */
15792 compute_sdom(state, bb, sd);
15793 /* Step 4 explicitly define the immediate dominator of each vertex */
15794 compute_idom(state, bb, sd);
15795 xfree(sd);
15798 static void find_post_dominators(struct compile_state *state,
15799 struct basic_blocks *bb)
15801 struct sdom_block *sd;
15802 int vertex;
15803 /* Step 1 initialize the basic block information */
15804 sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15806 vertex = setup_spdblocks(state, bb, sd);
15807 if (vertex != bb->last_vertex) {
15808 internal_error(state, 0, "missing %d blocks",
15809 bb->last_vertex - vertex);
15812 /* Step 2 compute the semidominators */
15813 /* Step 3 implicitly define the immediate dominator of each vertex */
15814 compute_spdom(state, bb, sd);
15815 /* Step 4 explicitly define the immediate dominator of each vertex */
15816 compute_ipdom(state, bb, sd);
15817 xfree(sd);
15822 static void find_block_domf(struct compile_state *state, struct block *block)
15824 struct block *child;
15825 struct block_set *user, *edge;
15826 if (block->domfrontier != 0) {
15827 internal_error(state, block->first, "domfrontier present?");
15829 for(user = block->idominates; user; user = user->next) {
15830 child = user->member;
15831 if (child->idom != block) {
15832 internal_error(state, block->first, "bad idom");
15834 find_block_domf(state, child);
15836 for(edge = block->edges; edge; edge = edge->next) {
15837 if (edge->member->idom != block) {
15838 domf_block(block, edge->member);
15841 for(user = block->idominates; user; user = user->next) {
15842 struct block_set *frontier;
15843 child = user->member;
15844 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15845 if (frontier->member->idom != block) {
15846 domf_block(block, frontier->member);
15852 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15854 struct block *child;
15855 struct block_set *user;
15856 if (block->ipdomfrontier != 0) {
15857 internal_error(state, block->first, "ipdomfrontier present?");
15859 for(user = block->ipdominates; user; user = user->next) {
15860 child = user->member;
15861 if (child->ipdom != block) {
15862 internal_error(state, block->first, "bad ipdom");
15864 find_block_ipdomf(state, child);
15866 for(user = block->use; user; user = user->next) {
15867 if (user->member->ipdom != block) {
15868 ipdomf_block(block, user->member);
15871 for(user = block->ipdominates; user; user = user->next) {
15872 struct block_set *frontier;
15873 child = user->member;
15874 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15875 if (frontier->member->ipdom != block) {
15876 ipdomf_block(block, frontier->member);
15882 static void print_dominated(
15883 struct compile_state *state, struct block *block, void *arg)
15885 struct block_set *user;
15886 FILE *fp = arg;
15888 fprintf(fp, "%d:", block->vertex);
15889 for(user = block->idominates; user; user = user->next) {
15890 fprintf(fp, " %d", user->member->vertex);
15891 if (user->member->idom != block) {
15892 internal_error(state, user->member->first, "bad idom");
15895 fprintf(fp,"\n");
15898 static void print_dominated2(
15899 struct compile_state *state, FILE *fp, int depth, struct block *block)
15901 struct block_set *user;
15902 struct triple *ins;
15903 struct occurance *ptr, *ptr2;
15904 const char *filename1, *filename2;
15905 int equal_filenames;
15906 int i;
15907 for(i = 0; i < depth; i++) {
15908 fprintf(fp, " ");
15910 fprintf(fp, "%3d: %p (%p - %p) @",
15911 block->vertex, block, block->first, block->last);
15912 ins = block->first;
15913 while(ins != block->last && (ins->occurance->line == 0)) {
15914 ins = ins->next;
15916 ptr = ins->occurance;
15917 ptr2 = block->last->occurance;
15918 filename1 = ptr->filename? ptr->filename : "";
15919 filename2 = ptr2->filename? ptr2->filename : "";
15920 equal_filenames = (strcmp(filename1, filename2) == 0);
15921 if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15922 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15923 } else if (equal_filenames) {
15924 fprintf(fp, " %s:(%d - %d)",
15925 ptr->filename, ptr->line, ptr2->line);
15926 } else {
15927 fprintf(fp, " (%s:%d - %s:%d)",
15928 ptr->filename, ptr->line,
15929 ptr2->filename, ptr2->line);
15931 fprintf(fp, "\n");
15932 for(user = block->idominates; user; user = user->next) {
15933 print_dominated2(state, fp, depth + 1, user->member);
15937 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15939 fprintf(fp, "\ndominates\n");
15940 walk_blocks(state, bb, print_dominated, fp);
15941 fprintf(fp, "dominates\n");
15942 print_dominated2(state, fp, 0, bb->first_block);
15946 static int print_frontiers(
15947 struct compile_state *state, FILE *fp, struct block *block, int vertex)
15949 struct block_set *user, *edge;
15951 if (!block || (block->vertex != vertex + 1)) {
15952 return vertex;
15954 vertex += 1;
15956 fprintf(fp, "%d:", block->vertex);
15957 for(user = block->domfrontier; user; user = user->next) {
15958 fprintf(fp, " %d", user->member->vertex);
15960 fprintf(fp, "\n");
15962 for(edge = block->edges; edge; edge = edge->next) {
15963 vertex = print_frontiers(state, fp, edge->member, vertex);
15965 return vertex;
15967 static void print_dominance_frontiers(struct compile_state *state,
15968 FILE *fp, struct basic_blocks *bb)
15970 fprintf(fp, "\ndominance frontiers\n");
15971 print_frontiers(state, fp, bb->first_block, 0);
15975 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15977 /* Find the immediate dominators */
15978 find_immediate_dominators(state, bb);
15979 /* Find the dominance frontiers */
15980 find_block_domf(state, bb->first_block);
15981 /* If debuging print the print what I have just found */
15982 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15983 print_dominators(state, state->dbgout, bb);
15984 print_dominance_frontiers(state, state->dbgout, bb);
15985 print_control_flow(state, state->dbgout, bb);
15990 static void print_ipdominated(
15991 struct compile_state *state, struct block *block, void *arg)
15993 struct block_set *user;
15994 FILE *fp = arg;
15996 fprintf(fp, "%d:", block->vertex);
15997 for(user = block->ipdominates; user; user = user->next) {
15998 fprintf(fp, " %d", user->member->vertex);
15999 if (user->member->ipdom != block) {
16000 internal_error(state, user->member->first, "bad ipdom");
16003 fprintf(fp, "\n");
16006 static void print_ipdominators(struct compile_state *state, FILE *fp,
16007 struct basic_blocks *bb)
16009 fprintf(fp, "\nipdominates\n");
16010 walk_blocks(state, bb, print_ipdominated, fp);
16013 static int print_pfrontiers(
16014 struct compile_state *state, FILE *fp, struct block *block, int vertex)
16016 struct block_set *user;
16018 if (!block || (block->vertex != vertex + 1)) {
16019 return vertex;
16021 vertex += 1;
16023 fprintf(fp, "%d:", block->vertex);
16024 for(user = block->ipdomfrontier; user; user = user->next) {
16025 fprintf(fp, " %d", user->member->vertex);
16027 fprintf(fp, "\n");
16028 for(user = block->use; user; user = user->next) {
16029 vertex = print_pfrontiers(state, fp, user->member, vertex);
16031 return vertex;
16033 static void print_ipdominance_frontiers(struct compile_state *state,
16034 FILE *fp, struct basic_blocks *bb)
16036 fprintf(fp, "\nipdominance frontiers\n");
16037 print_pfrontiers(state, fp, bb->last_block, 0);
16041 static void analyze_ipdominators(struct compile_state *state,
16042 struct basic_blocks *bb)
16044 /* Find the post dominators */
16045 find_post_dominators(state, bb);
16046 /* Find the control dependencies (post dominance frontiers) */
16047 find_block_ipdomf(state, bb->last_block);
16048 /* If debuging print the print what I have just found */
16049 if (state->compiler->debug & DEBUG_RDOMINATORS) {
16050 print_ipdominators(state, state->dbgout, bb);
16051 print_ipdominance_frontiers(state, state->dbgout, bb);
16052 print_control_flow(state, state->dbgout, bb);
16056 static int bdominates(struct compile_state *state,
16057 struct block *dom, struct block *sub)
16059 while(sub && (sub != dom)) {
16060 sub = sub->idom;
16062 return sub == dom;
16065 static int tdominates(struct compile_state *state,
16066 struct triple *dom, struct triple *sub)
16068 struct block *bdom, *bsub;
16069 int result;
16070 bdom = block_of_triple(state, dom);
16071 bsub = block_of_triple(state, sub);
16072 if (bdom != bsub) {
16073 result = bdominates(state, bdom, bsub);
16075 else {
16076 struct triple *ins;
16077 if (!bdom || !bsub) {
16078 internal_error(state, dom, "huh?");
16080 ins = sub;
16081 while((ins != bsub->first) && (ins != dom)) {
16082 ins = ins->prev;
16084 result = (ins == dom);
16086 return result;
16089 static void analyze_basic_blocks(
16090 struct compile_state *state, struct basic_blocks *bb)
16092 setup_basic_blocks(state, bb);
16093 analyze_idominators(state, bb);
16094 analyze_ipdominators(state, bb);
16097 static void insert_phi_operations(struct compile_state *state)
16099 size_t size;
16100 struct triple *first;
16101 int *has_already, *work;
16102 struct block *work_list, **work_list_tail;
16103 int iter;
16104 struct triple *var, *vnext;
16106 size = sizeof(int) * (state->bb.last_vertex + 1);
16107 has_already = xcmalloc(size, "has_already");
16108 work = xcmalloc(size, "work");
16109 iter = 0;
16111 first = state->first;
16112 for(var = first->next; var != first ; var = vnext) {
16113 struct block *block;
16114 struct triple_set *user, *unext;
16115 vnext = var->next;
16117 if (!triple_is_auto_var(state, var) || !var->use) {
16118 continue;
16121 iter += 1;
16122 work_list = 0;
16123 work_list_tail = &work_list;
16124 for(user = var->use; user; user = unext) {
16125 unext = user->next;
16126 if (MISC(var, 0) == user->member) {
16127 continue;
16129 if (user->member->op == OP_READ) {
16130 continue;
16132 if (user->member->op != OP_WRITE) {
16133 internal_error(state, user->member,
16134 "bad variable access");
16136 block = user->member->u.block;
16137 if (!block) {
16138 warning(state, user->member, "dead code");
16139 release_triple(state, user->member);
16140 continue;
16142 if (work[block->vertex] >= iter) {
16143 continue;
16145 work[block->vertex] = iter;
16146 *work_list_tail = block;
16147 block->work_next = 0;
16148 work_list_tail = &block->work_next;
16150 for(block = work_list; block; block = block->work_next) {
16151 struct block_set *df;
16152 for(df = block->domfrontier; df; df = df->next) {
16153 struct triple *phi;
16154 struct block *front;
16155 int in_edges;
16156 front = df->member;
16158 if (has_already[front->vertex] >= iter) {
16159 continue;
16161 /* Count how many edges flow into this block */
16162 in_edges = front->users;
16163 /* Insert a phi function for this variable */
16164 get_occurance(var->occurance);
16165 phi = alloc_triple(
16166 state, OP_PHI, var->type, -1, in_edges,
16167 var->occurance);
16168 phi->u.block = front;
16169 MISC(phi, 0) = var;
16170 use_triple(var, phi);
16171 #if 1
16172 if (phi->rhs != in_edges) {
16173 internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16174 phi->rhs, in_edges);
16176 #endif
16177 /* Insert the phi functions immediately after the label */
16178 insert_triple(state, front->first->next, phi);
16179 if (front->first == front->last) {
16180 front->last = front->first->next;
16182 has_already[front->vertex] = iter;
16183 transform_to_arch_instruction(state, phi);
16185 /* If necessary plan to visit the basic block */
16186 if (work[front->vertex] >= iter) {
16187 continue;
16189 work[front->vertex] = iter;
16190 *work_list_tail = front;
16191 front->work_next = 0;
16192 work_list_tail = &front->work_next;
16196 xfree(has_already);
16197 xfree(work);
16201 struct stack {
16202 struct triple_set *top;
16203 unsigned orig_id;
16206 static int count_auto_vars(struct compile_state *state)
16208 struct triple *first, *ins;
16209 int auto_vars = 0;
16210 first = state->first;
16211 ins = first;
16212 do {
16213 if (triple_is_auto_var(state, ins)) {
16214 auto_vars += 1;
16216 ins = ins->next;
16217 } while(ins != first);
16218 return auto_vars;
16221 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16223 struct triple *first, *ins;
16224 int auto_vars = 0;
16225 first = state->first;
16226 ins = first;
16227 do {
16228 if (triple_is_auto_var(state, ins)) {
16229 auto_vars += 1;
16230 stacks[auto_vars].orig_id = ins->id;
16231 ins->id = auto_vars;
16233 ins = ins->next;
16234 } while(ins != first);
16237 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16239 struct triple *first, *ins;
16240 first = state->first;
16241 ins = first;
16242 do {
16243 if (triple_is_auto_var(state, ins)) {
16244 ins->id = stacks[ins->id].orig_id;
16246 ins = ins->next;
16247 } while(ins != first);
16250 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16252 struct triple_set *head;
16253 struct triple *top_val;
16254 top_val = 0;
16255 head = stacks[var->id].top;
16256 if (head) {
16257 top_val = head->member;
16259 return top_val;
16262 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16264 struct triple_set *new;
16265 /* Append new to the head of the list,
16266 * it's the only sensible behavoir for a stack.
16268 new = xcmalloc(sizeof(*new), "triple_set");
16269 new->member = val;
16270 new->next = stacks[var->id].top;
16271 stacks[var->id].top = new;
16274 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16276 struct triple_set *set, **ptr;
16277 ptr = &stacks[var->id].top;
16278 while(*ptr) {
16279 set = *ptr;
16280 if (set->member == oldval) {
16281 *ptr = set->next;
16282 xfree(set);
16283 /* Only free one occurance from the stack */
16284 return;
16286 else {
16287 ptr = &set->next;
16293 * C(V)
16294 * S(V)
16296 static void fixup_block_phi_variables(
16297 struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16299 struct block_set *set;
16300 struct triple *ptr;
16301 int edge;
16302 if (!parent || !block)
16303 return;
16304 /* Find the edge I am coming in on */
16305 edge = 0;
16306 for(set = block->use; set; set = set->next, edge++) {
16307 if (set->member == parent) {
16308 break;
16311 if (!set) {
16312 internal_error(state, 0, "phi input is not on a control predecessor");
16314 for(ptr = block->first; ; ptr = ptr->next) {
16315 if (ptr->op == OP_PHI) {
16316 struct triple *var, *val, **slot;
16317 var = MISC(ptr, 0);
16318 if (!var) {
16319 internal_error(state, ptr, "no var???");
16321 /* Find the current value of the variable */
16322 val = peek_triple(stacks, var);
16323 if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16324 internal_error(state, val, "bad value in phi");
16326 if (edge >= ptr->rhs) {
16327 internal_error(state, ptr, "edges > phi rhs");
16329 slot = &RHS(ptr, edge);
16330 if ((*slot != 0) && (*slot != val)) {
16331 internal_error(state, ptr, "phi already bound on this edge");
16333 *slot = val;
16334 use_triple(val, ptr);
16336 if (ptr == block->last) {
16337 break;
16343 static void rename_block_variables(
16344 struct compile_state *state, struct stack *stacks, struct block *block)
16346 struct block_set *user, *edge;
16347 struct triple *ptr, *next, *last;
16348 int done;
16349 if (!block)
16350 return;
16351 last = block->first;
16352 done = 0;
16353 for(ptr = block->first; !done; ptr = next) {
16354 next = ptr->next;
16355 if (ptr == block->last) {
16356 done = 1;
16358 /* RHS(A) */
16359 if (ptr->op == OP_READ) {
16360 struct triple *var, *val;
16361 var = RHS(ptr, 0);
16362 if (!triple_is_auto_var(state, var)) {
16363 internal_error(state, ptr, "read of non auto var!");
16365 unuse_triple(var, ptr);
16366 /* Find the current value of the variable */
16367 val = peek_triple(stacks, var);
16368 if (!val) {
16369 /* Let the optimizer at variables that are not initially
16370 * set. But give it a bogus value so things seem to
16371 * work by accident. This is useful for bitfields because
16372 * setting them always involves a read-modify-write.
16374 if (TYPE_ARITHMETIC(ptr->type->type)) {
16375 val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16376 val->u.cval = 0xdeadbeaf;
16377 } else {
16378 val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16381 if (!val) {
16382 error(state, ptr, "variable used without being set");
16384 if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16385 internal_error(state, val, "bad value in read");
16387 propogate_use(state, ptr, val);
16388 release_triple(state, ptr);
16389 continue;
16391 /* LHS(A) */
16392 if (ptr->op == OP_WRITE) {
16393 struct triple *var, *val, *tval;
16394 var = MISC(ptr, 0);
16395 if (!triple_is_auto_var(state, var)) {
16396 internal_error(state, ptr, "write to non auto var!");
16398 tval = val = RHS(ptr, 0);
16399 if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16400 triple_is_auto_var(state, val)) {
16401 internal_error(state, ptr, "bad value in write");
16403 /* Insert a cast if the types differ */
16404 if (!is_subset_type(ptr->type, val->type)) {
16405 if (val->op == OP_INTCONST) {
16406 tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16407 tval->u.cval = val->u.cval;
16409 else {
16410 tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16411 use_triple(val, tval);
16413 transform_to_arch_instruction(state, tval);
16414 unuse_triple(val, ptr);
16415 RHS(ptr, 0) = tval;
16416 use_triple(tval, ptr);
16418 propogate_use(state, ptr, tval);
16419 unuse_triple(var, ptr);
16420 /* Push OP_WRITE ptr->right onto a stack of variable uses */
16421 push_triple(stacks, var, tval);
16423 if (ptr->op == OP_PHI) {
16424 struct triple *var;
16425 var = MISC(ptr, 0);
16426 if (!triple_is_auto_var(state, var)) {
16427 internal_error(state, ptr, "phi references non auto var!");
16429 /* Push OP_PHI onto a stack of variable uses */
16430 push_triple(stacks, var, ptr);
16432 last = ptr;
16434 block->last = last;
16436 /* Fixup PHI functions in the cf successors */
16437 for(edge = block->edges; edge; edge = edge->next) {
16438 fixup_block_phi_variables(state, stacks, block, edge->member);
16440 /* rename variables in the dominated nodes */
16441 for(user = block->idominates; user; user = user->next) {
16442 rename_block_variables(state, stacks, user->member);
16444 /* pop the renamed variable stack */
16445 last = block->first;
16446 done = 0;
16447 for(ptr = block->first; !done ; ptr = next) {
16448 next = ptr->next;
16449 if (ptr == block->last) {
16450 done = 1;
16452 if (ptr->op == OP_WRITE) {
16453 struct triple *var;
16454 var = MISC(ptr, 0);
16455 /* Pop OP_WRITE ptr->right from the stack of variable uses */
16456 pop_triple(stacks, var, RHS(ptr, 0));
16457 release_triple(state, ptr);
16458 continue;
16460 if (ptr->op == OP_PHI) {
16461 struct triple *var;
16462 var = MISC(ptr, 0);
16463 /* Pop OP_WRITE ptr->right from the stack of variable uses */
16464 pop_triple(stacks, var, ptr);
16466 last = ptr;
16468 block->last = last;
16471 static void rename_variables(struct compile_state *state)
16473 struct stack *stacks;
16474 int auto_vars;
16476 /* Allocate stacks for the Variables */
16477 auto_vars = count_auto_vars(state);
16478 stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16480 /* Give each auto_var a stack */
16481 number_auto_vars(state, stacks);
16483 /* Rename the variables */
16484 rename_block_variables(state, stacks, state->bb.first_block);
16486 /* Remove the stacks from the auto_vars */
16487 restore_auto_vars(state, stacks);
16488 xfree(stacks);
16491 static void prune_block_variables(struct compile_state *state,
16492 struct block *block)
16494 struct block_set *user;
16495 struct triple *next, *ptr;
16496 int done;
16498 done = 0;
16499 for(ptr = block->first; !done; ptr = next) {
16500 /* Be extremely careful I am deleting the list
16501 * as I walk trhough it.
16503 next = ptr->next;
16504 if (ptr == block->last) {
16505 done = 1;
16507 if (triple_is_auto_var(state, ptr)) {
16508 struct triple_set *user, *next;
16509 for(user = ptr->use; user; user = next) {
16510 struct triple *use;
16511 next = user->next;
16512 use = user->member;
16513 if (MISC(ptr, 0) == user->member) {
16514 continue;
16516 if (use->op != OP_PHI) {
16517 internal_error(state, use, "decl still used");
16519 if (MISC(use, 0) != ptr) {
16520 internal_error(state, use, "bad phi use of decl");
16522 unuse_triple(ptr, use);
16523 MISC(use, 0) = 0;
16525 if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16526 /* Delete the adecl */
16527 release_triple(state, MISC(ptr, 0));
16528 /* And the piece */
16529 release_triple(state, ptr);
16531 continue;
16534 for(user = block->idominates; user; user = user->next) {
16535 prune_block_variables(state, user->member);
16539 struct phi_triple {
16540 struct triple *phi;
16541 unsigned orig_id;
16542 int alive;
16545 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16547 struct triple **slot;
16548 int zrhs, i;
16549 if (live[phi->id].alive) {
16550 return;
16552 live[phi->id].alive = 1;
16553 zrhs = phi->rhs;
16554 slot = &RHS(phi, 0);
16555 for(i = 0; i < zrhs; i++) {
16556 struct triple *used;
16557 used = slot[i];
16558 if (used && (used->op == OP_PHI)) {
16559 keep_phi(state, live, used);
16564 static void prune_unused_phis(struct compile_state *state)
16566 struct triple *first, *phi;
16567 struct phi_triple *live;
16568 int phis, i;
16570 /* Find the first instruction */
16571 first = state->first;
16573 /* Count how many phi functions I need to process */
16574 phis = 0;
16575 for(phi = first->next; phi != first; phi = phi->next) {
16576 if (phi->op == OP_PHI) {
16577 phis += 1;
16581 /* Mark them all dead */
16582 live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16583 phis = 0;
16584 for(phi = first->next; phi != first; phi = phi->next) {
16585 if (phi->op != OP_PHI) {
16586 continue;
16588 live[phis].alive = 0;
16589 live[phis].orig_id = phi->id;
16590 live[phis].phi = phi;
16591 phi->id = phis;
16592 phis += 1;
16595 /* Mark phis alive that are used by non phis */
16596 for(i = 0; i < phis; i++) {
16597 struct triple_set *set;
16598 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16599 if (set->member->op != OP_PHI) {
16600 keep_phi(state, live, live[i].phi);
16601 break;
16606 /* Delete the extraneous phis */
16607 for(i = 0; i < phis; i++) {
16608 struct triple **slot;
16609 int zrhs, j;
16610 if (!live[i].alive) {
16611 release_triple(state, live[i].phi);
16612 continue;
16614 phi = live[i].phi;
16615 slot = &RHS(phi, 0);
16616 zrhs = phi->rhs;
16617 for(j = 0; j < zrhs; j++) {
16618 if(!slot[j]) {
16619 struct triple *unknown;
16620 get_occurance(phi->occurance);
16621 unknown = flatten(state, state->global_pool,
16622 alloc_triple(state, OP_UNKNOWNVAL,
16623 phi->type, 0, 0, phi->occurance));
16624 slot[j] = unknown;
16625 use_triple(unknown, phi);
16626 transform_to_arch_instruction(state, unknown);
16627 #if 0
16628 warning(state, phi, "variable not set at index %d on all paths to use", j);
16629 #endif
16633 xfree(live);
16636 static void transform_to_ssa_form(struct compile_state *state)
16638 insert_phi_operations(state);
16639 rename_variables(state);
16641 prune_block_variables(state, state->bb.first_block);
16642 prune_unused_phis(state);
16644 print_blocks(state, __func__, state->dbgout);
16648 static void clear_vertex(
16649 struct compile_state *state, struct block *block, void *arg)
16651 /* Clear the current blocks vertex and the vertex of all
16652 * of the current blocks neighbors in case there are malformed
16653 * blocks with now instructions at this point.
16655 struct block_set *user, *edge;
16656 block->vertex = 0;
16657 for(edge = block->edges; edge; edge = edge->next) {
16658 edge->member->vertex = 0;
16660 for(user = block->use; user; user = user->next) {
16661 user->member->vertex = 0;
16665 static void mark_live_block(
16666 struct compile_state *state, struct block *block, int *next_vertex)
16668 /* See if this is a block that has not been marked */
16669 if (block->vertex != 0) {
16670 return;
16672 block->vertex = *next_vertex;
16673 *next_vertex += 1;
16674 if (triple_is_branch(state, block->last)) {
16675 struct triple **targ;
16676 targ = triple_edge_targ(state, block->last, 0);
16677 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16678 if (!*targ) {
16679 continue;
16681 if (!triple_stores_block(state, *targ)) {
16682 internal_error(state, 0, "bad targ");
16684 mark_live_block(state, (*targ)->u.block, next_vertex);
16686 /* Ensure the last block of a function remains alive */
16687 if (triple_is_call(state, block->last)) {
16688 mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16691 else if (block->last->next != state->first) {
16692 struct triple *ins;
16693 ins = block->last->next;
16694 if (!triple_stores_block(state, ins)) {
16695 internal_error(state, 0, "bad block start");
16697 mark_live_block(state, ins->u.block, next_vertex);
16701 static void transform_from_ssa_form(struct compile_state *state)
16703 /* To get out of ssa form we insert moves on the incoming
16704 * edges to blocks containting phi functions.
16706 struct triple *first;
16707 struct triple *phi, *var, *next;
16708 int next_vertex;
16710 /* Walk the control flow to see which blocks remain alive */
16711 walk_blocks(state, &state->bb, clear_vertex, 0);
16712 next_vertex = 1;
16713 mark_live_block(state, state->bb.first_block, &next_vertex);
16715 /* Walk all of the operations to find the phi functions */
16716 first = state->first;
16717 for(phi = first->next; phi != first ; phi = next) {
16718 struct block_set *set;
16719 struct block *block;
16720 struct triple **slot;
16721 struct triple *var;
16722 struct triple_set *use, *use_next;
16723 int edge, writers, readers;
16724 next = phi->next;
16725 if (phi->op != OP_PHI) {
16726 continue;
16729 block = phi->u.block;
16730 slot = &RHS(phi, 0);
16732 /* If this phi is in a dead block just forget it */
16733 if (block->vertex == 0) {
16734 release_triple(state, phi);
16735 continue;
16738 /* Forget uses from code in dead blocks */
16739 for(use = phi->use; use; use = use_next) {
16740 struct block *ublock;
16741 struct triple **expr;
16742 use_next = use->next;
16743 ublock = block_of_triple(state, use->member);
16744 if ((use->member == phi) || (ublock->vertex != 0)) {
16745 continue;
16747 expr = triple_rhs(state, use->member, 0);
16748 for(; expr; expr = triple_rhs(state, use->member, expr)) {
16749 if (*expr == phi) {
16750 *expr = 0;
16753 unuse_triple(phi, use->member);
16755 /* A variable to replace the phi function */
16756 if (registers_of(state, phi->type) != 1) {
16757 internal_error(state, phi, "phi->type does not fit in a single register!");
16759 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16760 var = var->next; /* point at the var */
16762 /* Replaces use of phi with var */
16763 propogate_use(state, phi, var);
16765 /* Count the readers */
16766 readers = 0;
16767 for(use = var->use; use; use = use->next) {
16768 if (use->member != MISC(var, 0)) {
16769 readers++;
16773 /* Walk all of the incoming edges/blocks and insert moves.
16775 writers = 0;
16776 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16777 struct block *eblock, *vblock;
16778 struct triple *move;
16779 struct triple *val, *base;
16780 eblock = set->member;
16781 val = slot[edge];
16782 slot[edge] = 0;
16783 unuse_triple(val, phi);
16784 vblock = block_of_triple(state, val);
16786 /* If we don't have a value that belongs in an OP_WRITE
16787 * continue on.
16789 if (!val || (val == &unknown_triple) || (val == phi)
16790 || (vblock && (vblock->vertex == 0))) {
16791 continue;
16793 /* If the value should never occur error */
16794 if (!vblock) {
16795 internal_error(state, val, "no vblock?");
16796 continue;
16799 /* If the value occurs in a dead block see if a replacement
16800 * block can be found.
16802 while(eblock && (eblock->vertex == 0)) {
16803 eblock = eblock->idom;
16805 /* If not continue on with the next value. */
16806 if (!eblock || (eblock->vertex == 0)) {
16807 continue;
16810 /* If we have an empty incoming block ignore it. */
16811 if (!eblock->first) {
16812 internal_error(state, 0, "empty block?");
16815 /* Make certain the write is placed in the edge block... */
16816 /* Walk through the edge block backwards to find an
16817 * appropriate location for the OP_WRITE.
16819 for(base = eblock->last; base != eblock->first; base = base->prev) {
16820 struct triple **expr;
16821 if (base->op == OP_PIECE) {
16822 base = MISC(base, 0);
16824 if ((base == var) || (base == val)) {
16825 goto out;
16827 expr = triple_lhs(state, base, 0);
16828 for(; expr; expr = triple_lhs(state, base, expr)) {
16829 if ((*expr) == val) {
16830 goto out;
16833 expr = triple_rhs(state, base, 0);
16834 for(; expr; expr = triple_rhs(state, base, expr)) {
16835 if ((*expr) == var) {
16836 goto out;
16840 out:
16841 if (triple_is_branch(state, base)) {
16842 internal_error(state, base,
16843 "Could not insert write to phi");
16845 move = post_triple(state, base, OP_WRITE, var->type, val, var);
16846 use_triple(val, move);
16847 use_triple(var, move);
16848 writers++;
16850 if (!writers && readers) {
16851 internal_error(state, var, "no value written to in use phi?");
16853 /* If var is not used free it */
16854 if (!writers) {
16855 release_triple(state, MISC(var, 0));
16856 release_triple(state, var);
16858 /* Release the phi function */
16859 release_triple(state, phi);
16862 /* Walk all of the operations to find the adecls */
16863 for(var = first->next; var != first ; var = var->next) {
16864 struct triple_set *use, *use_next;
16865 if (!triple_is_auto_var(state, var)) {
16866 continue;
16869 /* Walk through all of the rhs uses of var and
16870 * replace them with read of var.
16872 for(use = var->use; use; use = use_next) {
16873 struct triple *read, *user;
16874 struct triple **slot;
16875 int zrhs, i, used;
16876 use_next = use->next;
16877 user = use->member;
16879 /* Generate a read of var */
16880 read = pre_triple(state, user, OP_READ, var->type, var, 0);
16881 use_triple(var, read);
16883 /* Find the rhs uses and see if they need to be replaced */
16884 used = 0;
16885 zrhs = user->rhs;
16886 slot = &RHS(user, 0);
16887 for(i = 0; i < zrhs; i++) {
16888 if (slot[i] == var) {
16889 slot[i] = read;
16890 used = 1;
16893 /* If we did use it cleanup the uses */
16894 if (used) {
16895 unuse_triple(var, user);
16896 use_triple(read, user);
16898 /* If we didn't use it release the extra triple */
16899 else {
16900 release_triple(state, read);
16906 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16907 FILE *fp = state->dbgout; \
16908 fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16911 static void rebuild_ssa_form(struct compile_state *state)
16913 HI();
16914 transform_from_ssa_form(state);
16915 HI();
16916 state->bb.first = state->first;
16917 free_basic_blocks(state, &state->bb);
16918 analyze_basic_blocks(state, &state->bb);
16919 HI();
16920 insert_phi_operations(state);
16921 HI();
16922 rename_variables(state);
16923 HI();
16925 prune_block_variables(state, state->bb.first_block);
16926 HI();
16927 prune_unused_phis(state);
16928 HI();
16930 #undef HI
16933 * Register conflict resolution
16934 * =========================================================
16937 static struct reg_info find_def_color(
16938 struct compile_state *state, struct triple *def)
16940 struct triple_set *set;
16941 struct reg_info info;
16942 info.reg = REG_UNSET;
16943 info.regcm = 0;
16944 if (!triple_is_def(state, def)) {
16945 return info;
16947 info = arch_reg_lhs(state, def, 0);
16948 if (info.reg >= MAX_REGISTERS) {
16949 info.reg = REG_UNSET;
16951 for(set = def->use; set; set = set->next) {
16952 struct reg_info tinfo;
16953 int i;
16954 i = find_rhs_use(state, set->member, def);
16955 if (i < 0) {
16956 continue;
16958 tinfo = arch_reg_rhs(state, set->member, i);
16959 if (tinfo.reg >= MAX_REGISTERS) {
16960 tinfo.reg = REG_UNSET;
16962 if ((tinfo.reg != REG_UNSET) &&
16963 (info.reg != REG_UNSET) &&
16964 (tinfo.reg != info.reg)) {
16965 internal_error(state, def, "register conflict");
16967 if ((info.regcm & tinfo.regcm) == 0) {
16968 internal_error(state, def, "regcm conflict %x & %x == 0",
16969 info.regcm, tinfo.regcm);
16971 if (info.reg == REG_UNSET) {
16972 info.reg = tinfo.reg;
16974 info.regcm &= tinfo.regcm;
16976 if (info.reg >= MAX_REGISTERS) {
16977 internal_error(state, def, "register out of range");
16979 return info;
16982 static struct reg_info find_lhs_pre_color(
16983 struct compile_state *state, struct triple *ins, int index)
16985 struct reg_info info;
16986 int zlhs, zrhs, i;
16987 zrhs = ins->rhs;
16988 zlhs = ins->lhs;
16989 if (!zlhs && triple_is_def(state, ins)) {
16990 zlhs = 1;
16992 if (index >= zlhs) {
16993 internal_error(state, ins, "Bad lhs %d", index);
16995 info = arch_reg_lhs(state, ins, index);
16996 for(i = 0; i < zrhs; i++) {
16997 struct reg_info rinfo;
16998 rinfo = arch_reg_rhs(state, ins, i);
16999 if ((info.reg == rinfo.reg) &&
17000 (rinfo.reg >= MAX_REGISTERS)) {
17001 struct reg_info tinfo;
17002 tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17003 info.reg = tinfo.reg;
17004 info.regcm &= tinfo.regcm;
17005 break;
17008 if (info.reg >= MAX_REGISTERS) {
17009 info.reg = REG_UNSET;
17011 return info;
17014 static struct reg_info find_rhs_post_color(
17015 struct compile_state *state, struct triple *ins, int index);
17017 static struct reg_info find_lhs_post_color(
17018 struct compile_state *state, struct triple *ins, int index)
17020 struct triple_set *set;
17021 struct reg_info info;
17022 struct triple *lhs;
17023 #if DEBUG_TRIPLE_COLOR
17024 fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17025 ins, index);
17026 #endif
17027 if ((index == 0) && triple_is_def(state, ins)) {
17028 lhs = ins;
17030 else if (index < ins->lhs) {
17031 lhs = LHS(ins, index);
17033 else {
17034 internal_error(state, ins, "Bad lhs %d", index);
17035 lhs = 0;
17037 info = arch_reg_lhs(state, ins, index);
17038 if (info.reg >= MAX_REGISTERS) {
17039 info.reg = REG_UNSET;
17041 for(set = lhs->use; set; set = set->next) {
17042 struct reg_info rinfo;
17043 struct triple *user;
17044 int zrhs, i;
17045 user = set->member;
17046 zrhs = user->rhs;
17047 for(i = 0; i < zrhs; i++) {
17048 if (RHS(user, i) != lhs) {
17049 continue;
17051 rinfo = find_rhs_post_color(state, user, i);
17052 if ((info.reg != REG_UNSET) &&
17053 (rinfo.reg != REG_UNSET) &&
17054 (info.reg != rinfo.reg)) {
17055 internal_error(state, ins, "register conflict");
17057 if ((info.regcm & rinfo.regcm) == 0) {
17058 internal_error(state, ins, "regcm conflict %x & %x == 0",
17059 info.regcm, rinfo.regcm);
17061 if (info.reg == REG_UNSET) {
17062 info.reg = rinfo.reg;
17064 info.regcm &= rinfo.regcm;
17067 #if DEBUG_TRIPLE_COLOR
17068 fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17069 ins, index, info.reg, info.regcm);
17070 #endif
17071 return info;
17074 static struct reg_info find_rhs_post_color(
17075 struct compile_state *state, struct triple *ins, int index)
17077 struct reg_info info, rinfo;
17078 int zlhs, i;
17079 #if DEBUG_TRIPLE_COLOR
17080 fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17081 ins, index);
17082 #endif
17083 rinfo = arch_reg_rhs(state, ins, index);
17084 zlhs = ins->lhs;
17085 if (!zlhs && triple_is_def(state, ins)) {
17086 zlhs = 1;
17088 info = rinfo;
17089 if (info.reg >= MAX_REGISTERS) {
17090 info.reg = REG_UNSET;
17092 for(i = 0; i < zlhs; i++) {
17093 struct reg_info linfo;
17094 linfo = arch_reg_lhs(state, ins, i);
17095 if ((linfo.reg == rinfo.reg) &&
17096 (linfo.reg >= MAX_REGISTERS)) {
17097 struct reg_info tinfo;
17098 tinfo = find_lhs_post_color(state, ins, i);
17099 if (tinfo.reg >= MAX_REGISTERS) {
17100 tinfo.reg = REG_UNSET;
17102 info.regcm &= linfo.regcm;
17103 info.regcm &= tinfo.regcm;
17104 if (info.reg != REG_UNSET) {
17105 internal_error(state, ins, "register conflict");
17107 if (info.regcm == 0) {
17108 internal_error(state, ins, "regcm conflict");
17110 info.reg = tinfo.reg;
17113 #if DEBUG_TRIPLE_COLOR
17114 fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17115 ins, index, info.reg, info.regcm);
17116 #endif
17117 return info;
17120 static struct reg_info find_lhs_color(
17121 struct compile_state *state, struct triple *ins, int index)
17123 struct reg_info pre, post, info;
17124 #if DEBUG_TRIPLE_COLOR
17125 fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17126 ins, index);
17127 #endif
17128 pre = find_lhs_pre_color(state, ins, index);
17129 post = find_lhs_post_color(state, ins, index);
17130 if ((pre.reg != post.reg) &&
17131 (pre.reg != REG_UNSET) &&
17132 (post.reg != REG_UNSET)) {
17133 internal_error(state, ins, "register conflict");
17135 info.regcm = pre.regcm & post.regcm;
17136 info.reg = pre.reg;
17137 if (info.reg == REG_UNSET) {
17138 info.reg = post.reg;
17140 #if DEBUG_TRIPLE_COLOR
17141 fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17142 ins, index, info.reg, info.regcm,
17143 pre.reg, pre.regcm, post.reg, post.regcm);
17144 #endif
17145 return info;
17148 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17150 struct triple_set *entry, *next;
17151 struct triple *out;
17152 struct reg_info info, rinfo;
17154 info = arch_reg_lhs(state, ins, 0);
17155 out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17156 use_triple(RHS(out, 0), out);
17157 /* Get the users of ins to use out instead */
17158 for(entry = ins->use; entry; entry = next) {
17159 int i;
17160 next = entry->next;
17161 if (entry->member == out) {
17162 continue;
17164 i = find_rhs_use(state, entry->member, ins);
17165 if (i < 0) {
17166 continue;
17168 rinfo = arch_reg_rhs(state, entry->member, i);
17169 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17170 continue;
17172 replace_rhs_use(state, ins, out, entry->member);
17174 transform_to_arch_instruction(state, out);
17175 return out;
17178 static struct triple *typed_pre_copy(
17179 struct compile_state *state, struct type *type, struct triple *ins, int index)
17181 /* Carefully insert enough operations so that I can
17182 * enter any operation with a GPR32.
17184 struct triple *in;
17185 struct triple **expr;
17186 unsigned classes;
17187 struct reg_info info;
17188 int op;
17189 if (ins->op == OP_PHI) {
17190 internal_error(state, ins, "pre_copy on a phi?");
17192 classes = arch_type_to_regcm(state, type);
17193 info = arch_reg_rhs(state, ins, index);
17194 expr = &RHS(ins, index);
17195 if ((info.regcm & classes) == 0) {
17196 FILE *fp = state->errout;
17197 fprintf(fp, "src_type: ");
17198 name_of(fp, ins->type);
17199 fprintf(fp, "\ndst_type: ");
17200 name_of(fp, type);
17201 fprintf(fp, "\n");
17202 internal_error(state, ins, "pre_copy with no register classes");
17204 op = OP_COPY;
17205 if (!equiv_types(type, (*expr)->type)) {
17206 op = OP_CONVERT;
17208 in = pre_triple(state, ins, op, type, *expr, 0);
17209 unuse_triple(*expr, ins);
17210 *expr = in;
17211 use_triple(RHS(in, 0), in);
17212 use_triple(in, ins);
17213 transform_to_arch_instruction(state, in);
17214 return in;
17217 static struct triple *pre_copy(
17218 struct compile_state *state, struct triple *ins, int index)
17220 return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17224 static void insert_copies_to_phi(struct compile_state *state)
17226 /* To get out of ssa form we insert moves on the incoming
17227 * edges to blocks containting phi functions.
17229 struct triple *first;
17230 struct triple *phi;
17232 /* Walk all of the operations to find the phi functions */
17233 first = state->first;
17234 for(phi = first->next; phi != first ; phi = phi->next) {
17235 struct block_set *set;
17236 struct block *block;
17237 struct triple **slot, *copy;
17238 int edge;
17239 if (phi->op != OP_PHI) {
17240 continue;
17242 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17243 block = phi->u.block;
17244 slot = &RHS(phi, 0);
17245 /* Phi's that feed into mandatory live range joins
17246 * cause nasty complications. Insert a copy of
17247 * the phi value so I never have to deal with
17248 * that in the rest of the code.
17250 copy = post_copy(state, phi);
17251 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17252 /* Walk all of the incoming edges/blocks and insert moves.
17254 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17255 struct block *eblock;
17256 struct triple *move;
17257 struct triple *val;
17258 struct triple *ptr;
17259 eblock = set->member;
17260 val = slot[edge];
17262 if (val == phi) {
17263 continue;
17266 get_occurance(val->occurance);
17267 move = build_triple(state, OP_COPY, val->type, val, 0,
17268 val->occurance);
17269 move->u.block = eblock;
17270 move->id |= TRIPLE_FLAG_PRE_SPLIT;
17271 use_triple(val, move);
17273 slot[edge] = move;
17274 unuse_triple(val, phi);
17275 use_triple(move, phi);
17277 /* Walk up the dominator tree until I have found the appropriate block */
17278 while(eblock && !tdominates(state, val, eblock->last)) {
17279 eblock = eblock->idom;
17281 if (!eblock) {
17282 internal_error(state, phi, "Cannot find block dominated by %p",
17283 val);
17286 /* Walk through the block backwards to find
17287 * an appropriate location for the OP_COPY.
17289 for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17290 struct triple **expr;
17291 if (ptr->op == OP_PIECE) {
17292 ptr = MISC(ptr, 0);
17294 if ((ptr == phi) || (ptr == val)) {
17295 goto out;
17297 expr = triple_lhs(state, ptr, 0);
17298 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17299 if ((*expr) == val) {
17300 goto out;
17303 expr = triple_rhs(state, ptr, 0);
17304 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17305 if ((*expr) == phi) {
17306 goto out;
17310 out:
17311 if (triple_is_branch(state, ptr)) {
17312 internal_error(state, ptr,
17313 "Could not insert write to phi");
17315 insert_triple(state, after_lhs(state, ptr), move);
17316 if (eblock->last == after_lhs(state, ptr)->prev) {
17317 eblock->last = move;
17319 transform_to_arch_instruction(state, move);
17322 print_blocks(state, __func__, state->dbgout);
17325 struct triple_reg_set;
17326 struct reg_block;
17329 static int do_triple_set(struct triple_reg_set **head,
17330 struct triple *member, struct triple *new_member)
17332 struct triple_reg_set **ptr, *new;
17333 if (!member)
17334 return 0;
17335 ptr = head;
17336 while(*ptr) {
17337 if ((*ptr)->member == member) {
17338 return 0;
17340 ptr = &(*ptr)->next;
17342 new = xcmalloc(sizeof(*new), "triple_set");
17343 new->member = member;
17344 new->new = new_member;
17345 new->next = *head;
17346 *head = new;
17347 return 1;
17350 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17352 struct triple_reg_set *entry, **ptr;
17353 ptr = head;
17354 while(*ptr) {
17355 entry = *ptr;
17356 if (entry->member == member) {
17357 *ptr = entry->next;
17358 xfree(entry);
17359 return;
17361 else {
17362 ptr = &entry->next;
17367 static int in_triple(struct reg_block *rb, struct triple *in)
17369 return do_triple_set(&rb->in, in, 0);
17372 #if DEBUG_ROMCC_WARNING
17373 static void unin_triple(struct reg_block *rb, struct triple *unin)
17375 do_triple_unset(&rb->in, unin);
17377 #endif
17379 static int out_triple(struct reg_block *rb, struct triple *out)
17381 return do_triple_set(&rb->out, out, 0);
17383 #if DEBUG_ROMCC_WARNING
17384 static void unout_triple(struct reg_block *rb, struct triple *unout)
17386 do_triple_unset(&rb->out, unout);
17388 #endif
17390 static int initialize_regblock(struct reg_block *blocks,
17391 struct block *block, int vertex)
17393 struct block_set *user;
17394 if (!block || (blocks[block->vertex].block == block)) {
17395 return vertex;
17397 vertex += 1;
17398 /* Renumber the blocks in a convinient fashion */
17399 block->vertex = vertex;
17400 blocks[vertex].block = block;
17401 blocks[vertex].vertex = vertex;
17402 for(user = block->use; user; user = user->next) {
17403 vertex = initialize_regblock(blocks, user->member, vertex);
17405 return vertex;
17408 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17410 /* Part to piece is a best attempt and it cannot be correct all by
17411 * itself. If various values are read as different sizes in different
17412 * parts of the code this function cannot work. Or rather it cannot
17413 * work in conjunction with compute_variable_liftimes. As the
17414 * analysis will get confused.
17416 struct triple *base;
17417 unsigned reg;
17418 if (!is_lvalue(state, ins)) {
17419 return ins;
17421 base = 0;
17422 reg = 0;
17423 while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17424 base = MISC(ins, 0);
17425 switch(ins->op) {
17426 case OP_INDEX:
17427 reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17428 break;
17429 case OP_DOT:
17430 reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17431 break;
17432 default:
17433 internal_error(state, ins, "unhandled part");
17434 break;
17436 ins = base;
17438 if (base) {
17439 if (reg > base->lhs) {
17440 internal_error(state, base, "part out of range?");
17442 ins = LHS(base, reg);
17444 return ins;
17447 static int this_def(struct compile_state *state,
17448 struct triple *ins, struct triple *other)
17450 if (ins == other) {
17451 return 1;
17453 if (ins->op == OP_WRITE) {
17454 ins = part_to_piece(state, MISC(ins, 0));
17456 return ins == other;
17459 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17460 struct reg_block *rb, struct block *suc)
17462 /* Read the conditional input set of a successor block
17463 * (i.e. the input to the phi nodes) and place it in the
17464 * current blocks output set.
17466 struct block_set *set;
17467 struct triple *ptr;
17468 int edge;
17469 int done, change;
17470 change = 0;
17471 /* Find the edge I am coming in on */
17472 for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17473 if (set->member == rb->block) {
17474 break;
17477 if (!set) {
17478 internal_error(state, 0, "Not coming on a control edge?");
17480 for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17481 struct triple **slot, *expr, *ptr2;
17482 int out_change, done2;
17483 done = (ptr == suc->last);
17484 if (ptr->op != OP_PHI) {
17485 continue;
17487 slot = &RHS(ptr, 0);
17488 expr = slot[edge];
17489 out_change = out_triple(rb, expr);
17490 if (!out_change) {
17491 continue;
17493 /* If we don't define the variable also plast it
17494 * in the current blocks input set.
17496 ptr2 = rb->block->first;
17497 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17498 if (this_def(state, ptr2, expr)) {
17499 break;
17501 done2 = (ptr2 == rb->block->last);
17503 if (!done2) {
17504 continue;
17506 change |= in_triple(rb, expr);
17508 return change;
17511 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17512 struct reg_block *rb, struct block *suc)
17514 struct triple_reg_set *in_set;
17515 int change;
17516 change = 0;
17517 /* Read the input set of a successor block
17518 * and place it in the current blocks output set.
17520 in_set = blocks[suc->vertex].in;
17521 for(; in_set; in_set = in_set->next) {
17522 int out_change, done;
17523 struct triple *first, *last, *ptr;
17524 out_change = out_triple(rb, in_set->member);
17525 if (!out_change) {
17526 continue;
17528 /* If we don't define the variable also place it
17529 * in the current blocks input set.
17531 first = rb->block->first;
17532 last = rb->block->last;
17533 done = 0;
17534 for(ptr = first; !done; ptr = ptr->next) {
17535 if (this_def(state, ptr, in_set->member)) {
17536 break;
17538 done = (ptr == last);
17540 if (!done) {
17541 continue;
17543 change |= in_triple(rb, in_set->member);
17545 change |= phi_in(state, blocks, rb, suc);
17546 return change;
17549 static int use_in(struct compile_state *state, struct reg_block *rb)
17551 /* Find the variables we use but don't define and add
17552 * it to the current blocks input set.
17554 #if DEBUG_ROMCC_WARNINGS
17555 #warning "FIXME is this O(N^2) algorithm bad?"
17556 #endif
17557 struct block *block;
17558 struct triple *ptr;
17559 int done;
17560 int change;
17561 block = rb->block;
17562 change = 0;
17563 for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17564 struct triple **expr;
17565 done = (ptr == block->first);
17566 /* The variable a phi function uses depends on the
17567 * control flow, and is handled in phi_in, not
17568 * here.
17570 if (ptr->op == OP_PHI) {
17571 continue;
17573 expr = triple_rhs(state, ptr, 0);
17574 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17575 struct triple *rhs, *test;
17576 int tdone;
17577 rhs = part_to_piece(state, *expr);
17578 if (!rhs) {
17579 continue;
17582 /* See if rhs is defined in this block.
17583 * A write counts as a definition.
17585 for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17586 tdone = (test == block->first);
17587 if (this_def(state, test, rhs)) {
17588 rhs = 0;
17589 break;
17592 /* If I still have a valid rhs add it to in */
17593 change |= in_triple(rb, rhs);
17596 return change;
17599 static struct reg_block *compute_variable_lifetimes(
17600 struct compile_state *state, struct basic_blocks *bb)
17602 struct reg_block *blocks;
17603 int change;
17604 blocks = xcmalloc(
17605 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17606 initialize_regblock(blocks, bb->last_block, 0);
17607 do {
17608 int i;
17609 change = 0;
17610 for(i = 1; i <= bb->last_vertex; i++) {
17611 struct block_set *edge;
17612 struct reg_block *rb;
17613 rb = &blocks[i];
17614 /* Add the all successor's input set to in */
17615 for(edge = rb->block->edges; edge; edge = edge->next) {
17616 change |= reg_in(state, blocks, rb, edge->member);
17618 /* Add use to in... */
17619 change |= use_in(state, rb);
17621 } while(change);
17622 return blocks;
17625 static void free_variable_lifetimes(struct compile_state *state,
17626 struct basic_blocks *bb, struct reg_block *blocks)
17628 int i;
17629 /* free in_set && out_set on each block */
17630 for(i = 1; i <= bb->last_vertex; i++) {
17631 struct triple_reg_set *entry, *next;
17632 struct reg_block *rb;
17633 rb = &blocks[i];
17634 for(entry = rb->in; entry ; entry = next) {
17635 next = entry->next;
17636 do_triple_unset(&rb->in, entry->member);
17638 for(entry = rb->out; entry; entry = next) {
17639 next = entry->next;
17640 do_triple_unset(&rb->out, entry->member);
17643 xfree(blocks);
17647 typedef void (*wvl_cb_t)(
17648 struct compile_state *state,
17649 struct reg_block *blocks, struct triple_reg_set *live,
17650 struct reg_block *rb, struct triple *ins, void *arg);
17652 static void walk_variable_lifetimes(struct compile_state *state,
17653 struct basic_blocks *bb, struct reg_block *blocks,
17654 wvl_cb_t cb, void *arg)
17656 int i;
17658 for(i = 1; i <= state->bb.last_vertex; i++) {
17659 struct triple_reg_set *live;
17660 struct triple_reg_set *entry, *next;
17661 struct triple *ptr, *prev;
17662 struct reg_block *rb;
17663 struct block *block;
17664 int done;
17666 /* Get the blocks */
17667 rb = &blocks[i];
17668 block = rb->block;
17670 /* Copy out into live */
17671 live = 0;
17672 for(entry = rb->out; entry; entry = next) {
17673 next = entry->next;
17674 do_triple_set(&live, entry->member, entry->new);
17676 /* Walk through the basic block calculating live */
17677 for(done = 0, ptr = block->last; !done; ptr = prev) {
17678 struct triple **expr;
17680 prev = ptr->prev;
17681 done = (ptr == block->first);
17683 /* Ensure the current definition is in live */
17684 if (triple_is_def(state, ptr)) {
17685 do_triple_set(&live, ptr, 0);
17688 /* Inform the callback function of what is
17689 * going on.
17691 cb(state, blocks, live, rb, ptr, arg);
17693 /* Remove the current definition from live */
17694 do_triple_unset(&live, ptr);
17696 /* Add the current uses to live.
17698 * It is safe to skip phi functions because they do
17699 * not have any block local uses, and the block
17700 * output sets already properly account for what
17701 * control flow depedent uses phi functions do have.
17703 if (ptr->op == OP_PHI) {
17704 continue;
17706 expr = triple_rhs(state, ptr, 0);
17707 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17708 /* If the triple is not a definition skip it. */
17709 if (!*expr || !triple_is_def(state, *expr)) {
17710 continue;
17712 do_triple_set(&live, *expr, 0);
17715 /* Free live */
17716 for(entry = live; entry; entry = next) {
17717 next = entry->next;
17718 do_triple_unset(&live, entry->member);
17723 struct print_live_variable_info {
17724 struct reg_block *rb;
17725 FILE *fp;
17727 #if DEBUG_EXPLICIT_CLOSURES
17728 static void print_live_variables_block(
17729 struct compile_state *state, struct block *block, void *arg)
17732 struct print_live_variable_info *info = arg;
17733 struct block_set *edge;
17734 FILE *fp = info->fp;
17735 struct reg_block *rb;
17736 struct triple *ptr;
17737 int phi_present;
17738 int done;
17739 rb = &info->rb[block->vertex];
17741 fprintf(fp, "\nblock: %p (%d),",
17742 block, block->vertex);
17743 for(edge = block->edges; edge; edge = edge->next) {
17744 fprintf(fp, " %p<-%p",
17745 edge->member,
17746 edge->member && edge->member->use?edge->member->use->member : 0);
17748 fprintf(fp, "\n");
17749 if (rb->in) {
17750 struct triple_reg_set *in_set;
17751 fprintf(fp, " in:");
17752 for(in_set = rb->in; in_set; in_set = in_set->next) {
17753 fprintf(fp, " %-10p", in_set->member);
17755 fprintf(fp, "\n");
17757 phi_present = 0;
17758 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17759 done = (ptr == block->last);
17760 if (ptr->op == OP_PHI) {
17761 phi_present = 1;
17762 break;
17765 if (phi_present) {
17766 int edge;
17767 for(edge = 0; edge < block->users; edge++) {
17768 fprintf(fp, " in(%d):", edge);
17769 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17770 struct triple **slot;
17771 done = (ptr == block->last);
17772 if (ptr->op != OP_PHI) {
17773 continue;
17775 slot = &RHS(ptr, 0);
17776 fprintf(fp, " %-10p", slot[edge]);
17778 fprintf(fp, "\n");
17781 if (block->first->op == OP_LABEL) {
17782 fprintf(fp, "%p:\n", block->first);
17784 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17785 done = (ptr == block->last);
17786 display_triple(fp, ptr);
17788 if (rb->out) {
17789 struct triple_reg_set *out_set;
17790 fprintf(fp, " out:");
17791 for(out_set = rb->out; out_set; out_set = out_set->next) {
17792 fprintf(fp, " %-10p", out_set->member);
17794 fprintf(fp, "\n");
17796 fprintf(fp, "\n");
17799 static void print_live_variables(struct compile_state *state,
17800 struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17802 struct print_live_variable_info info;
17803 info.rb = rb;
17804 info.fp = fp;
17805 fprintf(fp, "\nlive variables by block\n");
17806 walk_blocks(state, bb, print_live_variables_block, &info);
17809 #endif
17811 static int count_triples(struct compile_state *state)
17813 struct triple *first, *ins;
17814 int triples = 0;
17815 first = state->first;
17816 ins = first;
17817 do {
17818 triples++;
17819 ins = ins->next;
17820 } while (ins != first);
17821 return triples;
17825 struct dead_triple {
17826 struct triple *triple;
17827 struct dead_triple *work_next;
17828 struct block *block;
17829 int old_id;
17830 int flags;
17831 #define TRIPLE_FLAG_ALIVE 1
17832 #define TRIPLE_FLAG_FREE 1
17835 static void print_dead_triples(struct compile_state *state,
17836 struct dead_triple *dtriple)
17838 struct triple *first, *ins;
17839 struct dead_triple *dt;
17840 FILE *fp;
17841 if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17842 return;
17844 fp = state->dbgout;
17845 fprintf(fp, "--------------- dtriples ---------------\n");
17846 first = state->first;
17847 ins = first;
17848 do {
17849 dt = &dtriple[ins->id];
17850 if ((ins->op == OP_LABEL) && (ins->use)) {
17851 fprintf(fp, "\n%p:\n", ins);
17853 fprintf(fp, "%c",
17854 (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17855 display_triple(fp, ins);
17856 if (triple_is_branch(state, ins)) {
17857 fprintf(fp, "\n");
17859 ins = ins->next;
17860 } while(ins != first);
17861 fprintf(fp, "\n");
17865 static void awaken(
17866 struct compile_state *state,
17867 struct dead_triple *dtriple, struct triple **expr,
17868 struct dead_triple ***work_list_tail)
17870 struct triple *triple;
17871 struct dead_triple *dt;
17872 if (!expr) {
17873 return;
17875 triple = *expr;
17876 if (!triple) {
17877 return;
17879 if (triple->id <= 0) {
17880 internal_error(state, triple, "bad triple id: %d",
17881 triple->id);
17883 if (triple->op == OP_NOOP) {
17884 internal_error(state, triple, "awakening noop?");
17885 return;
17887 dt = &dtriple[triple->id];
17888 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17889 dt->flags |= TRIPLE_FLAG_ALIVE;
17890 if (!dt->work_next) {
17891 **work_list_tail = dt;
17892 *work_list_tail = &dt->work_next;
17897 static void eliminate_inefectual_code(struct compile_state *state)
17899 struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17900 int triples, i;
17901 struct triple *first, *ins;
17903 if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17904 return;
17907 /* Setup the work list */
17908 work_list = 0;
17909 work_list_tail = &work_list;
17911 first = state->first;
17913 /* Count how many triples I have */
17914 triples = count_triples(state);
17916 /* Now put then in an array and mark all of the triples dead */
17917 dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17919 ins = first;
17920 i = 1;
17921 do {
17922 dtriple[i].triple = ins;
17923 dtriple[i].block = block_of_triple(state, ins);
17924 dtriple[i].flags = 0;
17925 dtriple[i].old_id = ins->id;
17926 ins->id = i;
17927 /* See if it is an operation we always keep */
17928 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17929 awaken(state, dtriple, &ins, &work_list_tail);
17931 i++;
17932 ins = ins->next;
17933 } while(ins != first);
17934 while(work_list) {
17935 struct block *block;
17936 struct dead_triple *dt;
17937 struct block_set *user;
17938 struct triple **expr;
17939 dt = work_list;
17940 work_list = dt->work_next;
17941 if (!work_list) {
17942 work_list_tail = &work_list;
17944 /* Make certain the block the current instruction is in lives */
17945 block = block_of_triple(state, dt->triple);
17946 awaken(state, dtriple, &block->first, &work_list_tail);
17947 if (triple_is_branch(state, block->last)) {
17948 awaken(state, dtriple, &block->last, &work_list_tail);
17949 } else {
17950 awaken(state, dtriple, &block->last->next, &work_list_tail);
17953 /* Wake up the data depencencies of this triple */
17954 expr = 0;
17955 do {
17956 expr = triple_rhs(state, dt->triple, expr);
17957 awaken(state, dtriple, expr, &work_list_tail);
17958 } while(expr);
17959 do {
17960 expr = triple_lhs(state, dt->triple, expr);
17961 awaken(state, dtriple, expr, &work_list_tail);
17962 } while(expr);
17963 do {
17964 expr = triple_misc(state, dt->triple, expr);
17965 awaken(state, dtriple, expr, &work_list_tail);
17966 } while(expr);
17967 /* Wake up the forward control dependencies */
17968 do {
17969 expr = triple_targ(state, dt->triple, expr);
17970 awaken(state, dtriple, expr, &work_list_tail);
17971 } while(expr);
17972 /* Wake up the reverse control dependencies of this triple */
17973 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17974 struct triple *last;
17975 last = user->member->last;
17976 while((last->op == OP_NOOP) && (last != user->member->first)) {
17977 #if DEBUG_ROMCC_WARNINGS
17978 #warning "Should we bring the awakening noops back?"
17979 #endif
17980 // internal_warning(state, last, "awakening noop?");
17981 last = last->prev;
17983 awaken(state, dtriple, &last, &work_list_tail);
17986 print_dead_triples(state, dtriple);
17987 for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
17988 if ((dt->triple->op == OP_NOOP) &&
17989 (dt->flags & TRIPLE_FLAG_ALIVE)) {
17990 internal_error(state, dt->triple, "noop effective?");
17992 dt->triple->id = dt->old_id; /* Restore the color */
17993 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17994 release_triple(state, dt->triple);
17997 xfree(dtriple);
17999 rebuild_ssa_form(state);
18001 print_blocks(state, __func__, state->dbgout);
18005 static void insert_mandatory_copies(struct compile_state *state)
18007 struct triple *ins, *first;
18009 /* The object is with a minimum of inserted copies,
18010 * to resolve in fundamental register conflicts between
18011 * register value producers and consumers.
18012 * Theoretically we may be greater than minimal when we
18013 * are inserting copies before instructions but that
18014 * case should be rare.
18016 first = state->first;
18017 ins = first;
18018 do {
18019 struct triple_set *entry, *next;
18020 struct triple *tmp;
18021 struct reg_info info;
18022 unsigned reg, regcm;
18023 int do_post_copy, do_pre_copy;
18024 tmp = 0;
18025 if (!triple_is_def(state, ins)) {
18026 goto next;
18028 /* Find the architecture specific color information */
18029 info = find_lhs_pre_color(state, ins, 0);
18030 if (info.reg >= MAX_REGISTERS) {
18031 info.reg = REG_UNSET;
18034 reg = REG_UNSET;
18035 regcm = arch_type_to_regcm(state, ins->type);
18036 do_post_copy = do_pre_copy = 0;
18038 /* Walk through the uses of ins and check for conflicts */
18039 for(entry = ins->use; entry; entry = next) {
18040 struct reg_info rinfo;
18041 int i;
18042 next = entry->next;
18043 i = find_rhs_use(state, entry->member, ins);
18044 if (i < 0) {
18045 continue;
18048 /* Find the users color requirements */
18049 rinfo = arch_reg_rhs(state, entry->member, i);
18050 if (rinfo.reg >= MAX_REGISTERS) {
18051 rinfo.reg = REG_UNSET;
18054 /* See if I need a pre_copy */
18055 if (rinfo.reg != REG_UNSET) {
18056 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18057 do_pre_copy = 1;
18059 reg = rinfo.reg;
18061 regcm &= rinfo.regcm;
18062 regcm = arch_regcm_normalize(state, regcm);
18063 if (regcm == 0) {
18064 do_pre_copy = 1;
18066 /* Always use pre_copies for constants.
18067 * They do not take up any registers until a
18068 * copy places them in one.
18070 if ((info.reg == REG_UNNEEDED) &&
18071 (rinfo.reg != REG_UNNEEDED)) {
18072 do_pre_copy = 1;
18075 do_post_copy =
18076 !do_pre_copy &&
18077 (((info.reg != REG_UNSET) &&
18078 (reg != REG_UNSET) &&
18079 (info.reg != reg)) ||
18080 ((info.regcm & regcm) == 0));
18082 reg = info.reg;
18083 regcm = info.regcm;
18084 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18085 for(entry = ins->use; entry; entry = next) {
18086 struct reg_info rinfo;
18087 int i;
18088 next = entry->next;
18089 i = find_rhs_use(state, entry->member, ins);
18090 if (i < 0) {
18091 continue;
18094 /* Find the users color requirements */
18095 rinfo = arch_reg_rhs(state, entry->member, i);
18096 if (rinfo.reg >= MAX_REGISTERS) {
18097 rinfo.reg = REG_UNSET;
18100 /* Now see if it is time to do the pre_copy */
18101 if (rinfo.reg != REG_UNSET) {
18102 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18103 ((regcm & rinfo.regcm) == 0) ||
18104 /* Don't let a mandatory coalesce sneak
18105 * into a operation that is marked to prevent
18106 * coalescing.
18108 ((reg != REG_UNNEEDED) &&
18109 ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18110 (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18112 if (do_pre_copy) {
18113 struct triple *user;
18114 user = entry->member;
18115 if (RHS(user, i) != ins) {
18116 internal_error(state, user, "bad rhs");
18118 tmp = pre_copy(state, user, i);
18119 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18120 continue;
18121 } else {
18122 do_post_copy = 1;
18125 reg = rinfo.reg;
18127 if ((regcm & rinfo.regcm) == 0) {
18128 if (do_pre_copy) {
18129 struct triple *user;
18130 user = entry->member;
18131 if (RHS(user, i) != ins) {
18132 internal_error(state, user, "bad rhs");
18134 tmp = pre_copy(state, user, i);
18135 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18136 continue;
18137 } else {
18138 do_post_copy = 1;
18141 regcm &= rinfo.regcm;
18144 if (do_post_copy) {
18145 struct reg_info pre, post;
18146 tmp = post_copy(state, ins);
18147 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18148 pre = arch_reg_lhs(state, ins, 0);
18149 post = arch_reg_lhs(state, tmp, 0);
18150 if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18151 internal_error(state, tmp, "useless copy");
18154 next:
18155 ins = ins->next;
18156 } while(ins != first);
18158 print_blocks(state, __func__, state->dbgout);
18162 struct live_range_edge;
18163 struct live_range_def;
18164 struct live_range {
18165 struct live_range_edge *edges;
18166 struct live_range_def *defs;
18167 /* Note. The list pointed to by defs is kept in order.
18168 * That is baring splits in the flow control
18169 * defs dominates defs->next wich dominates defs->next->next
18170 * etc.
18172 unsigned color;
18173 unsigned classes;
18174 unsigned degree;
18175 unsigned length;
18176 struct live_range *group_next, **group_prev;
18179 struct live_range_edge {
18180 struct live_range_edge *next;
18181 struct live_range *node;
18184 struct live_range_def {
18185 struct live_range_def *next;
18186 struct live_range_def *prev;
18187 struct live_range *lr;
18188 struct triple *def;
18189 unsigned orig_id;
18192 #define LRE_HASH_SIZE 2048
18193 struct lre_hash {
18194 struct lre_hash *next;
18195 struct live_range *left;
18196 struct live_range *right;
18200 struct reg_state {
18201 struct lre_hash *hash[LRE_HASH_SIZE];
18202 struct reg_block *blocks;
18203 struct live_range_def *lrd;
18204 struct live_range *lr;
18205 struct live_range *low, **low_tail;
18206 struct live_range *high, **high_tail;
18207 unsigned defs;
18208 unsigned ranges;
18209 int passes, max_passes;
18213 struct print_interference_block_info {
18214 struct reg_state *rstate;
18215 FILE *fp;
18216 int need_edges;
18218 static void print_interference_block(
18219 struct compile_state *state, struct block *block, void *arg)
18222 struct print_interference_block_info *info = arg;
18223 struct reg_state *rstate = info->rstate;
18224 struct block_set *edge;
18225 FILE *fp = info->fp;
18226 struct reg_block *rb;
18227 struct triple *ptr;
18228 int phi_present;
18229 int done;
18230 rb = &rstate->blocks[block->vertex];
18232 fprintf(fp, "\nblock: %p (%d),",
18233 block, block->vertex);
18234 for(edge = block->edges; edge; edge = edge->next) {
18235 fprintf(fp, " %p<-%p",
18236 edge->member,
18237 edge->member && edge->member->use?edge->member->use->member : 0);
18239 fprintf(fp, "\n");
18240 if (rb->in) {
18241 struct triple_reg_set *in_set;
18242 fprintf(fp, " in:");
18243 for(in_set = rb->in; in_set; in_set = in_set->next) {
18244 fprintf(fp, " %-10p", in_set->member);
18246 fprintf(fp, "\n");
18248 phi_present = 0;
18249 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18250 done = (ptr == block->last);
18251 if (ptr->op == OP_PHI) {
18252 phi_present = 1;
18253 break;
18256 if (phi_present) {
18257 int edge;
18258 for(edge = 0; edge < block->users; edge++) {
18259 fprintf(fp, " in(%d):", edge);
18260 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18261 struct triple **slot;
18262 done = (ptr == block->last);
18263 if (ptr->op != OP_PHI) {
18264 continue;
18266 slot = &RHS(ptr, 0);
18267 fprintf(fp, " %-10p", slot[edge]);
18269 fprintf(fp, "\n");
18272 if (block->first->op == OP_LABEL) {
18273 fprintf(fp, "%p:\n", block->first);
18275 for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18276 struct live_range *lr;
18277 unsigned id;
18278 done = (ptr == block->last);
18279 lr = rstate->lrd[ptr->id].lr;
18281 id = ptr->id;
18282 ptr->id = rstate->lrd[id].orig_id;
18283 SET_REG(ptr->id, lr->color);
18284 display_triple(fp, ptr);
18285 ptr->id = id;
18287 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18288 internal_error(state, ptr, "lr has no defs!");
18290 if (info->need_edges) {
18291 if (lr->defs) {
18292 struct live_range_def *lrd;
18293 fprintf(fp, " range:");
18294 lrd = lr->defs;
18295 do {
18296 fprintf(fp, " %-10p", lrd->def);
18297 lrd = lrd->next;
18298 } while(lrd != lr->defs);
18299 fprintf(fp, "\n");
18301 if (lr->edges > 0) {
18302 struct live_range_edge *edge;
18303 fprintf(fp, " edges:");
18304 for(edge = lr->edges; edge; edge = edge->next) {
18305 struct live_range_def *lrd;
18306 lrd = edge->node->defs;
18307 do {
18308 fprintf(fp, " %-10p", lrd->def);
18309 lrd = lrd->next;
18310 } while(lrd != edge->node->defs);
18311 fprintf(fp, "|");
18313 fprintf(fp, "\n");
18316 /* Do a bunch of sanity checks */
18317 valid_ins(state, ptr);
18318 if (ptr->id > rstate->defs) {
18319 internal_error(state, ptr, "Invalid triple id: %d",
18320 ptr->id);
18323 if (rb->out) {
18324 struct triple_reg_set *out_set;
18325 fprintf(fp, " out:");
18326 for(out_set = rb->out; out_set; out_set = out_set->next) {
18327 fprintf(fp, " %-10p", out_set->member);
18329 fprintf(fp, "\n");
18331 fprintf(fp, "\n");
18334 static void print_interference_blocks(
18335 struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18337 struct print_interference_block_info info;
18338 info.rstate = rstate;
18339 info.fp = fp;
18340 info.need_edges = need_edges;
18341 fprintf(fp, "\nlive variables by block\n");
18342 walk_blocks(state, &state->bb, print_interference_block, &info);
18346 static unsigned regc_max_size(struct compile_state *state, int classes)
18348 unsigned max_size;
18349 int i;
18350 max_size = 0;
18351 for(i = 0; i < MAX_REGC; i++) {
18352 if (classes & (1 << i)) {
18353 unsigned size;
18354 size = arch_regc_size(state, i);
18355 if (size > max_size) {
18356 max_size = size;
18360 return max_size;
18363 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18365 unsigned equivs[MAX_REG_EQUIVS];
18366 int i;
18367 if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18368 internal_error(state, 0, "invalid register");
18370 if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18371 internal_error(state, 0, "invalid register");
18373 arch_reg_equivs(state, equivs, reg1);
18374 for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18375 if (equivs[i] == reg2) {
18376 return 1;
18379 return 0;
18382 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18384 unsigned equivs[MAX_REG_EQUIVS];
18385 int i;
18386 if (reg == REG_UNNEEDED) {
18387 return;
18389 arch_reg_equivs(state, equivs, reg);
18390 for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18391 used[equivs[i]] = 1;
18393 return;
18396 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18398 unsigned equivs[MAX_REG_EQUIVS];
18399 int i;
18400 if (reg == REG_UNNEEDED) {
18401 return;
18403 arch_reg_equivs(state, equivs, reg);
18404 for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18405 used[equivs[i]] += 1;
18407 return;
18410 static unsigned int hash_live_edge(
18411 struct live_range *left, struct live_range *right)
18413 unsigned int hash, val;
18414 unsigned long lval, rval;
18415 lval = ((unsigned long)left)/sizeof(struct live_range);
18416 rval = ((unsigned long)right)/sizeof(struct live_range);
18417 hash = 0;
18418 while(lval) {
18419 val = lval & 0xff;
18420 lval >>= 8;
18421 hash = (hash *263) + val;
18423 while(rval) {
18424 val = rval & 0xff;
18425 rval >>= 8;
18426 hash = (hash *263) + val;
18428 hash = hash & (LRE_HASH_SIZE - 1);
18429 return hash;
18432 static struct lre_hash **lre_probe(struct reg_state *rstate,
18433 struct live_range *left, struct live_range *right)
18435 struct lre_hash **ptr;
18436 unsigned int index;
18437 /* Ensure left <= right */
18438 if (left > right) {
18439 struct live_range *tmp;
18440 tmp = left;
18441 left = right;
18442 right = tmp;
18444 index = hash_live_edge(left, right);
18446 ptr = &rstate->hash[index];
18447 while(*ptr) {
18448 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18449 break;
18451 ptr = &(*ptr)->next;
18453 return ptr;
18456 static int interfere(struct reg_state *rstate,
18457 struct live_range *left, struct live_range *right)
18459 struct lre_hash **ptr;
18460 ptr = lre_probe(rstate, left, right);
18461 return ptr && *ptr;
18464 static void add_live_edge(struct reg_state *rstate,
18465 struct live_range *left, struct live_range *right)
18467 /* FIXME the memory allocation overhead is noticeable here... */
18468 struct lre_hash **ptr, *new_hash;
18469 struct live_range_edge *edge;
18471 if (left == right) {
18472 return;
18474 if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18475 return;
18477 /* Ensure left <= right */
18478 if (left > right) {
18479 struct live_range *tmp;
18480 tmp = left;
18481 left = right;
18482 right = tmp;
18484 ptr = lre_probe(rstate, left, right);
18485 if (*ptr) {
18486 return;
18488 #if 0
18489 fprintf(state->errout, "new_live_edge(%p, %p)\n",
18490 left, right);
18491 #endif
18492 new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18493 new_hash->next = *ptr;
18494 new_hash->left = left;
18495 new_hash->right = right;
18496 *ptr = new_hash;
18498 edge = xmalloc(sizeof(*edge), "live_range_edge");
18499 edge->next = left->edges;
18500 edge->node = right;
18501 left->edges = edge;
18502 left->degree += 1;
18504 edge = xmalloc(sizeof(*edge), "live_range_edge");
18505 edge->next = right->edges;
18506 edge->node = left;
18507 right->edges = edge;
18508 right->degree += 1;
18511 static void remove_live_edge(struct reg_state *rstate,
18512 struct live_range *left, struct live_range *right)
18514 struct live_range_edge *edge, **ptr;
18515 struct lre_hash **hptr, *entry;
18516 hptr = lre_probe(rstate, left, right);
18517 if (!hptr || !*hptr) {
18518 return;
18520 entry = *hptr;
18521 *hptr = entry->next;
18522 xfree(entry);
18524 for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18525 edge = *ptr;
18526 if (edge->node == right) {
18527 *ptr = edge->next;
18528 memset(edge, 0, sizeof(*edge));
18529 xfree(edge);
18530 right->degree--;
18531 break;
18534 for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18535 edge = *ptr;
18536 if (edge->node == left) {
18537 *ptr = edge->next;
18538 memset(edge, 0, sizeof(*edge));
18539 xfree(edge);
18540 left->degree--;
18541 break;
18546 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18548 struct live_range_edge *edge, *next;
18549 for(edge = range->edges; edge; edge = next) {
18550 next = edge->next;
18551 remove_live_edge(rstate, range, edge->node);
18555 static void transfer_live_edges(struct reg_state *rstate,
18556 struct live_range *dest, struct live_range *src)
18558 struct live_range_edge *edge, *next;
18559 for(edge = src->edges; edge; edge = next) {
18560 struct live_range *other;
18561 next = edge->next;
18562 other = edge->node;
18563 remove_live_edge(rstate, src, other);
18564 add_live_edge(rstate, dest, other);
18569 /* Interference graph...
18571 * new(n) --- Return a graph with n nodes but no edges.
18572 * add(g,x,y) --- Return a graph including g with an between x and y
18573 * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18574 * x and y in the graph g
18575 * degree(g, x) --- Return the degree of the node x in the graph g
18576 * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18578 * Implement with a hash table && a set of adjcency vectors.
18579 * The hash table supports constant time implementations of add and interfere.
18580 * The adjacency vectors support an efficient implementation of neighbors.
18584 * +---------------------------------------------------+
18585 * | +--------------+ |
18586 * v v | |
18587 * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select
18589 * -- In simplify implment optimistic coloring... (No backtracking)
18590 * -- Implement Rematerialization it is the only form of spilling we can perform
18591 * Essentially this means dropping a constant from a register because
18592 * we can regenerate it later.
18594 * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18595 * coalesce at phi points...
18596 * --- Bias coloring if at all possible do the coalesing a compile time.
18601 #if DEBUG_ROMCC_WARNING
18602 static void different_colored(
18603 struct compile_state *state, struct reg_state *rstate,
18604 struct triple *parent, struct triple *ins)
18606 struct live_range *lr;
18607 struct triple **expr;
18608 lr = rstate->lrd[ins->id].lr;
18609 expr = triple_rhs(state, ins, 0);
18610 for(;expr; expr = triple_rhs(state, ins, expr)) {
18611 struct live_range *lr2;
18612 if (!*expr || (*expr == parent) || (*expr == ins)) {
18613 continue;
18615 lr2 = rstate->lrd[(*expr)->id].lr;
18616 if (lr->color == lr2->color) {
18617 internal_error(state, ins, "live range too big");
18621 #endif
18623 static struct live_range *coalesce_ranges(
18624 struct compile_state *state, struct reg_state *rstate,
18625 struct live_range *lr1, struct live_range *lr2)
18627 struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18628 unsigned color;
18629 unsigned classes;
18630 if (lr1 == lr2) {
18631 return lr1;
18633 if (!lr1->defs || !lr2->defs) {
18634 internal_error(state, 0,
18635 "cannot coalese dead live ranges");
18637 if ((lr1->color == REG_UNNEEDED) ||
18638 (lr2->color == REG_UNNEEDED)) {
18639 internal_error(state, 0,
18640 "cannot coalesce live ranges without a possible color");
18642 if ((lr1->color != lr2->color) &&
18643 (lr1->color != REG_UNSET) &&
18644 (lr2->color != REG_UNSET)) {
18645 internal_error(state, lr1->defs->def,
18646 "cannot coalesce live ranges of different colors");
18648 color = lr1->color;
18649 if (color == REG_UNSET) {
18650 color = lr2->color;
18652 classes = lr1->classes & lr2->classes;
18653 if (!classes) {
18654 internal_error(state, lr1->defs->def,
18655 "cannot coalesce live ranges with dissimilar register classes");
18657 if (state->compiler->debug & DEBUG_COALESCING) {
18658 FILE *fp = state->errout;
18659 fprintf(fp, "coalescing:");
18660 lrd = lr1->defs;
18661 do {
18662 fprintf(fp, " %p", lrd->def);
18663 lrd = lrd->next;
18664 } while(lrd != lr1->defs);
18665 fprintf(fp, " |");
18666 lrd = lr2->defs;
18667 do {
18668 fprintf(fp, " %p", lrd->def);
18669 lrd = lrd->next;
18670 } while(lrd != lr2->defs);
18671 fprintf(fp, "\n");
18673 /* If there is a clear dominate live range put it in lr1,
18674 * For purposes of this test phi functions are
18675 * considered dominated by the definitions that feed into
18676 * them.
18678 if ((lr1->defs->prev->def->op == OP_PHI) ||
18679 ((lr2->defs->prev->def->op != OP_PHI) &&
18680 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18681 struct live_range *tmp;
18682 tmp = lr1;
18683 lr1 = lr2;
18684 lr2 = tmp;
18686 #if 0
18687 if (lr1->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
18688 fprintf(state->errout, "lr1 post\n");
18690 if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18691 fprintf(state->errout, "lr1 pre\n");
18693 if (lr2->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
18694 fprintf(state->errout, "lr2 post\n");
18696 if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18697 fprintf(state->errout, "lr2 pre\n");
18699 #endif
18700 #if 0
18701 fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18702 lr1->defs->def,
18703 lr1->color,
18704 lr2->defs->def,
18705 lr2->color);
18706 #endif
18708 /* Append lr2 onto lr1 */
18709 #if DEBUG_ROMCC_WARNINGS
18710 #warning "FIXME should this be a merge instead of a splice?"
18711 #endif
18712 /* This FIXME item applies to the correctness of live_range_end
18713 * and to the necessity of making multiple passes of coalesce_live_ranges.
18714 * A failure to find some coalesce opportunities in coaleace_live_ranges
18715 * does not impact the correct of the compiler just the efficiency with
18716 * which registers are allocated.
18718 head = lr1->defs;
18719 mid1 = lr1->defs->prev;
18720 mid2 = lr2->defs;
18721 end = lr2->defs->prev;
18723 head->prev = end;
18724 end->next = head;
18726 mid1->next = mid2;
18727 mid2->prev = mid1;
18729 /* Fixup the live range in the added live range defs */
18730 lrd = head;
18731 do {
18732 lrd->lr = lr1;
18733 lrd = lrd->next;
18734 } while(lrd != head);
18736 /* Mark lr2 as free. */
18737 lr2->defs = 0;
18738 lr2->color = REG_UNNEEDED;
18739 lr2->classes = 0;
18741 if (!lr1->defs) {
18742 internal_error(state, 0, "lr1->defs == 0 ?");
18745 lr1->color = color;
18746 lr1->classes = classes;
18748 /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18749 transfer_live_edges(rstate, lr1, lr2);
18751 return lr1;
18754 static struct live_range_def *live_range_head(
18755 struct compile_state *state, struct live_range *lr,
18756 struct live_range_def *last)
18758 struct live_range_def *result;
18759 result = 0;
18760 if (last == 0) {
18761 result = lr->defs;
18763 else if (!tdominates(state, lr->defs->def, last->next->def)) {
18764 result = last->next;
18766 return result;
18769 static struct live_range_def *live_range_end(
18770 struct compile_state *state, struct live_range *lr,
18771 struct live_range_def *last)
18773 struct live_range_def *result;
18774 result = 0;
18775 if (last == 0) {
18776 result = lr->defs->prev;
18778 else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18779 result = last->prev;
18781 return result;
18785 static void initialize_live_ranges(
18786 struct compile_state *state, struct reg_state *rstate)
18788 struct triple *ins, *first;
18789 size_t count, size;
18790 int i, j;
18792 first = state->first;
18793 /* First count how many instructions I have.
18795 count = count_triples(state);
18796 /* Potentially I need one live range definitions for each
18797 * instruction.
18799 rstate->defs = count;
18800 /* Potentially I need one live range for each instruction
18801 * plus an extra for the dummy live range.
18803 rstate->ranges = count + 1;
18804 size = sizeof(rstate->lrd[0]) * rstate->defs;
18805 rstate->lrd = xcmalloc(size, "live_range_def");
18806 size = sizeof(rstate->lr[0]) * rstate->ranges;
18807 rstate->lr = xcmalloc(size, "live_range");
18809 /* Setup the dummy live range */
18810 rstate->lr[0].classes = 0;
18811 rstate->lr[0].color = REG_UNSET;
18812 rstate->lr[0].defs = 0;
18813 i = j = 0;
18814 ins = first;
18815 do {
18816 /* If the triple is a variable give it a live range */
18817 if (triple_is_def(state, ins)) {
18818 struct reg_info info;
18819 /* Find the architecture specific color information */
18820 info = find_def_color(state, ins);
18821 i++;
18822 rstate->lr[i].defs = &rstate->lrd[j];
18823 rstate->lr[i].color = info.reg;
18824 rstate->lr[i].classes = info.regcm;
18825 rstate->lr[i].degree = 0;
18826 rstate->lrd[j].lr = &rstate->lr[i];
18828 /* Otherwise give the triple the dummy live range. */
18829 else {
18830 rstate->lrd[j].lr = &rstate->lr[0];
18833 /* Initalize the live_range_def */
18834 rstate->lrd[j].next = &rstate->lrd[j];
18835 rstate->lrd[j].prev = &rstate->lrd[j];
18836 rstate->lrd[j].def = ins;
18837 rstate->lrd[j].orig_id = ins->id;
18838 ins->id = j;
18840 j++;
18841 ins = ins->next;
18842 } while(ins != first);
18843 rstate->ranges = i;
18845 /* Make a second pass to handle achitecture specific register
18846 * constraints.
18848 ins = first;
18849 do {
18850 int zlhs, zrhs, i, j;
18851 if (ins->id > rstate->defs) {
18852 internal_error(state, ins, "bad id");
18855 /* Walk through the template of ins and coalesce live ranges */
18856 zlhs = ins->lhs;
18857 if ((zlhs == 0) && triple_is_def(state, ins)) {
18858 zlhs = 1;
18860 zrhs = ins->rhs;
18862 if (state->compiler->debug & DEBUG_COALESCING2) {
18863 fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18864 ins, zlhs, zrhs);
18867 for(i = 0; i < zlhs; i++) {
18868 struct reg_info linfo;
18869 struct live_range_def *lhs;
18870 linfo = arch_reg_lhs(state, ins, i);
18871 if (linfo.reg < MAX_REGISTERS) {
18872 continue;
18874 if (triple_is_def(state, ins)) {
18875 lhs = &rstate->lrd[ins->id];
18876 } else {
18877 lhs = &rstate->lrd[LHS(ins, i)->id];
18880 if (state->compiler->debug & DEBUG_COALESCING2) {
18881 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18882 i, lhs, linfo.reg);
18885 for(j = 0; j < zrhs; j++) {
18886 struct reg_info rinfo;
18887 struct live_range_def *rhs;
18888 rinfo = arch_reg_rhs(state, ins, j);
18889 if (rinfo.reg < MAX_REGISTERS) {
18890 continue;
18892 rhs = &rstate->lrd[RHS(ins, j)->id];
18894 if (state->compiler->debug & DEBUG_COALESCING2) {
18895 fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18896 j, rhs, rinfo.reg);
18899 if (rinfo.reg == linfo.reg) {
18900 coalesce_ranges(state, rstate,
18901 lhs->lr, rhs->lr);
18905 ins = ins->next;
18906 } while(ins != first);
18909 static void graph_ins(
18910 struct compile_state *state,
18911 struct reg_block *blocks, struct triple_reg_set *live,
18912 struct reg_block *rb, struct triple *ins, void *arg)
18914 struct reg_state *rstate = arg;
18915 struct live_range *def;
18916 struct triple_reg_set *entry;
18918 /* If the triple is not a definition
18919 * we do not have a definition to add to
18920 * the interference graph.
18922 if (!triple_is_def(state, ins)) {
18923 return;
18925 def = rstate->lrd[ins->id].lr;
18927 /* Create an edge between ins and everything that is
18928 * alive, unless the live_range cannot share
18929 * a physical register with ins.
18931 for(entry = live; entry; entry = entry->next) {
18932 struct live_range *lr;
18933 if (entry->member->id > rstate->defs) {
18934 internal_error(state, 0, "bad entry?");
18936 lr = rstate->lrd[entry->member->id].lr;
18937 if (def == lr) {
18938 continue;
18940 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18941 continue;
18943 add_live_edge(rstate, def, lr);
18945 return;
18948 #if DEBUG_CONSISTENCY > 1
18949 static struct live_range *get_verify_live_range(
18950 struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18952 struct live_range *lr;
18953 struct live_range_def *lrd;
18954 int ins_found;
18955 if ((ins->id < 0) || (ins->id > rstate->defs)) {
18956 internal_error(state, ins, "bad ins?");
18958 lr = rstate->lrd[ins->id].lr;
18959 ins_found = 0;
18960 lrd = lr->defs;
18961 do {
18962 if (lrd->def == ins) {
18963 ins_found = 1;
18965 lrd = lrd->next;
18966 } while(lrd != lr->defs);
18967 if (!ins_found) {
18968 internal_error(state, ins, "ins not in live range");
18970 return lr;
18973 static void verify_graph_ins(
18974 struct compile_state *state,
18975 struct reg_block *blocks, struct triple_reg_set *live,
18976 struct reg_block *rb, struct triple *ins, void *arg)
18978 struct reg_state *rstate = arg;
18979 struct triple_reg_set *entry1, *entry2;
18982 /* Compare live against edges and make certain the code is working */
18983 for(entry1 = live; entry1; entry1 = entry1->next) {
18984 struct live_range *lr1;
18985 lr1 = get_verify_live_range(state, rstate, entry1->member);
18986 for(entry2 = live; entry2; entry2 = entry2->next) {
18987 struct live_range *lr2;
18988 struct live_range_edge *edge2;
18989 int lr1_found;
18990 int lr2_degree;
18991 if (entry2 == entry1) {
18992 continue;
18994 lr2 = get_verify_live_range(state, rstate, entry2->member);
18995 if (lr1 == lr2) {
18996 internal_error(state, entry2->member,
18997 "live range with 2 values simultaneously alive");
18999 if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19000 continue;
19002 if (!interfere(rstate, lr1, lr2)) {
19003 internal_error(state, entry2->member,
19004 "edges don't interfere?");
19007 lr1_found = 0;
19008 lr2_degree = 0;
19009 for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19010 lr2_degree++;
19011 if (edge2->node == lr1) {
19012 lr1_found = 1;
19015 if (lr2_degree != lr2->degree) {
19016 internal_error(state, entry2->member,
19017 "computed degree: %d does not match reported degree: %d\n",
19018 lr2_degree, lr2->degree);
19020 if (!lr1_found) {
19021 internal_error(state, entry2->member, "missing edge");
19025 return;
19027 #endif
19029 static void print_interference_ins(
19030 struct compile_state *state,
19031 struct reg_block *blocks, struct triple_reg_set *live,
19032 struct reg_block *rb, struct triple *ins, void *arg)
19034 struct reg_state *rstate = arg;
19035 struct live_range *lr;
19036 unsigned id;
19037 FILE *fp = state->dbgout;
19039 lr = rstate->lrd[ins->id].lr;
19040 id = ins->id;
19041 ins->id = rstate->lrd[id].orig_id;
19042 SET_REG(ins->id, lr->color);
19043 display_triple(state->dbgout, ins);
19044 ins->id = id;
19046 if (lr->defs) {
19047 struct live_range_def *lrd;
19048 fprintf(fp, " range:");
19049 lrd = lr->defs;
19050 do {
19051 fprintf(fp, " %-10p", lrd->def);
19052 lrd = lrd->next;
19053 } while(lrd != lr->defs);
19054 fprintf(fp, "\n");
19056 if (live) {
19057 struct triple_reg_set *entry;
19058 fprintf(fp, " live:");
19059 for(entry = live; entry; entry = entry->next) {
19060 fprintf(fp, " %-10p", entry->member);
19062 fprintf(fp, "\n");
19064 if (lr->edges) {
19065 struct live_range_edge *entry;
19066 fprintf(fp, " edges:");
19067 for(entry = lr->edges; entry; entry = entry->next) {
19068 struct live_range_def *lrd;
19069 lrd = entry->node->defs;
19070 do {
19071 fprintf(fp, " %-10p", lrd->def);
19072 lrd = lrd->next;
19073 } while(lrd != entry->node->defs);
19074 fprintf(fp, "|");
19076 fprintf(fp, "\n");
19078 if (triple_is_branch(state, ins)) {
19079 fprintf(fp, "\n");
19081 return;
19084 static int coalesce_live_ranges(
19085 struct compile_state *state, struct reg_state *rstate)
19087 /* At the point where a value is moved from one
19088 * register to another that value requires two
19089 * registers, thus increasing register pressure.
19090 * Live range coaleescing reduces the register
19091 * pressure by keeping a value in one register
19092 * longer.
19094 * In the case of a phi function all paths leading
19095 * into it must be allocated to the same register
19096 * otherwise the phi function may not be removed.
19098 * Forcing a value to stay in a single register
19099 * for an extended period of time does have
19100 * limitations when applied to non homogenous
19101 * register pool.
19103 * The two cases I have identified are:
19104 * 1) Two forced register assignments may
19105 * collide.
19106 * 2) Registers may go unused because they
19107 * are only good for storing the value
19108 * and not manipulating it.
19110 * Because of this I need to split live ranges,
19111 * even outside of the context of coalesced live
19112 * ranges. The need to split live ranges does
19113 * impose some constraints on live range coalescing.
19115 * - Live ranges may not be coalesced across phi
19116 * functions. This creates a 2 headed live
19117 * range that cannot be sanely split.
19119 * - phi functions (coalesced in initialize_live_ranges)
19120 * are handled as pre split live ranges so we will
19121 * never attempt to split them.
19123 int coalesced;
19124 int i;
19126 coalesced = 0;
19127 for(i = 0; i <= rstate->ranges; i++) {
19128 struct live_range *lr1;
19129 struct live_range_def *lrd1;
19130 lr1 = &rstate->lr[i];
19131 if (!lr1->defs) {
19132 continue;
19134 lrd1 = live_range_end(state, lr1, 0);
19135 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19136 struct triple_set *set;
19137 if (lrd1->def->op != OP_COPY) {
19138 continue;
19140 /* Skip copies that are the result of a live range split. */
19141 if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19142 continue;
19144 for(set = lrd1->def->use; set; set = set->next) {
19145 struct live_range_def *lrd2;
19146 struct live_range *lr2, *res;
19148 lrd2 = &rstate->lrd[set->member->id];
19150 /* Don't coalesce with instructions
19151 * that are the result of a live range
19152 * split.
19154 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19155 continue;
19157 lr2 = rstate->lrd[set->member->id].lr;
19158 if (lr1 == lr2) {
19159 continue;
19161 if ((lr1->color != lr2->color) &&
19162 (lr1->color != REG_UNSET) &&
19163 (lr2->color != REG_UNSET)) {
19164 continue;
19166 if ((lr1->classes & lr2->classes) == 0) {
19167 continue;
19170 if (interfere(rstate, lr1, lr2)) {
19171 continue;
19174 res = coalesce_ranges(state, rstate, lr1, lr2);
19175 coalesced += 1;
19176 if (res != lr1) {
19177 goto next;
19181 next:
19184 return coalesced;
19188 static void fix_coalesce_conflicts(struct compile_state *state,
19189 struct reg_block *blocks, struct triple_reg_set *live,
19190 struct reg_block *rb, struct triple *ins, void *arg)
19192 int *conflicts = arg;
19193 int zlhs, zrhs, i, j;
19195 /* See if we have a mandatory coalesce operation between
19196 * a lhs and a rhs value. If so and the rhs value is also
19197 * alive then this triple needs to be pre copied. Otherwise
19198 * we would have two definitions in the same live range simultaneously
19199 * alive.
19201 zlhs = ins->lhs;
19202 if ((zlhs == 0) && triple_is_def(state, ins)) {
19203 zlhs = 1;
19205 zrhs = ins->rhs;
19206 for(i = 0; i < zlhs; i++) {
19207 struct reg_info linfo;
19208 linfo = arch_reg_lhs(state, ins, i);
19209 if (linfo.reg < MAX_REGISTERS) {
19210 continue;
19212 for(j = 0; j < zrhs; j++) {
19213 struct reg_info rinfo;
19214 struct triple *rhs;
19215 struct triple_reg_set *set;
19216 int found;
19217 found = 0;
19218 rinfo = arch_reg_rhs(state, ins, j);
19219 if (rinfo.reg != linfo.reg) {
19220 continue;
19222 rhs = RHS(ins, j);
19223 for(set = live; set && !found; set = set->next) {
19224 if (set->member == rhs) {
19225 found = 1;
19228 if (found) {
19229 struct triple *copy;
19230 copy = pre_copy(state, ins, j);
19231 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19232 (*conflicts)++;
19236 return;
19239 static int correct_coalesce_conflicts(
19240 struct compile_state *state, struct reg_block *blocks)
19242 int conflicts;
19243 conflicts = 0;
19244 walk_variable_lifetimes(state, &state->bb, blocks,
19245 fix_coalesce_conflicts, &conflicts);
19246 return conflicts;
19249 static void replace_set_use(struct compile_state *state,
19250 struct triple_reg_set *head, struct triple *orig, struct triple *new)
19252 struct triple_reg_set *set;
19253 for(set = head; set; set = set->next) {
19254 if (set->member == orig) {
19255 set->member = new;
19260 static void replace_block_use(struct compile_state *state,
19261 struct reg_block *blocks, struct triple *orig, struct triple *new)
19263 int i;
19264 #if DEBUG_ROMCC_WARNINGS
19265 #warning "WISHLIST visit just those blocks that need it *"
19266 #endif
19267 for(i = 1; i <= state->bb.last_vertex; i++) {
19268 struct reg_block *rb;
19269 rb = &blocks[i];
19270 replace_set_use(state, rb->in, orig, new);
19271 replace_set_use(state, rb->out, orig, new);
19275 static void color_instructions(struct compile_state *state)
19277 struct triple *ins, *first;
19278 first = state->first;
19279 ins = first;
19280 do {
19281 if (triple_is_def(state, ins)) {
19282 struct reg_info info;
19283 info = find_lhs_color(state, ins, 0);
19284 if (info.reg >= MAX_REGISTERS) {
19285 info.reg = REG_UNSET;
19287 SET_INFO(ins->id, info);
19289 ins = ins->next;
19290 } while(ins != first);
19293 static struct reg_info read_lhs_color(
19294 struct compile_state *state, struct triple *ins, int index)
19296 struct reg_info info;
19297 if ((index == 0) && triple_is_def(state, ins)) {
19298 info.reg = ID_REG(ins->id);
19299 info.regcm = ID_REGCM(ins->id);
19301 else if (index < ins->lhs) {
19302 info = read_lhs_color(state, LHS(ins, index), 0);
19304 else {
19305 internal_error(state, ins, "Bad lhs %d", index);
19306 info.reg = REG_UNSET;
19307 info.regcm = 0;
19309 return info;
19312 static struct triple *resolve_tangle(
19313 struct compile_state *state, struct triple *tangle)
19315 struct reg_info info, uinfo;
19316 struct triple_set *set, *next;
19317 struct triple *copy;
19319 #if DEBUG_ROMCC_WARNINGS
19320 #warning "WISHLIST recalculate all affected instructions colors"
19321 #endif
19322 info = find_lhs_color(state, tangle, 0);
19323 for(set = tangle->use; set; set = next) {
19324 struct triple *user;
19325 int i, zrhs;
19326 next = set->next;
19327 user = set->member;
19328 zrhs = user->rhs;
19329 for(i = 0; i < zrhs; i++) {
19330 if (RHS(user, i) != tangle) {
19331 continue;
19333 uinfo = find_rhs_post_color(state, user, i);
19334 if (uinfo.reg == info.reg) {
19335 copy = pre_copy(state, user, i);
19336 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19337 SET_INFO(copy->id, uinfo);
19341 copy = 0;
19342 uinfo = find_lhs_pre_color(state, tangle, 0);
19343 if (uinfo.reg == info.reg) {
19344 struct reg_info linfo;
19345 copy = post_copy(state, tangle);
19346 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19347 linfo = find_lhs_color(state, copy, 0);
19348 SET_INFO(copy->id, linfo);
19350 info = find_lhs_color(state, tangle, 0);
19351 SET_INFO(tangle->id, info);
19353 return copy;
19357 static void fix_tangles(struct compile_state *state,
19358 struct reg_block *blocks, struct triple_reg_set *live,
19359 struct reg_block *rb, struct triple *ins, void *arg)
19361 int *tangles = arg;
19362 struct triple *tangle;
19363 do {
19364 char used[MAX_REGISTERS];
19365 struct triple_reg_set *set;
19366 tangle = 0;
19368 /* Find out which registers have multiple uses at this point */
19369 memset(used, 0, sizeof(used));
19370 for(set = live; set; set = set->next) {
19371 struct reg_info info;
19372 info = read_lhs_color(state, set->member, 0);
19373 if (info.reg == REG_UNSET) {
19374 continue;
19376 reg_inc_used(state, used, info.reg);
19379 /* Now find the least dominated definition of a register in
19380 * conflict I have seen so far.
19382 for(set = live; set; set = set->next) {
19383 struct reg_info info;
19384 info = read_lhs_color(state, set->member, 0);
19385 if (used[info.reg] < 2) {
19386 continue;
19388 /* Changing copies that feed into phi functions
19389 * is incorrect.
19391 if (set->member->use &&
19392 (set->member->use->member->op == OP_PHI)) {
19393 continue;
19395 if (!tangle || tdominates(state, set->member, tangle)) {
19396 tangle = set->member;
19399 /* If I have found a tangle resolve it */
19400 if (tangle) {
19401 struct triple *post_copy;
19402 (*tangles)++;
19403 post_copy = resolve_tangle(state, tangle);
19404 if (post_copy) {
19405 replace_block_use(state, blocks, tangle, post_copy);
19407 if (post_copy && (tangle != ins)) {
19408 replace_set_use(state, live, tangle, post_copy);
19411 } while(tangle);
19412 return;
19415 static int correct_tangles(
19416 struct compile_state *state, struct reg_block *blocks)
19418 int tangles;
19419 tangles = 0;
19420 color_instructions(state);
19421 walk_variable_lifetimes(state, &state->bb, blocks,
19422 fix_tangles, &tangles);
19423 return tangles;
19427 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19428 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19430 struct triple *find_constrained_def(
19431 struct compile_state *state, struct live_range *range, struct triple *constrained)
19433 struct live_range_def *lrd, *lrd_next;
19434 lrd_next = range->defs;
19435 do {
19436 struct reg_info info;
19437 unsigned regcm;
19439 lrd = lrd_next;
19440 lrd_next = lrd->next;
19442 regcm = arch_type_to_regcm(state, lrd->def->type);
19443 info = find_lhs_color(state, lrd->def, 0);
19444 regcm = arch_regcm_reg_normalize(state, regcm);
19445 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19446 /* If the 2 register class masks are equal then
19447 * the current register class is not constrained.
19449 if (regcm == info.regcm) {
19450 continue;
19453 /* If there is just one use.
19454 * That use cannot accept a larger register class.
19455 * There are no intervening definitions except
19456 * definitions that feed into that use.
19457 * Then a triple is not constrained.
19458 * FIXME handle this case!
19460 #if DEBUG_ROMCC_WARNINGS
19461 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19462 #endif
19465 /* Of the constrained live ranges deal with the
19466 * least dominated one first.
19468 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19469 fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19470 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19472 if (!constrained ||
19473 tdominates(state, lrd->def, constrained))
19475 constrained = lrd->def;
19477 } while(lrd_next != range->defs);
19478 return constrained;
19481 static int split_constrained_ranges(
19482 struct compile_state *state, struct reg_state *rstate,
19483 struct live_range *range)
19485 /* Walk through the edges in conflict and our current live
19486 * range, and find definitions that are more severly constrained
19487 * than they type of data they contain require.
19489 * Then pick one of those ranges and relax the constraints.
19491 struct live_range_edge *edge;
19492 struct triple *constrained;
19494 constrained = 0;
19495 for(edge = range->edges; edge; edge = edge->next) {
19496 constrained = find_constrained_def(state, edge->node, constrained);
19498 #if DEBUG_ROMCC_WARNINGS
19499 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19500 #endif
19501 if (!constrained) {
19502 constrained = find_constrained_def(state, range, constrained);
19505 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19506 fprintf(state->errout, "constrained: ");
19507 display_triple(state->errout, constrained);
19509 if (constrained) {
19510 ids_from_rstate(state, rstate);
19511 cleanup_rstate(state, rstate);
19512 resolve_tangle(state, constrained);
19514 return !!constrained;
19517 static int split_ranges(
19518 struct compile_state *state, struct reg_state *rstate,
19519 char *used, struct live_range *range)
19521 int split;
19522 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19523 fprintf(state->errout, "split_ranges %d %s %p\n",
19524 rstate->passes, tops(range->defs->def->op), range->defs->def);
19526 if ((range->color == REG_UNNEEDED) ||
19527 (rstate->passes >= rstate->max_passes)) {
19528 return 0;
19530 split = split_constrained_ranges(state, rstate, range);
19532 /* Ideally I would split the live range that will not be used
19533 * for the longest period of time in hopes that this will
19534 * (a) allow me to spill a register or
19535 * (b) allow me to place a value in another register.
19537 * So far I don't have a test case for this, the resolving
19538 * of mandatory constraints has solved all of my
19539 * know issues. So I have choosen not to write any
19540 * code until I cat get a better feel for cases where
19541 * it would be useful to have.
19544 #if DEBUG_ROMCC_WARNINGS
19545 #warning "WISHLIST implement live range splitting..."
19546 #endif
19548 if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19549 FILE *fp = state->errout;
19550 print_interference_blocks(state, rstate, fp, 0);
19551 print_dominators(state, fp, &state->bb);
19553 return split;
19556 static FILE *cgdebug_fp(struct compile_state *state)
19558 FILE *fp;
19559 fp = 0;
19560 if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19561 fp = state->errout;
19563 if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19564 fp = state->dbgout;
19566 return fp;
19569 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19571 FILE *fp;
19572 fp = cgdebug_fp(state);
19573 if (fp) {
19574 va_list args;
19575 va_start(args, fmt);
19576 vfprintf(fp, fmt, args);
19577 va_end(args);
19581 static void cgdebug_flush(struct compile_state *state)
19583 FILE *fp;
19584 fp = cgdebug_fp(state);
19585 if (fp) {
19586 fflush(fp);
19590 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19592 FILE *fp;
19593 fp = cgdebug_fp(state);
19594 if (fp) {
19595 loc(fp, state, ins);
19599 static int select_free_color(struct compile_state *state,
19600 struct reg_state *rstate, struct live_range *range)
19602 struct triple_set *entry;
19603 struct live_range_def *lrd;
19604 struct live_range_def *phi;
19605 struct live_range_edge *edge;
19606 char used[MAX_REGISTERS];
19607 struct triple **expr;
19609 /* Instead of doing just the trivial color select here I try
19610 * a few extra things because a good color selection will help reduce
19611 * copies.
19614 /* Find the registers currently in use */
19615 memset(used, 0, sizeof(used));
19616 for(edge = range->edges; edge; edge = edge->next) {
19617 if (edge->node->color == REG_UNSET) {
19618 continue;
19620 reg_fill_used(state, used, edge->node->color);
19623 if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19624 int i;
19625 i = 0;
19626 for(edge = range->edges; edge; edge = edge->next) {
19627 i++;
19629 cgdebug_printf(state, "\n%s edges: %d",
19630 tops(range->defs->def->op), i);
19631 cgdebug_loc(state, range->defs->def);
19632 cgdebug_printf(state, "\n");
19633 for(i = 0; i < MAX_REGISTERS; i++) {
19634 if (used[i]) {
19635 cgdebug_printf(state, "used: %s\n",
19636 arch_reg_str(i));
19641 /* If a color is already assigned see if it will work */
19642 if (range->color != REG_UNSET) {
19643 struct live_range_def *lrd;
19644 if (!used[range->color]) {
19645 return 1;
19647 for(edge = range->edges; edge; edge = edge->next) {
19648 if (edge->node->color != range->color) {
19649 continue;
19651 warning(state, edge->node->defs->def, "edge: ");
19652 lrd = edge->node->defs;
19653 do {
19654 warning(state, lrd->def, " %p %s",
19655 lrd->def, tops(lrd->def->op));
19656 lrd = lrd->next;
19657 } while(lrd != edge->node->defs);
19659 lrd = range->defs;
19660 warning(state, range->defs->def, "def: ");
19661 do {
19662 warning(state, lrd->def, " %p %s",
19663 lrd->def, tops(lrd->def->op));
19664 lrd = lrd->next;
19665 } while(lrd != range->defs);
19666 internal_error(state, range->defs->def,
19667 "live range with already used color %s",
19668 arch_reg_str(range->color));
19671 /* If I feed into an expression reuse it's color.
19672 * This should help remove copies in the case of 2 register instructions
19673 * and phi functions.
19675 phi = 0;
19676 lrd = live_range_end(state, range, 0);
19677 for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19678 entry = lrd->def->use;
19679 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19680 struct live_range_def *insd;
19681 unsigned regcm;
19682 insd = &rstate->lrd[entry->member->id];
19683 if (insd->lr->defs == 0) {
19684 continue;
19686 if (!phi && (insd->def->op == OP_PHI) &&
19687 !interfere(rstate, range, insd->lr)) {
19688 phi = insd;
19690 if (insd->lr->color == REG_UNSET) {
19691 continue;
19693 regcm = insd->lr->classes;
19694 if (((regcm & range->classes) == 0) ||
19695 (used[insd->lr->color])) {
19696 continue;
19698 if (interfere(rstate, range, insd->lr)) {
19699 continue;
19701 range->color = insd->lr->color;
19704 /* If I feed into a phi function reuse it's color or the color
19705 * of something else that feeds into the phi function.
19707 if (phi) {
19708 if (phi->lr->color != REG_UNSET) {
19709 if (used[phi->lr->color]) {
19710 range->color = phi->lr->color;
19713 else {
19714 expr = triple_rhs(state, phi->def, 0);
19715 for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19716 struct live_range *lr;
19717 unsigned regcm;
19718 if (!*expr) {
19719 continue;
19721 lr = rstate->lrd[(*expr)->id].lr;
19722 if (lr->color == REG_UNSET) {
19723 continue;
19725 regcm = lr->classes;
19726 if (((regcm & range->classes) == 0) ||
19727 (used[lr->color])) {
19728 continue;
19730 if (interfere(rstate, range, lr)) {
19731 continue;
19733 range->color = lr->color;
19737 /* If I don't interfere with a rhs node reuse it's color */
19738 lrd = live_range_head(state, range, 0);
19739 for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19740 expr = triple_rhs(state, lrd->def, 0);
19741 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19742 struct live_range *lr;
19743 unsigned regcm;
19744 if (!*expr) {
19745 continue;
19747 lr = rstate->lrd[(*expr)->id].lr;
19748 if (lr->color == REG_UNSET) {
19749 continue;
19751 regcm = lr->classes;
19752 if (((regcm & range->classes) == 0) ||
19753 (used[lr->color])) {
19754 continue;
19756 if (interfere(rstate, range, lr)) {
19757 continue;
19759 range->color = lr->color;
19760 break;
19763 /* If I have not opportunitically picked a useful color
19764 * pick the first color that is free.
19766 if (range->color == REG_UNSET) {
19767 range->color =
19768 arch_select_free_register(state, used, range->classes);
19770 if (range->color == REG_UNSET) {
19771 struct live_range_def *lrd;
19772 int i;
19773 if (split_ranges(state, rstate, used, range)) {
19774 return 0;
19776 for(edge = range->edges; edge; edge = edge->next) {
19777 warning(state, edge->node->defs->def, "edge reg %s",
19778 arch_reg_str(edge->node->color));
19779 lrd = edge->node->defs;
19780 do {
19781 warning(state, lrd->def, " %s %p",
19782 tops(lrd->def->op), lrd->def);
19783 lrd = lrd->next;
19784 } while(lrd != edge->node->defs);
19786 warning(state, range->defs->def, "range: ");
19787 lrd = range->defs;
19788 do {
19789 warning(state, lrd->def, " %s %p",
19790 tops(lrd->def->op), lrd->def);
19791 lrd = lrd->next;
19792 } while(lrd != range->defs);
19794 warning(state, range->defs->def, "classes: %x",
19795 range->classes);
19796 for(i = 0; i < MAX_REGISTERS; i++) {
19797 if (used[i]) {
19798 warning(state, range->defs->def, "used: %s",
19799 arch_reg_str(i));
19802 error(state, range->defs->def, "too few registers");
19804 range->classes &= arch_reg_regcm(state, range->color);
19805 if ((range->color == REG_UNSET) || (range->classes == 0)) {
19806 internal_error(state, range->defs->def, "select_free_color did not?");
19808 return 1;
19811 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19813 int colored;
19814 struct live_range_edge *edge;
19815 struct live_range *range;
19816 if (rstate->low) {
19817 cgdebug_printf(state, "Lo: ");
19818 range = rstate->low;
19819 if (*range->group_prev != range) {
19820 internal_error(state, 0, "lo: *prev != range?");
19822 *range->group_prev = range->group_next;
19823 if (range->group_next) {
19824 range->group_next->group_prev = range->group_prev;
19826 if (&range->group_next == rstate->low_tail) {
19827 rstate->low_tail = range->group_prev;
19829 if (rstate->low == range) {
19830 internal_error(state, 0, "low: next != prev?");
19833 else if (rstate->high) {
19834 cgdebug_printf(state, "Hi: ");
19835 range = rstate->high;
19836 if (*range->group_prev != range) {
19837 internal_error(state, 0, "hi: *prev != range?");
19839 *range->group_prev = range->group_next;
19840 if (range->group_next) {
19841 range->group_next->group_prev = range->group_prev;
19843 if (&range->group_next == rstate->high_tail) {
19844 rstate->high_tail = range->group_prev;
19846 if (rstate->high == range) {
19847 internal_error(state, 0, "high: next != prev?");
19850 else {
19851 return 1;
19853 cgdebug_printf(state, " %d\n", range - rstate->lr);
19854 range->group_prev = 0;
19855 for(edge = range->edges; edge; edge = edge->next) {
19856 struct live_range *node;
19857 node = edge->node;
19858 /* Move nodes from the high to the low list */
19859 if (node->group_prev && (node->color == REG_UNSET) &&
19860 (node->degree == regc_max_size(state, node->classes))) {
19861 if (*node->group_prev != node) {
19862 internal_error(state, 0, "move: *prev != node?");
19864 *node->group_prev = node->group_next;
19865 if (node->group_next) {
19866 node->group_next->group_prev = node->group_prev;
19868 if (&node->group_next == rstate->high_tail) {
19869 rstate->high_tail = node->group_prev;
19871 cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19872 node->group_prev = rstate->low_tail;
19873 node->group_next = 0;
19874 *rstate->low_tail = node;
19875 rstate->low_tail = &node->group_next;
19876 if (*node->group_prev != node) {
19877 internal_error(state, 0, "move2: *prev != node?");
19880 node->degree -= 1;
19882 colored = color_graph(state, rstate);
19883 if (colored) {
19884 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19885 cgdebug_loc(state, range->defs->def);
19886 cgdebug_flush(state);
19887 colored = select_free_color(state, rstate, range);
19888 if (colored) {
19889 cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19892 return colored;
19895 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19897 struct live_range *lr;
19898 struct live_range_edge *edge;
19899 struct triple *ins, *first;
19900 char used[MAX_REGISTERS];
19901 first = state->first;
19902 ins = first;
19903 do {
19904 if (triple_is_def(state, ins)) {
19905 if (ins->id > rstate->defs) {
19906 internal_error(state, ins,
19907 "triple without a live range def");
19909 lr = rstate->lrd[ins->id].lr;
19910 if (lr->color == REG_UNSET) {
19911 internal_error(state, ins,
19912 "triple without a color");
19914 /* Find the registers used by the edges */
19915 memset(used, 0, sizeof(used));
19916 for(edge = lr->edges; edge; edge = edge->next) {
19917 if (edge->node->color == REG_UNSET) {
19918 internal_error(state, 0,
19919 "live range without a color");
19921 reg_fill_used(state, used, edge->node->color);
19923 if (used[lr->color]) {
19924 internal_error(state, ins,
19925 "triple with already used color");
19928 ins = ins->next;
19929 } while(ins != first);
19932 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19934 struct live_range_def *lrd;
19935 struct live_range *lr;
19936 struct triple *first, *ins;
19937 first = state->first;
19938 ins = first;
19939 do {
19940 if (ins->id > rstate->defs) {
19941 internal_error(state, ins,
19942 "triple without a live range");
19944 lrd = &rstate->lrd[ins->id];
19945 lr = lrd->lr;
19946 ins->id = lrd->orig_id;
19947 SET_REG(ins->id, lr->color);
19948 ins = ins->next;
19949 } while (ins != first);
19952 static struct live_range *merge_sort_lr(
19953 struct live_range *first, struct live_range *last)
19955 struct live_range *mid, *join, **join_tail, *pick;
19956 size_t size;
19957 size = (last - first) + 1;
19958 if (size >= 2) {
19959 mid = first + size/2;
19960 first = merge_sort_lr(first, mid -1);
19961 mid = merge_sort_lr(mid, last);
19963 join = 0;
19964 join_tail = &join;
19965 /* merge the two lists */
19966 while(first && mid) {
19967 if ((first->degree < mid->degree) ||
19968 ((first->degree == mid->degree) &&
19969 (first->length < mid->length))) {
19970 pick = first;
19971 first = first->group_next;
19972 if (first) {
19973 first->group_prev = 0;
19976 else {
19977 pick = mid;
19978 mid = mid->group_next;
19979 if (mid) {
19980 mid->group_prev = 0;
19983 pick->group_next = 0;
19984 pick->group_prev = join_tail;
19985 *join_tail = pick;
19986 join_tail = &pick->group_next;
19988 /* Splice the remaining list */
19989 pick = (first)? first : mid;
19990 *join_tail = pick;
19991 if (pick) {
19992 pick->group_prev = join_tail;
19995 else {
19996 if (!first->defs) {
19997 first = 0;
19999 join = first;
20001 return join;
20004 static void ids_from_rstate(struct compile_state *state,
20005 struct reg_state *rstate)
20007 struct triple *ins, *first;
20008 if (!rstate->defs) {
20009 return;
20011 /* Display the graph if desired */
20012 if (state->compiler->debug & DEBUG_INTERFERENCE) {
20013 FILE *fp = state->dbgout;
20014 print_interference_blocks(state, rstate, fp, 0);
20015 print_control_flow(state, fp, &state->bb);
20016 fflush(fp);
20018 first = state->first;
20019 ins = first;
20020 do {
20021 if (ins->id) {
20022 struct live_range_def *lrd;
20023 lrd = &rstate->lrd[ins->id];
20024 ins->id = lrd->orig_id;
20026 ins = ins->next;
20027 } while(ins != first);
20030 static void cleanup_live_edges(struct reg_state *rstate)
20032 int i;
20033 /* Free the edges on each node */
20034 for(i = 1; i <= rstate->ranges; i++) {
20035 remove_live_edges(rstate, &rstate->lr[i]);
20039 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20041 cleanup_live_edges(rstate);
20042 xfree(rstate->lrd);
20043 xfree(rstate->lr);
20045 /* Free the variable lifetime information */
20046 if (rstate->blocks) {
20047 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20049 rstate->defs = 0;
20050 rstate->ranges = 0;
20051 rstate->lrd = 0;
20052 rstate->lr = 0;
20053 rstate->blocks = 0;
20056 static void verify_consistency(struct compile_state *state);
20057 static void allocate_registers(struct compile_state *state)
20059 struct reg_state rstate;
20060 int colored;
20062 /* Clear out the reg_state */
20063 memset(&rstate, 0, sizeof(rstate));
20064 rstate.max_passes = state->compiler->max_allocation_passes;
20066 do {
20067 struct live_range **point, **next;
20068 int tangles;
20069 int coalesced;
20071 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20072 FILE *fp = state->errout;
20073 fprintf(fp, "pass: %d\n", rstate.passes);
20074 fflush(fp);
20077 /* Restore ids */
20078 ids_from_rstate(state, &rstate);
20080 /* Cleanup the temporary data structures */
20081 cleanup_rstate(state, &rstate);
20083 /* Compute the variable lifetimes */
20084 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20086 /* Fix invalid mandatory live range coalesce conflicts */
20087 correct_coalesce_conflicts(state, rstate.blocks);
20089 /* Fix two simultaneous uses of the same register.
20090 * In a few pathlogical cases a partial untangle moves
20091 * the tangle to a part of the graph we won't revisit.
20092 * So we keep looping until we have no more tangle fixes
20093 * to apply.
20095 do {
20096 tangles = correct_tangles(state, rstate.blocks);
20097 } while(tangles);
20100 print_blocks(state, "resolve_tangles", state->dbgout);
20101 verify_consistency(state);
20103 /* Allocate and initialize the live ranges */
20104 initialize_live_ranges(state, &rstate);
20106 /* Note currently doing coalescing in a loop appears to
20107 * buys me nothing. The code is left this way in case
20108 * there is some value in it. Or if a future bugfix
20109 * yields some benefit.
20111 do {
20112 if (state->compiler->debug & DEBUG_COALESCING) {
20113 fprintf(state->errout, "coalescing\n");
20116 /* Remove any previous live edge calculations */
20117 cleanup_live_edges(&rstate);
20119 /* Compute the interference graph */
20120 walk_variable_lifetimes(
20121 state, &state->bb, rstate.blocks,
20122 graph_ins, &rstate);
20124 /* Display the interference graph if desired */
20125 if (state->compiler->debug & DEBUG_INTERFERENCE) {
20126 print_interference_blocks(state, &rstate, state->dbgout, 1);
20127 fprintf(state->dbgout, "\nlive variables by instruction\n");
20128 walk_variable_lifetimes(
20129 state, &state->bb, rstate.blocks,
20130 print_interference_ins, &rstate);
20133 coalesced = coalesce_live_ranges(state, &rstate);
20135 if (state->compiler->debug & DEBUG_COALESCING) {
20136 fprintf(state->errout, "coalesced: %d\n", coalesced);
20138 } while(coalesced);
20140 #if DEBUG_CONSISTENCY > 1
20141 # if 0
20142 fprintf(state->errout, "verify_graph_ins...\n");
20143 # endif
20144 /* Verify the interference graph */
20145 walk_variable_lifetimes(
20146 state, &state->bb, rstate.blocks,
20147 verify_graph_ins, &rstate);
20148 # if 0
20149 fprintf(state->errout, "verify_graph_ins done\n");
20150 #endif
20151 #endif
20153 /* Build the groups low and high. But with the nodes
20154 * first sorted by degree order.
20156 rstate.low_tail = &rstate.low;
20157 rstate.high_tail = &rstate.high;
20158 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20159 if (rstate.high) {
20160 rstate.high->group_prev = &rstate.high;
20162 for(point = &rstate.high; *point; point = &(*point)->group_next)
20164 rstate.high_tail = point;
20165 /* Walk through the high list and move everything that needs
20166 * to be onto low.
20168 for(point = &rstate.high; *point; point = next) {
20169 struct live_range *range;
20170 next = &(*point)->group_next;
20171 range = *point;
20173 /* If it has a low degree or it already has a color
20174 * place the node in low.
20176 if ((range->degree < regc_max_size(state, range->classes)) ||
20177 (range->color != REG_UNSET)) {
20178 cgdebug_printf(state, "Lo: %5d degree %5d%s\n",
20179 range - rstate.lr, range->degree,
20180 (range->color != REG_UNSET) ? " (colored)": "");
20181 *range->group_prev = range->group_next;
20182 if (range->group_next) {
20183 range->group_next->group_prev = range->group_prev;
20185 if (&range->group_next == rstate.high_tail) {
20186 rstate.high_tail = range->group_prev;
20188 range->group_prev = rstate.low_tail;
20189 range->group_next = 0;
20190 *rstate.low_tail = range;
20191 rstate.low_tail = &range->group_next;
20192 next = point;
20194 else {
20195 cgdebug_printf(state, "hi: %5d degree %5d%s\n",
20196 range - rstate.lr, range->degree,
20197 (range->color != REG_UNSET) ? " (colored)": "");
20200 /* Color the live_ranges */
20201 colored = color_graph(state, &rstate);
20202 rstate.passes++;
20203 } while (!colored);
20205 /* Verify the graph was properly colored */
20206 verify_colors(state, &rstate);
20208 /* Move the colors from the graph to the triples */
20209 color_triples(state, &rstate);
20211 /* Cleanup the temporary data structures */
20212 cleanup_rstate(state, &rstate);
20214 /* Display the new graph */
20215 print_blocks(state, __func__, state->dbgout);
20218 /* Sparce Conditional Constant Propogation
20219 * =========================================
20221 struct ssa_edge;
20222 struct flow_block;
20223 struct lattice_node {
20224 unsigned old_id;
20225 struct triple *def;
20226 struct ssa_edge *out;
20227 struct flow_block *fblock;
20228 struct triple *val;
20229 /* lattice high val == def
20230 * lattice const is_const(val)
20231 * lattice low other
20234 struct ssa_edge {
20235 struct lattice_node *src;
20236 struct lattice_node *dst;
20237 struct ssa_edge *work_next;
20238 struct ssa_edge *work_prev;
20239 struct ssa_edge *out_next;
20241 struct flow_edge {
20242 struct flow_block *src;
20243 struct flow_block *dst;
20244 struct flow_edge *work_next;
20245 struct flow_edge *work_prev;
20246 struct flow_edge *in_next;
20247 struct flow_edge *out_next;
20248 int executable;
20250 #define MAX_FLOW_BLOCK_EDGES 3
20251 struct flow_block {
20252 struct block *block;
20253 struct flow_edge *in;
20254 struct flow_edge *out;
20255 struct flow_edge *edges;
20258 struct scc_state {
20259 int ins_count;
20260 struct lattice_node *lattice;
20261 struct ssa_edge *ssa_edges;
20262 struct flow_block *flow_blocks;
20263 struct flow_edge *flow_work_list;
20264 struct ssa_edge *ssa_work_list;
20268 static int is_scc_const(struct compile_state *state, struct triple *ins)
20270 return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20273 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20275 return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20278 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20280 return is_scc_const(state, lnode->val);
20283 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20285 return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20288 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc,
20289 struct flow_edge *fedge)
20291 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20292 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20293 fedge,
20294 fedge->src->block?fedge->src->block->last->id: 0,
20295 fedge->dst->block?fedge->dst->block->first->id: 0);
20297 if ((fedge == scc->flow_work_list) ||
20298 (fedge->work_next != fedge) ||
20299 (fedge->work_prev != fedge)) {
20301 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20302 fprintf(state->errout, "dupped fedge: %p\n",
20303 fedge);
20305 return;
20307 if (!scc->flow_work_list) {
20308 scc->flow_work_list = fedge;
20309 fedge->work_next = fedge->work_prev = fedge;
20311 else {
20312 struct flow_edge *ftail;
20313 ftail = scc->flow_work_list->work_prev;
20314 fedge->work_next = ftail->work_next;
20315 fedge->work_prev = ftail;
20316 fedge->work_next->work_prev = fedge;
20317 fedge->work_prev->work_next = fedge;
20321 static struct flow_edge *scc_next_fedge(
20322 struct compile_state *state, struct scc_state *scc)
20324 struct flow_edge *fedge;
20325 fedge = scc->flow_work_list;
20326 if (fedge) {
20327 fedge->work_next->work_prev = fedge->work_prev;
20328 fedge->work_prev->work_next = fedge->work_next;
20329 if (fedge->work_next != fedge) {
20330 scc->flow_work_list = fedge->work_next;
20331 } else {
20332 scc->flow_work_list = 0;
20334 fedge->work_next = fedge->work_prev = fedge;
20336 return fedge;
20339 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20340 struct ssa_edge *sedge)
20342 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20343 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20344 (long)(sedge - scc->ssa_edges),
20345 sedge->src->def->id,
20346 sedge->dst->def->id);
20348 if ((sedge == scc->ssa_work_list) ||
20349 (sedge->work_next != sedge) ||
20350 (sedge->work_prev != sedge)) {
20352 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20353 fprintf(state->errout, "dupped sedge: %5ld\n",
20354 (long)(sedge - scc->ssa_edges));
20356 return;
20358 if (!scc->ssa_work_list) {
20359 scc->ssa_work_list = sedge;
20360 sedge->work_next = sedge->work_prev = sedge;
20362 else {
20363 struct ssa_edge *stail;
20364 stail = scc->ssa_work_list->work_prev;
20365 sedge->work_next = stail->work_next;
20366 sedge->work_prev = stail;
20367 sedge->work_next->work_prev = sedge;
20368 sedge->work_prev->work_next = sedge;
20372 static struct ssa_edge *scc_next_sedge(
20373 struct compile_state *state, struct scc_state *scc)
20375 struct ssa_edge *sedge;
20376 sedge = scc->ssa_work_list;
20377 if (sedge) {
20378 sedge->work_next->work_prev = sedge->work_prev;
20379 sedge->work_prev->work_next = sedge->work_next;
20380 if (sedge->work_next != sedge) {
20381 scc->ssa_work_list = sedge->work_next;
20382 } else {
20383 scc->ssa_work_list = 0;
20385 sedge->work_next = sedge->work_prev = sedge;
20387 return sedge;
20390 static void initialize_scc_state(
20391 struct compile_state *state, struct scc_state *scc)
20393 int ins_count, ssa_edge_count;
20394 int ins_index, ssa_edge_index, fblock_index;
20395 struct triple *first, *ins;
20396 struct block *block;
20397 struct flow_block *fblock;
20399 memset(scc, 0, sizeof(*scc));
20401 /* Inialize pass zero find out how much memory we need */
20402 first = state->first;
20403 ins = first;
20404 ins_count = ssa_edge_count = 0;
20405 do {
20406 struct triple_set *edge;
20407 ins_count += 1;
20408 for(edge = ins->use; edge; edge = edge->next) {
20409 ssa_edge_count++;
20411 ins = ins->next;
20412 } while(ins != first);
20413 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20414 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20415 ins_count, ssa_edge_count, state->bb.last_vertex);
20417 scc->ins_count = ins_count;
20418 scc->lattice =
20419 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20420 scc->ssa_edges =
20421 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20422 scc->flow_blocks =
20423 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1),
20424 "flow_blocks");
20426 /* Initialize pass one collect up the nodes */
20427 fblock = 0;
20428 block = 0;
20429 ins_index = ssa_edge_index = fblock_index = 0;
20430 ins = first;
20431 do {
20432 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20433 block = ins->u.block;
20434 if (!block) {
20435 internal_error(state, ins, "label without block");
20437 fblock_index += 1;
20438 block->vertex = fblock_index;
20439 fblock = &scc->flow_blocks[fblock_index];
20440 fblock->block = block;
20441 fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20442 "flow_edges");
20445 struct lattice_node *lnode;
20446 ins_index += 1;
20447 lnode = &scc->lattice[ins_index];
20448 lnode->def = ins;
20449 lnode->out = 0;
20450 lnode->fblock = fblock;
20451 lnode->val = ins; /* LATTICE HIGH */
20452 if (lnode->val->op == OP_UNKNOWNVAL) {
20453 lnode->val = 0; /* LATTICE LOW by definition */
20455 lnode->old_id = ins->id;
20456 ins->id = ins_index;
20458 ins = ins->next;
20459 } while(ins != first);
20460 /* Initialize pass two collect up the edges */
20461 block = 0;
20462 fblock = 0;
20463 ins = first;
20464 do {
20466 struct triple_set *edge;
20467 struct ssa_edge **stail;
20468 struct lattice_node *lnode;
20469 lnode = &scc->lattice[ins->id];
20470 lnode->out = 0;
20471 stail = &lnode->out;
20472 for(edge = ins->use; edge; edge = edge->next) {
20473 struct ssa_edge *sedge;
20474 ssa_edge_index += 1;
20475 sedge = &scc->ssa_edges[ssa_edge_index];
20476 *stail = sedge;
20477 stail = &sedge->out_next;
20478 sedge->src = lnode;
20479 sedge->dst = &scc->lattice[edge->member->id];
20480 sedge->work_next = sedge->work_prev = sedge;
20481 sedge->out_next = 0;
20484 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20485 struct flow_edge *fedge, **ftail;
20486 struct block_set *bedge;
20487 block = ins->u.block;
20488 fblock = &scc->flow_blocks[block->vertex];
20489 fblock->in = 0;
20490 fblock->out = 0;
20491 ftail = &fblock->out;
20493 fedge = fblock->edges;
20494 bedge = block->edges;
20495 for(; bedge; bedge = bedge->next, fedge++) {
20496 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20497 if (fedge->dst->block != bedge->member) {
20498 internal_error(state, 0, "block mismatch");
20500 *ftail = fedge;
20501 ftail = &fedge->out_next;
20502 fedge->out_next = 0;
20504 for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20505 fedge->src = fblock;
20506 fedge->work_next = fedge->work_prev = fedge;
20507 fedge->executable = 0;
20510 ins = ins->next;
20511 } while (ins != first);
20512 block = 0;
20513 fblock = 0;
20514 ins = first;
20515 do {
20516 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20517 struct flow_edge **ftail;
20518 struct block_set *bedge;
20519 block = ins->u.block;
20520 fblock = &scc->flow_blocks[block->vertex];
20521 ftail = &fblock->in;
20522 for(bedge = block->use; bedge; bedge = bedge->next) {
20523 struct block *src_block;
20524 struct flow_block *sfblock;
20525 struct flow_edge *sfedge;
20526 src_block = bedge->member;
20527 sfblock = &scc->flow_blocks[src_block->vertex];
20528 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20529 if (sfedge->dst == fblock) {
20530 break;
20533 if (!sfedge) {
20534 internal_error(state, 0, "edge mismatch");
20536 *ftail = sfedge;
20537 ftail = &sfedge->in_next;
20538 sfedge->in_next = 0;
20541 ins = ins->next;
20542 } while(ins != first);
20543 /* Setup a dummy block 0 as a node above the start node */
20545 struct flow_block *fblock, *dst;
20546 struct flow_edge *fedge;
20547 fblock = &scc->flow_blocks[0];
20548 fblock->block = 0;
20549 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20550 fblock->in = 0;
20551 fblock->out = fblock->edges;
20552 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20553 fedge = fblock->edges;
20554 fedge->src = fblock;
20555 fedge->dst = dst;
20556 fedge->work_next = fedge;
20557 fedge->work_prev = fedge;
20558 fedge->in_next = fedge->dst->in;
20559 fedge->out_next = 0;
20560 fedge->executable = 0;
20561 fedge->dst->in = fedge;
20563 /* Initialize the work lists */
20564 scc->flow_work_list = 0;
20565 scc->ssa_work_list = 0;
20566 scc_add_fedge(state, scc, fedge);
20568 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20569 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20570 ins_index, ssa_edge_index, fblock_index);
20575 static void free_scc_state(
20576 struct compile_state *state, struct scc_state *scc)
20578 int i;
20579 for(i = 0; i < state->bb.last_vertex + 1; i++) {
20580 struct flow_block *fblock;
20581 fblock = &scc->flow_blocks[i];
20582 if (fblock->edges) {
20583 xfree(fblock->edges);
20584 fblock->edges = 0;
20587 xfree(scc->flow_blocks);
20588 xfree(scc->ssa_edges);
20589 xfree(scc->lattice);
20593 static struct lattice_node *triple_to_lattice(
20594 struct compile_state *state, struct scc_state *scc, struct triple *ins)
20596 if (ins->id <= 0) {
20597 internal_error(state, ins, "bad id");
20599 return &scc->lattice[ins->id];
20602 static struct triple *preserve_lval(
20603 struct compile_state *state, struct lattice_node *lnode)
20605 struct triple *old;
20606 /* Preserve the original value */
20607 if (lnode->val) {
20608 old = dup_triple(state, lnode->val);
20609 if (lnode->val != lnode->def) {
20610 xfree(lnode->val);
20612 lnode->val = 0;
20613 } else {
20614 old = 0;
20616 return old;
20619 static int lval_changed(struct compile_state *state,
20620 struct triple *old, struct lattice_node *lnode)
20622 int changed;
20623 /* See if the lattice value has changed */
20624 changed = 1;
20625 if (!old && !lnode->val) {
20626 changed = 0;
20628 if (changed &&
20629 lnode->val && old &&
20630 (memcmp(lnode->val->param, old->param,
20631 TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20632 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20633 changed = 0;
20635 if (old) {
20636 xfree(old);
20638 return changed;
20642 static void scc_debug_lnode(
20643 struct compile_state *state, struct scc_state *scc,
20644 struct lattice_node *lnode, int changed)
20646 if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20647 display_triple_changes(state->errout, lnode->val, lnode->def);
20649 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20650 FILE *fp = state->errout;
20651 struct triple *val, **expr;
20652 val = lnode->val? lnode->val : lnode->def;
20653 fprintf(fp, "%p %s %3d %10s (",
20654 lnode->def,
20655 ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20656 lnode->def->id,
20657 tops(lnode->def->op));
20658 expr = triple_rhs(state, lnode->def, 0);
20659 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20660 if (*expr) {
20661 fprintf(fp, " %d", (*expr)->id);
20664 if (val->op == OP_INTCONST) {
20665 fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20667 fprintf(fp, " ) -> %s %s\n",
20668 (is_lattice_hi(state, lnode)? "hi":
20669 is_lattice_const(state, lnode)? "const" : "lo"),
20670 changed? "changed" : ""
20675 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20676 struct lattice_node *lnode)
20678 int changed;
20679 struct triple *old, *scratch;
20680 struct triple **dexpr, **vexpr;
20681 int count, i;
20683 /* Store the original value */
20684 old = preserve_lval(state, lnode);
20686 /* Reinitialize the value */
20687 lnode->val = scratch = dup_triple(state, lnode->def);
20688 scratch->id = lnode->old_id;
20689 scratch->next = scratch;
20690 scratch->prev = scratch;
20691 scratch->use = 0;
20693 count = TRIPLE_SIZE(scratch);
20694 for(i = 0; i < count; i++) {
20695 dexpr = &lnode->def->param[i];
20696 vexpr = &scratch->param[i];
20697 *vexpr = *dexpr;
20698 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20699 (i >= TRIPLE_TARG_OFF(scratch))) &&
20700 *dexpr) {
20701 struct lattice_node *tmp;
20702 tmp = triple_to_lattice(state, scc, *dexpr);
20703 *vexpr = (tmp->val)? tmp->val : tmp->def;
20706 if (triple_is_branch(state, scratch)) {
20707 scratch->next = lnode->def->next;
20709 /* Recompute the value */
20710 #if DEBUG_ROMCC_WARNINGS
20711 #warning "FIXME see if simplify does anything bad"
20712 #endif
20713 /* So far it looks like only the strength reduction
20714 * optimization are things I need to worry about.
20716 simplify(state, scratch);
20717 /* Cleanup my value */
20718 if (scratch->use) {
20719 internal_error(state, lnode->def, "scratch used?");
20721 if ((scratch->prev != scratch) ||
20722 ((scratch->next != scratch) &&
20723 (!triple_is_branch(state, lnode->def) ||
20724 (scratch->next != lnode->def->next)))) {
20725 internal_error(state, lnode->def, "scratch in list?");
20727 /* undo any uses... */
20728 count = TRIPLE_SIZE(scratch);
20729 for(i = 0; i < count; i++) {
20730 vexpr = &scratch->param[i];
20731 if (*vexpr) {
20732 unuse_triple(*vexpr, scratch);
20735 if (lnode->val->op == OP_UNKNOWNVAL) {
20736 lnode->val = 0; /* Lattice low by definition */
20738 /* Find the case when I am lattice high */
20739 if (lnode->val &&
20740 (lnode->val->op == lnode->def->op) &&
20741 (memcmp(lnode->val->param, lnode->def->param,
20742 count * sizeof(lnode->val->param[0])) == 0) &&
20743 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20744 lnode->val = lnode->def;
20746 /* Only allow lattice high when all of my inputs
20747 * are also lattice high. Occassionally I can
20748 * have constants with a lattice low input, so
20749 * I do not need to check that case.
20751 if (is_lattice_hi(state, lnode)) {
20752 struct lattice_node *tmp;
20753 int rhs;
20754 rhs = lnode->val->rhs;
20755 for(i = 0; i < rhs; i++) {
20756 tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20757 if (!is_lattice_hi(state, tmp)) {
20758 lnode->val = 0;
20759 break;
20763 /* Find the cases that are always lattice lo */
20764 if (lnode->val &&
20765 triple_is_def(state, lnode->val) &&
20766 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20767 lnode->val = 0;
20769 /* See if the lattice value has changed */
20770 changed = lval_changed(state, old, lnode);
20771 /* See if this value should not change */
20772 if ((lnode->val != lnode->def) &&
20773 (( !triple_is_def(state, lnode->def) &&
20774 !triple_is_cbranch(state, lnode->def)) ||
20775 (lnode->def->op == OP_PIECE))) {
20776 #if DEBUG_ROMCC_WARNINGS
20777 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20778 #endif
20779 if (changed) {
20780 internal_warning(state, lnode->def, "non def changes value?");
20782 lnode->val = 0;
20785 /* See if we need to free the scratch value */
20786 if (lnode->val != scratch) {
20787 xfree(scratch);
20790 return changed;
20794 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20795 struct lattice_node *lnode)
20797 struct lattice_node *cond;
20798 struct flow_edge *left, *right;
20799 int changed;
20801 /* Update the branch value */
20802 changed = compute_lnode_val(state, scc, lnode);
20803 scc_debug_lnode(state, scc, lnode, changed);
20805 /* This only applies to conditional branches */
20806 if (!triple_is_cbranch(state, lnode->def)) {
20807 internal_error(state, lnode->def, "not a conditional branch");
20810 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20811 struct flow_edge *fedge;
20812 FILE *fp = state->errout;
20813 fprintf(fp, "%s: %d (",
20814 tops(lnode->def->op),
20815 lnode->def->id);
20817 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20818 fprintf(fp, " %d", fedge->dst->block->vertex);
20820 fprintf(fp, " )");
20821 if (lnode->def->rhs > 0) {
20822 fprintf(fp, " <- %d",
20823 RHS(lnode->def, 0)->id);
20825 fprintf(fp, "\n");
20827 cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20828 for(left = cond->fblock->out; left; left = left->out_next) {
20829 if (left->dst->block->first == lnode->def->next) {
20830 break;
20833 if (!left) {
20834 internal_error(state, lnode->def, "Cannot find left branch edge");
20836 for(right = cond->fblock->out; right; right = right->out_next) {
20837 if (right->dst->block->first == TARG(lnode->def, 0)) {
20838 break;
20841 if (!right) {
20842 internal_error(state, lnode->def, "Cannot find right branch edge");
20844 /* I should only come here if the controlling expressions value
20845 * has changed, which means it must be either a constant or lo.
20847 if (is_lattice_hi(state, cond)) {
20848 internal_error(state, cond->def, "condition high?");
20849 return;
20851 if (is_lattice_lo(state, cond)) {
20852 scc_add_fedge(state, scc, left);
20853 scc_add_fedge(state, scc, right);
20855 else if (cond->val->u.cval) {
20856 scc_add_fedge(state, scc, right);
20857 } else {
20858 scc_add_fedge(state, scc, left);
20864 static void scc_add_sedge_dst(struct compile_state *state,
20865 struct scc_state *scc, struct ssa_edge *sedge)
20867 if (triple_is_cbranch(state, sedge->dst->def)) {
20868 scc_visit_cbranch(state, scc, sedge->dst);
20870 else if (triple_is_def(state, sedge->dst->def)) {
20871 scc_add_sedge(state, scc, sedge);
20875 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc,
20876 struct lattice_node *lnode)
20878 struct lattice_node *tmp;
20879 struct triple **slot, *old;
20880 struct flow_edge *fedge;
20881 int changed;
20882 int index;
20883 if (lnode->def->op != OP_PHI) {
20884 internal_error(state, lnode->def, "not phi");
20886 /* Store the original value */
20887 old = preserve_lval(state, lnode);
20889 /* default to lattice high */
20890 lnode->val = lnode->def;
20891 slot = &RHS(lnode->def, 0);
20892 index = 0;
20893 for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20894 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20895 fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n",
20896 index,
20897 fedge->dst->block->vertex,
20898 fedge->executable
20901 if (!fedge->executable) {
20902 continue;
20904 if (!slot[index]) {
20905 internal_error(state, lnode->def, "no phi value");
20907 tmp = triple_to_lattice(state, scc, slot[index]);
20908 /* meet(X, lattice low) = lattice low */
20909 if (is_lattice_lo(state, tmp)) {
20910 lnode->val = 0;
20912 /* meet(X, lattice high) = X */
20913 else if (is_lattice_hi(state, tmp)) {
20914 lnode->val = lnode->val;
20916 /* meet(lattice high, X) = X */
20917 else if (is_lattice_hi(state, lnode)) {
20918 lnode->val = dup_triple(state, tmp->val);
20919 /* Only change the type if necessary */
20920 if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20921 lnode->val->type = lnode->def->type;
20924 /* meet(const, const) = const or lattice low */
20925 else if (!constants_equal(state, lnode->val, tmp->val)) {
20926 lnode->val = 0;
20929 /* meet(lattice low, X) = lattice low */
20930 if (is_lattice_lo(state, lnode)) {
20931 lnode->val = 0;
20932 break;
20935 changed = lval_changed(state, old, lnode);
20936 scc_debug_lnode(state, scc, lnode, changed);
20938 /* If the lattice value has changed update the work lists. */
20939 if (changed) {
20940 struct ssa_edge *sedge;
20941 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20942 scc_add_sedge_dst(state, scc, sedge);
20948 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20949 struct lattice_node *lnode)
20951 int changed;
20953 if (!triple_is_def(state, lnode->def)) {
20954 internal_warning(state, lnode->def, "not visiting an expression?");
20956 changed = compute_lnode_val(state, scc, lnode);
20957 scc_debug_lnode(state, scc, lnode, changed);
20959 if (changed) {
20960 struct ssa_edge *sedge;
20961 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20962 scc_add_sedge_dst(state, scc, sedge);
20967 static void scc_writeback_values(
20968 struct compile_state *state, struct scc_state *scc)
20970 struct triple *first, *ins;
20971 first = state->first;
20972 ins = first;
20973 do {
20974 struct lattice_node *lnode;
20975 lnode = triple_to_lattice(state, scc, ins);
20976 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20977 if (is_lattice_hi(state, lnode) &&
20978 (lnode->val->op != OP_NOOP))
20980 struct flow_edge *fedge;
20981 int executable;
20982 executable = 0;
20983 for(fedge = lnode->fblock->in;
20984 !executable && fedge; fedge = fedge->in_next) {
20985 executable |= fedge->executable;
20987 if (executable) {
20988 internal_warning(state, lnode->def,
20989 "lattice node %d %s->%s still high?",
20990 ins->id,
20991 tops(lnode->def->op),
20992 tops(lnode->val->op));
20997 /* Restore id */
20998 ins->id = lnode->old_id;
20999 if (lnode->val && (lnode->val != ins)) {
21000 /* See if it something I know how to write back */
21001 switch(lnode->val->op) {
21002 case OP_INTCONST:
21003 mkconst(state, ins, lnode->val->u.cval);
21004 break;
21005 case OP_ADDRCONST:
21006 mkaddr_const(state, ins,
21007 MISC(lnode->val, 0), lnode->val->u.cval);
21008 break;
21009 default:
21010 /* By default don't copy the changes,
21011 * recompute them in place instead.
21013 simplify(state, ins);
21014 break;
21016 if (is_const(lnode->val) &&
21017 !constants_equal(state, lnode->val, ins)) {
21018 internal_error(state, 0, "constants not equal");
21020 /* Free the lattice nodes */
21021 xfree(lnode->val);
21022 lnode->val = 0;
21024 ins = ins->next;
21025 } while(ins != first);
21028 static void scc_transform(struct compile_state *state)
21030 struct scc_state scc;
21031 if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21032 return;
21035 initialize_scc_state(state, &scc);
21037 while(scc.flow_work_list || scc.ssa_work_list) {
21038 struct flow_edge *fedge;
21039 struct ssa_edge *sedge;
21040 struct flow_edge *fptr;
21041 while((fedge = scc_next_fedge(state, &scc))) {
21042 struct block *block;
21043 struct triple *ptr;
21044 struct flow_block *fblock;
21045 int reps;
21046 int done;
21047 if (fedge->executable) {
21048 continue;
21050 if (!fedge->dst) {
21051 internal_error(state, 0, "fedge without dst");
21053 if (!fedge->src) {
21054 internal_error(state, 0, "fedge without src");
21056 fedge->executable = 1;
21057 fblock = fedge->dst;
21058 block = fblock->block;
21059 reps = 0;
21060 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21061 if (fptr->executable) {
21062 reps++;
21066 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21067 fprintf(state->errout, "vertex: %d reps: %d\n",
21068 block->vertex, reps);
21071 done = 0;
21072 for(ptr = block->first; !done; ptr = ptr->next) {
21073 struct lattice_node *lnode;
21074 done = (ptr == block->last);
21075 lnode = &scc.lattice[ptr->id];
21076 if (ptr->op == OP_PHI) {
21077 scc_visit_phi(state, &scc, lnode);
21079 else if ((reps == 1) && triple_is_def(state, ptr))
21081 scc_visit_expr(state, &scc, lnode);
21084 /* Add unconditional branch edges */
21085 if (!triple_is_cbranch(state, fblock->block->last)) {
21086 struct flow_edge *out;
21087 for(out = fblock->out; out; out = out->out_next) {
21088 scc_add_fedge(state, &scc, out);
21092 while((sedge = scc_next_sedge(state, &scc))) {
21093 struct lattice_node *lnode;
21094 struct flow_block *fblock;
21095 lnode = sedge->dst;
21096 fblock = lnode->fblock;
21098 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21099 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21100 (unsigned long)sedge - (unsigned long)scc.ssa_edges,
21101 sedge->src->def->id,
21102 sedge->dst->def->id);
21105 if (lnode->def->op == OP_PHI) {
21106 scc_visit_phi(state, &scc, lnode);
21108 else {
21109 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21110 if (fptr->executable) {
21111 break;
21114 if (fptr) {
21115 scc_visit_expr(state, &scc, lnode);
21121 scc_writeback_values(state, &scc);
21122 free_scc_state(state, &scc);
21123 rebuild_ssa_form(state);
21125 print_blocks(state, __func__, state->dbgout);
21129 static void transform_to_arch_instructions(struct compile_state *state)
21131 struct triple *ins, *first;
21132 first = state->first;
21133 ins = first;
21134 do {
21135 ins = transform_to_arch_instruction(state, ins);
21136 } while(ins != first);
21138 print_blocks(state, __func__, state->dbgout);
21141 #if DEBUG_CONSISTENCY
21142 static void verify_uses(struct compile_state *state)
21144 struct triple *first, *ins;
21145 struct triple_set *set;
21146 first = state->first;
21147 ins = first;
21148 do {
21149 struct triple **expr;
21150 expr = triple_rhs(state, ins, 0);
21151 for(; expr; expr = triple_rhs(state, ins, expr)) {
21152 struct triple *rhs;
21153 rhs = *expr;
21154 for(set = rhs?rhs->use:0; set; set = set->next) {
21155 if (set->member == ins) {
21156 break;
21159 if (!set) {
21160 internal_error(state, ins, "rhs not used");
21163 expr = triple_lhs(state, ins, 0);
21164 for(; expr; expr = triple_lhs(state, ins, expr)) {
21165 struct triple *lhs;
21166 lhs = *expr;
21167 for(set = lhs?lhs->use:0; set; set = set->next) {
21168 if (set->member == ins) {
21169 break;
21172 if (!set) {
21173 internal_error(state, ins, "lhs not used");
21176 expr = triple_misc(state, ins, 0);
21177 if (ins->op != OP_PHI) {
21178 for(; expr; expr = triple_targ(state, ins, expr)) {
21179 struct triple *misc;
21180 misc = *expr;
21181 for(set = misc?misc->use:0; set; set = set->next) {
21182 if (set->member == ins) {
21183 break;
21186 if (!set) {
21187 internal_error(state, ins, "misc not used");
21191 if (!triple_is_ret(state, ins)) {
21192 expr = triple_targ(state, ins, 0);
21193 for(; expr; expr = triple_targ(state, ins, expr)) {
21194 struct triple *targ;
21195 targ = *expr;
21196 for(set = targ?targ->use:0; set; set = set->next) {
21197 if (set->member == ins) {
21198 break;
21201 if (!set) {
21202 internal_error(state, ins, "targ not used");
21206 ins = ins->next;
21207 } while(ins != first);
21210 static void verify_blocks_present(struct compile_state *state)
21212 struct triple *first, *ins;
21213 if (!state->bb.first_block) {
21214 return;
21216 first = state->first;
21217 ins = first;
21218 do {
21219 valid_ins(state, ins);
21220 if (triple_stores_block(state, ins)) {
21221 if (!ins->u.block) {
21222 internal_error(state, ins,
21223 "%p not in a block?", ins);
21226 ins = ins->next;
21227 } while(ins != first);
21232 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21234 struct block_set *bedge;
21235 struct block *targ;
21236 targ = block_of_triple(state, edge);
21237 for(bedge = block->edges; bedge; bedge = bedge->next) {
21238 if (bedge->member == targ) {
21239 return 1;
21242 return 0;
21245 static void verify_blocks(struct compile_state *state)
21247 struct triple *ins;
21248 struct block *block;
21249 int blocks;
21250 block = state->bb.first_block;
21251 if (!block) {
21252 return;
21254 blocks = 0;
21255 do {
21256 int users;
21257 struct block_set *user, *edge;
21258 blocks++;
21259 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21260 if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21261 internal_error(state, ins, "inconsitent block specified");
21263 valid_ins(state, ins);
21265 users = 0;
21266 for(user = block->use; user; user = user->next) {
21267 users++;
21268 if (!user->member->first) {
21269 internal_error(state, block->first, "user is empty");
21271 if ((block == state->bb.last_block) &&
21272 (user->member == state->bb.first_block)) {
21273 continue;
21275 for(edge = user->member->edges; edge; edge = edge->next) {
21276 if (edge->member == block) {
21277 break;
21280 if (!edge) {
21281 internal_error(state, user->member->first,
21282 "user does not use block");
21285 if (triple_is_branch(state, block->last)) {
21286 struct triple **expr;
21287 expr = triple_edge_targ(state, block->last, 0);
21288 for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21289 if (*expr && !edge_present(state, block, *expr)) {
21290 internal_error(state, block->last, "no edge to targ");
21294 if (!triple_is_ubranch(state, block->last) &&
21295 (block != state->bb.last_block) &&
21296 !edge_present(state, block, block->last->next)) {
21297 internal_error(state, block->last, "no edge to block->last->next");
21299 for(edge = block->edges; edge; edge = edge->next) {
21300 for(user = edge->member->use; user; user = user->next) {
21301 if (user->member == block) {
21302 break;
21305 if (!user || user->member != block) {
21306 internal_error(state, block->first,
21307 "block does not use edge");
21309 if (!edge->member->first) {
21310 internal_error(state, block->first, "edge block is empty");
21313 if (block->users != users) {
21314 internal_error(state, block->first,
21315 "computed users %d != stored users %d",
21316 users, block->users);
21318 if (!triple_stores_block(state, block->last->next)) {
21319 internal_error(state, block->last->next,
21320 "cannot find next block");
21322 block = block->last->next->u.block;
21323 if (!block) {
21324 internal_error(state, block->last->next,
21325 "bad next block");
21327 } while(block != state->bb.first_block);
21328 if (blocks != state->bb.last_vertex) {
21329 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21330 blocks, state->bb.last_vertex);
21334 static void verify_domination(struct compile_state *state)
21336 struct triple *first, *ins;
21337 struct triple_set *set;
21338 if (!state->bb.first_block) {
21339 return;
21342 first = state->first;
21343 ins = first;
21344 do {
21345 for(set = ins->use; set; set = set->next) {
21346 struct triple **slot;
21347 struct triple *use_point;
21348 int i, zrhs;
21349 use_point = 0;
21350 zrhs = set->member->rhs;
21351 slot = &RHS(set->member, 0);
21352 /* See if the use is on the right hand side */
21353 for(i = 0; i < zrhs; i++) {
21354 if (slot[i] == ins) {
21355 break;
21358 if (i < zrhs) {
21359 use_point = set->member;
21360 if (set->member->op == OP_PHI) {
21361 struct block_set *bset;
21362 int edge;
21363 bset = set->member->u.block->use;
21364 for(edge = 0; bset && (edge < i); edge++) {
21365 bset = bset->next;
21367 if (!bset) {
21368 internal_error(state, set->member,
21369 "no edge for phi rhs %d", i);
21371 use_point = bset->member->last;
21374 if (use_point &&
21375 !tdominates(state, ins, use_point)) {
21376 if (is_const(ins)) {
21377 internal_warning(state, ins,
21378 "non dominated rhs use point %p?", use_point);
21380 else {
21381 internal_error(state, ins,
21382 "non dominated rhs use point %p?", use_point);
21386 ins = ins->next;
21387 } while(ins != first);
21390 static void verify_rhs(struct compile_state *state)
21392 struct triple *first, *ins;
21393 first = state->first;
21394 ins = first;
21395 do {
21396 struct triple **slot;
21397 int zrhs, i;
21398 zrhs = ins->rhs;
21399 slot = &RHS(ins, 0);
21400 for(i = 0; i < zrhs; i++) {
21401 if (slot[i] == 0) {
21402 internal_error(state, ins,
21403 "missing rhs %d on %s",
21404 i, tops(ins->op));
21406 if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21407 internal_error(state, ins,
21408 "ins == rhs[%d] on %s",
21409 i, tops(ins->op));
21412 ins = ins->next;
21413 } while(ins != first);
21416 static void verify_piece(struct compile_state *state)
21418 struct triple *first, *ins;
21419 first = state->first;
21420 ins = first;
21421 do {
21422 struct triple *ptr;
21423 int lhs, i;
21424 lhs = ins->lhs;
21425 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21426 if (ptr != LHS(ins, i)) {
21427 internal_error(state, ins, "malformed lhs on %s",
21428 tops(ins->op));
21430 if (ptr->op != OP_PIECE) {
21431 internal_error(state, ins, "bad lhs op %s at %d on %s",
21432 tops(ptr->op), i, tops(ins->op));
21434 if (ptr->u.cval != i) {
21435 internal_error(state, ins, "bad u.cval of %d %d expected",
21436 ptr->u.cval, i);
21439 ins = ins->next;
21440 } while(ins != first);
21443 static void verify_ins_colors(struct compile_state *state)
21445 struct triple *first, *ins;
21447 first = state->first;
21448 ins = first;
21449 do {
21450 ins = ins->next;
21451 } while(ins != first);
21454 static void verify_unknown(struct compile_state *state)
21456 struct triple *first, *ins;
21457 if ( (unknown_triple.next != &unknown_triple) ||
21458 (unknown_triple.prev != &unknown_triple) ||
21459 #if 0
21460 (unknown_triple.use != 0) ||
21461 #endif
21462 (unknown_triple.op != OP_UNKNOWNVAL) ||
21463 (unknown_triple.lhs != 0) ||
21464 (unknown_triple.rhs != 0) ||
21465 (unknown_triple.misc != 0) ||
21466 (unknown_triple.targ != 0) ||
21467 (unknown_triple.template_id != 0) ||
21468 (unknown_triple.id != -1) ||
21469 (unknown_triple.type != &unknown_type) ||
21470 (unknown_triple.occurance != &dummy_occurance) ||
21471 (unknown_triple.param[0] != 0) ||
21472 (unknown_triple.param[1] != 0)) {
21473 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21475 if ( (dummy_occurance.count != 2) ||
21476 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21477 (strcmp(dummy_occurance.function, "") != 0) ||
21478 (dummy_occurance.col != 0) ||
21479 (dummy_occurance.parent != 0)) {
21480 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21482 if ( (unknown_type.type != TYPE_UNKNOWN)) {
21483 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21485 first = state->first;
21486 ins = first;
21487 do {
21488 int params, i;
21489 if (ins == &unknown_triple) {
21490 internal_error(state, ins, "unknown triple in list");
21492 params = TRIPLE_SIZE(ins);
21493 for(i = 0; i < params; i++) {
21494 if (ins->param[i] == &unknown_triple) {
21495 internal_error(state, ins, "unknown triple used!");
21498 ins = ins->next;
21499 } while(ins != first);
21502 static void verify_types(struct compile_state *state)
21504 struct triple *first, *ins;
21505 first = state->first;
21506 ins = first;
21507 do {
21508 struct type *invalid;
21509 invalid = invalid_type(state, ins->type);
21510 if (invalid) {
21511 FILE *fp = state->errout;
21512 fprintf(fp, "type: ");
21513 name_of(fp, ins->type);
21514 fprintf(fp, "\n");
21515 fprintf(fp, "invalid type: ");
21516 name_of(fp, invalid);
21517 fprintf(fp, "\n");
21518 internal_error(state, ins, "invalid ins type");
21520 } while(ins != first);
21523 static void verify_copy(struct compile_state *state)
21525 struct triple *first, *ins, *next;
21526 first = state->first;
21527 next = ins = first;
21528 do {
21529 ins = next;
21530 next = ins->next;
21531 if (ins->op != OP_COPY) {
21532 continue;
21534 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21535 FILE *fp = state->errout;
21536 fprintf(fp, "src type: ");
21537 name_of(fp, RHS(ins, 0)->type);
21538 fprintf(fp, "\n");
21539 fprintf(fp, "dst type: ");
21540 name_of(fp, ins->type);
21541 fprintf(fp, "\n");
21542 internal_error(state, ins, "type mismatch in copy");
21544 } while(next != first);
21547 static void verify_consistency(struct compile_state *state)
21549 verify_unknown(state);
21550 verify_uses(state);
21551 verify_blocks_present(state);
21552 verify_blocks(state);
21553 verify_domination(state);
21554 verify_rhs(state);
21555 verify_piece(state);
21556 verify_ins_colors(state);
21557 verify_types(state);
21558 verify_copy(state);
21559 if (state->compiler->debug & DEBUG_VERIFICATION) {
21560 fprintf(state->dbgout, "consistency verified\n");
21563 #else
21564 static void verify_consistency(struct compile_state *state) {}
21565 #endif /* DEBUG_CONSISTENCY */
21567 static void optimize(struct compile_state *state)
21569 /* Join all of the functions into one giant function */
21570 join_functions(state);
21572 /* Dump what the instruction graph intially looks like */
21573 print_triples(state);
21575 /* Replace structures with simpler data types */
21576 decompose_compound_types(state);
21577 print_triples(state);
21579 verify_consistency(state);
21580 /* Analyze the intermediate code */
21581 state->bb.first = state->first;
21582 analyze_basic_blocks(state, &state->bb);
21584 /* Transform the code to ssa form. */
21586 * The transformation to ssa form puts a phi function
21587 * on each of edge of a dominance frontier where that
21588 * phi function might be needed. At -O2 if we don't
21589 * eleminate the excess phi functions we can get an
21590 * exponential code size growth. So I kill the extra
21591 * phi functions early and I kill them often.
21593 transform_to_ssa_form(state);
21594 verify_consistency(state);
21596 /* Remove dead code */
21597 eliminate_inefectual_code(state);
21598 verify_consistency(state);
21600 /* Do strength reduction and simple constant optimizations */
21601 simplify_all(state);
21602 verify_consistency(state);
21603 /* Propogate constants throughout the code */
21604 scc_transform(state);
21605 verify_consistency(state);
21606 #if DEBUG_ROMCC_WARNINGS
21607 #warning "WISHLIST implement single use constants (least possible register pressure)"
21608 #warning "WISHLIST implement induction variable elimination"
21609 #endif
21610 /* Select architecture instructions and an initial partial
21611 * coloring based on architecture constraints.
21613 transform_to_arch_instructions(state);
21614 verify_consistency(state);
21616 /* Remove dead code */
21617 eliminate_inefectual_code(state);
21618 verify_consistency(state);
21620 /* Color all of the variables to see if they will fit in registers */
21621 insert_copies_to_phi(state);
21622 verify_consistency(state);
21624 insert_mandatory_copies(state);
21625 verify_consistency(state);
21627 allocate_registers(state);
21628 verify_consistency(state);
21630 /* Remove the optimization information.
21631 * This is more to check for memory consistency than to free memory.
21633 free_basic_blocks(state, &state->bb);
21636 static void print_op_asm(struct compile_state *state,
21637 struct triple *ins, FILE *fp)
21639 struct asm_info *info;
21640 const char *ptr;
21641 unsigned lhs, rhs, i;
21642 info = ins->u.ainfo;
21643 lhs = ins->lhs;
21644 rhs = ins->rhs;
21645 /* Don't count the clobbers in lhs */
21646 for(i = 0; i < lhs; i++) {
21647 if (LHS(ins, i)->type == &void_type) {
21648 break;
21651 lhs = i;
21652 fprintf(fp, "#ASM\n");
21653 fputc('\t', fp);
21654 for(ptr = info->str; *ptr; ptr++) {
21655 char *next;
21656 unsigned long param;
21657 struct triple *piece;
21658 if (*ptr != '%') {
21659 fputc(*ptr, fp);
21660 continue;
21662 ptr++;
21663 if (*ptr == '%') {
21664 fputc('%', fp);
21665 continue;
21667 param = strtoul(ptr, &next, 10);
21668 if (ptr == next) {
21669 error(state, ins, "Invalid asm template");
21671 if (param >= (lhs + rhs)) {
21672 error(state, ins, "Invalid param %%%u in asm template",
21673 param);
21675 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21676 fprintf(fp, "%s",
21677 arch_reg_str(ID_REG(piece->id)));
21678 ptr = next -1;
21680 fprintf(fp, "\n#NOT ASM\n");
21684 /* Only use the low x86 byte registers. This allows me
21685 * allocate the entire register when a byte register is used.
21687 #define X86_4_8BIT_GPRS 1
21689 /* x86 featrues */
21690 #define X86_MMX_REGS (1<<0)
21691 #define X86_XMM_REGS (1<<1)
21692 #define X86_NOOP_COPY (1<<2)
21694 /* The x86 register classes */
21695 #define REGC_FLAGS 0
21696 #define REGC_GPR8 1
21697 #define REGC_GPR16 2
21698 #define REGC_GPR32 3
21699 #define REGC_DIVIDEND64 4
21700 #define REGC_DIVIDEND32 5
21701 #define REGC_MMX 6
21702 #define REGC_XMM 7
21703 #define REGC_GPR32_8 8
21704 #define REGC_GPR16_8 9
21705 #define REGC_GPR8_LO 10
21706 #define REGC_IMM32 11
21707 #define REGC_IMM16 12
21708 #define REGC_IMM8 13
21709 #define LAST_REGC REGC_IMM8
21710 #if LAST_REGC >= MAX_REGC
21711 #error "MAX_REGC is to low"
21712 #endif
21714 /* Register class masks */
21715 #define REGCM_FLAGS (1 << REGC_FLAGS)
21716 #define REGCM_GPR8 (1 << REGC_GPR8)
21717 #define REGCM_GPR16 (1 << REGC_GPR16)
21718 #define REGCM_GPR32 (1 << REGC_GPR32)
21719 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21720 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21721 #define REGCM_MMX (1 << REGC_MMX)
21722 #define REGCM_XMM (1 << REGC_XMM)
21723 #define REGCM_GPR32_8 (1 << REGC_GPR32_8)
21724 #define REGCM_GPR16_8 (1 << REGC_GPR16_8)
21725 #define REGCM_GPR8_LO (1 << REGC_GPR8_LO)
21726 #define REGCM_IMM32 (1 << REGC_IMM32)
21727 #define REGCM_IMM16 (1 << REGC_IMM16)
21728 #define REGCM_IMM8 (1 << REGC_IMM8)
21729 #define REGCM_ALL ((1 << (LAST_REGC + 1)) - 1)
21730 #define REGCM_IMMALL (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21732 /* The x86 registers */
21733 #define REG_EFLAGS 2
21734 #define REGC_FLAGS_FIRST REG_EFLAGS
21735 #define REGC_FLAGS_LAST REG_EFLAGS
21736 #define REG_AL 3
21737 #define REG_BL 4
21738 #define REG_CL 5
21739 #define REG_DL 6
21740 #define REG_AH 7
21741 #define REG_BH 8
21742 #define REG_CH 9
21743 #define REG_DH 10
21744 #define REGC_GPR8_LO_FIRST REG_AL
21745 #define REGC_GPR8_LO_LAST REG_DL
21746 #define REGC_GPR8_FIRST REG_AL
21747 #define REGC_GPR8_LAST REG_DH
21748 #define REG_AX 11
21749 #define REG_BX 12
21750 #define REG_CX 13
21751 #define REG_DX 14
21752 #define REG_SI 15
21753 #define REG_DI 16
21754 #define REG_BP 17
21755 #define REG_SP 18
21756 #define REGC_GPR16_FIRST REG_AX
21757 #define REGC_GPR16_LAST REG_SP
21758 #define REG_EAX 19
21759 #define REG_EBX 20
21760 #define REG_ECX 21
21761 #define REG_EDX 22
21762 #define REG_ESI 23
21763 #define REG_EDI 24
21764 #define REG_EBP 25
21765 #define REG_ESP 26
21766 #define REGC_GPR32_FIRST REG_EAX
21767 #define REGC_GPR32_LAST REG_ESP
21768 #define REG_EDXEAX 27
21769 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21770 #define REGC_DIVIDEND64_LAST REG_EDXEAX
21771 #define REG_DXAX 28
21772 #define REGC_DIVIDEND32_FIRST REG_DXAX
21773 #define REGC_DIVIDEND32_LAST REG_DXAX
21774 #define REG_MMX0 29
21775 #define REG_MMX1 30
21776 #define REG_MMX2 31
21777 #define REG_MMX3 32
21778 #define REG_MMX4 33
21779 #define REG_MMX5 34
21780 #define REG_MMX6 35
21781 #define REG_MMX7 36
21782 #define REGC_MMX_FIRST REG_MMX0
21783 #define REGC_MMX_LAST REG_MMX7
21784 #define REG_XMM0 37
21785 #define REG_XMM1 38
21786 #define REG_XMM2 39
21787 #define REG_XMM3 40
21788 #define REG_XMM4 41
21789 #define REG_XMM5 42
21790 #define REG_XMM6 43
21791 #define REG_XMM7 44
21792 #define REGC_XMM_FIRST REG_XMM0
21793 #define REGC_XMM_LAST REG_XMM7
21795 #if DEBUG_ROMCC_WARNINGS
21796 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21797 #endif
21799 #define LAST_REG REG_XMM7
21801 #define REGC_GPR32_8_FIRST REG_EAX
21802 #define REGC_GPR32_8_LAST REG_EDX
21803 #define REGC_GPR16_8_FIRST REG_AX
21804 #define REGC_GPR16_8_LAST REG_DX
21806 #define REGC_IMM8_FIRST -1
21807 #define REGC_IMM8_LAST -1
21808 #define REGC_IMM16_FIRST -2
21809 #define REGC_IMM16_LAST -1
21810 #define REGC_IMM32_FIRST -4
21811 #define REGC_IMM32_LAST -1
21813 #if LAST_REG >= MAX_REGISTERS
21814 #error "MAX_REGISTERS to low"
21815 #endif
21818 static unsigned regc_size[LAST_REGC +1] = {
21819 [REGC_FLAGS] = REGC_FLAGS_LAST - REGC_FLAGS_FIRST + 1,
21820 [REGC_GPR8] = REGC_GPR8_LAST - REGC_GPR8_FIRST + 1,
21821 [REGC_GPR16] = REGC_GPR16_LAST - REGC_GPR16_FIRST + 1,
21822 [REGC_GPR32] = REGC_GPR32_LAST - REGC_GPR32_FIRST + 1,
21823 [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21824 [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21825 [REGC_MMX] = REGC_MMX_LAST - REGC_MMX_FIRST + 1,
21826 [REGC_XMM] = REGC_XMM_LAST - REGC_XMM_FIRST + 1,
21827 [REGC_GPR32_8] = REGC_GPR32_8_LAST - REGC_GPR32_8_FIRST + 1,
21828 [REGC_GPR16_8] = REGC_GPR16_8_LAST - REGC_GPR16_8_FIRST + 1,
21829 [REGC_GPR8_LO] = REGC_GPR8_LO_LAST - REGC_GPR8_LO_FIRST + 1,
21830 [REGC_IMM32] = 0,
21831 [REGC_IMM16] = 0,
21832 [REGC_IMM8] = 0,
21835 static const struct {
21836 int first, last;
21837 } regcm_bound[LAST_REGC + 1] = {
21838 [REGC_FLAGS] = { REGC_FLAGS_FIRST, REGC_FLAGS_LAST },
21839 [REGC_GPR8] = { REGC_GPR8_FIRST, REGC_GPR8_LAST },
21840 [REGC_GPR16] = { REGC_GPR16_FIRST, REGC_GPR16_LAST },
21841 [REGC_GPR32] = { REGC_GPR32_FIRST, REGC_GPR32_LAST },
21842 [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21843 [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21844 [REGC_MMX] = { REGC_MMX_FIRST, REGC_MMX_LAST },
21845 [REGC_XMM] = { REGC_XMM_FIRST, REGC_XMM_LAST },
21846 [REGC_GPR32_8] = { REGC_GPR32_8_FIRST, REGC_GPR32_8_LAST },
21847 [REGC_GPR16_8] = { REGC_GPR16_8_FIRST, REGC_GPR16_8_LAST },
21848 [REGC_GPR8_LO] = { REGC_GPR8_LO_FIRST, REGC_GPR8_LO_LAST },
21849 [REGC_IMM32] = { REGC_IMM32_FIRST, REGC_IMM32_LAST },
21850 [REGC_IMM16] = { REGC_IMM16_FIRST, REGC_IMM16_LAST },
21851 [REGC_IMM8] = { REGC_IMM8_FIRST, REGC_IMM8_LAST },
21854 #if ARCH_INPUT_REGS != 4
21855 #error ARCH_INPUT_REGS size mismatch
21856 #endif
21857 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21858 { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21859 { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21860 { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21861 { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21864 #if ARCH_OUTPUT_REGS != 4
21865 #error ARCH_INPUT_REGS size mismatch
21866 #endif
21867 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21868 { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21869 { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21870 { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21871 { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21874 static void init_arch_state(struct arch_state *arch)
21876 memset(arch, 0, sizeof(*arch));
21877 arch->features = 0;
21880 static const struct compiler_flag arch_flags[] = {
21881 { "mmx", X86_MMX_REGS },
21882 { "sse", X86_XMM_REGS },
21883 { "noop-copy", X86_NOOP_COPY },
21884 { 0, 0 },
21886 static const struct compiler_flag arch_cpus[] = {
21887 { "i386", 0 },
21888 { "p2", X86_MMX_REGS },
21889 { "p3", X86_MMX_REGS | X86_XMM_REGS },
21890 { "p4", X86_MMX_REGS | X86_XMM_REGS },
21891 { "k7", X86_MMX_REGS },
21892 { "k8", X86_MMX_REGS | X86_XMM_REGS },
21893 { "c3", X86_MMX_REGS },
21894 { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21895 { 0, 0 }
21897 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21899 int result;
21900 int act;
21902 act = 1;
21903 result = -1;
21904 if (strncmp(flag, "no-", 3) == 0) {
21905 flag += 3;
21906 act = 0;
21908 if (act && strncmp(flag, "cpu=", 4) == 0) {
21909 flag += 4;
21910 result = set_flag(arch_cpus, &arch->features, 1, flag);
21912 else {
21913 result = set_flag(arch_flags, &arch->features, act, flag);
21915 return result;
21918 static void arch_usage(FILE *fp)
21920 flag_usage(fp, arch_flags, "-m", "-mno-");
21921 flag_usage(fp, arch_cpus, "-mcpu=", 0);
21924 static unsigned arch_regc_size(struct compile_state *state, int class)
21926 if ((class < 0) || (class > LAST_REGC)) {
21927 return 0;
21929 return regc_size[class];
21932 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21934 /* See if two register classes may have overlapping registers */
21935 unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21936 REGCM_GPR32_8 | REGCM_GPR32 |
21937 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21939 /* Special case for the immediates */
21940 if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21941 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21942 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21943 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) {
21944 return 0;
21946 return (regcm1 & regcm2) ||
21947 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21950 static void arch_reg_equivs(
21951 struct compile_state *state, unsigned *equiv, int reg)
21953 if ((reg < 0) || (reg > LAST_REG)) {
21954 internal_error(state, 0, "invalid register");
21956 *equiv++ = reg;
21957 switch(reg) {
21958 case REG_AL:
21959 #if X86_4_8BIT_GPRS
21960 *equiv++ = REG_AH;
21961 #endif
21962 *equiv++ = REG_AX;
21963 *equiv++ = REG_EAX;
21964 *equiv++ = REG_DXAX;
21965 *equiv++ = REG_EDXEAX;
21966 break;
21967 case REG_AH:
21968 #if X86_4_8BIT_GPRS
21969 *equiv++ = REG_AL;
21970 #endif
21971 *equiv++ = REG_AX;
21972 *equiv++ = REG_EAX;
21973 *equiv++ = REG_DXAX;
21974 *equiv++ = REG_EDXEAX;
21975 break;
21976 case REG_BL:
21977 #if X86_4_8BIT_GPRS
21978 *equiv++ = REG_BH;
21979 #endif
21980 *equiv++ = REG_BX;
21981 *equiv++ = REG_EBX;
21982 break;
21984 case REG_BH:
21985 #if X86_4_8BIT_GPRS
21986 *equiv++ = REG_BL;
21987 #endif
21988 *equiv++ = REG_BX;
21989 *equiv++ = REG_EBX;
21990 break;
21991 case REG_CL:
21992 #if X86_4_8BIT_GPRS
21993 *equiv++ = REG_CH;
21994 #endif
21995 *equiv++ = REG_CX;
21996 *equiv++ = REG_ECX;
21997 break;
21999 case REG_CH:
22000 #if X86_4_8BIT_GPRS
22001 *equiv++ = REG_CL;
22002 #endif
22003 *equiv++ = REG_CX;
22004 *equiv++ = REG_ECX;
22005 break;
22006 case REG_DL:
22007 #if X86_4_8BIT_GPRS
22008 *equiv++ = REG_DH;
22009 #endif
22010 *equiv++ = REG_DX;
22011 *equiv++ = REG_EDX;
22012 *equiv++ = REG_DXAX;
22013 *equiv++ = REG_EDXEAX;
22014 break;
22015 case REG_DH:
22016 #if X86_4_8BIT_GPRS
22017 *equiv++ = REG_DL;
22018 #endif
22019 *equiv++ = REG_DX;
22020 *equiv++ = REG_EDX;
22021 *equiv++ = REG_DXAX;
22022 *equiv++ = REG_EDXEAX;
22023 break;
22024 case REG_AX:
22025 *equiv++ = REG_AL;
22026 *equiv++ = REG_AH;
22027 *equiv++ = REG_EAX;
22028 *equiv++ = REG_DXAX;
22029 *equiv++ = REG_EDXEAX;
22030 break;
22031 case REG_BX:
22032 *equiv++ = REG_BL;
22033 *equiv++ = REG_BH;
22034 *equiv++ = REG_EBX;
22035 break;
22036 case REG_CX:
22037 *equiv++ = REG_CL;
22038 *equiv++ = REG_CH;
22039 *equiv++ = REG_ECX;
22040 break;
22041 case REG_DX:
22042 *equiv++ = REG_DL;
22043 *equiv++ = REG_DH;
22044 *equiv++ = REG_EDX;
22045 *equiv++ = REG_DXAX;
22046 *equiv++ = REG_EDXEAX;
22047 break;
22048 case REG_SI:
22049 *equiv++ = REG_ESI;
22050 break;
22051 case REG_DI:
22052 *equiv++ = REG_EDI;
22053 break;
22054 case REG_BP:
22055 *equiv++ = REG_EBP;
22056 break;
22057 case REG_SP:
22058 *equiv++ = REG_ESP;
22059 break;
22060 case REG_EAX:
22061 *equiv++ = REG_AL;
22062 *equiv++ = REG_AH;
22063 *equiv++ = REG_AX;
22064 *equiv++ = REG_DXAX;
22065 *equiv++ = REG_EDXEAX;
22066 break;
22067 case REG_EBX:
22068 *equiv++ = REG_BL;
22069 *equiv++ = REG_BH;
22070 *equiv++ = REG_BX;
22071 break;
22072 case REG_ECX:
22073 *equiv++ = REG_CL;
22074 *equiv++ = REG_CH;
22075 *equiv++ = REG_CX;
22076 break;
22077 case REG_EDX:
22078 *equiv++ = REG_DL;
22079 *equiv++ = REG_DH;
22080 *equiv++ = REG_DX;
22081 *equiv++ = REG_DXAX;
22082 *equiv++ = REG_EDXEAX;
22083 break;
22084 case REG_ESI:
22085 *equiv++ = REG_SI;
22086 break;
22087 case REG_EDI:
22088 *equiv++ = REG_DI;
22089 break;
22090 case REG_EBP:
22091 *equiv++ = REG_BP;
22092 break;
22093 case REG_ESP:
22094 *equiv++ = REG_SP;
22095 break;
22096 case REG_DXAX:
22097 *equiv++ = REG_AL;
22098 *equiv++ = REG_AH;
22099 *equiv++ = REG_DL;
22100 *equiv++ = REG_DH;
22101 *equiv++ = REG_AX;
22102 *equiv++ = REG_DX;
22103 *equiv++ = REG_EAX;
22104 *equiv++ = REG_EDX;
22105 *equiv++ = REG_EDXEAX;
22106 break;
22107 case REG_EDXEAX:
22108 *equiv++ = REG_AL;
22109 *equiv++ = REG_AH;
22110 *equiv++ = REG_DL;
22111 *equiv++ = REG_DH;
22112 *equiv++ = REG_AX;
22113 *equiv++ = REG_DX;
22114 *equiv++ = REG_EAX;
22115 *equiv++ = REG_EDX;
22116 *equiv++ = REG_DXAX;
22117 break;
22119 *equiv++ = REG_UNSET;
22122 static unsigned arch_avail_mask(struct compile_state *state)
22124 unsigned avail_mask;
22125 /* REGCM_GPR8 is not available */
22126 avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
22127 REGCM_GPR32 | REGCM_GPR32_8 |
22128 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22129 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22130 if (state->arch->features & X86_MMX_REGS) {
22131 avail_mask |= REGCM_MMX;
22133 if (state->arch->features & X86_XMM_REGS) {
22134 avail_mask |= REGCM_XMM;
22136 return avail_mask;
22139 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22141 unsigned mask, result;
22142 int class, class2;
22143 result = regcm;
22145 for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22146 if ((result & mask) == 0) {
22147 continue;
22149 if (class > LAST_REGC) {
22150 result &= ~mask;
22152 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22153 if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22154 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22155 result |= (1 << class2);
22159 result &= arch_avail_mask(state);
22160 return result;
22163 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22165 /* Like arch_regcm_normalize except immediate register classes are excluded */
22166 regcm = arch_regcm_normalize(state, regcm);
22167 /* Remove the immediate register classes */
22168 regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22169 return regcm;
22173 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22175 unsigned mask;
22176 int class;
22177 mask = 0;
22178 for(class = 0; class <= LAST_REGC; class++) {
22179 if ((reg >= regcm_bound[class].first) &&
22180 (reg <= regcm_bound[class].last)) {
22181 mask |= (1 << class);
22184 if (!mask) {
22185 internal_error(state, 0, "reg %d not in any class", reg);
22187 return mask;
22190 static struct reg_info arch_reg_constraint(
22191 struct compile_state *state, struct type *type, const char *constraint)
22193 static const struct {
22194 char class;
22195 unsigned int mask;
22196 unsigned int reg;
22197 } constraints[] = {
22198 { 'r', REGCM_GPR32, REG_UNSET },
22199 { 'g', REGCM_GPR32, REG_UNSET },
22200 { 'p', REGCM_GPR32, REG_UNSET },
22201 { 'q', REGCM_GPR8_LO, REG_UNSET },
22202 { 'Q', REGCM_GPR32_8, REG_UNSET },
22203 { 'x', REGCM_XMM, REG_UNSET },
22204 { 'y', REGCM_MMX, REG_UNSET },
22205 { 'a', REGCM_GPR32, REG_EAX },
22206 { 'b', REGCM_GPR32, REG_EBX },
22207 { 'c', REGCM_GPR32, REG_ECX },
22208 { 'd', REGCM_GPR32, REG_EDX },
22209 { 'D', REGCM_GPR32, REG_EDI },
22210 { 'S', REGCM_GPR32, REG_ESI },
22211 { '\0', 0, REG_UNSET },
22213 unsigned int regcm;
22214 unsigned int mask, reg;
22215 struct reg_info result;
22216 const char *ptr;
22217 regcm = arch_type_to_regcm(state, type);
22218 reg = REG_UNSET;
22219 mask = 0;
22220 for(ptr = constraint; *ptr; ptr++) {
22221 int i;
22222 if (*ptr == ' ') {
22223 continue;
22225 for(i = 0; constraints[i].class != '\0'; i++) {
22226 if (constraints[i].class == *ptr) {
22227 break;
22230 if (constraints[i].class == '\0') {
22231 error(state, 0, "invalid register constraint ``%c''", *ptr);
22232 break;
22234 if ((constraints[i].mask & regcm) == 0) {
22235 error(state, 0, "invalid register class %c specified",
22236 *ptr);
22238 mask |= constraints[i].mask;
22239 if (constraints[i].reg != REG_UNSET) {
22240 if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22241 error(state, 0, "Only one register may be specified");
22243 reg = constraints[i].reg;
22246 result.reg = reg;
22247 result.regcm = mask;
22248 return result;
22251 static struct reg_info arch_reg_clobber(
22252 struct compile_state *state, const char *clobber)
22254 struct reg_info result;
22255 if (strcmp(clobber, "memory") == 0) {
22256 result.reg = REG_UNSET;
22257 result.regcm = 0;
22259 else if (strcmp(clobber, "eax") == 0) {
22260 result.reg = REG_EAX;
22261 result.regcm = REGCM_GPR32;
22263 else if (strcmp(clobber, "ebx") == 0) {
22264 result.reg = REG_EBX;
22265 result.regcm = REGCM_GPR32;
22267 else if (strcmp(clobber, "ecx") == 0) {
22268 result.reg = REG_ECX;
22269 result.regcm = REGCM_GPR32;
22271 else if (strcmp(clobber, "edx") == 0) {
22272 result.reg = REG_EDX;
22273 result.regcm = REGCM_GPR32;
22275 else if (strcmp(clobber, "esi") == 0) {
22276 result.reg = REG_ESI;
22277 result.regcm = REGCM_GPR32;
22279 else if (strcmp(clobber, "edi") == 0) {
22280 result.reg = REG_EDI;
22281 result.regcm = REGCM_GPR32;
22283 else if (strcmp(clobber, "ebp") == 0) {
22284 result.reg = REG_EBP;
22285 result.regcm = REGCM_GPR32;
22287 else if (strcmp(clobber, "esp") == 0) {
22288 result.reg = REG_ESP;
22289 result.regcm = REGCM_GPR32;
22291 else if (strcmp(clobber, "cc") == 0) {
22292 result.reg = REG_EFLAGS;
22293 result.regcm = REGCM_FLAGS;
22295 else if ((strncmp(clobber, "xmm", 3) == 0) &&
22296 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22297 result.reg = REG_XMM0 + octdigval(clobber[3]);
22298 result.regcm = REGCM_XMM;
22300 else if ((strncmp(clobber, "mm", 2) == 0) &&
22301 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22302 result.reg = REG_MMX0 + octdigval(clobber[3]);
22303 result.regcm = REGCM_MMX;
22305 else {
22306 error(state, 0, "unknown register name `%s' in asm",
22307 clobber);
22308 result.reg = REG_UNSET;
22309 result.regcm = 0;
22311 return result;
22314 static int do_select_reg(struct compile_state *state,
22315 char *used, int reg, unsigned classes)
22317 unsigned mask;
22318 if (used[reg]) {
22319 return REG_UNSET;
22321 mask = arch_reg_regcm(state, reg);
22322 return (classes & mask) ? reg : REG_UNSET;
22325 static int arch_select_free_register(
22326 struct compile_state *state, char *used, int classes)
22328 /* Live ranges with the most neighbors are colored first.
22330 * Generally it does not matter which colors are given
22331 * as the register allocator attempts to color live ranges
22332 * in an order where you are guaranteed not to run out of colors.
22334 * Occasionally the register allocator cannot find an order
22335 * of register selection that will find a free color. To
22336 * increase the odds the register allocator will work when
22337 * it guesses first give out registers from register classes
22338 * least likely to run out of registers.
22341 int i, reg;
22342 reg = REG_UNSET;
22343 for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22344 reg = do_select_reg(state, used, i, classes);
22346 for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22347 reg = do_select_reg(state, used, i, classes);
22349 for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22350 reg = do_select_reg(state, used, i, classes);
22352 for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22353 reg = do_select_reg(state, used, i, classes);
22355 for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22356 reg = do_select_reg(state, used, i, classes);
22358 for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22359 reg = do_select_reg(state, used, i, classes);
22361 for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22362 reg = do_select_reg(state, used, i, classes);
22364 for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22365 reg = do_select_reg(state, used, i, classes);
22367 for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22368 reg = do_select_reg(state, used, i, classes);
22370 return reg;
22374 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type)
22377 #if DEBUG_ROMCC_WARNINGS
22378 #warning "FIXME force types smaller (if legal) before I get here"
22379 #endif
22380 unsigned mask;
22381 mask = 0;
22382 switch(type->type & TYPE_MASK) {
22383 case TYPE_ARRAY:
22384 case TYPE_VOID:
22385 mask = 0;
22386 break;
22387 case TYPE_CHAR:
22388 case TYPE_UCHAR:
22389 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22390 REGCM_GPR16 | REGCM_GPR16_8 |
22391 REGCM_GPR32 | REGCM_GPR32_8 |
22392 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22393 REGCM_MMX | REGCM_XMM |
22394 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22395 break;
22396 case TYPE_SHORT:
22397 case TYPE_USHORT:
22398 mask = REGCM_GPR16 | REGCM_GPR16_8 |
22399 REGCM_GPR32 | REGCM_GPR32_8 |
22400 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22401 REGCM_MMX | REGCM_XMM |
22402 REGCM_IMM32 | REGCM_IMM16;
22403 break;
22404 case TYPE_ENUM:
22405 case TYPE_INT:
22406 case TYPE_UINT:
22407 case TYPE_LONG:
22408 case TYPE_ULONG:
22409 case TYPE_POINTER:
22410 mask = REGCM_GPR32 | REGCM_GPR32_8 |
22411 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22412 REGCM_MMX | REGCM_XMM |
22413 REGCM_IMM32;
22414 break;
22415 case TYPE_JOIN:
22416 case TYPE_UNION:
22417 mask = arch_type_to_regcm(state, type->left);
22418 break;
22419 case TYPE_OVERLAP:
22420 mask = arch_type_to_regcm(state, type->left) &
22421 arch_type_to_regcm(state, type->right);
22422 break;
22423 case TYPE_BITFIELD:
22424 mask = arch_type_to_regcm(state, type->left);
22425 break;
22426 default:
22427 fprintf(state->errout, "type: ");
22428 name_of(state->errout, type);
22429 fprintf(state->errout, "\n");
22430 internal_error(state, 0, "no register class for type");
22431 break;
22433 mask = arch_regcm_normalize(state, mask);
22434 return mask;
22437 static int is_imm32(struct triple *imm)
22439 // second condition commented out to prevent compiler warning:
22440 // imm->u.cval is always 32bit unsigned, so the comparison is
22441 // always true.
22442 return ((imm->op == OP_INTCONST) /* && (imm->u.cval <= 0xffffffffUL) */ ) ||
22443 (imm->op == OP_ADDRCONST);
22446 static int is_imm16(struct triple *imm)
22448 return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22450 static int is_imm8(struct triple *imm)
22452 return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22455 static int get_imm32(struct triple *ins, struct triple **expr)
22457 struct triple *imm;
22458 imm = *expr;
22459 while(imm->op == OP_COPY) {
22460 imm = RHS(imm, 0);
22462 if (!is_imm32(imm)) {
22463 return 0;
22465 unuse_triple(*expr, ins);
22466 use_triple(imm, ins);
22467 *expr = imm;
22468 return 1;
22471 static int get_imm8(struct triple *ins, struct triple **expr)
22473 struct triple *imm;
22474 imm = *expr;
22475 while(imm->op == OP_COPY) {
22476 imm = RHS(imm, 0);
22478 if (!is_imm8(imm)) {
22479 return 0;
22481 unuse_triple(*expr, ins);
22482 use_triple(imm, ins);
22483 *expr = imm;
22484 return 1;
22487 #define TEMPLATE_NOP 0
22488 #define TEMPLATE_INTCONST8 1
22489 #define TEMPLATE_INTCONST32 2
22490 #define TEMPLATE_UNKNOWNVAL 3
22491 #define TEMPLATE_COPY8_REG 5
22492 #define TEMPLATE_COPY16_REG 6
22493 #define TEMPLATE_COPY32_REG 7
22494 #define TEMPLATE_COPY_IMM8 8
22495 #define TEMPLATE_COPY_IMM16 9
22496 #define TEMPLATE_COPY_IMM32 10
22497 #define TEMPLATE_PHI8 11
22498 #define TEMPLATE_PHI16 12
22499 #define TEMPLATE_PHI32 13
22500 #define TEMPLATE_STORE8 14
22501 #define TEMPLATE_STORE16 15
22502 #define TEMPLATE_STORE32 16
22503 #define TEMPLATE_LOAD8 17
22504 #define TEMPLATE_LOAD16 18
22505 #define TEMPLATE_LOAD32 19
22506 #define TEMPLATE_BINARY8_REG 20
22507 #define TEMPLATE_BINARY16_REG 21
22508 #define TEMPLATE_BINARY32_REG 22
22509 #define TEMPLATE_BINARY8_IMM 23
22510 #define TEMPLATE_BINARY16_IMM 24
22511 #define TEMPLATE_BINARY32_IMM 25
22512 #define TEMPLATE_SL8_CL 26
22513 #define TEMPLATE_SL16_CL 27
22514 #define TEMPLATE_SL32_CL 28
22515 #define TEMPLATE_SL8_IMM 29
22516 #define TEMPLATE_SL16_IMM 30
22517 #define TEMPLATE_SL32_IMM 31
22518 #define TEMPLATE_UNARY8 32
22519 #define TEMPLATE_UNARY16 33
22520 #define TEMPLATE_UNARY32 34
22521 #define TEMPLATE_CMP8_REG 35
22522 #define TEMPLATE_CMP16_REG 36
22523 #define TEMPLATE_CMP32_REG 37
22524 #define TEMPLATE_CMP8_IMM 38
22525 #define TEMPLATE_CMP16_IMM 39
22526 #define TEMPLATE_CMP32_IMM 40
22527 #define TEMPLATE_TEST8 41
22528 #define TEMPLATE_TEST16 42
22529 #define TEMPLATE_TEST32 43
22530 #define TEMPLATE_SET 44
22531 #define TEMPLATE_JMP 45
22532 #define TEMPLATE_RET 46
22533 #define TEMPLATE_INB_DX 47
22534 #define TEMPLATE_INB_IMM 48
22535 #define TEMPLATE_INW_DX 49
22536 #define TEMPLATE_INW_IMM 50
22537 #define TEMPLATE_INL_DX 51
22538 #define TEMPLATE_INL_IMM 52
22539 #define TEMPLATE_OUTB_DX 53
22540 #define TEMPLATE_OUTB_IMM 54
22541 #define TEMPLATE_OUTW_DX 55
22542 #define TEMPLATE_OUTW_IMM 56
22543 #define TEMPLATE_OUTL_DX 57
22544 #define TEMPLATE_OUTL_IMM 58
22545 #define TEMPLATE_BSF 59
22546 #define TEMPLATE_RDMSR 60
22547 #define TEMPLATE_WRMSR 61
22548 #define TEMPLATE_UMUL8 62
22549 #define TEMPLATE_UMUL16 63
22550 #define TEMPLATE_UMUL32 64
22551 #define TEMPLATE_DIV8 65
22552 #define TEMPLATE_DIV16 66
22553 #define TEMPLATE_DIV32 67
22554 #define LAST_TEMPLATE TEMPLATE_DIV32
22555 #if LAST_TEMPLATE >= MAX_TEMPLATES
22556 #error "MAX_TEMPLATES to low"
22557 #endif
22559 #define COPY8_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22560 #define COPY16_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)
22561 #define COPY32_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22564 static struct ins_template templates[] = {
22565 [TEMPLATE_NOP] = {
22566 .lhs = {
22567 [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22568 [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22569 [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22570 [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22571 [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22572 [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22573 [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22574 [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22575 [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22576 [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22577 [10] = { REG_UNNEEDED, REGCM_IMMALL },
22578 [11] = { REG_UNNEEDED, REGCM_IMMALL },
22579 [12] = { REG_UNNEEDED, REGCM_IMMALL },
22580 [13] = { REG_UNNEEDED, REGCM_IMMALL },
22581 [14] = { REG_UNNEEDED, REGCM_IMMALL },
22582 [15] = { REG_UNNEEDED, REGCM_IMMALL },
22583 [16] = { REG_UNNEEDED, REGCM_IMMALL },
22584 [17] = { REG_UNNEEDED, REGCM_IMMALL },
22585 [18] = { REG_UNNEEDED, REGCM_IMMALL },
22586 [19] = { REG_UNNEEDED, REGCM_IMMALL },
22587 [20] = { REG_UNNEEDED, REGCM_IMMALL },
22588 [21] = { REG_UNNEEDED, REGCM_IMMALL },
22589 [22] = { REG_UNNEEDED, REGCM_IMMALL },
22590 [23] = { REG_UNNEEDED, REGCM_IMMALL },
22591 [24] = { REG_UNNEEDED, REGCM_IMMALL },
22592 [25] = { REG_UNNEEDED, REGCM_IMMALL },
22593 [26] = { REG_UNNEEDED, REGCM_IMMALL },
22594 [27] = { REG_UNNEEDED, REGCM_IMMALL },
22595 [28] = { REG_UNNEEDED, REGCM_IMMALL },
22596 [29] = { REG_UNNEEDED, REGCM_IMMALL },
22597 [30] = { REG_UNNEEDED, REGCM_IMMALL },
22598 [31] = { REG_UNNEEDED, REGCM_IMMALL },
22599 [32] = { REG_UNNEEDED, REGCM_IMMALL },
22600 [33] = { REG_UNNEEDED, REGCM_IMMALL },
22601 [34] = { REG_UNNEEDED, REGCM_IMMALL },
22602 [35] = { REG_UNNEEDED, REGCM_IMMALL },
22603 [36] = { REG_UNNEEDED, REGCM_IMMALL },
22604 [37] = { REG_UNNEEDED, REGCM_IMMALL },
22605 [38] = { REG_UNNEEDED, REGCM_IMMALL },
22606 [39] = { REG_UNNEEDED, REGCM_IMMALL },
22607 [40] = { REG_UNNEEDED, REGCM_IMMALL },
22608 [41] = { REG_UNNEEDED, REGCM_IMMALL },
22609 [42] = { REG_UNNEEDED, REGCM_IMMALL },
22610 [43] = { REG_UNNEEDED, REGCM_IMMALL },
22611 [44] = { REG_UNNEEDED, REGCM_IMMALL },
22612 [45] = { REG_UNNEEDED, REGCM_IMMALL },
22613 [46] = { REG_UNNEEDED, REGCM_IMMALL },
22614 [47] = { REG_UNNEEDED, REGCM_IMMALL },
22615 [48] = { REG_UNNEEDED, REGCM_IMMALL },
22616 [49] = { REG_UNNEEDED, REGCM_IMMALL },
22617 [50] = { REG_UNNEEDED, REGCM_IMMALL },
22618 [51] = { REG_UNNEEDED, REGCM_IMMALL },
22619 [52] = { REG_UNNEEDED, REGCM_IMMALL },
22620 [53] = { REG_UNNEEDED, REGCM_IMMALL },
22621 [54] = { REG_UNNEEDED, REGCM_IMMALL },
22622 [55] = { REG_UNNEEDED, REGCM_IMMALL },
22623 [56] = { REG_UNNEEDED, REGCM_IMMALL },
22624 [57] = { REG_UNNEEDED, REGCM_IMMALL },
22625 [58] = { REG_UNNEEDED, REGCM_IMMALL },
22626 [59] = { REG_UNNEEDED, REGCM_IMMALL },
22627 [60] = { REG_UNNEEDED, REGCM_IMMALL },
22628 [61] = { REG_UNNEEDED, REGCM_IMMALL },
22629 [62] = { REG_UNNEEDED, REGCM_IMMALL },
22630 [63] = { REG_UNNEEDED, REGCM_IMMALL },
22633 [TEMPLATE_INTCONST8] = {
22634 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22636 [TEMPLATE_INTCONST32] = {
22637 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22639 [TEMPLATE_UNKNOWNVAL] = {
22640 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22642 [TEMPLATE_COPY8_REG] = {
22643 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22644 .rhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22646 [TEMPLATE_COPY16_REG] = {
22647 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22648 .rhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22650 [TEMPLATE_COPY32_REG] = {
22651 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22652 .rhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22654 [TEMPLATE_COPY_IMM8] = {
22655 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22656 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22658 [TEMPLATE_COPY_IMM16] = {
22659 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22660 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22662 [TEMPLATE_COPY_IMM32] = {
22663 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22664 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22666 [TEMPLATE_PHI8] = {
22667 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22668 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22670 [TEMPLATE_PHI16] = {
22671 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22672 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22674 [TEMPLATE_PHI32] = {
22675 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22676 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22678 [TEMPLATE_STORE8] = {
22679 .rhs = {
22680 [0] = { REG_UNSET, REGCM_GPR32 },
22681 [1] = { REG_UNSET, REGCM_GPR8_LO },
22684 [TEMPLATE_STORE16] = {
22685 .rhs = {
22686 [0] = { REG_UNSET, REGCM_GPR32 },
22687 [1] = { REG_UNSET, REGCM_GPR16 },
22690 [TEMPLATE_STORE32] = {
22691 .rhs = {
22692 [0] = { REG_UNSET, REGCM_GPR32 },
22693 [1] = { REG_UNSET, REGCM_GPR32 },
22696 [TEMPLATE_LOAD8] = {
22697 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22698 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22700 [TEMPLATE_LOAD16] = {
22701 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22702 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22704 [TEMPLATE_LOAD32] = {
22705 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22706 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22708 [TEMPLATE_BINARY8_REG] = {
22709 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22710 .rhs = {
22711 [0] = { REG_VIRT0, REGCM_GPR8_LO },
22712 [1] = { REG_UNSET, REGCM_GPR8_LO },
22715 [TEMPLATE_BINARY16_REG] = {
22716 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22717 .rhs = {
22718 [0] = { REG_VIRT0, REGCM_GPR16 },
22719 [1] = { REG_UNSET, REGCM_GPR16 },
22722 [TEMPLATE_BINARY32_REG] = {
22723 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22724 .rhs = {
22725 [0] = { REG_VIRT0, REGCM_GPR32 },
22726 [1] = { REG_UNSET, REGCM_GPR32 },
22729 [TEMPLATE_BINARY8_IMM] = {
22730 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22731 .rhs = {
22732 [0] = { REG_VIRT0, REGCM_GPR8_LO },
22733 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22736 [TEMPLATE_BINARY16_IMM] = {
22737 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22738 .rhs = {
22739 [0] = { REG_VIRT0, REGCM_GPR16 },
22740 [1] = { REG_UNNEEDED, REGCM_IMM16 },
22743 [TEMPLATE_BINARY32_IMM] = {
22744 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22745 .rhs = {
22746 [0] = { REG_VIRT0, REGCM_GPR32 },
22747 [1] = { REG_UNNEEDED, REGCM_IMM32 },
22750 [TEMPLATE_SL8_CL] = {
22751 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22752 .rhs = {
22753 [0] = { REG_VIRT0, REGCM_GPR8_LO },
22754 [1] = { REG_CL, REGCM_GPR8_LO },
22757 [TEMPLATE_SL16_CL] = {
22758 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22759 .rhs = {
22760 [0] = { REG_VIRT0, REGCM_GPR16 },
22761 [1] = { REG_CL, REGCM_GPR8_LO },
22764 [TEMPLATE_SL32_CL] = {
22765 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22766 .rhs = {
22767 [0] = { REG_VIRT0, REGCM_GPR32 },
22768 [1] = { REG_CL, REGCM_GPR8_LO },
22771 [TEMPLATE_SL8_IMM] = {
22772 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22773 .rhs = {
22774 [0] = { REG_VIRT0, REGCM_GPR8_LO },
22775 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22778 [TEMPLATE_SL16_IMM] = {
22779 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22780 .rhs = {
22781 [0] = { REG_VIRT0, REGCM_GPR16 },
22782 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22785 [TEMPLATE_SL32_IMM] = {
22786 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22787 .rhs = {
22788 [0] = { REG_VIRT0, REGCM_GPR32 },
22789 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22792 [TEMPLATE_UNARY8] = {
22793 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22794 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22796 [TEMPLATE_UNARY16] = {
22797 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22798 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22800 [TEMPLATE_UNARY32] = {
22801 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22802 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22804 [TEMPLATE_CMP8_REG] = {
22805 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22806 .rhs = {
22807 [0] = { REG_UNSET, REGCM_GPR8_LO },
22808 [1] = { REG_UNSET, REGCM_GPR8_LO },
22811 [TEMPLATE_CMP16_REG] = {
22812 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22813 .rhs = {
22814 [0] = { REG_UNSET, REGCM_GPR16 },
22815 [1] = { REG_UNSET, REGCM_GPR16 },
22818 [TEMPLATE_CMP32_REG] = {
22819 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22820 .rhs = {
22821 [0] = { REG_UNSET, REGCM_GPR32 },
22822 [1] = { REG_UNSET, REGCM_GPR32 },
22825 [TEMPLATE_CMP8_IMM] = {
22826 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22827 .rhs = {
22828 [0] = { REG_UNSET, REGCM_GPR8_LO },
22829 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22832 [TEMPLATE_CMP16_IMM] = {
22833 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22834 .rhs = {
22835 [0] = { REG_UNSET, REGCM_GPR16 },
22836 [1] = { REG_UNNEEDED, REGCM_IMM16 },
22839 [TEMPLATE_CMP32_IMM] = {
22840 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22841 .rhs = {
22842 [0] = { REG_UNSET, REGCM_GPR32 },
22843 [1] = { REG_UNNEEDED, REGCM_IMM32 },
22846 [TEMPLATE_TEST8] = {
22847 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22848 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22850 [TEMPLATE_TEST16] = {
22851 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22852 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22854 [TEMPLATE_TEST32] = {
22855 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22856 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22858 [TEMPLATE_SET] = {
22859 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22860 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22862 [TEMPLATE_JMP] = {
22863 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22865 [TEMPLATE_RET] = {
22866 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22868 [TEMPLATE_INB_DX] = {
22869 .lhs = { [0] = { REG_AL, REGCM_GPR8_LO } },
22870 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22872 [TEMPLATE_INB_IMM] = {
22873 .lhs = { [0] = { REG_AL, REGCM_GPR8_LO } },
22874 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22876 [TEMPLATE_INW_DX] = {
22877 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22878 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22880 [TEMPLATE_INW_IMM] = {
22881 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22882 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22884 [TEMPLATE_INL_DX] = {
22885 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22886 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22888 [TEMPLATE_INL_IMM] = {
22889 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22890 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22892 [TEMPLATE_OUTB_DX] = {
22893 .rhs = {
22894 [0] = { REG_AL, REGCM_GPR8_LO },
22895 [1] = { REG_DX, REGCM_GPR16 },
22898 [TEMPLATE_OUTB_IMM] = {
22899 .rhs = {
22900 [0] = { REG_AL, REGCM_GPR8_LO },
22901 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22904 [TEMPLATE_OUTW_DX] = {
22905 .rhs = {
22906 [0] = { REG_AX, REGCM_GPR16 },
22907 [1] = { REG_DX, REGCM_GPR16 },
22910 [TEMPLATE_OUTW_IMM] = {
22911 .rhs = {
22912 [0] = { REG_AX, REGCM_GPR16 },
22913 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22916 [TEMPLATE_OUTL_DX] = {
22917 .rhs = {
22918 [0] = { REG_EAX, REGCM_GPR32 },
22919 [1] = { REG_DX, REGCM_GPR16 },
22922 [TEMPLATE_OUTL_IMM] = {
22923 .rhs = {
22924 [0] = { REG_EAX, REGCM_GPR32 },
22925 [1] = { REG_UNNEEDED, REGCM_IMM8 },
22928 [TEMPLATE_BSF] = {
22929 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22930 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22932 [TEMPLATE_RDMSR] = {
22933 .lhs = {
22934 [0] = { REG_EAX, REGCM_GPR32 },
22935 [1] = { REG_EDX, REGCM_GPR32 },
22937 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22939 [TEMPLATE_WRMSR] = {
22940 .rhs = {
22941 [0] = { REG_ECX, REGCM_GPR32 },
22942 [1] = { REG_EAX, REGCM_GPR32 },
22943 [2] = { REG_EDX, REGCM_GPR32 },
22946 [TEMPLATE_UMUL8] = {
22947 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22948 .rhs = {
22949 [0] = { REG_AL, REGCM_GPR8_LO },
22950 [1] = { REG_UNSET, REGCM_GPR8_LO },
22953 [TEMPLATE_UMUL16] = {
22954 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22955 .rhs = {
22956 [0] = { REG_AX, REGCM_GPR16 },
22957 [1] = { REG_UNSET, REGCM_GPR16 },
22960 [TEMPLATE_UMUL32] = {
22961 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22962 .rhs = {
22963 [0] = { REG_EAX, REGCM_GPR32 },
22964 [1] = { REG_UNSET, REGCM_GPR32 },
22967 [TEMPLATE_DIV8] = {
22968 .lhs = {
22969 [0] = { REG_AL, REGCM_GPR8_LO },
22970 [1] = { REG_AH, REGCM_GPR8 },
22972 .rhs = {
22973 [0] = { REG_AX, REGCM_GPR16 },
22974 [1] = { REG_UNSET, REGCM_GPR8_LO },
22977 [TEMPLATE_DIV16] = {
22978 .lhs = {
22979 [0] = { REG_AX, REGCM_GPR16 },
22980 [1] = { REG_DX, REGCM_GPR16 },
22982 .rhs = {
22983 [0] = { REG_DXAX, REGCM_DIVIDEND32 },
22984 [1] = { REG_UNSET, REGCM_GPR16 },
22987 [TEMPLATE_DIV32] = {
22988 .lhs = {
22989 [0] = { REG_EAX, REGCM_GPR32 },
22990 [1] = { REG_EDX, REGCM_GPR32 },
22992 .rhs = {
22993 [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
22994 [1] = { REG_UNSET, REGCM_GPR32 },
22999 static void fixup_branch(struct compile_state *state,
23000 struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23001 struct triple *left, struct triple *right)
23003 struct triple *test;
23004 if (!left) {
23005 internal_error(state, branch, "no branch test?");
23007 test = pre_triple(state, branch,
23008 cmp_op, cmp_type, left, right);
23009 test->template_id = TEMPLATE_TEST32;
23010 if (cmp_op == OP_CMP) {
23011 test->template_id = TEMPLATE_CMP32_REG;
23012 if (get_imm32(test, &RHS(test, 1))) {
23013 test->template_id = TEMPLATE_CMP32_IMM;
23016 use_triple(RHS(test, 0), test);
23017 use_triple(RHS(test, 1), test);
23018 unuse_triple(RHS(branch, 0), branch);
23019 RHS(branch, 0) = test;
23020 branch->op = jmp_op;
23021 branch->template_id = TEMPLATE_JMP;
23022 use_triple(RHS(branch, 0), branch);
23025 static void fixup_branches(struct compile_state *state,
23026 struct triple *cmp, struct triple *use, int jmp_op)
23028 struct triple_set *entry, *next;
23029 for(entry = use->use; entry; entry = next) {
23030 next = entry->next;
23031 if (entry->member->op == OP_COPY) {
23032 fixup_branches(state, cmp, entry->member, jmp_op);
23034 else if (entry->member->op == OP_CBRANCH) {
23035 struct triple *branch;
23036 struct triple *left, *right;
23037 left = right = 0;
23038 left = RHS(cmp, 0);
23039 if (cmp->rhs > 1) {
23040 right = RHS(cmp, 1);
23042 branch = entry->member;
23043 fixup_branch(state, branch, jmp_op,
23044 cmp->op, cmp->type, left, right);
23049 static void bool_cmp(struct compile_state *state,
23050 struct triple *ins, int cmp_op, int jmp_op, int set_op)
23052 struct triple_set *entry, *next;
23053 struct triple *set, *convert;
23055 /* Put a barrier up before the cmp which preceeds the
23056 * copy instruction. If a set actually occurs this gives
23057 * us a chance to move variables in registers out of the way.
23060 /* Modify the comparison operator */
23061 ins->op = cmp_op;
23062 ins->template_id = TEMPLATE_TEST32;
23063 if (cmp_op == OP_CMP) {
23064 ins->template_id = TEMPLATE_CMP32_REG;
23065 if (get_imm32(ins, &RHS(ins, 1))) {
23066 ins->template_id = TEMPLATE_CMP32_IMM;
23069 /* Generate the instruction sequence that will transform the
23070 * result of the comparison into a logical value.
23072 set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23073 use_triple(ins, set);
23074 set->template_id = TEMPLATE_SET;
23076 convert = set;
23077 if (!equiv_types(ins->type, set->type)) {
23078 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23079 use_triple(set, convert);
23080 convert->template_id = TEMPLATE_COPY32_REG;
23083 for(entry = ins->use; entry; entry = next) {
23084 next = entry->next;
23085 if (entry->member == set) {
23086 continue;
23088 replace_rhs_use(state, ins, convert, entry->member);
23090 fixup_branches(state, ins, convert, jmp_op);
23093 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23095 struct ins_template *template;
23096 struct reg_info result;
23097 int zlhs;
23098 if (ins->op == OP_PIECE) {
23099 index = ins->u.cval;
23100 ins = MISC(ins, 0);
23102 zlhs = ins->lhs;
23103 if (triple_is_def(state, ins)) {
23104 zlhs = 1;
23106 if (index >= zlhs) {
23107 internal_error(state, ins, "index %d out of range for %s",
23108 index, tops(ins->op));
23110 switch(ins->op) {
23111 case OP_ASM:
23112 template = &ins->u.ainfo->tmpl;
23113 break;
23114 default:
23115 if (ins->template_id > LAST_TEMPLATE) {
23116 internal_error(state, ins, "bad template number %d",
23117 ins->template_id);
23119 template = &templates[ins->template_id];
23120 break;
23122 result = template->lhs[index];
23123 result.regcm = arch_regcm_normalize(state, result.regcm);
23124 if (result.reg != REG_UNNEEDED) {
23125 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23127 if (result.regcm == 0) {
23128 internal_error(state, ins, "lhs %d regcm == 0", index);
23130 return result;
23133 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23135 struct reg_info result;
23136 struct ins_template *template;
23137 if ((index > ins->rhs) ||
23138 (ins->op == OP_PIECE)) {
23139 internal_error(state, ins, "index %d out of range for %s\n",
23140 index, tops(ins->op));
23142 switch(ins->op) {
23143 case OP_ASM:
23144 template = &ins->u.ainfo->tmpl;
23145 break;
23146 case OP_PHI:
23147 index = 0;
23148 /* Fall through */
23149 default:
23150 if (ins->template_id > LAST_TEMPLATE) {
23151 internal_error(state, ins, "bad template number %d",
23152 ins->template_id);
23154 template = &templates[ins->template_id];
23155 break;
23157 result = template->rhs[index];
23158 result.regcm = arch_regcm_normalize(state, result.regcm);
23159 if (result.regcm == 0) {
23160 internal_error(state, ins, "rhs %d regcm == 0", index);
23162 return result;
23165 static struct triple *mod_div(struct compile_state *state,
23166 struct triple *ins, int div_op, int index)
23168 struct triple *div, *piece1;
23170 /* Generate the appropriate division instruction */
23171 div = post_triple(state, ins, div_op, ins->type, 0, 0);
23172 RHS(div, 0) = RHS(ins, 0);
23173 RHS(div, 1) = RHS(ins, 1);
23174 piece1 = LHS(div, 1);
23175 div->template_id = TEMPLATE_DIV32;
23176 use_triple(RHS(div, 0), div);
23177 use_triple(RHS(div, 1), div);
23178 use_triple(LHS(div, 0), div);
23179 use_triple(LHS(div, 1), div);
23181 /* Replate uses of ins with the appropriate piece of the div */
23182 propogate_use(state, ins, LHS(div, index));
23183 release_triple(state, ins);
23185 /* Return the address of the next instruction */
23186 return piece1->next;
23189 static int noop_adecl(struct triple *adecl)
23191 struct triple_set *use;
23192 /* It's a noop if it doesn't specify stoorage */
23193 if (adecl->lhs == 0) {
23194 return 1;
23196 /* Is the adecl used? If not it's a noop */
23197 for(use = adecl->use; use ; use = use->next) {
23198 if ((use->member->op != OP_PIECE) ||
23199 (MISC(use->member, 0) != adecl)) {
23200 return 0;
23203 return 1;
23206 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23208 struct triple *mask, *nmask, *shift;
23209 struct triple *val, *val_mask, *val_shift;
23210 struct triple *targ, *targ_mask;
23211 struct triple *new;
23212 ulong_t the_mask, the_nmask;
23214 targ = RHS(ins, 0);
23215 val = RHS(ins, 1);
23217 /* Get constant for the mask value */
23218 the_mask = 1;
23219 the_mask <<= ins->u.bitfield.size;
23220 the_mask -= 1;
23221 the_mask <<= ins->u.bitfield.offset;
23222 mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23223 mask->u.cval = the_mask;
23225 /* Get the inverted mask value */
23226 the_nmask = ~the_mask;
23227 nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23228 nmask->u.cval = the_nmask;
23230 /* Get constant for the shift value */
23231 shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23232 shift->u.cval = ins->u.bitfield.offset;
23234 /* Shift and mask the source value */
23235 val_shift = val;
23236 if (shift->u.cval != 0) {
23237 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23238 use_triple(val, val_shift);
23239 use_triple(shift, val_shift);
23241 val_mask = val_shift;
23242 if (is_signed(val->type)) {
23243 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23244 use_triple(val_shift, val_mask);
23245 use_triple(mask, val_mask);
23248 /* Mask the target value */
23249 targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23250 use_triple(targ, targ_mask);
23251 use_triple(nmask, targ_mask);
23253 /* Now combined them together */
23254 new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23255 use_triple(targ_mask, new);
23256 use_triple(val_mask, new);
23258 /* Move all of the users over to the new expression */
23259 propogate_use(state, ins, new);
23261 /* Delete the original triple */
23262 release_triple(state, ins);
23264 /* Restart the transformation at mask */
23265 return mask;
23268 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23270 struct triple *mask, *shift;
23271 struct triple *val, *val_mask, *val_shift;
23272 ulong_t the_mask;
23274 val = RHS(ins, 0);
23276 /* Get constant for the mask value */
23277 the_mask = 1;
23278 the_mask <<= ins->u.bitfield.size;
23279 the_mask -= 1;
23280 mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23281 mask->u.cval = the_mask;
23283 /* Get constant for the right shift value */
23284 shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23285 shift->u.cval = ins->u.bitfield.offset;
23287 /* Shift arithmetic right, to correct the sign */
23288 val_shift = val;
23289 if (shift->u.cval != 0) {
23290 int op;
23291 if (ins->op == OP_SEXTRACT) {
23292 op = OP_SSR;
23293 } else {
23294 op = OP_USR;
23296 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23297 use_triple(val, val_shift);
23298 use_triple(shift, val_shift);
23301 /* Finally mask the value */
23302 val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23303 use_triple(val_shift, val_mask);
23304 use_triple(mask, val_mask);
23306 /* Move all of the users over to the new expression */
23307 propogate_use(state, ins, val_mask);
23309 /* Release the original instruction */
23310 release_triple(state, ins);
23312 return mask;
23316 static struct triple *transform_to_arch_instruction(
23317 struct compile_state *state, struct triple *ins)
23319 /* Transform from generic 3 address instructions
23320 * to archtecture specific instructions.
23321 * And apply architecture specific constraints to instructions.
23322 * Copies are inserted to preserve the register flexibility
23323 * of 3 address instructions.
23325 struct triple *next, *value;
23326 size_t size;
23327 next = ins->next;
23328 switch(ins->op) {
23329 case OP_INTCONST:
23330 ins->template_id = TEMPLATE_INTCONST32;
23331 if (ins->u.cval < 256) {
23332 ins->template_id = TEMPLATE_INTCONST8;
23334 break;
23335 case OP_ADDRCONST:
23336 ins->template_id = TEMPLATE_INTCONST32;
23337 break;
23338 case OP_UNKNOWNVAL:
23339 ins->template_id = TEMPLATE_UNKNOWNVAL;
23340 break;
23341 case OP_NOOP:
23342 case OP_SDECL:
23343 case OP_BLOBCONST:
23344 case OP_LABEL:
23345 ins->template_id = TEMPLATE_NOP;
23346 break;
23347 case OP_COPY:
23348 case OP_CONVERT:
23349 size = size_of(state, ins->type);
23350 value = RHS(ins, 0);
23351 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23352 ins->template_id = TEMPLATE_COPY_IMM8;
23354 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23355 ins->template_id = TEMPLATE_COPY_IMM16;
23357 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23358 ins->template_id = TEMPLATE_COPY_IMM32;
23360 else if (is_const(value)) {
23361 internal_error(state, ins, "bad constant passed to copy");
23363 else if (size <= SIZEOF_I8) {
23364 ins->template_id = TEMPLATE_COPY8_REG;
23366 else if (size <= SIZEOF_I16) {
23367 ins->template_id = TEMPLATE_COPY16_REG;
23369 else if (size <= SIZEOF_I32) {
23370 ins->template_id = TEMPLATE_COPY32_REG;
23372 else {
23373 internal_error(state, ins, "bad type passed to copy");
23375 break;
23376 case OP_PHI:
23377 size = size_of(state, ins->type);
23378 if (size <= SIZEOF_I8) {
23379 ins->template_id = TEMPLATE_PHI8;
23381 else if (size <= SIZEOF_I16) {
23382 ins->template_id = TEMPLATE_PHI16;
23384 else if (size <= SIZEOF_I32) {
23385 ins->template_id = TEMPLATE_PHI32;
23387 else {
23388 internal_error(state, ins, "bad type passed to phi");
23390 break;
23391 case OP_ADECL:
23392 /* Adecls should always be treated as dead code and
23393 * removed. If we are not optimizing they may linger.
23395 if (!noop_adecl(ins)) {
23396 internal_error(state, ins, "adecl remains?");
23398 ins->template_id = TEMPLATE_NOP;
23399 next = after_lhs(state, ins);
23400 break;
23401 case OP_STORE:
23402 switch(ins->type->type & TYPE_MASK) {
23403 case TYPE_CHAR: case TYPE_UCHAR:
23404 ins->template_id = TEMPLATE_STORE8;
23405 break;
23406 case TYPE_SHORT: case TYPE_USHORT:
23407 ins->template_id = TEMPLATE_STORE16;
23408 break;
23409 case TYPE_INT: case TYPE_UINT:
23410 case TYPE_LONG: case TYPE_ULONG:
23411 case TYPE_POINTER:
23412 ins->template_id = TEMPLATE_STORE32;
23413 break;
23414 default:
23415 internal_error(state, ins, "unknown type in store");
23416 break;
23418 break;
23419 case OP_LOAD:
23420 switch(ins->type->type & TYPE_MASK) {
23421 case TYPE_CHAR: case TYPE_UCHAR:
23422 case TYPE_SHORT: case TYPE_USHORT:
23423 case TYPE_INT: case TYPE_UINT:
23424 case TYPE_LONG: case TYPE_ULONG:
23425 case TYPE_POINTER:
23426 break;
23427 default:
23428 internal_error(state, ins, "unknown type in load");
23429 break;
23431 ins->template_id = TEMPLATE_LOAD32;
23432 break;
23433 case OP_ADD:
23434 case OP_SUB:
23435 case OP_AND:
23436 case OP_XOR:
23437 case OP_OR:
23438 case OP_SMUL:
23439 ins->template_id = TEMPLATE_BINARY32_REG;
23440 if (get_imm32(ins, &RHS(ins, 1))) {
23441 ins->template_id = TEMPLATE_BINARY32_IMM;
23443 break;
23444 case OP_SDIVT:
23445 case OP_UDIVT:
23446 ins->template_id = TEMPLATE_DIV32;
23447 next = after_lhs(state, ins);
23448 break;
23449 case OP_UMUL:
23450 ins->template_id = TEMPLATE_UMUL32;
23451 break;
23452 case OP_UDIV:
23453 next = mod_div(state, ins, OP_UDIVT, 0);
23454 break;
23455 case OP_SDIV:
23456 next = mod_div(state, ins, OP_SDIVT, 0);
23457 break;
23458 case OP_UMOD:
23459 next = mod_div(state, ins, OP_UDIVT, 1);
23460 break;
23461 case OP_SMOD:
23462 next = mod_div(state, ins, OP_SDIVT, 1);
23463 break;
23464 case OP_SL:
23465 case OP_SSR:
23466 case OP_USR:
23467 ins->template_id = TEMPLATE_SL32_CL;
23468 if (get_imm8(ins, &RHS(ins, 1))) {
23469 ins->template_id = TEMPLATE_SL32_IMM;
23470 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23471 typed_pre_copy(state, &uchar_type, ins, 1);
23473 break;
23474 case OP_INVERT:
23475 case OP_NEG:
23476 ins->template_id = TEMPLATE_UNARY32;
23477 break;
23478 case OP_EQ:
23479 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ);
23480 break;
23481 case OP_NOTEQ:
23482 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23483 break;
23484 case OP_SLESS:
23485 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23486 break;
23487 case OP_ULESS:
23488 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23489 break;
23490 case OP_SMORE:
23491 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23492 break;
23493 case OP_UMORE:
23494 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23495 break;
23496 case OP_SLESSEQ:
23497 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23498 break;
23499 case OP_ULESSEQ:
23500 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23501 break;
23502 case OP_SMOREEQ:
23503 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23504 break;
23505 case OP_UMOREEQ:
23506 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23507 break;
23508 case OP_LTRUE:
23509 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23510 break;
23511 case OP_LFALSE:
23512 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23513 break;
23514 case OP_BRANCH:
23515 ins->op = OP_JMP;
23516 ins->template_id = TEMPLATE_NOP;
23517 break;
23518 case OP_CBRANCH:
23519 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST,
23520 RHS(ins, 0)->type, RHS(ins, 0), 0);
23521 break;
23522 case OP_CALL:
23523 ins->template_id = TEMPLATE_NOP;
23524 break;
23525 case OP_RET:
23526 ins->template_id = TEMPLATE_RET;
23527 break;
23528 case OP_INB:
23529 case OP_INW:
23530 case OP_INL:
23531 switch(ins->op) {
23532 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23533 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23534 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23536 if (get_imm8(ins, &RHS(ins, 0))) {
23537 ins->template_id += 1;
23539 break;
23540 case OP_OUTB:
23541 case OP_OUTW:
23542 case OP_OUTL:
23543 switch(ins->op) {
23544 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23545 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23546 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23548 if (get_imm8(ins, &RHS(ins, 1))) {
23549 ins->template_id += 1;
23551 break;
23552 case OP_BSF:
23553 case OP_BSR:
23554 ins->template_id = TEMPLATE_BSF;
23555 break;
23556 case OP_RDMSR:
23557 ins->template_id = TEMPLATE_RDMSR;
23558 next = after_lhs(state, ins);
23559 break;
23560 case OP_WRMSR:
23561 ins->template_id = TEMPLATE_WRMSR;
23562 break;
23563 case OP_HLT:
23564 ins->template_id = TEMPLATE_NOP;
23565 break;
23566 case OP_ASM:
23567 ins->template_id = TEMPLATE_NOP;
23568 next = after_lhs(state, ins);
23569 break;
23570 /* Already transformed instructions */
23571 case OP_TEST:
23572 ins->template_id = TEMPLATE_TEST32;
23573 break;
23574 case OP_CMP:
23575 ins->template_id = TEMPLATE_CMP32_REG;
23576 if (get_imm32(ins, &RHS(ins, 1))) {
23577 ins->template_id = TEMPLATE_CMP32_IMM;
23579 break;
23580 case OP_JMP:
23581 ins->template_id = TEMPLATE_NOP;
23582 break;
23583 case OP_JMP_EQ: case OP_JMP_NOTEQ:
23584 case OP_JMP_SLESS: case OP_JMP_ULESS:
23585 case OP_JMP_SMORE: case OP_JMP_UMORE:
23586 case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23587 case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23588 ins->template_id = TEMPLATE_JMP;
23589 break;
23590 case OP_SET_EQ: case OP_SET_NOTEQ:
23591 case OP_SET_SLESS: case OP_SET_ULESS:
23592 case OP_SET_SMORE: case OP_SET_UMORE:
23593 case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23594 case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23595 ins->template_id = TEMPLATE_SET;
23596 break;
23597 case OP_DEPOSIT:
23598 next = x86_deposit(state, ins);
23599 break;
23600 case OP_SEXTRACT:
23601 case OP_UEXTRACT:
23602 next = x86_extract(state, ins);
23603 break;
23604 /* Unhandled instructions */
23605 case OP_PIECE:
23606 default:
23607 internal_error(state, ins, "unhandled ins: %d %s",
23608 ins->op, tops(ins->op));
23609 break;
23611 return next;
23614 static long next_label(struct compile_state *state)
23616 static long label_counter = 1000;
23617 return ++label_counter;
23619 static void generate_local_labels(struct compile_state *state)
23621 struct triple *first, *label;
23622 first = state->first;
23623 label = first;
23624 do {
23625 if ((label->op == OP_LABEL) ||
23626 (label->op == OP_SDECL)) {
23627 if (label->use) {
23628 label->u.cval = next_label(state);
23629 } else {
23630 label->u.cval = 0;
23634 label = label->next;
23635 } while(label != first);
23638 static int check_reg(struct compile_state *state,
23639 struct triple *triple, int classes)
23641 unsigned mask;
23642 int reg;
23643 reg = ID_REG(triple->id);
23644 if (reg == REG_UNSET) {
23645 internal_error(state, triple, "register not set");
23647 mask = arch_reg_regcm(state, reg);
23648 if (!(classes & mask)) {
23649 internal_error(state, triple, "reg %d in wrong class",
23650 reg);
23652 return reg;
23656 #if REG_XMM7 != 44
23657 #error "Registers have renumberd fix arch_reg_str"
23658 #endif
23659 static const char *arch_regs[] = {
23660 "%unset",
23661 "%unneeded",
23662 "%eflags",
23663 "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23664 "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23665 "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23666 "%edx:%eax",
23667 "%dx:%ax",
23668 "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23669 "%xmm0", "%xmm1", "%xmm2", "%xmm3",
23670 "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23672 static const char *arch_reg_str(int reg)
23674 if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23675 reg = 0;
23677 return arch_regs[reg];
23680 static const char *reg(struct compile_state *state, struct triple *triple,
23681 int classes)
23683 int reg;
23684 reg = check_reg(state, triple, classes);
23685 return arch_reg_str(reg);
23688 static int arch_reg_size(int reg)
23690 int size;
23691 size = 0;
23692 if (reg == REG_EFLAGS) {
23693 size = 32;
23695 else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23696 size = 8;
23698 else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23699 size = 16;
23701 else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23702 size = 32;
23704 else if (reg == REG_EDXEAX) {
23705 size = 64;
23707 else if (reg == REG_DXAX) {
23708 size = 32;
23710 else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23711 size = 64;
23713 else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23714 size = 128;
23716 return size;
23719 static int reg_size(struct compile_state *state, struct triple *ins)
23721 int reg;
23722 reg = ID_REG(ins->id);
23723 if (reg == REG_UNSET) {
23724 internal_error(state, ins, "register not set");
23726 return arch_reg_size(reg);
23731 const char *type_suffix(struct compile_state *state, struct type *type)
23733 const char *suffix;
23734 switch(size_of(state, type)) {
23735 case SIZEOF_I8: suffix = "b"; break;
23736 case SIZEOF_I16: suffix = "w"; break;
23737 case SIZEOF_I32: suffix = "l"; break;
23738 default:
23739 internal_error(state, 0, "unknown suffix");
23740 suffix = 0;
23741 break;
23743 return suffix;
23746 static void print_const_val(
23747 struct compile_state *state, struct triple *ins, FILE *fp)
23749 switch(ins->op) {
23750 case OP_INTCONST:
23751 fprintf(fp, " $%ld ",
23752 (long)(ins->u.cval));
23753 break;
23754 case OP_ADDRCONST:
23755 if ((MISC(ins, 0)->op != OP_SDECL) &&
23756 (MISC(ins, 0)->op != OP_LABEL))
23758 internal_error(state, ins, "bad base for addrconst");
23760 if (MISC(ins, 0)->u.cval <= 0) {
23761 internal_error(state, ins, "unlabeled constant");
23763 fprintf(fp, " $L%s%lu+%lu ",
23764 state->compiler->label_prefix,
23765 (unsigned long)(MISC(ins, 0)->u.cval),
23766 (unsigned long)(ins->u.cval));
23767 break;
23768 default:
23769 internal_error(state, ins, "unknown constant type");
23770 break;
23774 static void print_const(struct compile_state *state,
23775 struct triple *ins, FILE *fp)
23777 switch(ins->op) {
23778 case OP_INTCONST:
23779 switch(ins->type->type & TYPE_MASK) {
23780 case TYPE_CHAR:
23781 case TYPE_UCHAR:
23782 fprintf(fp, ".byte 0x%02lx\n",
23783 (unsigned long)(ins->u.cval));
23784 break;
23785 case TYPE_SHORT:
23786 case TYPE_USHORT:
23787 fprintf(fp, ".short 0x%04lx\n",
23788 (unsigned long)(ins->u.cval));
23789 break;
23790 case TYPE_INT:
23791 case TYPE_UINT:
23792 case TYPE_LONG:
23793 case TYPE_ULONG:
23794 case TYPE_POINTER:
23795 fprintf(fp, ".int %lu\n",
23796 (unsigned long)(ins->u.cval));
23797 break;
23798 default:
23799 fprintf(state->errout, "type: ");
23800 name_of(state->errout, ins->type);
23801 fprintf(state->errout, "\n");
23802 internal_error(state, ins, "Unknown constant type. Val: %lu",
23803 (unsigned long)(ins->u.cval));
23806 break;
23807 case OP_ADDRCONST:
23808 if ((MISC(ins, 0)->op != OP_SDECL) &&
23809 (MISC(ins, 0)->op != OP_LABEL)) {
23810 internal_error(state, ins, "bad base for addrconst");
23812 if (MISC(ins, 0)->u.cval <= 0) {
23813 internal_error(state, ins, "unlabeled constant");
23815 fprintf(fp, ".int L%s%lu+%lu\n",
23816 state->compiler->label_prefix,
23817 (unsigned long)(MISC(ins, 0)->u.cval),
23818 (unsigned long)(ins->u.cval));
23819 break;
23820 case OP_BLOBCONST:
23822 unsigned char *blob;
23823 size_t size, i;
23824 size = size_of_in_bytes(state, ins->type);
23825 blob = ins->u.blob;
23826 for(i = 0; i < size; i++) {
23827 fprintf(fp, ".byte 0x%02x\n",
23828 blob[i]);
23830 break;
23832 default:
23833 internal_error(state, ins, "Unknown constant type");
23834 break;
23838 #define TEXT_SECTION ".rom.text"
23839 #define DATA_SECTION ".rom.data"
23841 static long get_const_pool_ref(
23842 struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23844 size_t fill_bytes;
23845 long ref;
23846 ref = next_label(state);
23847 fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23848 fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23849 fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23850 print_const(state, ins, fp);
23851 fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23852 if (fill_bytes) {
23853 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23855 fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23856 return ref;
23859 static long get_mask_pool_ref(
23860 struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23862 long ref;
23863 if (mask == 0xff) {
23864 ref = 1;
23866 else if (mask == 0xffff) {
23867 ref = 2;
23869 else {
23870 ref = 0;
23871 internal_error(state, ins, "unhandled mask value");
23873 return ref;
23876 static void print_binary_op(struct compile_state *state,
23877 const char *op, struct triple *ins, FILE *fp)
23879 unsigned mask;
23880 mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23881 if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23882 internal_error(state, ins, "invalid register assignment");
23884 if (is_const(RHS(ins, 1))) {
23885 fprintf(fp, "\t%s ", op);
23886 print_const_val(state, RHS(ins, 1), fp);
23887 fprintf(fp, ", %s\n",
23888 reg(state, RHS(ins, 0), mask));
23890 else {
23891 unsigned lmask, rmask;
23892 int lreg, rreg;
23893 lreg = check_reg(state, RHS(ins, 0), mask);
23894 rreg = check_reg(state, RHS(ins, 1), mask);
23895 lmask = arch_reg_regcm(state, lreg);
23896 rmask = arch_reg_regcm(state, rreg);
23897 mask = lmask & rmask;
23898 fprintf(fp, "\t%s %s, %s\n",
23900 reg(state, RHS(ins, 1), mask),
23901 reg(state, RHS(ins, 0), mask));
23904 static void print_unary_op(struct compile_state *state,
23905 const char *op, struct triple *ins, FILE *fp)
23907 unsigned mask;
23908 mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23909 fprintf(fp, "\t%s %s\n",
23911 reg(state, RHS(ins, 0), mask));
23914 static void print_op_shift(struct compile_state *state,
23915 const char *op, struct triple *ins, FILE *fp)
23917 unsigned mask;
23918 mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23919 if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23920 internal_error(state, ins, "invalid register assignment");
23922 if (is_const(RHS(ins, 1))) {
23923 fprintf(fp, "\t%s ", op);
23924 print_const_val(state, RHS(ins, 1), fp);
23925 fprintf(fp, ", %s\n",
23926 reg(state, RHS(ins, 0), mask));
23928 else {
23929 fprintf(fp, "\t%s %s, %s\n",
23931 reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23932 reg(state, RHS(ins, 0), mask));
23936 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23938 const char *op;
23939 int mask;
23940 int dreg;
23941 mask = 0;
23942 switch(ins->op) {
23943 case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23944 case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23945 case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23946 default:
23947 internal_error(state, ins, "not an in operation");
23948 op = 0;
23949 break;
23951 dreg = check_reg(state, ins, mask);
23952 if (!reg_is_reg(state, dreg, REG_EAX)) {
23953 internal_error(state, ins, "dst != %%eax");
23955 if (is_const(RHS(ins, 0))) {
23956 fprintf(fp, "\t%s ", op);
23957 print_const_val(state, RHS(ins, 0), fp);
23958 fprintf(fp, ", %s\n",
23959 reg(state, ins, mask));
23961 else {
23962 int addr_reg;
23963 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23964 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23965 internal_error(state, ins, "src != %%dx");
23967 fprintf(fp, "\t%s %s, %s\n",
23969 reg(state, RHS(ins, 0), REGCM_GPR16),
23970 reg(state, ins, mask));
23974 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23976 const char *op;
23977 int mask;
23978 int lreg;
23979 mask = 0;
23980 switch(ins->op) {
23981 case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
23982 case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
23983 case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
23984 default:
23985 internal_error(state, ins, "not an out operation");
23986 op = 0;
23987 break;
23989 lreg = check_reg(state, RHS(ins, 0), mask);
23990 if (!reg_is_reg(state, lreg, REG_EAX)) {
23991 internal_error(state, ins, "src != %%eax");
23993 if (is_const(RHS(ins, 1))) {
23994 fprintf(fp, "\t%s %s,",
23995 op, reg(state, RHS(ins, 0), mask));
23996 print_const_val(state, RHS(ins, 1), fp);
23997 fprintf(fp, "\n");
23999 else {
24000 int addr_reg;
24001 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24002 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24003 internal_error(state, ins, "dst != %%dx");
24005 fprintf(fp, "\t%s %s, %s\n",
24007 reg(state, RHS(ins, 0), mask),
24008 reg(state, RHS(ins, 1), REGCM_GPR16));
24012 static void print_op_move(struct compile_state *state,
24013 struct triple *ins, FILE *fp)
24015 /* op_move is complex because there are many types
24016 * of registers we can move between.
24017 * Because OP_COPY will be introduced in arbitrary locations
24018 * OP_COPY must not affect flags.
24019 * OP_CONVERT can change the flags and it is the only operation
24020 * where it is expected the types in the registers can change.
24022 int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24023 struct triple *dst, *src;
24024 if (state->arch->features & X86_NOOP_COPY) {
24025 omit_copy = 0;
24027 if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24028 src = RHS(ins, 0);
24029 dst = ins;
24031 else {
24032 internal_error(state, ins, "unknown move operation");
24033 src = dst = 0;
24035 if (reg_size(state, dst) < size_of(state, dst->type)) {
24036 internal_error(state, ins, "Invalid destination register");
24038 if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24039 fprintf(state->errout, "src type: ");
24040 name_of(state->errout, src->type);
24041 fprintf(state->errout, "\n");
24042 fprintf(state->errout, "dst type: ");
24043 name_of(state->errout, dst->type);
24044 fprintf(state->errout, "\n");
24045 internal_error(state, ins, "Type mismatch for OP_COPY");
24048 if (!is_const(src)) {
24049 int src_reg, dst_reg;
24050 int src_regcm, dst_regcm;
24051 src_reg = ID_REG(src->id);
24052 dst_reg = ID_REG(dst->id);
24053 src_regcm = arch_reg_regcm(state, src_reg);
24054 dst_regcm = arch_reg_regcm(state, dst_reg);
24055 /* If the class is the same just move the register */
24056 if (src_regcm & dst_regcm &
24057 (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24058 if ((src_reg != dst_reg) || !omit_copy) {
24059 fprintf(fp, "\tmov %s, %s\n",
24060 reg(state, src, src_regcm),
24061 reg(state, dst, dst_regcm));
24064 /* Move 32bit to 16bit */
24065 else if ((src_regcm & REGCM_GPR32) &&
24066 (dst_regcm & REGCM_GPR16)) {
24067 src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24068 if ((src_reg != dst_reg) || !omit_copy) {
24069 fprintf(fp, "\tmovw %s, %s\n",
24070 arch_reg_str(src_reg),
24071 arch_reg_str(dst_reg));
24074 /* Move from 32bit gprs to 16bit gprs */
24075 else if ((src_regcm & REGCM_GPR32) &&
24076 (dst_regcm & REGCM_GPR16)) {
24077 dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24078 if ((src_reg != dst_reg) || !omit_copy) {
24079 fprintf(fp, "\tmov %s, %s\n",
24080 arch_reg_str(src_reg),
24081 arch_reg_str(dst_reg));
24084 /* Move 32bit to 8bit */
24085 else if ((src_regcm & REGCM_GPR32_8) &&
24086 (dst_regcm & REGCM_GPR8_LO))
24088 src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24089 if ((src_reg != dst_reg) || !omit_copy) {
24090 fprintf(fp, "\tmovb %s, %s\n",
24091 arch_reg_str(src_reg),
24092 arch_reg_str(dst_reg));
24095 /* Move 16bit to 8bit */
24096 else if ((src_regcm & REGCM_GPR16_8) &&
24097 (dst_regcm & REGCM_GPR8_LO))
24099 src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24100 if ((src_reg != dst_reg) || !omit_copy) {
24101 fprintf(fp, "\tmovb %s, %s\n",
24102 arch_reg_str(src_reg),
24103 arch_reg_str(dst_reg));
24106 /* Move 8/16bit to 16/32bit */
24107 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) &&
24108 (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24109 const char *op;
24110 op = is_signed(src->type)? "movsx": "movzx";
24111 fprintf(fp, "\t%s %s, %s\n",
24113 reg(state, src, src_regcm),
24114 reg(state, dst, dst_regcm));
24116 /* Move between sse registers */
24117 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24118 if ((src_reg != dst_reg) || !omit_copy) {
24119 fprintf(fp, "\tmovdqa %s, %s\n",
24120 reg(state, src, src_regcm),
24121 reg(state, dst, dst_regcm));
24124 /* Move between mmx registers */
24125 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24126 if ((src_reg != dst_reg) || !omit_copy) {
24127 fprintf(fp, "\tmovq %s, %s\n",
24128 reg(state, src, src_regcm),
24129 reg(state, dst, dst_regcm));
24132 /* Move from sse to mmx registers */
24133 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24134 fprintf(fp, "\tmovdq2q %s, %s\n",
24135 reg(state, src, src_regcm),
24136 reg(state, dst, dst_regcm));
24138 /* Move from mmx to sse registers */
24139 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24140 fprintf(fp, "\tmovq2dq %s, %s\n",
24141 reg(state, src, src_regcm),
24142 reg(state, dst, dst_regcm));
24144 /* Move between 32bit gprs & mmx/sse registers */
24145 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24146 (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24147 fprintf(fp, "\tmovd %s, %s\n",
24148 reg(state, src, src_regcm),
24149 reg(state, dst, dst_regcm));
24151 /* Move from 16bit gprs & mmx/sse registers */
24152 else if ((src_regcm & REGCM_GPR16) &&
24153 (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24154 const char *op;
24155 int mid_reg;
24156 op = is_signed(src->type)? "movsx":"movzx";
24157 mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24158 fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24160 arch_reg_str(src_reg),
24161 arch_reg_str(mid_reg),
24162 arch_reg_str(mid_reg),
24163 arch_reg_str(dst_reg));
24165 /* Move from mmx/sse registers to 16bit gprs */
24166 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24167 (dst_regcm & REGCM_GPR16)) {
24168 dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24169 fprintf(fp, "\tmovd %s, %s\n",
24170 arch_reg_str(src_reg),
24171 arch_reg_str(dst_reg));
24173 /* Move from gpr to 64bit dividend */
24174 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) &&
24175 (dst_regcm & REGCM_DIVIDEND64)) {
24176 const char *extend;
24177 extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24178 fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24179 arch_reg_str(src_reg),
24180 extend);
24182 /* Move from 64bit gpr to gpr */
24183 else if ((src_regcm & REGCM_DIVIDEND64) &&
24184 (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24185 if (dst_regcm & REGCM_GPR32) {
24186 src_reg = REG_EAX;
24188 else if (dst_regcm & REGCM_GPR16) {
24189 src_reg = REG_AX;
24191 else if (dst_regcm & REGCM_GPR8_LO) {
24192 src_reg = REG_AL;
24194 fprintf(fp, "\tmov %s, %s\n",
24195 arch_reg_str(src_reg),
24196 arch_reg_str(dst_reg));
24198 /* Move from mmx/sse registers to 64bit gpr */
24199 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24200 (dst_regcm & REGCM_DIVIDEND64)) {
24201 const char *extend;
24202 extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24203 fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24204 arch_reg_str(src_reg),
24205 extend);
24207 /* Move from 64bit gpr to mmx/sse register */
24208 else if ((src_regcm & REGCM_DIVIDEND64) &&
24209 (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24210 fprintf(fp, "\tmovd %%eax, %s\n",
24211 arch_reg_str(dst_reg));
24213 #if X86_4_8BIT_GPRS
24214 /* Move from 8bit gprs to mmx/sse registers */
24215 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24216 (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24217 const char *op;
24218 int mid_reg;
24219 op = is_signed(src->type)? "movsx":"movzx";
24220 mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24221 fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24223 reg(state, src, src_regcm),
24224 arch_reg_str(mid_reg),
24225 arch_reg_str(mid_reg),
24226 reg(state, dst, dst_regcm));
24228 /* Move from mmx/sse registers and 8bit gprs */
24229 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24230 (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24231 int mid_reg;
24232 mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24233 fprintf(fp, "\tmovd %s, %s\n",
24234 reg(state, src, src_regcm),
24235 arch_reg_str(mid_reg));
24237 /* Move from 32bit gprs to 8bit gprs */
24238 else if ((src_regcm & REGCM_GPR32) &&
24239 (dst_regcm & REGCM_GPR8_LO)) {
24240 dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24241 if ((src_reg != dst_reg) || !omit_copy) {
24242 fprintf(fp, "\tmov %s, %s\n",
24243 arch_reg_str(src_reg),
24244 arch_reg_str(dst_reg));
24247 /* Move from 16bit gprs to 8bit gprs */
24248 else if ((src_regcm & REGCM_GPR16) &&
24249 (dst_regcm & REGCM_GPR8_LO)) {
24250 dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24251 if ((src_reg != dst_reg) || !omit_copy) {
24252 fprintf(fp, "\tmov %s, %s\n",
24253 arch_reg_str(src_reg),
24254 arch_reg_str(dst_reg));
24257 #endif /* X86_4_8BIT_GPRS */
24258 /* Move from %eax:%edx to %eax:%edx */
24259 else if ((src_regcm & REGCM_DIVIDEND64) &&
24260 (dst_regcm & REGCM_DIVIDEND64) &&
24261 (src_reg == dst_reg)) {
24262 if (!omit_copy) {
24263 fprintf(fp, "\t/*mov %s, %s*/\n",
24264 arch_reg_str(src_reg),
24265 arch_reg_str(dst_reg));
24268 else {
24269 if ((src_regcm & ~REGCM_FLAGS) == 0) {
24270 internal_error(state, ins, "attempt to copy from %%eflags!");
24272 internal_error(state, ins, "unknown copy type");
24275 else {
24276 size_t dst_size;
24277 int dst_reg;
24278 int dst_regcm;
24279 dst_size = size_of(state, dst->type);
24280 dst_reg = ID_REG(dst->id);
24281 dst_regcm = arch_reg_regcm(state, dst_reg);
24282 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24283 fprintf(fp, "\tmov ");
24284 print_const_val(state, src, fp);
24285 fprintf(fp, ", %s\n",
24286 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24288 else if (dst_regcm & REGCM_DIVIDEND64) {
24289 if (dst_size > SIZEOF_I32) {
24290 internal_error(state, ins, "%dbit constant...", dst_size);
24292 fprintf(fp, "\tmov $0, %%edx\n");
24293 fprintf(fp, "\tmov ");
24294 print_const_val(state, src, fp);
24295 fprintf(fp, ", %%eax\n");
24297 else if (dst_regcm & REGCM_DIVIDEND32) {
24298 if (dst_size > SIZEOF_I16) {
24299 internal_error(state, ins, "%dbit constant...", dst_size);
24301 fprintf(fp, "\tmov $0, %%dx\n");
24302 fprintf(fp, "\tmov ");
24303 print_const_val(state, src, fp);
24304 fprintf(fp, ", %%ax");
24306 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24307 long ref;
24308 if (dst_size > SIZEOF_I32) {
24309 internal_error(state, ins, "%d bit constant...", dst_size);
24311 ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24312 fprintf(fp, "\tmovd L%s%lu, %s\n",
24313 state->compiler->label_prefix, ref,
24314 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24316 else {
24317 internal_error(state, ins, "unknown copy immediate type");
24320 /* Leave now if this is not a type conversion */
24321 if (ins->op != OP_CONVERT) {
24322 return;
24324 /* Now make certain I have not logically overflowed the destination */
24325 if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24326 (size_of(state, dst->type) < reg_size(state, dst)))
24328 unsigned long mask;
24329 int dst_reg;
24330 int dst_regcm;
24331 if (size_of(state, dst->type) >= 32) {
24332 fprintf(state->errout, "dst type: ");
24333 name_of(state->errout, dst->type);
24334 fprintf(state->errout, "\n");
24335 internal_error(state, dst, "unhandled dst type size");
24337 mask = 1;
24338 mask <<= size_of(state, dst->type);
24339 mask -= 1;
24341 dst_reg = ID_REG(dst->id);
24342 dst_regcm = arch_reg_regcm(state, dst_reg);
24344 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24345 fprintf(fp, "\tand $0x%lx, %s\n",
24346 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24348 else if (dst_regcm & REGCM_MMX) {
24349 long ref;
24350 ref = get_mask_pool_ref(state, dst, mask, fp);
24351 fprintf(fp, "\tpand L%s%lu, %s\n",
24352 state->compiler->label_prefix, ref,
24353 reg(state, dst, REGCM_MMX));
24355 else if (dst_regcm & REGCM_XMM) {
24356 long ref;
24357 ref = get_mask_pool_ref(state, dst, mask, fp);
24358 fprintf(fp, "\tpand L%s%lu, %s\n",
24359 state->compiler->label_prefix, ref,
24360 reg(state, dst, REGCM_XMM));
24362 else {
24363 fprintf(state->errout, "dst type: ");
24364 name_of(state->errout, dst->type);
24365 fprintf(state->errout, "\n");
24366 fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24367 internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24370 /* Make certain I am properly sign extended */
24371 if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24372 (is_signed(src->type)))
24374 int reg_bits, shift_bits;
24375 int dst_reg;
24376 int dst_regcm;
24378 reg_bits = reg_size(state, dst);
24379 if (reg_bits > 32) {
24380 reg_bits = 32;
24382 shift_bits = reg_bits - size_of(state, src->type);
24383 dst_reg = ID_REG(dst->id);
24384 dst_regcm = arch_reg_regcm(state, dst_reg);
24386 if (shift_bits < 0) {
24387 internal_error(state, dst, "negative shift?");
24390 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24391 fprintf(fp, "\tshl $%d, %s\n",
24392 shift_bits,
24393 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24394 fprintf(fp, "\tsar $%d, %s\n",
24395 shift_bits,
24396 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24398 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24399 fprintf(fp, "\tpslld $%d, %s\n",
24400 shift_bits,
24401 reg(state, dst, REGCM_MMX | REGCM_XMM));
24402 fprintf(fp, "\tpsrad $%d, %s\n",
24403 shift_bits,
24404 reg(state, dst, REGCM_MMX | REGCM_XMM));
24406 else {
24407 fprintf(state->errout, "dst type: ");
24408 name_of(state->errout, dst->type);
24409 fprintf(state->errout, "\n");
24410 fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24411 internal_error(state, dst, "failed to signed extend value");
24416 static void print_op_load(struct compile_state *state,
24417 struct triple *ins, FILE *fp)
24419 struct triple *dst, *src;
24420 const char *op;
24421 dst = ins;
24422 src = RHS(ins, 0);
24423 if (is_const(src) || is_const(dst)) {
24424 internal_error(state, ins, "unknown load operation");
24426 switch(ins->type->type & TYPE_MASK) {
24427 case TYPE_CHAR: op = "movsbl"; break;
24428 case TYPE_UCHAR: op = "movzbl"; break;
24429 case TYPE_SHORT: op = "movswl"; break;
24430 case TYPE_USHORT: op = "movzwl"; break;
24431 case TYPE_INT: case TYPE_UINT:
24432 case TYPE_LONG: case TYPE_ULONG:
24433 case TYPE_POINTER:
24434 op = "movl";
24435 break;
24436 default:
24437 internal_error(state, ins, "unknown type in load");
24438 op = "<invalid opcode>";
24439 break;
24441 fprintf(fp, "\t%s (%s), %s\n",
24443 reg(state, src, REGCM_GPR32),
24444 reg(state, dst, REGCM_GPR32));
24448 static void print_op_store(struct compile_state *state,
24449 struct triple *ins, FILE *fp)
24451 struct triple *dst, *src;
24452 dst = RHS(ins, 0);
24453 src = RHS(ins, 1);
24454 if (is_const(src) && (src->op == OP_INTCONST)) {
24455 long_t value;
24456 value = (long_t)(src->u.cval);
24457 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24458 type_suffix(state, src->type),
24459 (long)(value),
24460 reg(state, dst, REGCM_GPR32));
24462 else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24463 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24464 type_suffix(state, src->type),
24465 reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24466 (unsigned long)(dst->u.cval));
24468 else {
24469 if (is_const(src) || is_const(dst)) {
24470 internal_error(state, ins, "unknown store operation");
24472 fprintf(fp, "\tmov%s %s, (%s)\n",
24473 type_suffix(state, src->type),
24474 reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24475 reg(state, dst, REGCM_GPR32));
24481 static void print_op_smul(struct compile_state *state,
24482 struct triple *ins, FILE *fp)
24484 if (!is_const(RHS(ins, 1))) {
24485 fprintf(fp, "\timul %s, %s\n",
24486 reg(state, RHS(ins, 1), REGCM_GPR32),
24487 reg(state, RHS(ins, 0), REGCM_GPR32));
24489 else {
24490 fprintf(fp, "\timul ");
24491 print_const_val(state, RHS(ins, 1), fp);
24492 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24496 static void print_op_cmp(struct compile_state *state,
24497 struct triple *ins, FILE *fp)
24499 unsigned mask;
24500 int dreg;
24501 mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24502 dreg = check_reg(state, ins, REGCM_FLAGS);
24503 if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24504 internal_error(state, ins, "bad dest register for cmp");
24506 if (is_const(RHS(ins, 1))) {
24507 fprintf(fp, "\tcmp ");
24508 print_const_val(state, RHS(ins, 1), fp);
24509 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24511 else {
24512 unsigned lmask, rmask;
24513 int lreg, rreg;
24514 lreg = check_reg(state, RHS(ins, 0), mask);
24515 rreg = check_reg(state, RHS(ins, 1), mask);
24516 lmask = arch_reg_regcm(state, lreg);
24517 rmask = arch_reg_regcm(state, rreg);
24518 mask = lmask & rmask;
24519 fprintf(fp, "\tcmp %s, %s\n",
24520 reg(state, RHS(ins, 1), mask),
24521 reg(state, RHS(ins, 0), mask));
24525 static void print_op_test(struct compile_state *state,
24526 struct triple *ins, FILE *fp)
24528 unsigned mask;
24529 mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24530 fprintf(fp, "\ttest %s, %s\n",
24531 reg(state, RHS(ins, 0), mask),
24532 reg(state, RHS(ins, 0), mask));
24535 static void print_op_branch(struct compile_state *state,
24536 struct triple *branch, FILE *fp)
24538 const char *bop = "j";
24539 if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24540 if (branch->rhs != 0) {
24541 internal_error(state, branch, "jmp with condition?");
24543 bop = "jmp";
24545 else {
24546 struct triple *ptr;
24547 if (branch->rhs != 1) {
24548 internal_error(state, branch, "jmpcc without condition?");
24550 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24551 if ((RHS(branch, 0)->op != OP_CMP) &&
24552 (RHS(branch, 0)->op != OP_TEST)) {
24553 internal_error(state, branch, "bad branch test");
24555 #if DEBUG_ROMCC_WARNINGS
24556 #warning "FIXME I have observed instructions between the test and branch instructions"
24557 #endif
24558 ptr = RHS(branch, 0);
24559 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24560 if (ptr->op != OP_COPY) {
24561 internal_error(state, branch, "branch does not follow test");
24564 switch(branch->op) {
24565 case OP_JMP_EQ: bop = "jz"; break;
24566 case OP_JMP_NOTEQ: bop = "jnz"; break;
24567 case OP_JMP_SLESS: bop = "jl"; break;
24568 case OP_JMP_ULESS: bop = "jb"; break;
24569 case OP_JMP_SMORE: bop = "jg"; break;
24570 case OP_JMP_UMORE: bop = "ja"; break;
24571 case OP_JMP_SLESSEQ: bop = "jle"; break;
24572 case OP_JMP_ULESSEQ: bop = "jbe"; break;
24573 case OP_JMP_SMOREEQ: bop = "jge"; break;
24574 case OP_JMP_UMOREEQ: bop = "jae"; break;
24575 default:
24576 internal_error(state, branch, "Invalid branch op");
24577 break;
24581 #if 1
24582 if (branch->op == OP_CALL) {
24583 fprintf(fp, "\t/* call */\n");
24585 #endif
24586 fprintf(fp, "\t%s L%s%lu\n",
24587 bop,
24588 state->compiler->label_prefix,
24589 (unsigned long)(TARG(branch, 0)->u.cval));
24592 static void print_op_ret(struct compile_state *state,
24593 struct triple *branch, FILE *fp)
24595 fprintf(fp, "\tjmp *%s\n",
24596 reg(state, RHS(branch, 0), REGCM_GPR32));
24599 static void print_op_set(struct compile_state *state,
24600 struct triple *set, FILE *fp)
24602 const char *sop = "set";
24603 if (set->rhs != 1) {
24604 internal_error(state, set, "setcc without condition?");
24606 check_reg(state, RHS(set, 0), REGCM_FLAGS);
24607 if ((RHS(set, 0)->op != OP_CMP) &&
24608 (RHS(set, 0)->op != OP_TEST)) {
24609 internal_error(state, set, "bad set test");
24611 if (RHS(set, 0)->next != set) {
24612 internal_error(state, set, "set does not follow test");
24614 switch(set->op) {
24615 case OP_SET_EQ: sop = "setz"; break;
24616 case OP_SET_NOTEQ: sop = "setnz"; break;
24617 case OP_SET_SLESS: sop = "setl"; break;
24618 case OP_SET_ULESS: sop = "setb"; break;
24619 case OP_SET_SMORE: sop = "setg"; break;
24620 case OP_SET_UMORE: sop = "seta"; break;
24621 case OP_SET_SLESSEQ: sop = "setle"; break;
24622 case OP_SET_ULESSEQ: sop = "setbe"; break;
24623 case OP_SET_SMOREEQ: sop = "setge"; break;
24624 case OP_SET_UMOREEQ: sop = "setae"; break;
24625 default:
24626 internal_error(state, set, "Invalid set op");
24627 break;
24629 fprintf(fp, "\t%s %s\n",
24630 sop, reg(state, set, REGCM_GPR8_LO));
24633 static void print_op_bit_scan(struct compile_state *state,
24634 struct triple *ins, FILE *fp)
24636 const char *op;
24637 switch(ins->op) {
24638 case OP_BSF: op = "bsf"; break;
24639 case OP_BSR: op = "bsr"; break;
24640 default:
24641 internal_error(state, ins, "unknown bit scan");
24642 op = 0;
24643 break;
24645 fprintf(fp,
24646 "\t%s %s, %s\n"
24647 "\tjnz 1f\n"
24648 "\tmovl $-1, %s\n"
24649 "1:\n",
24651 reg(state, RHS(ins, 0), REGCM_GPR32),
24652 reg(state, ins, REGCM_GPR32),
24653 reg(state, ins, REGCM_GPR32));
24657 static void print_sdecl(struct compile_state *state,
24658 struct triple *ins, FILE *fp)
24660 fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24661 fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24662 fprintf(fp, "L%s%lu:\n",
24663 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24664 print_const(state, MISC(ins, 0), fp);
24665 fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24669 static void print_instruction(struct compile_state *state,
24670 struct triple *ins, FILE *fp)
24672 /* Assumption: after I have exted the register allocator
24673 * everything is in a valid register.
24675 switch(ins->op) {
24676 case OP_ASM:
24677 print_op_asm(state, ins, fp);
24678 break;
24679 case OP_ADD: print_binary_op(state, "add", ins, fp); break;
24680 case OP_SUB: print_binary_op(state, "sub", ins, fp); break;
24681 case OP_AND: print_binary_op(state, "and", ins, fp); break;
24682 case OP_XOR: print_binary_op(state, "xor", ins, fp); break;
24683 case OP_OR: print_binary_op(state, "or", ins, fp); break;
24684 case OP_SL: print_op_shift(state, "shl", ins, fp); break;
24685 case OP_USR: print_op_shift(state, "shr", ins, fp); break;
24686 case OP_SSR: print_op_shift(state, "sar", ins, fp); break;
24687 case OP_POS: break;
24688 case OP_NEG: print_unary_op(state, "neg", ins, fp); break;
24689 case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24690 case OP_NOOP:
24691 case OP_INTCONST:
24692 case OP_ADDRCONST:
24693 case OP_BLOBCONST:
24694 /* Don't generate anything here for constants */
24695 case OP_PHI:
24696 /* Don't generate anything for variable declarations. */
24697 break;
24698 case OP_UNKNOWNVAL:
24699 fprintf(fp, " /* unknown %s */\n",
24700 reg(state, ins, REGCM_ALL));
24701 break;
24702 case OP_SDECL:
24703 print_sdecl(state, ins, fp);
24704 break;
24705 case OP_COPY:
24706 case OP_CONVERT:
24707 print_op_move(state, ins, fp);
24708 break;
24709 case OP_LOAD:
24710 print_op_load(state, ins, fp);
24711 break;
24712 case OP_STORE:
24713 print_op_store(state, ins, fp);
24714 break;
24715 case OP_SMUL:
24716 print_op_smul(state, ins, fp);
24717 break;
24718 case OP_CMP: print_op_cmp(state, ins, fp); break;
24719 case OP_TEST: print_op_test(state, ins, fp); break;
24720 case OP_JMP:
24721 case OP_JMP_EQ: case OP_JMP_NOTEQ:
24722 case OP_JMP_SLESS: case OP_JMP_ULESS:
24723 case OP_JMP_SMORE: case OP_JMP_UMORE:
24724 case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24725 case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24726 case OP_CALL:
24727 print_op_branch(state, ins, fp);
24728 break;
24729 case OP_RET:
24730 print_op_ret(state, ins, fp);
24731 break;
24732 case OP_SET_EQ: case OP_SET_NOTEQ:
24733 case OP_SET_SLESS: case OP_SET_ULESS:
24734 case OP_SET_SMORE: case OP_SET_UMORE:
24735 case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24736 case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24737 print_op_set(state, ins, fp);
24738 break;
24739 case OP_INB: case OP_INW: case OP_INL:
24740 print_op_in(state, ins, fp);
24741 break;
24742 case OP_OUTB: case OP_OUTW: case OP_OUTL:
24743 print_op_out(state, ins, fp);
24744 break;
24745 case OP_BSF:
24746 case OP_BSR:
24747 print_op_bit_scan(state, ins, fp);
24748 break;
24749 case OP_RDMSR:
24750 after_lhs(state, ins);
24751 fprintf(fp, "\trdmsr\n");
24752 break;
24753 case OP_WRMSR:
24754 fprintf(fp, "\twrmsr\n");
24755 break;
24756 case OP_HLT:
24757 fprintf(fp, "\thlt\n");
24758 break;
24759 case OP_SDIVT:
24760 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24761 break;
24762 case OP_UDIVT:
24763 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24764 break;
24765 case OP_UMUL:
24766 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24767 break;
24768 case OP_LABEL:
24769 if (!ins->use) {
24770 return;
24772 fprintf(fp, "L%s%lu:\n",
24773 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24774 break;
24775 case OP_ADECL:
24776 /* Ignore adecls with no registers error otherwise */
24777 if (!noop_adecl(ins)) {
24778 internal_error(state, ins, "adecl remains?");
24780 break;
24781 /* Ignore OP_PIECE */
24782 case OP_PIECE:
24783 break;
24784 /* Operations that should never get here */
24785 case OP_SDIV: case OP_UDIV:
24786 case OP_SMOD: case OP_UMOD:
24787 case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
24788 case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
24789 case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24790 default:
24791 internal_error(state, ins, "unknown op: %d %s",
24792 ins->op, tops(ins->op));
24793 break;
24797 static void print_instructions(struct compile_state *state)
24799 struct triple *first, *ins;
24800 int print_location;
24801 struct occurance *last_occurance;
24802 FILE *fp;
24803 int max_inline_depth;
24804 max_inline_depth = 0;
24805 print_location = 1;
24806 last_occurance = 0;
24807 fp = state->output;
24808 /* Masks for common sizes */
24809 fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24810 fprintf(fp, ".balign 16\n");
24811 fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24812 fprintf(fp, ".int 0xff, 0, 0, 0\n");
24813 fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24814 fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24815 fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24816 first = state->first;
24817 ins = first;
24818 do {
24819 if (print_location &&
24820 last_occurance != ins->occurance) {
24821 if (!ins->occurance->parent) {
24822 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24823 ins->occurance->function?ins->occurance->function:"(null)",
24824 ins->occurance->filename?ins->occurance->filename:"(null)",
24825 ins->occurance->line,
24826 ins->occurance->col);
24828 else {
24829 struct occurance *ptr;
24830 int inline_depth;
24831 fprintf(fp, "\t/*\n");
24832 inline_depth = 0;
24833 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24834 inline_depth++;
24835 fprintf(fp, "\t * %s,%s:%d.%d\n",
24836 ptr->function,
24837 ptr->filename,
24838 ptr->line,
24839 ptr->col);
24841 fprintf(fp, "\t */\n");
24842 if (inline_depth > max_inline_depth) {
24843 max_inline_depth = inline_depth;
24846 if (last_occurance) {
24847 put_occurance(last_occurance);
24849 get_occurance(ins->occurance);
24850 last_occurance = ins->occurance;
24853 print_instruction(state, ins, fp);
24854 ins = ins->next;
24855 } while(ins != first);
24856 if (print_location) {
24857 fprintf(fp, "/* max inline depth %d */\n",
24858 max_inline_depth);
24862 static void generate_code(struct compile_state *state)
24864 generate_local_labels(state);
24865 print_instructions(state);
24869 static void print_preprocessed_tokens(struct compile_state *state)
24871 int tok;
24872 FILE *fp;
24873 int line;
24874 const char *filename;
24875 fp = state->output;
24876 filename = 0;
24877 line = 0;
24878 for(;;) {
24879 struct file_state *file;
24880 struct token *tk;
24881 const char *token_str;
24882 tok = peek(state);
24883 if (tok == TOK_EOF) {
24884 break;
24886 tk = eat(state, tok);
24887 token_str =
24888 tk->ident ? tk->ident->name :
24889 tk->str_len ? tk->val.str :
24890 tokens[tk->tok];
24892 file = state->file;
24893 while(file->macro && file->prev) {
24894 file = file->prev;
24896 if (!file->macro &&
24897 ((file->line != line) || (file->basename != filename)))
24899 int i, col;
24900 if ((file->basename == filename) &&
24901 (line < file->line)) {
24902 while(line < file->line) {
24903 fprintf(fp, "\n");
24904 line++;
24907 else {
24908 fprintf(fp, "\n#line %d \"%s\"\n",
24909 file->line, file->basename);
24911 line = file->line;
24912 filename = file->basename;
24913 col = get_col(file) - strlen(token_str);
24914 for(i = 0; i < col; i++) {
24915 fprintf(fp, " ");
24919 fprintf(fp, "%s ", token_str);
24921 if (state->compiler->debug & DEBUG_TOKENS) {
24922 loc(state->dbgout, state, 0);
24923 fprintf(state->dbgout, "%s <- `%s'\n",
24924 tokens[tok], token_str);
24929 static void compile(const char *filename,
24930 struct compiler_state *compiler, struct arch_state *arch)
24932 int i;
24933 struct compile_state state;
24934 struct triple *ptr;
24935 struct filelist *includes = include_filelist;
24936 memset(&state, 0, sizeof(state));
24937 state.compiler = compiler;
24938 state.arch = arch;
24939 state.file = 0;
24940 for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24941 memset(&state.token[i], 0, sizeof(state.token[i]));
24942 state.token[i].tok = -1;
24944 /* Remember the output descriptors */
24945 state.errout = stderr;
24946 state.dbgout = stdout;
24947 /* Remember the output filename */
24948 if ((state.compiler->flags & COMPILER_PP_ONLY) && (strcmp("auto.inc",state.compiler->ofilename) == 0)) {
24949 state.output = stdout;
24950 } else {
24951 state.output = fopen(state.compiler->ofilename, "w");
24952 if (!state.output) {
24953 error(&state, 0, "Cannot open output file %s\n",
24954 state.compiler->ofilename);
24957 /* Make certain a good cleanup happens */
24958 exit_state = &state;
24959 atexit(exit_cleanup);
24961 /* Prep the preprocessor */
24962 state.if_depth = 0;
24963 memset(state.if_bytes, 0, sizeof(state.if_bytes));
24964 /* register the C keywords */
24965 register_keywords(&state);
24966 /* register the keywords the macro preprocessor knows */
24967 register_macro_keywords(&state);
24968 /* generate some builtin macros */
24969 register_builtin_macros(&state);
24970 /* Memorize where some special keywords are. */
24971 state.i_switch = lookup(&state, "switch", 6);
24972 state.i_case = lookup(&state, "case", 4);
24973 state.i_continue = lookup(&state, "continue", 8);
24974 state.i_break = lookup(&state, "break", 5);
24975 state.i_default = lookup(&state, "default", 7);
24976 state.i_return = lookup(&state, "return", 6);
24977 /* Memorize where predefined macros are. */
24978 state.i___VA_ARGS__ = lookup(&state, "__VA_ARGS__", 11);
24979 state.i___FILE__ = lookup(&state, "__FILE__", 8);
24980 state.i___LINE__ = lookup(&state, "__LINE__", 8);
24981 /* Memorize where predefined identifiers are. */
24982 state.i___func__ = lookup(&state, "__func__", 8);
24983 /* Memorize where some attribute keywords are. */
24984 state.i_noinline = lookup(&state, "noinline", 8);
24985 state.i_always_inline = lookup(&state, "always_inline", 13);
24986 state.i_noreturn = lookup(&state, "noreturn", 8);
24987 state.i_unused = lookup(&state, "unused", 6);
24988 state.i_packed = lookup(&state, "packed", 6);
24990 /* Process the command line macros */
24991 process_cmdline_macros(&state);
24993 /* Allocate beginning bounding labels for the function list */
24994 state.first = label(&state);
24995 state.first->id |= TRIPLE_FLAG_VOLATILE;
24996 use_triple(state.first, state.first);
24997 ptr = label(&state);
24998 ptr->id |= TRIPLE_FLAG_VOLATILE;
24999 use_triple(ptr, ptr);
25000 flatten(&state, state.first, ptr);
25002 /* Allocate a label for the pool of global variables */
25003 state.global_pool = label(&state);
25004 state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25005 flatten(&state, state.first, state.global_pool);
25007 /* Enter the globl definition scope */
25008 start_scope(&state);
25009 register_builtins(&state);
25011 compile_file(&state, filename, 1);
25013 while (includes) {
25014 compile_file(&state, includes->filename, 1);
25015 includes=includes->next;
25018 /* Stop if all we want is preprocessor output */
25019 if (state.compiler->flags & COMPILER_PP_ONLY) {
25020 print_preprocessed_tokens(&state);
25021 return;
25024 decls(&state);
25026 /* Exit the global definition scope */
25027 end_scope(&state);
25029 /* Now that basic compilation has happened
25030 * optimize the intermediate code
25032 optimize(&state);
25034 generate_code(&state);
25035 if (state.compiler->debug) {
25036 fprintf(state.errout, "done\n");
25038 exit_state = 0;
25041 static void version(FILE *fp)
25043 fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25046 static void usage(void)
25048 FILE *fp = stdout;
25049 version(fp);
25050 fprintf(fp,
25051 "\nUsage: romcc [options] <source>.c\n"
25052 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25053 "Options: \n"
25054 "-o <output file name>\n"
25055 "-f<option> Specify a generic compiler option\n"
25056 "-m<option> Specify a arch dependent option\n"
25057 "-- Specify this is the last option\n"
25058 "\nGeneric compiler options:\n"
25060 compiler_usage(fp);
25061 fprintf(fp,
25062 "\nArchitecture compiler options:\n"
25064 arch_usage(fp);
25065 fprintf(fp,
25066 "\n"
25070 static void arg_error(char *fmt, ...)
25072 va_list args;
25073 va_start(args, fmt);
25074 vfprintf(stderr, fmt, args);
25075 va_end(args);
25076 usage();
25077 exit(1);
25080 int main(int argc, char **argv)
25082 const char *filename;
25083 struct compiler_state compiler;
25084 struct arch_state arch;
25085 int all_opts;
25088 /* I don't want any surprises */
25089 setlocale(LC_ALL, "C");
25091 init_compiler_state(&compiler);
25092 init_arch_state(&arch);
25093 filename = 0;
25094 all_opts = 0;
25095 while(argc > 1) {
25096 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25097 compiler.ofilename = argv[2];
25098 argv += 2;
25099 argc -= 2;
25101 else if (!all_opts && argv[1][0] == '-') {
25102 int result;
25103 result = -1;
25104 if (strcmp(argv[1], "--") == 0) {
25105 result = 0;
25106 all_opts = 1;
25108 else if (strncmp(argv[1], "-E", 2) == 0) {
25109 result = compiler_encode_flag(&compiler, argv[1]);
25111 else if (strncmp(argv[1], "-O", 2) == 0) {
25112 result = compiler_encode_flag(&compiler, argv[1]);
25114 else if (strncmp(argv[1], "-I", 2) == 0) {
25115 result = compiler_encode_flag(&compiler, argv[1]);
25117 else if (strncmp(argv[1], "-D", 2) == 0) {
25118 result = compiler_encode_flag(&compiler, argv[1]);
25120 else if (strncmp(argv[1], "-U", 2) == 0) {
25121 result = compiler_encode_flag(&compiler, argv[1]);
25123 else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25124 result = compiler_encode_flag(&compiler, argv[1]+2);
25126 else if (strncmp(argv[1], "-f", 2) == 0) {
25127 result = compiler_encode_flag(&compiler, argv[1]+2);
25129 else if (strncmp(argv[1], "-m", 2) == 0) {
25130 result = arch_encode_flag(&arch, argv[1]+2);
25132 else if (strncmp(argv[1], "-c", 2) == 0) {
25133 result = 0;
25135 else if (strncmp(argv[1], "-S", 2) == 0) {
25136 result = 0;
25138 else if (strncmp(argv[1], "-include", 10) == 0) {
25139 struct filelist *old_head = include_filelist;
25140 include_filelist = malloc(sizeof(struct filelist));
25141 if (!include_filelist) {
25142 die("Out of memory.\n");
25144 argv++;
25145 argc--;
25146 include_filelist->filename = strdup(argv[1]);
25147 include_filelist->next = old_head;
25148 result = 0;
25150 if (result < 0) {
25151 arg_error("Invalid option specified: %s\n",
25152 argv[1]);
25154 argv++;
25155 argc--;
25157 else {
25158 if (filename) {
25159 arg_error("Only one filename may be specified\n");
25161 filename = argv[1];
25162 argv++;
25163 argc--;
25166 if (!filename) {
25167 arg_error("No filename specified\n");
25169 compile(filename, &compiler, &arch);
25171 return 0;