drivers/intel/gma: Export Read_EDID() to C
[coreboot.git] / util / kconfig / regex.c
bloba6d947fbd04c9e7d988b638f5bce83472dcbb780
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #define _GNU_SOURCE
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38 #ifdef emacs
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
44 /* Emacs uses `NULL' as a predicate. */
45 #undef NULL
47 #else /* not emacs */
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n) memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n) memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
66 #ifdef STDC_HEADERS
67 #include <stdlib.h>
68 #else
69 char *malloc ();
70 char *realloc ();
71 #endif
74 /* Define the syntax stuff for \<, \>, etc. */
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78 #ifndef Sword
79 #define Sword 1
80 #endif
82 #ifdef SYNTAX_TABLE
84 extern char *re_syntax_table;
86 #else /* not SYNTAX_TABLE */
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
91 static char re_syntax_table[CHAR_SET_SIZE];
93 static void
94 init_syntax_once ()
96 register int c;
97 static int done = 0;
99 if (done)
100 return;
102 bzero (re_syntax_table, sizeof re_syntax_table);
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
113 re_syntax_table['_'] = Sword;
115 done = 1;
118 #endif /* not SYNTAX_TABLE */
120 #define SYNTAX(c) re_syntax_table[c]
122 #endif /* not emacs */
124 /* Get the interface, including the syntax bits. */
125 #include "regex.h"
127 /* isalpha etc. are used for the character classes. */
128 #include <ctype.h>
130 #ifndef isascii
131 #define isascii(c) 1
132 #endif
134 #ifdef isblank
135 #define ISBLANK(c) (isascii (c) && isblank (c))
136 #else
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138 #endif
139 #ifdef isgraph
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
141 #else
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143 #endif
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
156 #ifndef NULL
157 #define NULL 0
158 #endif
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164 #undef SIGN_EXTEND_CHAR
165 #if __STDC__
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else /* not __STDC__ */
168 /* As in Harbison and Steele. */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170 #endif
172 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
182 #ifdef REGEX_MALLOC
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
187 #else /* not REGEX_MALLOC */
189 /* Emacs already defines alloca, sometimes. */
190 #ifndef alloca
192 /* Make alloca work the best possible way. */
193 #ifdef __GNUC__
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
196 #if HAVE_ALLOCA_H
197 #include <alloca.h>
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top. */
200 char *alloca ();
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
205 #endif /* not alloca */
207 #define REGEX_ALLOCATE alloca
209 /* Assumes a `char *destination' variable. */
210 #define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
213 destination)
215 #endif /* not REGEX_MALLOC */
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
220 a good thing. */
221 #define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
224 /* (Re)Allocate N items of type T using malloc, or fail. */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
229 #define BYTEWIDTH 8 /* In bits. */
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
236 typedef char boolean;
237 #define false 0
238 #define true 1
240 /* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
249 typedef enum
251 no_op = 0,
253 /* Followed by one byte giving n, then by n literal bytes. */
254 exactn = 1,
256 /* Matches any (more or less) character. */
257 anychar,
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
265 charset,
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
269 charset_not,
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
277 of re_match_2.) */
278 start_memory,
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
287 stop_memory,
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
291 duplicate,
293 /* Fail unless at beginning of line. */
294 begline,
296 /* Fail unless at end of line. */
297 endline,
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
301 begbuf,
303 /* Analogously, for end of buffer/string. */
304 endbuf,
306 /* Followed by two byte relative address to which to jump. */
307 jump,
309 /* Same as jump, but marks the end of an alternative. */
310 jump_past_alt,
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
314 on_failure_jump,
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump,
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
322 pop_failure_jump,
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
331 maybe_pop_jump,
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
338 dummy_failure_jump,
340 /* Push a dummy failure point and continue. Used at the end of
341 alternatives. */
342 push_dummy_failure,
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
346 succeed_n,
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
350 jump_n,
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
354 bytes of number. */
355 set_number_at,
357 wordchar, /* Matches any word-constituent character. */
358 notwordchar, /* Matches any char that is not a word-constituent. */
360 wordbeg, /* Succeeds if at word beginning. */
361 wordend, /* Succeeds if at word end. */
363 wordbound, /* Succeeds if at a word boundary. */
364 notwordbound /* Succeeds if not at a word boundary. */
366 #ifdef emacs
367 ,before_dot, /* Succeeds if before point. */
368 at_dot, /* Succeeds if at point. */
369 after_dot, /* Succeeds if after point. */
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
373 syntaxspec,
375 /* Matches any character whose syntax is not that specified. */
376 notsyntaxspec
377 #endif /* emacs */
378 } re_opcode_t;
380 /* Common operations on the compiled pattern. */
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
384 #define STORE_NUMBER(destination, number) \
385 do { \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
388 } while (0)
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
394 #define STORE_NUMBER_AND_INCR(destination, number) \
395 do { \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
398 } while (0)
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
401 at SOURCE. */
403 #define EXTRACT_NUMBER(destination, source) \
404 do { \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
407 } while (0)
409 #ifdef DEBUG
410 static void
411 extract_number (dest, source)
412 int *dest;
413 unsigned char *source;
415 int temp = SIGN_EXTEND_CHAR (*(source + 1));
416 *dest = *source & 0377;
417 *dest += temp << 8;
420 #ifndef EXTRACT_MACROS /* To debug the macros. */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
425 #endif /* DEBUG */
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
430 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
431 do { \
432 EXTRACT_NUMBER (destination, source); \
433 (source) += 2; \
434 } while (0)
436 #ifdef DEBUG
437 static void
438 extract_number_and_incr (destination, source)
439 int *destination;
440 unsigned char **source;
442 extract_number (destination, *source);
443 *source += 2;
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
452 #endif /* DEBUG */
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
460 #ifdef DEBUG
462 /* We use standard I/O for debugging. */
463 #include <stdio.h>
465 /* It is useful to test things that ``must'' be true when debugging. */
466 #include <assert.h>
468 static int debug = 0;
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481 extern void printchar ();
483 /* Print the fastmap in human-readable form. */
485 void
486 print_fastmap (fastmap)
487 char *fastmap;
489 unsigned was_a_range = 0;
490 unsigned i = 0;
492 while (i < (1 << BYTEWIDTH))
494 if (fastmap[i++])
496 was_a_range = 0;
497 printchar (i - 1);
498 while (i < (1 << BYTEWIDTH) && fastmap[i])
500 was_a_range = 1;
501 i++;
503 if (was_a_range)
505 printf ("-");
506 printchar (i - 1);
510 putchar ('\n');
514 /* Print a compiled pattern string in human-readable form, starting at
515 the START pointer into it and ending just before the pointer END. */
517 void
518 print_partial_compiled_pattern (start, end)
519 unsigned char *start;
520 unsigned char *end;
522 int mcnt, mcnt2;
523 unsigned char *p = start;
524 unsigned char *pend = end;
526 if (start == NULL)
528 printf ("(null)\n");
529 return;
532 /* Loop over pattern commands. */
533 while (p < pend)
535 switch ((re_opcode_t) *p++)
537 case no_op:
538 printf ("/no_op");
539 break;
541 case exactn:
542 mcnt = *p++;
543 printf ("/exactn/%d", mcnt);
546 putchar ('/');
547 printchar (*p++);
549 while (--mcnt);
550 break;
552 case start_memory:
553 mcnt = *p++;
554 printf ("/start_memory/%d/%d", mcnt, *p++);
555 break;
557 case stop_memory:
558 mcnt = *p++;
559 printf ("/stop_memory/%d/%d", mcnt, *p++);
560 break;
562 case duplicate:
563 printf ("/duplicate/%d", *p++);
564 break;
566 case anychar:
567 printf ("/anychar");
568 break;
570 case charset:
571 case charset_not:
573 register int c;
575 printf ("/charset%s",
576 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
578 assert (p + *p < pend);
580 for (c = 0; c < *p; c++)
582 unsigned bit;
583 unsigned char map_byte = p[1 + c];
585 putchar ('/');
587 for (bit = 0; bit < BYTEWIDTH; bit++)
588 if (map_byte & (1 << bit))
589 printchar (c * BYTEWIDTH + bit);
591 p += 1 + *p;
592 break;
595 case begline:
596 printf ("/begline");
597 break;
599 case endline:
600 printf ("/endline");
601 break;
603 case on_failure_jump:
604 extract_number_and_incr (&mcnt, &p);
605 printf ("/on_failure_jump/0/%d", mcnt);
606 break;
608 case on_failure_keep_string_jump:
609 extract_number_and_incr (&mcnt, &p);
610 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
611 break;
613 case dummy_failure_jump:
614 extract_number_and_incr (&mcnt, &p);
615 printf ("/dummy_failure_jump/0/%d", mcnt);
616 break;
618 case push_dummy_failure:
619 printf ("/push_dummy_failure");
620 break;
622 case maybe_pop_jump:
623 extract_number_and_incr (&mcnt, &p);
624 printf ("/maybe_pop_jump/0/%d", mcnt);
625 break;
627 case pop_failure_jump:
628 extract_number_and_incr (&mcnt, &p);
629 printf ("/pop_failure_jump/0/%d", mcnt);
630 break;
632 case jump_past_alt:
633 extract_number_and_incr (&mcnt, &p);
634 printf ("/jump_past_alt/0/%d", mcnt);
635 break;
637 case jump:
638 extract_number_and_incr (&mcnt, &p);
639 printf ("/jump/0/%d", mcnt);
640 break;
642 case succeed_n:
643 extract_number_and_incr (&mcnt, &p);
644 extract_number_and_incr (&mcnt2, &p);
645 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
646 break;
648 case jump_n:
649 extract_number_and_incr (&mcnt, &p);
650 extract_number_and_incr (&mcnt2, &p);
651 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
652 break;
654 case set_number_at:
655 extract_number_and_incr (&mcnt, &p);
656 extract_number_and_incr (&mcnt2, &p);
657 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
658 break;
660 case wordbound:
661 printf ("/wordbound");
662 break;
664 case notwordbound:
665 printf ("/notwordbound");
666 break;
668 case wordbeg:
669 printf ("/wordbeg");
670 break;
672 case wordend:
673 printf ("/wordend");
675 #ifdef emacs
676 case before_dot:
677 printf ("/before_dot");
678 break;
680 case at_dot:
681 printf ("/at_dot");
682 break;
684 case after_dot:
685 printf ("/after_dot");
686 break;
688 case syntaxspec:
689 printf ("/syntaxspec");
690 mcnt = *p++;
691 printf ("/%d", mcnt);
692 break;
694 case notsyntaxspec:
695 printf ("/notsyntaxspec");
696 mcnt = *p++;
697 printf ("/%d", mcnt);
698 break;
699 #endif /* emacs */
701 case wordchar:
702 printf ("/wordchar");
703 break;
705 case notwordchar:
706 printf ("/notwordchar");
707 break;
709 case begbuf:
710 printf ("/begbuf");
711 break;
713 case endbuf:
714 printf ("/endbuf");
715 break;
717 default:
718 printf ("?%d", *(p-1));
721 printf ("/\n");
725 void
726 print_compiled_pattern (bufp)
727 struct re_pattern_buffer *bufp;
729 unsigned char *buffer = bufp->buffer;
731 print_partial_compiled_pattern (buffer, buffer + bufp->used);
732 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
734 if (bufp->fastmap_accurate && bufp->fastmap)
736 printf ("fastmap: ");
737 print_fastmap (bufp->fastmap);
740 printf ("re_nsub: %d\t", bufp->re_nsub);
741 printf ("regs_alloc: %d\t", bufp->regs_allocated);
742 printf ("can_be_null: %d\t", bufp->can_be_null);
743 printf ("newline_anchor: %d\n", bufp->newline_anchor);
744 printf ("no_sub: %d\t", bufp->no_sub);
745 printf ("not_bol: %d\t", bufp->not_bol);
746 printf ("not_eol: %d\t", bufp->not_eol);
747 printf ("syntax: %d\n", bufp->syntax);
748 /* Perhaps we should print the translate table? */
752 void
753 print_double_string (where, string1, size1, string2, size2)
754 const char *where;
755 const char *string1;
756 const char *string2;
757 int size1;
758 int size2;
760 unsigned this_char;
762 if (where == NULL)
763 printf ("(null)");
764 else
766 if (FIRST_STRING_P (where))
768 for (this_char = where - string1; this_char < size1; this_char++)
769 printchar (string1[this_char]);
771 where = string2;
774 for (this_char = where - string2; this_char < size2; this_char++)
775 printchar (string2[this_char]);
779 #else /* not DEBUG */
781 #undef assert
782 #define assert(e)
784 #define DEBUG_STATEMENT(e)
785 #define DEBUG_PRINT1(x)
786 #define DEBUG_PRINT2(x1, x2)
787 #define DEBUG_PRINT3(x1, x2, x3)
788 #define DEBUG_PRINT4(x1, x2, x3, x4)
789 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
792 #endif /* not DEBUG */
794 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
795 also be assigned to arbitrarily: each pattern buffer stores its own
796 syntax, so it can be changed between regex compilations. */
797 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
800 /* Specify the precise syntax of regexps for compilation. This provides
801 for compatibility for various utilities which historically have
802 different, incompatible syntaxes.
804 The argument SYNTAX is a bit mask comprised of the various bits
805 defined in regex.h. We return the old syntax. */
807 reg_syntax_t
808 re_set_syntax (syntax)
809 reg_syntax_t syntax;
811 reg_syntax_t ret = re_syntax_options;
813 re_syntax_options = syntax;
814 return ret;
817 /* This table gives an error message for each of the error codes listed
818 in regex.h. Obviously the order here has to be same as there. */
820 static const char *re_error_msg[] =
821 { NULL, /* REG_NOERROR */
822 "No match", /* REG_NOMATCH */
823 "Invalid regular expression", /* REG_BADPAT */
824 "Invalid collation character", /* REG_ECOLLATE */
825 "Invalid character class name", /* REG_ECTYPE */
826 "Trailing backslash", /* REG_EESCAPE */
827 "Invalid back reference", /* REG_ESUBREG */
828 "Unmatched [ or [^", /* REG_EBRACK */
829 "Unmatched ( or \\(", /* REG_EPAREN */
830 "Unmatched \\{", /* REG_EBRACE */
831 "Invalid content of \\{\\}", /* REG_BADBR */
832 "Invalid range end", /* REG_ERANGE */
833 "Memory exhausted", /* REG_ESPACE */
834 "Invalid preceding regular expression", /* REG_BADRPT */
835 "Premature end of regular expression", /* REG_EEND */
836 "Regular expression too big", /* REG_ESIZE */
837 "Unmatched ) or \\)", /* REG_ERPAREN */
840 /* Subroutine declarations and macros for regex_compile. */
842 static void store_op1 (), store_op2 ();
843 static void insert_op1 (), insert_op2 ();
844 static boolean at_begline_loc_p (), at_endline_loc_p ();
845 static boolean group_in_compile_stack ();
846 static reg_errcode_t compile_range ();
848 /* Fetch the next character in the uncompiled pattern---translating it
849 if necessary. Also cast from a signed character in the constant
850 string passed to us by the user to an unsigned char that we can use
851 as an array index (in, e.g., `translate'). */
852 #define PATFETCH(c) \
853 do {if (p == pend) return REG_EEND; \
854 c = (unsigned char) *p++; \
855 if (translate) c = translate[c]; \
856 } while (0)
858 /* Fetch the next character in the uncompiled pattern, with no
859 translation. */
860 #define PATFETCH_RAW(c) \
861 do {if (p == pend) return REG_EEND; \
862 c = (unsigned char) *p++; \
863 } while (0)
865 /* Go backwards one character in the pattern. */
866 #define PATUNFETCH p--
869 /* If `translate' is non-null, return translate[D], else just D. We
870 cast the subscript to translate because some data is declared as
871 `char *', to avoid warnings when a string constant is passed. But
872 when we use a character as a subscript we must make it unsigned. */
873 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
876 /* Macros for outputting the compiled pattern into `buffer'. */
878 /* If the buffer isn't allocated when it comes in, use this. */
879 #define INIT_BUF_SIZE 32
881 /* Make sure we have at least N more bytes of space in buffer. */
882 #define GET_BUFFER_SPACE(n) \
883 while (b - bufp->buffer + (n) > bufp->allocated) \
884 EXTEND_BUFFER ()
886 /* Make sure we have one more byte of buffer space and then add C to it. */
887 #define BUF_PUSH(c) \
888 do { \
889 GET_BUFFER_SPACE (1); \
890 *b++ = (unsigned char) (c); \
891 } while (0)
894 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
895 #define BUF_PUSH_2(c1, c2) \
896 do { \
897 GET_BUFFER_SPACE (2); \
898 *b++ = (unsigned char) (c1); \
899 *b++ = (unsigned char) (c2); \
900 } while (0)
903 /* As with BUF_PUSH_2, except for three bytes. */
904 #define BUF_PUSH_3(c1, c2, c3) \
905 do { \
906 GET_BUFFER_SPACE (3); \
907 *b++ = (unsigned char) (c1); \
908 *b++ = (unsigned char) (c2); \
909 *b++ = (unsigned char) (c3); \
910 } while (0)
913 /* Store a jump with opcode OP at LOC to location TO. We store a
914 relative address offset by the three bytes the jump itself occupies. */
915 #define STORE_JUMP(op, loc, to) \
916 store_op1 (op, loc, (to) - (loc) - 3)
918 /* Likewise, for a two-argument jump. */
919 #define STORE_JUMP2(op, loc, to, arg) \
920 store_op2 (op, loc, (to) - (loc) - 3, arg)
922 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
923 #define INSERT_JUMP(op, loc, to) \
924 insert_op1 (op, loc, (to) - (loc) - 3, b)
926 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
927 #define INSERT_JUMP2(op, loc, to, arg) \
928 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
931 /* This is not an arbitrary limit: the arguments which represent offsets
932 into the pattern are two bytes long. So if 2^16 bytes turns out to
933 be too small, many things would have to change. */
934 #define MAX_BUF_SIZE (1L << 16)
937 /* Extend the buffer by twice its current size via realloc and
938 reset the pointers that pointed into the old block to point to the
939 correct places in the new one. If extending the buffer results in it
940 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
941 #define EXTEND_BUFFER() \
942 do { \
943 unsigned char *old_buffer = bufp->buffer; \
944 if (bufp->allocated == MAX_BUF_SIZE) \
945 return REG_ESIZE; \
946 bufp->allocated <<= 1; \
947 if (bufp->allocated > MAX_BUF_SIZE) \
948 bufp->allocated = MAX_BUF_SIZE; \
949 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950 if (bufp->buffer == NULL) \
951 return REG_ESPACE; \
952 /* If the buffer moved, move all the pointers into it. */ \
953 if (old_buffer != bufp->buffer) \
955 b = (b - old_buffer) + bufp->buffer; \
956 begalt = (begalt - old_buffer) + bufp->buffer; \
957 if (fixup_alt_jump) \
958 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
959 if (laststart) \
960 laststart = (laststart - old_buffer) + bufp->buffer; \
961 if (pending_exact) \
962 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
964 } while (0)
967 /* Since we have one byte reserved for the register number argument to
968 {start,stop}_memory, the maximum number of groups we can report
969 things about is what fits in that byte. */
970 #define MAX_REGNUM 255
972 /* But patterns can have more than `MAX_REGNUM' registers. We just
973 ignore the excess. */
974 typedef unsigned regnum_t;
977 /* Macros for the compile stack. */
979 /* Since offsets can go either forwards or backwards, this type needs to
980 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
981 typedef int pattern_offset_t;
983 typedef struct
985 pattern_offset_t begalt_offset;
986 pattern_offset_t fixup_alt_jump;
987 pattern_offset_t inner_group_offset;
988 pattern_offset_t laststart_offset;
989 regnum_t regnum;
990 } compile_stack_elt_t;
993 typedef struct
995 compile_stack_elt_t *stack;
996 unsigned size;
997 unsigned avail; /* Offset of next open position. */
998 } compile_stack_type;
1001 #define INIT_COMPILE_STACK_SIZE 32
1003 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1004 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1006 /* The next available element. */
1007 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1010 /* Set the bit for character C in a list. */
1011 #define SET_LIST_BIT(c) \
1012 (b[((unsigned char) (c)) / BYTEWIDTH] \
1013 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1016 /* Get the next unsigned number in the uncompiled pattern. */
1017 #define GET_UNSIGNED_NUMBER(num) \
1018 { if (p != pend) \
1020 PATFETCH (c); \
1021 while (ISDIGIT (c)) \
1023 if (num < 0) \
1024 num = 0; \
1025 num = num * 10 + c - '0'; \
1026 if (p == pend) \
1027 break; \
1028 PATFETCH (c); \
1033 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1035 #define IS_CHAR_CLASS(string) \
1036 (STREQ (string, "alpha") || STREQ (string, "upper") \
1037 || STREQ (string, "lower") || STREQ (string, "digit") \
1038 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1039 || STREQ (string, "space") || STREQ (string, "print") \
1040 || STREQ (string, "punct") || STREQ (string, "graph") \
1041 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1043 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044 Returns one of error codes defined in `regex.h', or zero for success.
1046 Assumes the `allocated' (and perhaps `buffer') and `translate'
1047 fields are set in BUFP on entry.
1049 If it succeeds, results are put in BUFP (if it returns an error, the
1050 contents of BUFP are undefined):
1051 `buffer' is the compiled pattern;
1052 `syntax' is set to SYNTAX;
1053 `used' is set to the length of the compiled pattern;
1054 `fastmap_accurate' is zero;
1055 `re_nsub' is the number of subexpressions in PATTERN;
1056 `not_bol' and `not_eol' are zero;
1058 The `fastmap' and `newline_anchor' fields are neither
1059 examined nor set. */
1061 static reg_errcode_t
1062 regex_compile (pattern, size, syntax, bufp)
1063 const char *pattern;
1064 int size;
1065 reg_syntax_t syntax;
1066 struct re_pattern_buffer *bufp;
1068 /* We fetch characters from PATTERN here. Even though PATTERN is
1069 `char *' (i.e., signed), we declare these variables as unsigned, so
1070 they can be reliably used as array indices. */
1071 register unsigned char c, c1;
1073 /* A random tempory spot in PATTERN. */
1074 const char *p1;
1076 /* Points to the end of the buffer, where we should append. */
1077 register unsigned char *b;
1079 /* Keeps track of unclosed groups. */
1080 compile_stack_type compile_stack;
1082 /* Points to the current (ending) position in the pattern. */
1083 const char *p = pattern;
1084 const char *pend = pattern + size;
1086 /* How to translate the characters in the pattern. */
1087 char *translate = bufp->translate;
1089 /* Address of the count-byte of the most recently inserted `exactn'
1090 command. This makes it possible to tell if a new exact-match
1091 character can be added to that command or if the character requires
1092 a new `exactn' command. */
1093 unsigned char *pending_exact = NULL;
1095 /* Address of start of the most recently finished expression.
1096 This tells, e.g., postfix * where to find the start of its
1097 operand. Reset at the beginning of groups and alternatives. */
1098 unsigned char *laststart = NULL;
1100 /* Address of beginning of regexp, or inside of last group. */
1101 unsigned char *begalt;
1103 /* Place in the uncompiled pattern (i.e., the {) to
1104 which to go back if the interval is invalid. */
1105 const char *beg_interval;
1107 /* Address of the place where a forward jump should go to the end of
1108 the containing expression. Each alternative of an `or' -- except the
1109 last -- ends with a forward jump of this sort. */
1110 unsigned char *fixup_alt_jump = NULL;
1112 /* Counts open-groups as they are encountered. Remembered for the
1113 matching close-group on the compile stack, so the same register
1114 number is put in the stop_memory as the start_memory. */
1115 regnum_t regnum = 0;
1117 #ifdef DEBUG
1118 DEBUG_PRINT1 ("\nCompiling pattern: ");
1119 if (debug)
1121 unsigned debug_count;
1123 for (debug_count = 0; debug_count < size; debug_count++)
1124 printchar (pattern[debug_count]);
1125 putchar ('\n');
1127 #endif /* DEBUG */
1129 /* Initialize the compile stack. */
1130 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1131 if (compile_stack.stack == NULL)
1132 return REG_ESPACE;
1134 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1135 compile_stack.avail = 0;
1137 /* Initialize the pattern buffer. */
1138 bufp->syntax = syntax;
1139 bufp->fastmap_accurate = 0;
1140 bufp->not_bol = bufp->not_eol = 0;
1142 /* Set `used' to zero, so that if we return an error, the pattern
1143 printer (for debugging) will think there's no pattern. We reset it
1144 at the end. */
1145 bufp->used = 0;
1147 /* Always count groups, whether or not bufp->no_sub is set. */
1148 bufp->re_nsub = 0;
1150 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1151 /* Initialize the syntax table. */
1152 init_syntax_once ();
1153 #endif
1155 if (bufp->allocated == 0)
1157 if (bufp->buffer)
1158 { /* If zero allocated, but buffer is non-null, try to realloc
1159 enough space. This loses if buffer's address is bogus, but
1160 that is the user's responsibility. */
1161 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1163 else
1164 { /* Caller did not allocate a buffer. Do it for them. */
1165 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1167 if (!bufp->buffer) return REG_ESPACE;
1169 bufp->allocated = INIT_BUF_SIZE;
1172 begalt = b = bufp->buffer;
1174 /* Loop through the uncompiled pattern until we're at the end. */
1175 while (p != pend)
1177 PATFETCH (c);
1179 switch (c)
1181 case '^':
1183 if ( /* If at start of pattern, it's an operator. */
1184 p == pattern + 1
1185 /* If context independent, it's an operator. */
1186 || syntax & RE_CONTEXT_INDEP_ANCHORS
1187 /* Otherwise, depends on what's come before. */
1188 || at_begline_loc_p (pattern, p, syntax))
1189 BUF_PUSH (begline);
1190 else
1191 goto normal_char;
1193 break;
1196 case '$':
1198 if ( /* If at end of pattern, it's an operator. */
1199 p == pend
1200 /* If context independent, it's an operator. */
1201 || syntax & RE_CONTEXT_INDEP_ANCHORS
1202 /* Otherwise, depends on what's next. */
1203 || at_endline_loc_p (p, pend, syntax))
1204 BUF_PUSH (endline);
1205 else
1206 goto normal_char;
1208 break;
1211 case '+':
1212 case '?':
1213 if ((syntax & RE_BK_PLUS_QM)
1214 || (syntax & RE_LIMITED_OPS))
1215 goto normal_char;
1216 handle_plus:
1217 case '*':
1218 /* If there is no previous pattern... */
1219 if (!laststart)
1221 if (syntax & RE_CONTEXT_INVALID_OPS)
1222 return REG_BADRPT;
1223 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1224 goto normal_char;
1228 /* Are we optimizing this jump? */
1229 boolean keep_string_p = false;
1231 /* 1 means zero (many) matches is allowed. */
1232 char zero_times_ok = 0, many_times_ok = 0;
1234 /* If there is a sequence of repetition chars, collapse it
1235 down to just one (the right one). We can't combine
1236 interval operators with these because of, e.g., `a{2}*',
1237 which should only match an even number of `a's. */
1239 for (;;)
1241 zero_times_ok |= c != '+';
1242 many_times_ok |= c != '?';
1244 if (p == pend)
1245 break;
1247 PATFETCH (c);
1249 if (c == '*'
1250 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1253 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1255 if (p == pend) return REG_EESCAPE;
1257 PATFETCH (c1);
1258 if (!(c1 == '+' || c1 == '?'))
1260 PATUNFETCH;
1261 PATUNFETCH;
1262 break;
1265 c = c1;
1267 else
1269 PATUNFETCH;
1270 break;
1273 /* If we get here, we found another repeat character. */
1276 /* Star, etc. applied to an empty pattern is equivalent
1277 to an empty pattern. */
1278 if (!laststart)
1279 break;
1281 /* Now we know whether or not zero matches is allowed
1282 and also whether or not two or more matches is allowed. */
1283 if (many_times_ok)
1284 { /* More than one repetition is allowed, so put in at the
1285 end a backward relative jump from `b' to before the next
1286 jump we're going to put in below (which jumps from
1287 laststart to after this jump).
1289 But if we are at the `*' in the exact sequence `.*\n',
1290 insert an unconditional jump backwards to the .,
1291 instead of the beginning of the loop. This way we only
1292 push a failure point once, instead of every time
1293 through the loop. */
1294 assert (p - 1 > pattern);
1296 /* Allocate the space for the jump. */
1297 GET_BUFFER_SPACE (3);
1299 /* We know we are not at the first character of the pattern,
1300 because laststart was nonzero. And we've already
1301 incremented `p', by the way, to be the character after
1302 the `*'. Do we have to do something analogous here
1303 for null bytes, because of RE_DOT_NOT_NULL? */
1304 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1305 && zero_times_ok
1306 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1307 && !(syntax & RE_DOT_NEWLINE))
1308 { /* We have .*\n. */
1309 STORE_JUMP (jump, b, laststart);
1310 keep_string_p = true;
1312 else
1313 /* Anything else. */
1314 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1316 /* We've added more stuff to the buffer. */
1317 b += 3;
1320 /* On failure, jump from laststart to b + 3, which will be the
1321 end of the buffer after this jump is inserted. */
1322 GET_BUFFER_SPACE (3);
1323 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1324 : on_failure_jump,
1325 laststart, b + 3);
1326 pending_exact = 0;
1327 b += 3;
1329 if (!zero_times_ok)
1331 /* At least one repetition is required, so insert a
1332 `dummy_failure_jump' before the initial
1333 `on_failure_jump' instruction of the loop. This
1334 effects a skip over that instruction the first time
1335 we hit that loop. */
1336 GET_BUFFER_SPACE (3);
1337 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1338 b += 3;
1341 break;
1344 case '.':
1345 laststart = b;
1346 BUF_PUSH (anychar);
1347 break;
1350 case '[':
1352 boolean had_char_class = false;
1354 if (p == pend) return REG_EBRACK;
1356 /* Ensure that we have enough space to push a charset: the
1357 opcode, the length count, and the bitset; 34 bytes in all. */
1358 GET_BUFFER_SPACE (34);
1360 laststart = b;
1362 /* We test `*p == '^' twice, instead of using an if
1363 statement, so we only need one BUF_PUSH. */
1364 BUF_PUSH (*p == '^' ? charset_not : charset);
1365 if (*p == '^')
1366 p++;
1368 /* Remember the first position in the bracket expression. */
1369 p1 = p;
1371 /* Push the number of bytes in the bitmap. */
1372 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1374 /* Clear the whole map. */
1375 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1377 /* charset_not matches newline according to a syntax bit. */
1378 if ((re_opcode_t) b[-2] == charset_not
1379 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1380 SET_LIST_BIT ('\n');
1382 /* Read in characters and ranges, setting map bits. */
1383 for (;;)
1385 if (p == pend) return REG_EBRACK;
1387 PATFETCH (c);
1389 /* \ might escape characters inside [...] and [^...]. */
1390 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1392 if (p == pend) return REG_EESCAPE;
1394 PATFETCH (c1);
1395 SET_LIST_BIT (c1);
1396 continue;
1399 /* Could be the end of the bracket expression. If it's
1400 not (i.e., when the bracket expression is `[]' so
1401 far), the ']' character bit gets set way below. */
1402 if (c == ']' && p != p1 + 1)
1403 break;
1405 /* Look ahead to see if it's a range when the last thing
1406 was a character class. */
1407 if (had_char_class && c == '-' && *p != ']')
1408 return REG_ERANGE;
1410 /* Look ahead to see if it's a range when the last thing
1411 was a character: if this is a hyphen not at the
1412 beginning or the end of a list, then it's the range
1413 operator. */
1414 if (c == '-'
1415 && !(p - 2 >= pattern && p[-2] == '[')
1416 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1417 && *p != ']')
1419 reg_errcode_t ret
1420 = compile_range (&p, pend, translate, syntax, b);
1421 if (ret != REG_NOERROR) return ret;
1424 else if (p[0] == '-' && p[1] != ']')
1425 { /* This handles ranges made up of characters only. */
1426 reg_errcode_t ret;
1428 /* Move past the `-'. */
1429 PATFETCH (c1);
1431 ret = compile_range (&p, pend, translate, syntax, b);
1432 if (ret != REG_NOERROR) return ret;
1435 /* See if we're at the beginning of a possible character
1436 class. */
1438 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1439 { /* Leave room for the null. */
1440 char str[CHAR_CLASS_MAX_LENGTH + 1];
1442 PATFETCH (c);
1443 c1 = 0;
1445 /* If pattern is `[[:'. */
1446 if (p == pend) return REG_EBRACK;
1448 for (;;)
1450 PATFETCH (c);
1451 if (c == ':' || c == ']' || p == pend
1452 || c1 == CHAR_CLASS_MAX_LENGTH)
1453 break;
1454 str[c1++] = c;
1456 str[c1] = '\0';
1458 /* If isn't a word bracketed by `[:' and:`]':
1459 undo the ending character, the letters, and leave
1460 the leading `:' and `[' (but set bits for them). */
1461 if (c == ':' && *p == ']')
1463 int ch;
1464 boolean is_alnum = STREQ (str, "alnum");
1465 boolean is_alpha = STREQ (str, "alpha");
1466 boolean is_blank = STREQ (str, "blank");
1467 boolean is_cntrl = STREQ (str, "cntrl");
1468 boolean is_digit = STREQ (str, "digit");
1469 boolean is_graph = STREQ (str, "graph");
1470 boolean is_lower = STREQ (str, "lower");
1471 boolean is_print = STREQ (str, "print");
1472 boolean is_punct = STREQ (str, "punct");
1473 boolean is_space = STREQ (str, "space");
1474 boolean is_upper = STREQ (str, "upper");
1475 boolean is_xdigit = STREQ (str, "xdigit");
1477 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1479 /* Throw away the ] at the end of the character
1480 class. */
1481 PATFETCH (c);
1483 if (p == pend) return REG_EBRACK;
1485 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1487 if ( (is_alnum && ISALNUM (ch))
1488 || (is_alpha && ISALPHA (ch))
1489 || (is_blank && ISBLANK (ch))
1490 || (is_cntrl && ISCNTRL (ch))
1491 || (is_digit && ISDIGIT (ch))
1492 || (is_graph && ISGRAPH (ch))
1493 || (is_lower && ISLOWER (ch))
1494 || (is_print && ISPRINT (ch))
1495 || (is_punct && ISPUNCT (ch))
1496 || (is_space && ISSPACE (ch))
1497 || (is_upper && ISUPPER (ch))
1498 || (is_xdigit && ISXDIGIT (ch)))
1499 SET_LIST_BIT (ch);
1501 had_char_class = true;
1503 else
1505 c1++;
1506 while (c1--)
1507 PATUNFETCH;
1508 SET_LIST_BIT ('[');
1509 SET_LIST_BIT (':');
1510 had_char_class = false;
1513 else
1515 had_char_class = false;
1516 SET_LIST_BIT (c);
1520 /* Discard any (non)matching list bytes that are all 0 at the
1521 end of the map. Decrease the map-length byte too. */
1522 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1523 b[-1]--;
1524 b += b[-1];
1526 break;
1529 case '(':
1530 if (syntax & RE_NO_BK_PARENS)
1531 goto handle_open;
1532 else
1533 goto normal_char;
1536 case ')':
1537 if (syntax & RE_NO_BK_PARENS)
1538 goto handle_close;
1539 else
1540 goto normal_char;
1543 case '\n':
1544 if (syntax & RE_NEWLINE_ALT)
1545 goto handle_alt;
1546 else
1547 goto normal_char;
1550 case '|':
1551 if (syntax & RE_NO_BK_VBAR)
1552 goto handle_alt;
1553 else
1554 goto normal_char;
1557 case '{':
1558 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1559 goto handle_interval;
1560 else
1561 goto normal_char;
1564 case '\\':
1565 if (p == pend) return REG_EESCAPE;
1567 /* Do not translate the character after the \, so that we can
1568 distinguish, e.g., \B from \b, even if we normally would
1569 translate, e.g., B to b. */
1570 PATFETCH_RAW (c);
1572 switch (c)
1574 case '(':
1575 if (syntax & RE_NO_BK_PARENS)
1576 goto normal_backslash;
1578 handle_open:
1579 bufp->re_nsub++;
1580 regnum++;
1582 if (COMPILE_STACK_FULL)
1584 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1585 compile_stack_elt_t);
1586 if (compile_stack.stack == NULL) return REG_ESPACE;
1588 compile_stack.size <<= 1;
1591 /* These are the values to restore when we hit end of this
1592 group. They are all relative offsets, so that if the
1593 whole pattern moves because of realloc, they will still
1594 be valid. */
1595 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1596 COMPILE_STACK_TOP.fixup_alt_jump
1597 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1598 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1599 COMPILE_STACK_TOP.regnum = regnum;
1601 /* We will eventually replace the 0 with the number of
1602 groups inner to this one. But do not push a
1603 start_memory for groups beyond the last one we can
1604 represent in the compiled pattern. */
1605 if (regnum <= MAX_REGNUM)
1607 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1608 BUF_PUSH_3 (start_memory, regnum, 0);
1611 compile_stack.avail++;
1613 fixup_alt_jump = 0;
1614 laststart = 0;
1615 begalt = b;
1616 /* If we've reached MAX_REGNUM groups, then this open
1617 won't actually generate any code, so we'll have to
1618 clear pending_exact explicitly. */
1619 pending_exact = 0;
1620 break;
1623 case ')':
1624 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1626 if (COMPILE_STACK_EMPTY)
1627 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1628 goto normal_backslash;
1629 else
1630 return REG_ERPAREN;
1632 handle_close:
1633 if (fixup_alt_jump)
1634 { /* Push a dummy failure point at the end of the
1635 alternative for a possible future
1636 `pop_failure_jump' to pop. See comments at
1637 `push_dummy_failure' in `re_match_2'. */
1638 BUF_PUSH (push_dummy_failure);
1640 /* We allocated space for this jump when we assigned
1641 to `fixup_alt_jump', in the `handle_alt' case below. */
1642 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1645 /* See similar code for backslashed left paren above. */
1646 if (COMPILE_STACK_EMPTY)
1647 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1648 goto normal_char;
1649 else
1650 return REG_ERPAREN;
1652 /* Since we just checked for an empty stack above, this
1653 ``can't happen''. */
1654 assert (compile_stack.avail != 0);
1656 /* We don't just want to restore into `regnum', because
1657 later groups should continue to be numbered higher,
1658 as in `(ab)c(de)' -- the second group is #2. */
1659 regnum_t this_group_regnum;
1661 compile_stack.avail--;
1662 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1663 fixup_alt_jump
1664 = COMPILE_STACK_TOP.fixup_alt_jump
1665 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1666 : 0;
1667 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1668 this_group_regnum = COMPILE_STACK_TOP.regnum;
1669 /* If we've reached MAX_REGNUM groups, then this open
1670 won't actually generate any code, so we'll have to
1671 clear pending_exact explicitly. */
1672 pending_exact = 0;
1674 /* We're at the end of the group, so now we know how many
1675 groups were inside this one. */
1676 if (this_group_regnum <= MAX_REGNUM)
1678 unsigned char *inner_group_loc
1679 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1681 *inner_group_loc = regnum - this_group_regnum;
1682 BUF_PUSH_3 (stop_memory, this_group_regnum,
1683 regnum - this_group_regnum);
1686 break;
1689 case '|': /* `\|'. */
1690 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1691 goto normal_backslash;
1692 handle_alt:
1693 if (syntax & RE_LIMITED_OPS)
1694 goto normal_char;
1696 /* Insert before the previous alternative a jump which
1697 jumps to this alternative if the former fails. */
1698 GET_BUFFER_SPACE (3);
1699 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1700 pending_exact = 0;
1701 b += 3;
1703 /* The alternative before this one has a jump after it
1704 which gets executed if it gets matched. Adjust that
1705 jump so it will jump to this alternative's analogous
1706 jump (put in below, which in turn will jump to the next
1707 (if any) alternative's such jump, etc.). The last such
1708 jump jumps to the correct final destination. A picture:
1709 _____ _____
1710 | | | |
1711 | v | v
1712 a | b | c
1714 If we are at `b', then fixup_alt_jump right now points to a
1715 three-byte space after `a'. We'll put in the jump, set
1716 fixup_alt_jump to right after `b', and leave behind three
1717 bytes which we'll fill in when we get to after `c'. */
1719 if (fixup_alt_jump)
1720 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1722 /* Mark and leave space for a jump after this alternative,
1723 to be filled in later either by next alternative or
1724 when know we're at the end of a series of alternatives. */
1725 fixup_alt_jump = b;
1726 GET_BUFFER_SPACE (3);
1727 b += 3;
1729 laststart = 0;
1730 begalt = b;
1731 break;
1734 case '{':
1735 /* If \{ is a literal. */
1736 if (!(syntax & RE_INTERVALS)
1737 /* If we're at `\{' and it's not the open-interval
1738 operator. */
1739 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1740 || (p - 2 == pattern && p == pend))
1741 goto normal_backslash;
1743 handle_interval:
1745 /* If got here, then the syntax allows intervals. */
1747 /* At least (most) this many matches must be made. */
1748 int lower_bound = -1, upper_bound = -1;
1750 beg_interval = p - 1;
1752 if (p == pend)
1754 if (syntax & RE_NO_BK_BRACES)
1755 goto unfetch_interval;
1756 else
1757 return REG_EBRACE;
1760 GET_UNSIGNED_NUMBER (lower_bound);
1762 if (c == ',')
1764 GET_UNSIGNED_NUMBER (upper_bound);
1765 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1767 else
1768 /* Interval such as `{1}' => match exactly once. */
1769 upper_bound = lower_bound;
1771 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1772 || lower_bound > upper_bound)
1774 if (syntax & RE_NO_BK_BRACES)
1775 goto unfetch_interval;
1776 else
1777 return REG_BADBR;
1780 if (!(syntax & RE_NO_BK_BRACES))
1782 if (c != '\\') return REG_EBRACE;
1784 PATFETCH (c);
1787 if (c != '}')
1789 if (syntax & RE_NO_BK_BRACES)
1790 goto unfetch_interval;
1791 else
1792 return REG_BADBR;
1795 /* We just parsed a valid interval. */
1797 /* If it's invalid to have no preceding re. */
1798 if (!laststart)
1800 if (syntax & RE_CONTEXT_INVALID_OPS)
1801 return REG_BADRPT;
1802 else if (syntax & RE_CONTEXT_INDEP_OPS)
1803 laststart = b;
1804 else
1805 goto unfetch_interval;
1808 /* If the upper bound is zero, don't want to succeed at
1809 all; jump from `laststart' to `b + 3', which will be
1810 the end of the buffer after we insert the jump. */
1811 if (upper_bound == 0)
1813 GET_BUFFER_SPACE (3);
1814 INSERT_JUMP (jump, laststart, b + 3);
1815 b += 3;
1818 /* Otherwise, we have a nontrivial interval. When
1819 we're all done, the pattern will look like:
1820 set_number_at <jump count> <upper bound>
1821 set_number_at <succeed_n count> <lower bound>
1822 succeed_n <after jump addr> <succed_n count>
1823 <body of loop>
1824 jump_n <succeed_n addr> <jump count>
1825 (The upper bound and `jump_n' are omitted if
1826 `upper_bound' is 1, though.) */
1827 else
1828 { /* If the upper bound is > 1, we need to insert
1829 more at the end of the loop. */
1830 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1832 GET_BUFFER_SPACE (nbytes);
1834 /* Initialize lower bound of the `succeed_n', even
1835 though it will be set during matching by its
1836 attendant `set_number_at' (inserted next),
1837 because `re_compile_fastmap' needs to know.
1838 Jump to the `jump_n' we might insert below. */
1839 INSERT_JUMP2 (succeed_n, laststart,
1840 b + 5 + (upper_bound > 1) * 5,
1841 lower_bound);
1842 b += 5;
1844 /* Code to initialize the lower bound. Insert
1845 before the `succeed_n'. The `5' is the last two
1846 bytes of this `set_number_at', plus 3 bytes of
1847 the following `succeed_n'. */
1848 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1849 b += 5;
1851 if (upper_bound > 1)
1852 { /* More than one repetition is allowed, so
1853 append a backward jump to the `succeed_n'
1854 that starts this interval.
1856 When we've reached this during matching,
1857 we'll have matched the interval once, so
1858 jump back only `upper_bound - 1' times. */
1859 STORE_JUMP2 (jump_n, b, laststart + 5,
1860 upper_bound - 1);
1861 b += 5;
1863 /* The location we want to set is the second
1864 parameter of the `jump_n'; that is `b-2' as
1865 an absolute address. `laststart' will be
1866 the `set_number_at' we're about to insert;
1867 `laststart+3' the number to set, the source
1868 for the relative address. But we are
1869 inserting into the middle of the pattern --
1870 so everything is getting moved up by 5.
1871 Conclusion: (b - 2) - (laststart + 3) + 5,
1872 i.e., b - laststart.
1874 We insert this at the beginning of the loop
1875 so that if we fail during matching, we'll
1876 reinitialize the bounds. */
1877 insert_op2 (set_number_at, laststart, b - laststart,
1878 upper_bound - 1, b);
1879 b += 5;
1882 pending_exact = 0;
1883 beg_interval = NULL;
1885 break;
1887 unfetch_interval:
1888 /* If an invalid interval, match the characters as literals. */
1889 assert (beg_interval);
1890 p = beg_interval;
1891 beg_interval = NULL;
1893 /* normal_char and normal_backslash need `c'. */
1894 PATFETCH (c);
1896 if (!(syntax & RE_NO_BK_BRACES))
1898 if (p > pattern && p[-1] == '\\')
1899 goto normal_backslash;
1901 goto normal_char;
1903 #ifdef emacs
1904 /* There is no way to specify the before_dot and after_dot
1905 operators. rms says this is ok. --karl */
1906 case '=':
1907 BUF_PUSH (at_dot);
1908 break;
1910 case 's':
1911 laststart = b;
1912 PATFETCH (c);
1913 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1914 break;
1916 case 'S':
1917 laststart = b;
1918 PATFETCH (c);
1919 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1920 break;
1921 #endif /* emacs */
1924 case 'w':
1925 laststart = b;
1926 BUF_PUSH (wordchar);
1927 break;
1930 case 'W':
1931 laststart = b;
1932 BUF_PUSH (notwordchar);
1933 break;
1936 case '<':
1937 BUF_PUSH (wordbeg);
1938 break;
1940 case '>':
1941 BUF_PUSH (wordend);
1942 break;
1944 case 'b':
1945 BUF_PUSH (wordbound);
1946 break;
1948 case 'B':
1949 BUF_PUSH (notwordbound);
1950 break;
1952 case '`':
1953 BUF_PUSH (begbuf);
1954 break;
1956 case '\'':
1957 BUF_PUSH (endbuf);
1958 break;
1960 case '1': case '2': case '3': case '4': case '5':
1961 case '6': case '7': case '8': case '9':
1962 if (syntax & RE_NO_BK_REFS)
1963 goto normal_char;
1965 c1 = c - '0';
1967 if (c1 > regnum)
1968 return REG_ESUBREG;
1970 /* Can't back reference to a subexpression if inside of it. */
1971 if (group_in_compile_stack (compile_stack, c1))
1972 goto normal_char;
1974 laststart = b;
1975 BUF_PUSH_2 (duplicate, c1);
1976 break;
1979 case '+':
1980 case '?':
1981 if (syntax & RE_BK_PLUS_QM)
1982 goto handle_plus;
1983 else
1984 goto normal_backslash;
1986 default:
1987 normal_backslash:
1988 /* You might think it would be useful for \ to mean
1989 not to translate; but if we don't translate it
1990 it will never match anything. */
1991 c = TRANSLATE (c);
1992 goto normal_char;
1994 break;
1997 default:
1998 /* Expects the character in `c'. */
1999 normal_char:
2000 /* If no exactn currently being built. */
2001 if (!pending_exact
2003 /* If last exactn not at current position. */
2004 || pending_exact + *pending_exact + 1 != b
2006 /* We have only one byte following the exactn for the count. */
2007 || *pending_exact == (1 << BYTEWIDTH) - 1
2009 /* If followed by a repetition operator. */
2010 || *p == '*' || *p == '^'
2011 || ((syntax & RE_BK_PLUS_QM)
2012 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2013 : (*p == '+' || *p == '?'))
2014 || ((syntax & RE_INTERVALS)
2015 && ((syntax & RE_NO_BK_BRACES)
2016 ? *p == '{'
2017 : (p[0] == '\\' && p[1] == '{'))))
2019 /* Start building a new exactn. */
2021 laststart = b;
2023 BUF_PUSH_2 (exactn, 0);
2024 pending_exact = b - 1;
2027 BUF_PUSH (c);
2028 (*pending_exact)++;
2029 break;
2030 } /* switch (c) */
2031 } /* while p != pend */
2034 /* Through the pattern now. */
2036 if (fixup_alt_jump)
2037 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2039 if (!COMPILE_STACK_EMPTY)
2040 return REG_EPAREN;
2042 free (compile_stack.stack);
2044 /* We have succeeded; set the length of the buffer. */
2045 bufp->used = b - bufp->buffer;
2047 #ifdef DEBUG
2048 if (debug)
2050 DEBUG_PRINT1 ("\nCompiled pattern: ");
2051 print_compiled_pattern (bufp);
2053 #endif /* DEBUG */
2055 return REG_NOERROR;
2056 } /* regex_compile */
2058 /* Subroutines for `regex_compile'. */
2060 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2062 static void
2063 store_op1 (op, loc, arg)
2064 re_opcode_t op;
2065 unsigned char *loc;
2066 int arg;
2068 *loc = (unsigned char) op;
2069 STORE_NUMBER (loc + 1, arg);
2073 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2075 static void
2076 store_op2 (op, loc, arg1, arg2)
2077 re_opcode_t op;
2078 unsigned char *loc;
2079 int arg1, arg2;
2081 *loc = (unsigned char) op;
2082 STORE_NUMBER (loc + 1, arg1);
2083 STORE_NUMBER (loc + 3, arg2);
2087 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2088 for OP followed by two-byte integer parameter ARG. */
2090 static void
2091 insert_op1 (op, loc, arg, end)
2092 re_opcode_t op;
2093 unsigned char *loc;
2094 int arg;
2095 unsigned char *end;
2097 register unsigned char *pfrom = end;
2098 register unsigned char *pto = end + 3;
2100 while (pfrom != loc)
2101 *--pto = *--pfrom;
2103 store_op1 (op, loc, arg);
2107 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2109 static void
2110 insert_op2 (op, loc, arg1, arg2, end)
2111 re_opcode_t op;
2112 unsigned char *loc;
2113 int arg1, arg2;
2114 unsigned char *end;
2116 register unsigned char *pfrom = end;
2117 register unsigned char *pto = end + 5;
2119 while (pfrom != loc)
2120 *--pto = *--pfrom;
2122 store_op2 (op, loc, arg1, arg2);
2126 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2127 after an alternative or a begin-subexpression. We assume there is at
2128 least one character before the ^. */
2130 static boolean
2131 at_begline_loc_p (pattern, p, syntax)
2132 const char *pattern, *p;
2133 reg_syntax_t syntax;
2135 const char *prev = p - 2;
2136 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2138 return
2139 /* After a subexpression? */
2140 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2141 /* After an alternative? */
2142 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2146 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2147 at least one character after the $, i.e., `P < PEND'. */
2149 static boolean
2150 at_endline_loc_p (p, pend, syntax)
2151 const char *p, *pend;
2152 int syntax;
2154 const char *next = p;
2155 boolean next_backslash = *next == '\\';
2156 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2158 return
2159 /* Before a subexpression? */
2160 (syntax & RE_NO_BK_PARENS ? *next == ')'
2161 : next_backslash && next_next && *next_next == ')')
2162 /* Before an alternative? */
2163 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2164 : next_backslash && next_next && *next_next == '|');
2168 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2169 false if it's not. */
2171 static boolean
2172 group_in_compile_stack (compile_stack, regnum)
2173 compile_stack_type compile_stack;
2174 regnum_t regnum;
2176 int this_element;
2178 for (this_element = compile_stack.avail - 1;
2179 this_element >= 0;
2180 this_element--)
2181 if (compile_stack.stack[this_element].regnum == regnum)
2182 return true;
2184 return false;
2188 /* Read the ending character of a range (in a bracket expression) from the
2189 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2190 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2191 Then we set the translation of all bits between the starting and
2192 ending characters (inclusive) in the compiled pattern B.
2194 Return an error code.
2196 We use these short variable names so we can use the same macros as
2197 `regex_compile' itself. */
2199 static reg_errcode_t
2200 compile_range (p_ptr, pend, translate, syntax, b)
2201 const char **p_ptr, *pend;
2202 char *translate;
2203 reg_syntax_t syntax;
2204 unsigned char *b;
2206 unsigned this_char;
2208 const char *p = *p_ptr;
2209 int range_start, range_end;
2211 if (p == pend)
2212 return REG_ERANGE;
2214 /* Even though the pattern is a signed `char *', we need to fetch
2215 with unsigned char *'s; if the high bit of the pattern character
2216 is set, the range endpoints will be negative if we fetch using a
2217 signed char *.
2219 We also want to fetch the endpoints without translating them; the
2220 appropriate translation is done in the bit-setting loop below. */
2221 range_start = ((unsigned char *) p)[-2];
2222 range_end = ((unsigned char *) p)[0];
2224 /* Have to increment the pointer into the pattern string, so the
2225 caller isn't still at the ending character. */
2226 (*p_ptr)++;
2228 /* If the start is after the end, the range is empty. */
2229 if (range_start > range_end)
2230 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2232 /* Here we see why `this_char' has to be larger than an `unsigned
2233 char' -- the range is inclusive, so if `range_end' == 0xff
2234 (assuming 8-bit characters), we would otherwise go into an infinite
2235 loop, since all characters <= 0xff. */
2236 for (this_char = range_start; this_char <= range_end; this_char++)
2238 SET_LIST_BIT (TRANSLATE (this_char));
2241 return REG_NOERROR;
2244 /* Failure stack declarations and macros; both re_compile_fastmap and
2245 re_match_2 use a failure stack. These have to be macros because of
2246 REGEX_ALLOCATE. */
2249 /* Number of failure points for which to initially allocate space
2250 when matching. If this number is exceeded, we allocate more
2251 space, so it is not a hard limit. */
2252 #ifndef INIT_FAILURE_ALLOC
2253 #define INIT_FAILURE_ALLOC 5
2254 #endif
2256 /* Roughly the maximum number of failure points on the stack. Would be
2257 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2258 This is a variable only so users of regex can assign to it; we never
2259 change it ourselves. */
2260 int re_max_failures = 2000;
2262 typedef const unsigned char *fail_stack_elt_t;
2264 typedef struct
2266 fail_stack_elt_t *stack;
2267 unsigned size;
2268 unsigned avail; /* Offset of next open position. */
2269 } fail_stack_type;
2271 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2272 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2273 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2274 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2277 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2279 #define INIT_FAIL_STACK() \
2280 do { \
2281 fail_stack.stack = (fail_stack_elt_t *) \
2282 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2284 if (fail_stack.stack == NULL) \
2285 return -2; \
2287 fail_stack.size = INIT_FAILURE_ALLOC; \
2288 fail_stack.avail = 0; \
2289 } while (0)
2292 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2294 Return 1 if succeeds, and 0 if either ran out of memory
2295 allocating space for it or it was already too large.
2297 REGEX_REALLOCATE requires `destination' be declared. */
2299 #define DOUBLE_FAIL_STACK(fail_stack) \
2300 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2301 ? 0 \
2302 : ((fail_stack).stack = (fail_stack_elt_t *) \
2303 REGEX_REALLOCATE ((fail_stack).stack, \
2304 (fail_stack).size * sizeof (fail_stack_elt_t), \
2305 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2307 (fail_stack).stack == NULL \
2308 ? 0 \
2309 : ((fail_stack).size <<= 1, \
2310 1)))
2313 /* Push PATTERN_OP on FAIL_STACK.
2315 Return 1 if was able to do so and 0 if ran out of memory allocating
2316 space to do so. */
2317 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2318 ((FAIL_STACK_FULL () \
2319 && !DOUBLE_FAIL_STACK (fail_stack)) \
2320 ? 0 \
2321 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2324 /* This pushes an item onto the failure stack. Must be a four-byte
2325 value. Assumes the variable `fail_stack'. Probably should only
2326 be called from within `PUSH_FAILURE_POINT'. */
2327 #define PUSH_FAILURE_ITEM(item) \
2328 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2330 /* The complement operation. Assumes `fail_stack' is nonempty. */
2331 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2333 /* Used to omit pushing failure point id's when we're not debugging. */
2334 #ifdef DEBUG
2335 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2336 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2337 #else
2338 #define DEBUG_PUSH(item)
2339 #define DEBUG_POP(item_addr)
2340 #endif
2343 /* Push the information about the state we will need
2344 if we ever fail back to it.
2346 Requires variables fail_stack, regstart, regend, reg_info, and
2347 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2348 declared.
2350 Does `return FAILURE_CODE' if runs out of memory. */
2352 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2353 do { \
2354 char *destination; \
2355 /* Must be int, so when we don't save any registers, the arithmetic \
2356 of 0 + -1 isn't done as unsigned. */ \
2357 int this_reg; \
2359 DEBUG_STATEMENT (failure_id++); \
2360 DEBUG_STATEMENT (nfailure_points_pushed++); \
2361 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2362 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2363 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2365 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2366 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2368 /* Ensure we have enough space allocated for what we will push. */ \
2369 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2371 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2372 return failure_code; \
2374 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2375 (fail_stack).size); \
2376 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2379 /* Push the info, starting with the registers. */ \
2380 DEBUG_PRINT1 ("\n"); \
2382 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2383 this_reg++) \
2385 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2386 DEBUG_STATEMENT (num_regs_pushed++); \
2388 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2389 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2391 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2392 PUSH_FAILURE_ITEM (regend[this_reg]); \
2394 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2395 DEBUG_PRINT2 (" match_null=%d", \
2396 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2397 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2398 DEBUG_PRINT2 (" matched_something=%d", \
2399 MATCHED_SOMETHING (reg_info[this_reg])); \
2400 DEBUG_PRINT2 (" ever_matched=%d", \
2401 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2402 DEBUG_PRINT1 ("\n"); \
2403 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2406 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2407 PUSH_FAILURE_ITEM (lowest_active_reg); \
2409 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2410 PUSH_FAILURE_ITEM (highest_active_reg); \
2412 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2413 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2414 PUSH_FAILURE_ITEM (pattern_place); \
2416 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2417 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2418 size2); \
2419 DEBUG_PRINT1 ("'\n"); \
2420 PUSH_FAILURE_ITEM (string_place); \
2422 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2423 DEBUG_PUSH (failure_id); \
2424 } while (0)
2426 /* This is the number of items that are pushed and popped on the stack
2427 for each register. */
2428 #define NUM_REG_ITEMS 3
2430 /* Individual items aside from the registers. */
2431 #ifdef DEBUG
2432 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2433 #else
2434 #define NUM_NONREG_ITEMS 4
2435 #endif
2437 /* We push at most this many items on the stack. */
2438 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2440 /* We actually push this many items. */
2441 #define NUM_FAILURE_ITEMS \
2442 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2443 + NUM_NONREG_ITEMS)
2445 /* How many items can still be added to the stack without overflowing it. */
2446 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2449 /* Pops what PUSH_FAIL_STACK pushes.
2451 We restore into the parameters, all of which should be lvalues:
2452 STR -- the saved data position.
2453 PAT -- the saved pattern position.
2454 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2455 REGSTART, REGEND -- arrays of string positions.
2456 REG_INFO -- array of information about each subexpression.
2458 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2459 `pend', `string1', `size1', `string2', and `size2'. */
2461 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2463 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2464 int this_reg; \
2465 const unsigned char *string_temp; \
2467 assert (!FAIL_STACK_EMPTY ()); \
2469 /* Remove failure points and point to how many regs pushed. */ \
2470 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2471 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2472 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2474 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2476 DEBUG_POP (&failure_id); \
2477 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2479 /* If the saved string location is NULL, it came from an \
2480 on_failure_keep_string_jump opcode, and we want to throw away the \
2481 saved NULL, thus retaining our current position in the string. */ \
2482 string_temp = POP_FAILURE_ITEM (); \
2483 if (string_temp != NULL) \
2484 str = (const char *) string_temp; \
2486 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2487 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2488 DEBUG_PRINT1 ("'\n"); \
2490 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2491 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2492 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2494 /* Restore register info. */ \
2495 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2496 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2498 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2499 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2501 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2503 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2505 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2506 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2508 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2509 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2511 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2512 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2515 DEBUG_STATEMENT (nfailure_points_popped++); \
2516 } /* POP_FAILURE_POINT */
2518 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2519 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2520 characters can start a string that matches the pattern. This fastmap
2521 is used by re_search to skip quickly over impossible starting points.
2523 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2524 area as BUFP->fastmap.
2526 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2527 the pattern buffer.
2529 Returns 0 if we succeed, -2 if an internal error. */
2532 re_compile_fastmap (bufp)
2533 struct re_pattern_buffer *bufp;
2535 int j, k;
2536 fail_stack_type fail_stack;
2537 #ifndef REGEX_MALLOC
2538 char *destination;
2539 #endif
2540 /* We don't push any register information onto the failure stack. */
2541 unsigned num_regs = 0;
2543 register char *fastmap = bufp->fastmap;
2544 unsigned char *pattern = bufp->buffer;
2545 unsigned long size = bufp->used;
2546 const unsigned char *p = pattern;
2547 register unsigned char *pend = pattern + size;
2549 /* Assume that each path through the pattern can be null until
2550 proven otherwise. We set this false at the bottom of switch
2551 statement, to which we get only if a particular path doesn't
2552 match the empty string. */
2553 boolean path_can_be_null = true;
2555 /* We aren't doing a `succeed_n' to begin with. */
2556 boolean succeed_n_p = false;
2558 assert (fastmap != NULL && p != NULL);
2560 INIT_FAIL_STACK ();
2561 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2562 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2563 bufp->can_be_null = 0;
2565 while (p != pend || !FAIL_STACK_EMPTY ())
2567 if (p == pend)
2569 bufp->can_be_null |= path_can_be_null;
2571 /* Reset for next path. */
2572 path_can_be_null = true;
2574 p = fail_stack.stack[--fail_stack.avail];
2577 /* We should never be about to go beyond the end of the pattern. */
2578 assert (p < pend);
2580 #ifdef SWITCH_ENUM_BUG
2581 switch ((int) ((re_opcode_t) *p++))
2582 #else
2583 switch ((re_opcode_t) *p++)
2584 #endif
2587 /* I guess the idea here is to simply not bother with a fastmap
2588 if a backreference is used, since it's too hard to figure out
2589 the fastmap for the corresponding group. Setting
2590 `can_be_null' stops `re_search_2' from using the fastmap, so
2591 that is all we do. */
2592 case duplicate:
2593 bufp->can_be_null = 1;
2594 return 0;
2597 /* Following are the cases which match a character. These end
2598 with `break'. */
2600 case exactn:
2601 fastmap[p[1]] = 1;
2602 break;
2605 case charset:
2606 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2607 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2608 fastmap[j] = 1;
2609 break;
2612 case charset_not:
2613 /* Chars beyond end of map must be allowed. */
2614 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2615 fastmap[j] = 1;
2617 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2618 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2619 fastmap[j] = 1;
2620 break;
2623 case wordchar:
2624 for (j = 0; j < (1 << BYTEWIDTH); j++)
2625 if (SYNTAX (j) == Sword)
2626 fastmap[j] = 1;
2627 break;
2630 case notwordchar:
2631 for (j = 0; j < (1 << BYTEWIDTH); j++)
2632 if (SYNTAX (j) != Sword)
2633 fastmap[j] = 1;
2634 break;
2637 case anychar:
2638 /* `.' matches anything ... */
2639 for (j = 0; j < (1 << BYTEWIDTH); j++)
2640 fastmap[j] = 1;
2642 /* ... except perhaps newline. */
2643 if (!(bufp->syntax & RE_DOT_NEWLINE))
2644 fastmap['\n'] = 0;
2646 /* Return if we have already set `can_be_null'; if we have,
2647 then the fastmap is irrelevant. Something's wrong here. */
2648 else if (bufp->can_be_null)
2649 return 0;
2651 /* Otherwise, have to check alternative paths. */
2652 break;
2655 #ifdef emacs
2656 case syntaxspec:
2657 k = *p++;
2658 for (j = 0; j < (1 << BYTEWIDTH); j++)
2659 if (SYNTAX (j) == (enum syntaxcode) k)
2660 fastmap[j] = 1;
2661 break;
2664 case notsyntaxspec:
2665 k = *p++;
2666 for (j = 0; j < (1 << BYTEWIDTH); j++)
2667 if (SYNTAX (j) != (enum syntaxcode) k)
2668 fastmap[j] = 1;
2669 break;
2672 /* All cases after this match the empty string. These end with
2673 `continue'. */
2676 case before_dot:
2677 case at_dot:
2678 case after_dot:
2679 continue;
2680 #endif /* not emacs */
2683 case no_op:
2684 case begline:
2685 case endline:
2686 case begbuf:
2687 case endbuf:
2688 case wordbound:
2689 case notwordbound:
2690 case wordbeg:
2691 case wordend:
2692 case push_dummy_failure:
2693 continue;
2696 case jump_n:
2697 case pop_failure_jump:
2698 case maybe_pop_jump:
2699 case jump:
2700 case jump_past_alt:
2701 case dummy_failure_jump:
2702 EXTRACT_NUMBER_AND_INCR (j, p);
2703 p += j;
2704 if (j > 0)
2705 continue;
2707 /* Jump backward implies we just went through the body of a
2708 loop and matched nothing. Opcode jumped to should be
2709 `on_failure_jump' or `succeed_n'. Just treat it like an
2710 ordinary jump. For a * loop, it has pushed its failure
2711 point already; if so, discard that as redundant. */
2712 if ((re_opcode_t) *p != on_failure_jump
2713 && (re_opcode_t) *p != succeed_n)
2714 continue;
2716 p++;
2717 EXTRACT_NUMBER_AND_INCR (j, p);
2718 p += j;
2720 /* If what's on the stack is where we are now, pop it. */
2721 if (!FAIL_STACK_EMPTY ()
2722 && fail_stack.stack[fail_stack.avail - 1] == p)
2723 fail_stack.avail--;
2725 continue;
2728 case on_failure_jump:
2729 case on_failure_keep_string_jump:
2730 handle_on_failure_jump:
2731 EXTRACT_NUMBER_AND_INCR (j, p);
2733 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2734 end of the pattern. We don't want to push such a point,
2735 since when we restore it above, entering the switch will
2736 increment `p' past the end of the pattern. We don't need
2737 to push such a point since we obviously won't find any more
2738 fastmap entries beyond `pend'. Such a pattern can match
2739 the null string, though. */
2740 if (p + j < pend)
2742 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2743 return -2;
2745 else
2746 bufp->can_be_null = 1;
2748 if (succeed_n_p)
2750 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2751 succeed_n_p = false;
2754 continue;
2757 case succeed_n:
2758 /* Get to the number of times to succeed. */
2759 p += 2;
2761 /* Increment p past the n for when k != 0. */
2762 EXTRACT_NUMBER_AND_INCR (k, p);
2763 if (k == 0)
2765 p -= 4;
2766 succeed_n_p = true; /* Spaghetti code alert. */
2767 goto handle_on_failure_jump;
2769 continue;
2772 case set_number_at:
2773 p += 4;
2774 continue;
2777 case start_memory:
2778 case stop_memory:
2779 p += 2;
2780 continue;
2783 default:
2784 abort (); /* We have listed all the cases. */
2785 } /* switch *p++ */
2787 /* Getting here means we have found the possible starting
2788 characters for one path of the pattern -- and that the empty
2789 string does not match. We need not follow this path further.
2790 Instead, look at the next alternative (remembered on the
2791 stack), or quit if no more. The test at the top of the loop
2792 does these things. */
2793 path_can_be_null = false;
2794 p = pend;
2795 } /* while p */
2797 /* Set `can_be_null' for the last path (also the first path, if the
2798 pattern is empty). */
2799 bufp->can_be_null |= path_can_be_null;
2800 return 0;
2801 } /* re_compile_fastmap */
2803 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2804 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2805 this memory for recording register information. STARTS and ENDS
2806 must be allocated using the malloc library routine, and must each
2807 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2809 If NUM_REGS == 0, then subsequent matches should allocate their own
2810 register data.
2812 Unless this function is called, the first search or match using
2813 PATTERN_BUFFER will allocate its own register data, without
2814 freeing the old data. */
2816 void
2817 re_set_registers (bufp, regs, num_regs, starts, ends)
2818 struct re_pattern_buffer *bufp;
2819 struct re_registers *regs;
2820 unsigned num_regs;
2821 regoff_t *starts, *ends;
2823 if (num_regs)
2825 bufp->regs_allocated = REGS_REALLOCATE;
2826 regs->num_regs = num_regs;
2827 regs->start = starts;
2828 regs->end = ends;
2830 else
2832 bufp->regs_allocated = REGS_UNALLOCATED;
2833 regs->num_regs = 0;
2834 regs->start = regs->end = (regoff_t) 0;
2838 /* Searching routines. */
2840 /* Like re_search_2, below, but only one string is specified, and
2841 doesn't let you say where to stop matching. */
2844 re_search (bufp, string, size, startpos, range, regs)
2845 struct re_pattern_buffer *bufp;
2846 const char *string;
2847 int size, startpos, range;
2848 struct re_registers *regs;
2850 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2851 regs, size);
2855 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2856 virtual concatenation of STRING1 and STRING2, starting first at index
2857 STARTPOS, then at STARTPOS + 1, and so on.
2859 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2861 RANGE is how far to scan while trying to match. RANGE = 0 means try
2862 only at STARTPOS; in general, the last start tried is STARTPOS +
2863 RANGE.
2865 In REGS, return the indices of the virtual concatenation of STRING1
2866 and STRING2 that matched the entire BUFP->buffer and its contained
2867 subexpressions.
2869 Do not consider matching one past the index STOP in the virtual
2870 concatenation of STRING1 and STRING2.
2872 We return either the position in the strings at which the match was
2873 found, -1 if no match, or -2 if error (such as failure
2874 stack overflow). */
2877 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2878 struct re_pattern_buffer *bufp;
2879 const char *string1, *string2;
2880 int size1, size2;
2881 int startpos;
2882 int range;
2883 struct re_registers *regs;
2884 int stop;
2886 int val;
2887 register char *fastmap = bufp->fastmap;
2888 register char *translate = bufp->translate;
2889 int total_size = size1 + size2;
2890 int endpos = startpos + range;
2892 /* Check for out-of-range STARTPOS. */
2893 if (startpos < 0 || startpos > total_size)
2894 return -1;
2896 /* Fix up RANGE if it might eventually take us outside
2897 the virtual concatenation of STRING1 and STRING2. */
2898 if (endpos < -1)
2899 range = -1 - startpos;
2900 else if (endpos > total_size)
2901 range = total_size - startpos;
2903 /* If the search isn't to be a backwards one, don't waste time in a
2904 search for a pattern that must be anchored. */
2905 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2907 if (startpos > 0)
2908 return -1;
2909 else
2910 range = 1;
2913 /* Update the fastmap now if not correct already. */
2914 if (fastmap && !bufp->fastmap_accurate)
2915 if (re_compile_fastmap (bufp) == -2)
2916 return -2;
2918 /* Loop through the string, looking for a place to start matching. */
2919 for (;;)
2921 /* If a fastmap is supplied, skip quickly over characters that
2922 cannot be the start of a match. If the pattern can match the
2923 null string, however, we don't need to skip characters; we want
2924 the first null string. */
2925 if (fastmap && startpos < total_size && !bufp->can_be_null)
2927 if (range > 0) /* Searching forwards. */
2929 register const char *d;
2930 register int lim = 0;
2931 int irange = range;
2933 if (startpos < size1 && startpos + range >= size1)
2934 lim = range - (size1 - startpos);
2936 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2938 /* Written out as an if-else to avoid testing `translate'
2939 inside the loop. */
2940 if (translate)
2941 while (range > lim
2942 && !fastmap[(unsigned char)
2943 translate[(unsigned char) *d++]])
2944 range--;
2945 else
2946 while (range > lim && !fastmap[(unsigned char) *d++])
2947 range--;
2949 startpos += irange - range;
2951 else /* Searching backwards. */
2953 register char c = (size1 == 0 || startpos >= size1
2954 ? string2[startpos - size1]
2955 : string1[startpos]);
2957 if (!fastmap[(unsigned char) TRANSLATE (c)])
2958 goto advance;
2962 /* If can't match the null string, and that's all we have left, fail. */
2963 if (range >= 0 && startpos == total_size && fastmap
2964 && !bufp->can_be_null)
2965 return -1;
2967 val = re_match_2 (bufp, string1, size1, string2, size2,
2968 startpos, regs, stop);
2969 if (val >= 0)
2970 return startpos;
2972 if (val == -2)
2973 return -2;
2975 advance:
2976 if (!range)
2977 break;
2978 else if (range > 0)
2980 range--;
2981 startpos++;
2983 else
2985 range++;
2986 startpos--;
2989 return -1;
2990 } /* re_search_2 */
2992 /* Declarations and macros for re_match_2. */
2994 static int bcmp_translate ();
2995 static boolean alt_match_null_string_p (),
2996 common_op_match_null_string_p (),
2997 group_match_null_string_p ();
2999 /* Structure for per-register (a.k.a. per-group) information.
3000 This must not be longer than one word, because we push this value
3001 onto the failure stack. Other register information, such as the
3002 starting and ending positions (which are addresses), and the list of
3003 inner groups (which is a bits list) are maintained in separate
3004 variables.
3006 We are making a (strictly speaking) nonportable assumption here: that
3007 the compiler will pack our bit fields into something that fits into
3008 the type of `word', i.e., is something that fits into one item on the
3009 failure stack. */
3010 typedef union
3012 fail_stack_elt_t word;
3013 struct
3015 /* This field is one if this group can match the empty string,
3016 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3017 #define MATCH_NULL_UNSET_VALUE 3
3018 unsigned match_null_string_p : 2;
3019 unsigned is_active : 1;
3020 unsigned matched_something : 1;
3021 unsigned ever_matched_something : 1;
3022 } bits;
3023 } register_info_type;
3025 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3026 #define IS_ACTIVE(R) ((R).bits.is_active)
3027 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3028 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3031 /* Call this when have matched a real character; it sets `matched' flags
3032 for the subexpressions which we are currently inside. Also records
3033 that those subexprs have matched. */
3034 #define SET_REGS_MATCHED() \
3035 do \
3037 unsigned r; \
3038 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3040 MATCHED_SOMETHING (reg_info[r]) \
3041 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3042 = 1; \
3045 while (0)
3048 /* This converts PTR, a pointer into one of the search strings `string1'
3049 and `string2' into an offset from the beginning of that string. */
3050 #define POINTER_TO_OFFSET(ptr) \
3051 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3053 /* Registers are set to a sentinel when they haven't yet matched. */
3054 #define REG_UNSET_VALUE ((char *) -1)
3055 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3058 /* Macros for dealing with the split strings in re_match_2. */
3060 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3062 /* Call before fetching a character with *d. This switches over to
3063 string2 if necessary. */
3064 #define PREFETCH() \
3065 while (d == dend) \
3067 /* End of string2 => fail. */ \
3068 if (dend == end_match_2) \
3069 goto fail; \
3070 /* End of string1 => advance to string2. */ \
3071 d = string2; \
3072 dend = end_match_2; \
3076 /* Test if at very beginning or at very end of the virtual concatenation
3077 of `string1' and `string2'. If only one string, it's `string2'. */
3078 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3079 #define AT_STRINGS_END(d) ((d) == end2)
3082 /* Test if D points to a character which is word-constituent. We have
3083 two special cases to check for: if past the end of string1, look at
3084 the first character in string2; and if before the beginning of
3085 string2, look at the last character in string1. */
3086 #define WORDCHAR_P(d) \
3087 (SYNTAX ((d) == end1 ? *string2 \
3088 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3089 == Sword)
3091 /* Test if the character before D and the one at D differ with respect
3092 to being word-constituent. */
3093 #define AT_WORD_BOUNDARY(d) \
3094 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3095 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3098 /* Free everything we malloc. */
3099 #ifdef REGEX_MALLOC
3100 #define FREE_VAR(var) if (var) free (var); var = NULL
3101 #define FREE_VARIABLES() \
3102 do { \
3103 FREE_VAR (fail_stack.stack); \
3104 FREE_VAR (regstart); \
3105 FREE_VAR (regend); \
3106 FREE_VAR (old_regstart); \
3107 FREE_VAR (old_regend); \
3108 FREE_VAR (best_regstart); \
3109 FREE_VAR (best_regend); \
3110 FREE_VAR (reg_info); \
3111 FREE_VAR (reg_dummy); \
3112 FREE_VAR (reg_info_dummy); \
3113 } while (0)
3114 #else /* not REGEX_MALLOC */
3115 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3116 #define FREE_VARIABLES() alloca (0)
3117 #endif /* not REGEX_MALLOC */
3120 /* These values must meet several constraints. They must not be valid
3121 register values; since we have a limit of 255 registers (because
3122 we use only one byte in the pattern for the register number), we can
3123 use numbers larger than 255. They must differ by 1, because of
3124 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3125 be larger than the value for the highest register, so we do not try
3126 to actually save any registers when none are active. */
3127 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3128 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3130 /* Matching routines. */
3132 #ifndef emacs /* Emacs never uses this. */
3133 /* re_match is like re_match_2 except it takes only a single string. */
3136 re_match (bufp, string, size, pos, regs)
3137 struct re_pattern_buffer *bufp;
3138 const char *string;
3139 int size, pos;
3140 struct re_registers *regs;
3142 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3144 #endif /* not emacs */
3147 /* re_match_2 matches the compiled pattern in BUFP against the
3148 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3149 and SIZE2, respectively). We start matching at POS, and stop
3150 matching at STOP.
3152 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3153 store offsets for the substring each group matched in REGS. See the
3154 documentation for exactly how many groups we fill.
3156 We return -1 if no match, -2 if an internal error (such as the
3157 failure stack overflowing). Otherwise, we return the length of the
3158 matched substring. */
3161 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3162 struct re_pattern_buffer *bufp;
3163 const char *string1, *string2;
3164 int size1, size2;
3165 int pos;
3166 struct re_registers *regs;
3167 int stop;
3169 /* General temporaries. */
3170 int mcnt;
3171 unsigned char *p1;
3173 /* Just past the end of the corresponding string. */
3174 const char *end1, *end2;
3176 /* Pointers into string1 and string2, just past the last characters in
3177 each to consider matching. */
3178 const char *end_match_1, *end_match_2;
3180 /* Where we are in the data, and the end of the current string. */
3181 const char *d, *dend;
3183 /* Where we are in the pattern, and the end of the pattern. */
3184 unsigned char *p = bufp->buffer;
3185 register unsigned char *pend = p + bufp->used;
3187 /* We use this to map every character in the string. */
3188 char *translate = bufp->translate;
3190 /* Failure point stack. Each place that can handle a failure further
3191 down the line pushes a failure point on this stack. It consists of
3192 restart, regend, and reg_info for all registers corresponding to
3193 the subexpressions we're currently inside, plus the number of such
3194 registers, and, finally, two char *'s. The first char * is where
3195 to resume scanning the pattern; the second one is where to resume
3196 scanning the strings. If the latter is zero, the failure point is
3197 a ``dummy''; if a failure happens and the failure point is a dummy,
3198 it gets discarded and the next next one is tried. */
3199 fail_stack_type fail_stack;
3200 #ifdef DEBUG
3201 static unsigned failure_id = 0;
3202 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3203 #endif
3205 /* We fill all the registers internally, independent of what we
3206 return, for use in backreferences. The number here includes
3207 an element for register zero. */
3208 unsigned num_regs = bufp->re_nsub + 1;
3210 /* The currently active registers. */
3211 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3212 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3214 /* Information on the contents of registers. These are pointers into
3215 the input strings; they record just what was matched (on this
3216 attempt) by a subexpression part of the pattern, that is, the
3217 regnum-th regstart pointer points to where in the pattern we began
3218 matching and the regnum-th regend points to right after where we
3219 stopped matching the regnum-th subexpression. (The zeroth register
3220 keeps track of what the whole pattern matches.) */
3221 const char **regstart, **regend;
3223 /* If a group that's operated upon by a repetition operator fails to
3224 match anything, then the register for its start will need to be
3225 restored because it will have been set to wherever in the string we
3226 are when we last see its open-group operator. Similarly for a
3227 register's end. */
3228 const char **old_regstart, **old_regend;
3230 /* The is_active field of reg_info helps us keep track of which (possibly
3231 nested) subexpressions we are currently in. The matched_something
3232 field of reg_info[reg_num] helps us tell whether or not we have
3233 matched any of the pattern so far this time through the reg_num-th
3234 subexpression. These two fields get reset each time through any
3235 loop their register is in. */
3236 register_info_type *reg_info;
3238 /* The following record the register info as found in the above
3239 variables when we find a match better than any we've seen before.
3240 This happens as we backtrack through the failure points, which in
3241 turn happens only if we have not yet matched the entire string. */
3242 unsigned best_regs_set = false;
3243 const char **best_regstart, **best_regend;
3245 /* Logically, this is `best_regend[0]'. But we don't want to have to
3246 allocate space for that if we're not allocating space for anything
3247 else (see below). Also, we never need info about register 0 for
3248 any of the other register vectors, and it seems rather a kludge to
3249 treat `best_regend' differently than the rest. So we keep track of
3250 the end of the best match so far in a separate variable. We
3251 initialize this to NULL so that when we backtrack the first time
3252 and need to test it, it's not garbage. */
3253 const char *match_end = NULL;
3255 /* Used when we pop values we don't care about. */
3256 const char **reg_dummy;
3257 register_info_type *reg_info_dummy;
3259 #ifdef DEBUG
3260 /* Counts the total number of registers pushed. */
3261 unsigned num_regs_pushed = 0;
3262 #endif
3264 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3266 INIT_FAIL_STACK ();
3268 /* Do not bother to initialize all the register variables if there are
3269 no groups in the pattern, as it takes a fair amount of time. If
3270 there are groups, we include space for register 0 (the whole
3271 pattern), even though we never use it, since it simplifies the
3272 array indexing. We should fix this. */
3273 if (bufp->re_nsub)
3275 regstart = REGEX_TALLOC (num_regs, const char *);
3276 regend = REGEX_TALLOC (num_regs, const char *);
3277 old_regstart = REGEX_TALLOC (num_regs, const char *);
3278 old_regend = REGEX_TALLOC (num_regs, const char *);
3279 best_regstart = REGEX_TALLOC (num_regs, const char *);
3280 best_regend = REGEX_TALLOC (num_regs, const char *);
3281 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3282 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3283 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3285 if (!(regstart && regend && old_regstart && old_regend && reg_info
3286 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3288 FREE_VARIABLES ();
3289 return -2;
3292 #ifdef REGEX_MALLOC
3293 else
3295 /* We must initialize all our variables to NULL, so that
3296 `FREE_VARIABLES' doesn't try to free them. */
3297 regstart = regend = old_regstart = old_regend = best_regstart
3298 = best_regend = reg_dummy = NULL;
3299 reg_info = reg_info_dummy = (register_info_type *) NULL;
3301 #endif /* REGEX_MALLOC */
3303 /* The starting position is bogus. */
3304 if (pos < 0 || pos > size1 + size2)
3306 FREE_VARIABLES ();
3307 return -1;
3310 /* Initialize subexpression text positions to -1 to mark ones that no
3311 start_memory/stop_memory has been seen for. Also initialize the
3312 register information struct. */
3313 for (mcnt = 1; mcnt < num_regs; mcnt++)
3315 regstart[mcnt] = regend[mcnt]
3316 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3318 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3319 IS_ACTIVE (reg_info[mcnt]) = 0;
3320 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3321 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3324 /* We move `string1' into `string2' if the latter's empty -- but not if
3325 `string1' is null. */
3326 if (size2 == 0 && string1 != NULL)
3328 string2 = string1;
3329 size2 = size1;
3330 string1 = 0;
3331 size1 = 0;
3333 end1 = string1 + size1;
3334 end2 = string2 + size2;
3336 /* Compute where to stop matching, within the two strings. */
3337 if (stop <= size1)
3339 end_match_1 = string1 + stop;
3340 end_match_2 = string2;
3342 else
3344 end_match_1 = end1;
3345 end_match_2 = string2 + stop - size1;
3348 /* `p' scans through the pattern as `d' scans through the data.
3349 `dend' is the end of the input string that `d' points within. `d'
3350 is advanced into the following input string whenever necessary, but
3351 this happens before fetching; therefore, at the beginning of the
3352 loop, `d' can be pointing at the end of a string, but it cannot
3353 equal `string2'. */
3354 if (size1 > 0 && pos <= size1)
3356 d = string1 + pos;
3357 dend = end_match_1;
3359 else
3361 d = string2 + pos - size1;
3362 dend = end_match_2;
3365 DEBUG_PRINT1 ("The compiled pattern is: ");
3366 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3367 DEBUG_PRINT1 ("The string to match is: `");
3368 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3369 DEBUG_PRINT1 ("'\n");
3371 /* This loops over pattern commands. It exits by returning from the
3372 function if the match is complete, or it drops through if the match
3373 fails at this starting point in the input data. */
3374 for (;;)
3376 DEBUG_PRINT2 ("\n0x%x: ", p);
3378 if (p == pend)
3379 { /* End of pattern means we might have succeeded. */
3380 DEBUG_PRINT1 ("end of pattern ... ");
3382 /* If we haven't matched the entire string, and we want the
3383 longest match, try backtracking. */
3384 if (d != end_match_2)
3386 DEBUG_PRINT1 ("backtracking.\n");
3388 if (!FAIL_STACK_EMPTY ())
3389 { /* More failure points to try. */
3390 boolean same_str_p = (FIRST_STRING_P (match_end)
3391 == MATCHING_IN_FIRST_STRING);
3393 /* If exceeds best match so far, save it. */
3394 if (!best_regs_set
3395 || (same_str_p && d > match_end)
3396 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3398 best_regs_set = true;
3399 match_end = d;
3401 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3403 for (mcnt = 1; mcnt < num_regs; mcnt++)
3405 best_regstart[mcnt] = regstart[mcnt];
3406 best_regend[mcnt] = regend[mcnt];
3409 goto fail;
3412 /* If no failure points, don't restore garbage. */
3413 else if (best_regs_set)
3415 restore_best_regs:
3416 /* Restore best match. It may happen that `dend ==
3417 end_match_1' while the restored d is in string2.
3418 For example, the pattern `x.*y.*z' against the
3419 strings `x-' and `y-z-', if the two strings are
3420 not consecutive in memory. */
3421 DEBUG_PRINT1 ("Restoring best registers.\n");
3423 d = match_end;
3424 dend = ((d >= string1 && d <= end1)
3425 ? end_match_1 : end_match_2);
3427 for (mcnt = 1; mcnt < num_regs; mcnt++)
3429 regstart[mcnt] = best_regstart[mcnt];
3430 regend[mcnt] = best_regend[mcnt];
3433 } /* d != end_match_2 */
3435 DEBUG_PRINT1 ("Accepting match.\n");
3437 /* If caller wants register contents data back, do it. */
3438 if (regs && !bufp->no_sub)
3440 /* Have the register data arrays been allocated? */
3441 if (bufp->regs_allocated == REGS_UNALLOCATED)
3442 { /* No. So allocate them with malloc. We need one
3443 extra element beyond `num_regs' for the `-1' marker
3444 GNU code uses. */
3445 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3446 regs->start = TALLOC (regs->num_regs, regoff_t);
3447 regs->end = TALLOC (regs->num_regs, regoff_t);
3448 if (regs->start == NULL || regs->end == NULL)
3449 return -2;
3450 bufp->regs_allocated = REGS_REALLOCATE;
3452 else if (bufp->regs_allocated == REGS_REALLOCATE)
3453 { /* Yes. If we need more elements than were already
3454 allocated, reallocate them. If we need fewer, just
3455 leave it alone. */
3456 if (regs->num_regs < num_regs + 1)
3458 regs->num_regs = num_regs + 1;
3459 RETALLOC (regs->start, regs->num_regs, regoff_t);
3460 RETALLOC (regs->end, regs->num_regs, regoff_t);
3461 if (regs->start == NULL || regs->end == NULL)
3462 return -2;
3465 else
3466 assert (bufp->regs_allocated == REGS_FIXED);
3468 /* Convert the pointer data in `regstart' and `regend' to
3469 indices. Register zero has to be set differently,
3470 since we haven't kept track of any info for it. */
3471 if (regs->num_regs > 0)
3473 regs->start[0] = pos;
3474 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3475 : d - string2 + size1);
3478 /* Go through the first `min (num_regs, regs->num_regs)'
3479 registers, since that is all we initialized. */
3480 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3482 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3483 regs->start[mcnt] = regs->end[mcnt] = -1;
3484 else
3486 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3487 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3491 /* If the regs structure we return has more elements than
3492 were in the pattern, set the extra elements to -1. If
3493 we (re)allocated the registers, this is the case,
3494 because we always allocate enough to have at least one
3495 -1 at the end. */
3496 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3497 regs->start[mcnt] = regs->end[mcnt] = -1;
3498 } /* regs && !bufp->no_sub */
3500 FREE_VARIABLES ();
3501 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3502 nfailure_points_pushed, nfailure_points_popped,
3503 nfailure_points_pushed - nfailure_points_popped);
3504 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3506 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3507 ? string1
3508 : string2 - size1);
3510 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3512 return mcnt;
3515 /* Otherwise match next pattern command. */
3516 #ifdef SWITCH_ENUM_BUG
3517 switch ((int) ((re_opcode_t) *p++))
3518 #else
3519 switch ((re_opcode_t) *p++)
3520 #endif
3522 /* Ignore these. Used to ignore the n of succeed_n's which
3523 currently have n == 0. */
3524 case no_op:
3525 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3526 break;
3529 /* Match the next n pattern characters exactly. The following
3530 byte in the pattern defines n, and the n bytes after that
3531 are the characters to match. */
3532 case exactn:
3533 mcnt = *p++;
3534 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3536 /* This is written out as an if-else so we don't waste time
3537 testing `translate' inside the loop. */
3538 if (translate)
3542 PREFETCH ();
3543 if (translate[(unsigned char) *d++] != (char) *p++)
3544 goto fail;
3546 while (--mcnt);
3548 else
3552 PREFETCH ();
3553 if (*d++ != (char) *p++) goto fail;
3555 while (--mcnt);
3557 SET_REGS_MATCHED ();
3558 break;
3561 /* Match any character except possibly a newline or a null. */
3562 case anychar:
3563 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3565 PREFETCH ();
3567 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3568 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3569 goto fail;
3571 SET_REGS_MATCHED ();
3572 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3573 d++;
3574 break;
3577 case charset:
3578 case charset_not:
3580 register unsigned char c;
3581 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3583 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3585 PREFETCH ();
3586 c = TRANSLATE (*d); /* The character to match. */
3588 /* Cast to `unsigned' instead of `unsigned char' in case the
3589 bit list is a full 32 bytes long. */
3590 if (c < (unsigned) (*p * BYTEWIDTH)
3591 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3592 not = !not;
3594 p += 1 + *p;
3596 if (!not) goto fail;
3598 SET_REGS_MATCHED ();
3599 d++;
3600 break;
3604 /* The beginning of a group is represented by start_memory.
3605 The arguments are the register number in the next byte, and the
3606 number of groups inner to this one in the next. The text
3607 matched within the group is recorded (in the internal
3608 registers data structure) under the register number. */
3609 case start_memory:
3610 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3612 /* Find out if this group can match the empty string. */
3613 p1 = p; /* To send to group_match_null_string_p. */
3615 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3616 REG_MATCH_NULL_STRING_P (reg_info[*p])
3617 = group_match_null_string_p (&p1, pend, reg_info);
3619 /* Save the position in the string where we were the last time
3620 we were at this open-group operator in case the group is
3621 operated upon by a repetition operator, e.g., with `(a*)*b'
3622 against `ab'; then we want to ignore where we are now in
3623 the string in case this attempt to match fails. */
3624 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3625 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3626 : regstart[*p];
3627 DEBUG_PRINT2 (" old_regstart: %d\n",
3628 POINTER_TO_OFFSET (old_regstart[*p]));
3630 regstart[*p] = d;
3631 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3633 IS_ACTIVE (reg_info[*p]) = 1;
3634 MATCHED_SOMETHING (reg_info[*p]) = 0;
3636 /* This is the new highest active register. */
3637 highest_active_reg = *p;
3639 /* If nothing was active before, this is the new lowest active
3640 register. */
3641 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3642 lowest_active_reg = *p;
3644 /* Move past the register number and inner group count. */
3645 p += 2;
3646 break;
3649 /* The stop_memory opcode represents the end of a group. Its
3650 arguments are the same as start_memory's: the register
3651 number, and the number of inner groups. */
3652 case stop_memory:
3653 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3655 /* We need to save the string position the last time we were at
3656 this close-group operator in case the group is operated
3657 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3658 against `aba'; then we want to ignore where we are now in
3659 the string in case this attempt to match fails. */
3660 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3661 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3662 : regend[*p];
3663 DEBUG_PRINT2 (" old_regend: %d\n",
3664 POINTER_TO_OFFSET (old_regend[*p]));
3666 regend[*p] = d;
3667 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3669 /* This register isn't active anymore. */
3670 IS_ACTIVE (reg_info[*p]) = 0;
3672 /* If this was the only register active, nothing is active
3673 anymore. */
3674 if (lowest_active_reg == highest_active_reg)
3676 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3677 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3679 else
3680 { /* We must scan for the new highest active register, since
3681 it isn't necessarily one less than now: consider
3682 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3683 new highest active register is 1. */
3684 unsigned char r = *p - 1;
3685 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3686 r--;
3688 /* If we end up at register zero, that means that we saved
3689 the registers as the result of an `on_failure_jump', not
3690 a `start_memory', and we jumped to past the innermost
3691 `stop_memory'. For example, in ((.)*) we save
3692 registers 1 and 2 as a result of the *, but when we pop
3693 back to the second ), we are at the stop_memory 1.
3694 Thus, nothing is active. */
3695 if (r == 0)
3697 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3698 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3700 else
3701 highest_active_reg = r;
3704 /* If just failed to match something this time around with a
3705 group that's operated on by a repetition operator, try to
3706 force exit from the ``loop'', and restore the register
3707 information for this group that we had before trying this
3708 last match. */
3709 if ((!MATCHED_SOMETHING (reg_info[*p])
3710 || (re_opcode_t) p[-3] == start_memory)
3711 && (p + 2) < pend)
3713 boolean is_a_jump_n = false;
3715 p1 = p + 2;
3716 mcnt = 0;
3717 switch ((re_opcode_t) *p1++)
3719 case jump_n:
3720 is_a_jump_n = true;
3721 case pop_failure_jump:
3722 case maybe_pop_jump:
3723 case jump:
3724 case dummy_failure_jump:
3725 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3726 if (is_a_jump_n)
3727 p1 += 2;
3728 break;
3730 default:
3731 /* do nothing */ ;
3733 p1 += mcnt;
3735 /* If the next operation is a jump backwards in the pattern
3736 to an on_failure_jump right before the start_memory
3737 corresponding to this stop_memory, exit from the loop
3738 by forcing a failure after pushing on the stack the
3739 on_failure_jump's jump in the pattern, and d. */
3740 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3741 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3743 /* If this group ever matched anything, then restore
3744 what its registers were before trying this last
3745 failed match, e.g., with `(a*)*b' against `ab' for
3746 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3747 against `aba' for regend[3].
3749 Also restore the registers for inner groups for,
3750 e.g., `((a*)(b*))*' against `aba' (register 3 would
3751 otherwise get trashed). */
3753 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3755 unsigned r;
3757 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3759 /* Restore this and inner groups' (if any) registers. */
3760 for (r = *p; r < *p + *(p + 1); r++)
3762 regstart[r] = old_regstart[r];
3764 /* xx why this test? */
3765 if ((int) old_regend[r] >= (int) regstart[r])
3766 regend[r] = old_regend[r];
3769 p1++;
3770 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3771 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3773 goto fail;
3777 /* Move past the register number and the inner group count. */
3778 p += 2;
3779 break;
3782 /* \<digit> has been turned into a `duplicate' command which is
3783 followed by the numeric value of <digit> as the register number. */
3784 case duplicate:
3786 register const char *d2, *dend2;
3787 int regno = *p++; /* Get which register to match against. */
3788 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3790 /* Can't back reference a group which we've never matched. */
3791 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3792 goto fail;
3794 /* Where in input to try to start matching. */
3795 d2 = regstart[regno];
3797 /* Where to stop matching; if both the place to start and
3798 the place to stop matching are in the same string, then
3799 set to the place to stop, otherwise, for now have to use
3800 the end of the first string. */
3802 dend2 = ((FIRST_STRING_P (regstart[regno])
3803 == FIRST_STRING_P (regend[regno]))
3804 ? regend[regno] : end_match_1);
3805 for (;;)
3807 /* If necessary, advance to next segment in register
3808 contents. */
3809 while (d2 == dend2)
3811 if (dend2 == end_match_2) break;
3812 if (dend2 == regend[regno]) break;
3814 /* End of string1 => advance to string2. */
3815 d2 = string2;
3816 dend2 = regend[regno];
3818 /* At end of register contents => success */
3819 if (d2 == dend2) break;
3821 /* If necessary, advance to next segment in data. */
3822 PREFETCH ();
3824 /* How many characters left in this segment to match. */
3825 mcnt = dend - d;
3827 /* Want how many consecutive characters we can match in
3828 one shot, so, if necessary, adjust the count. */
3829 if (mcnt > dend2 - d2)
3830 mcnt = dend2 - d2;
3832 /* Compare that many; failure if mismatch, else move
3833 past them. */
3834 if (translate
3835 ? bcmp_translate (d, d2, mcnt, translate)
3836 : bcmp (d, d2, mcnt))
3837 goto fail;
3838 d += mcnt, d2 += mcnt;
3841 break;
3844 /* begline matches the empty string at the beginning of the string
3845 (unless `not_bol' is set in `bufp'), and, if
3846 `newline_anchor' is set, after newlines. */
3847 case begline:
3848 DEBUG_PRINT1 ("EXECUTING begline.\n");
3850 if (AT_STRINGS_BEG (d))
3852 if (!bufp->not_bol) break;
3854 else if (d[-1] == '\n' && bufp->newline_anchor)
3856 break;
3858 /* In all other cases, we fail. */
3859 goto fail;
3862 /* endline is the dual of begline. */
3863 case endline:
3864 DEBUG_PRINT1 ("EXECUTING endline.\n");
3866 if (AT_STRINGS_END (d))
3868 if (!bufp->not_eol) break;
3871 /* We have to ``prefetch'' the next character. */
3872 else if ((d == end1 ? *string2 : *d) == '\n'
3873 && bufp->newline_anchor)
3875 break;
3877 goto fail;
3880 /* Match at the very beginning of the data. */
3881 case begbuf:
3882 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3883 if (AT_STRINGS_BEG (d))
3884 break;
3885 goto fail;
3888 /* Match at the very end of the data. */
3889 case endbuf:
3890 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3891 if (AT_STRINGS_END (d))
3892 break;
3893 goto fail;
3896 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3897 pushes NULL as the value for the string on the stack. Then
3898 `pop_failure_point' will keep the current value for the
3899 string, instead of restoring it. To see why, consider
3900 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3901 then the . fails against the \n. But the next thing we want
3902 to do is match the \n against the \n; if we restored the
3903 string value, we would be back at the foo.
3905 Because this is used only in specific cases, we don't need to
3906 check all the things that `on_failure_jump' does, to make
3907 sure the right things get saved on the stack. Hence we don't
3908 share its code. The only reason to push anything on the
3909 stack at all is that otherwise we would have to change
3910 `anychar's code to do something besides goto fail in this
3911 case; that seems worse than this. */
3912 case on_failure_keep_string_jump:
3913 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3915 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3916 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3918 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3919 break;
3922 /* Uses of on_failure_jump:
3924 Each alternative starts with an on_failure_jump that points
3925 to the beginning of the next alternative. Each alternative
3926 except the last ends with a jump that in effect jumps past
3927 the rest of the alternatives. (They really jump to the
3928 ending jump of the following alternative, because tensioning
3929 these jumps is a hassle.)
3931 Repeats start with an on_failure_jump that points past both
3932 the repetition text and either the following jump or
3933 pop_failure_jump back to this on_failure_jump. */
3934 case on_failure_jump:
3935 on_failure:
3936 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3938 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3939 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3941 /* If this on_failure_jump comes right before a group (i.e.,
3942 the original * applied to a group), save the information
3943 for that group and all inner ones, so that if we fail back
3944 to this point, the group's information will be correct.
3945 For example, in \(a*\)*\1, we need the preceding group,
3946 and in \(\(a*\)b*\)\2, we need the inner group. */
3948 /* We can't use `p' to check ahead because we push
3949 a failure point to `p + mcnt' after we do this. */
3950 p1 = p;
3952 /* We need to skip no_op's before we look for the
3953 start_memory in case this on_failure_jump is happening as
3954 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3955 against aba. */
3956 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3957 p1++;
3959 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3961 /* We have a new highest active register now. This will
3962 get reset at the start_memory we are about to get to,
3963 but we will have saved all the registers relevant to
3964 this repetition op, as described above. */
3965 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3966 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3967 lowest_active_reg = *(p1 + 1);
3970 DEBUG_PRINT1 (":\n");
3971 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3972 break;
3975 /* A smart repeat ends with `maybe_pop_jump'.
3976 We change it to either `pop_failure_jump' or `jump'. */
3977 case maybe_pop_jump:
3978 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3979 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3981 register unsigned char *p2 = p;
3983 /* Compare the beginning of the repeat with what in the
3984 pattern follows its end. If we can establish that there
3985 is nothing that they would both match, i.e., that we
3986 would have to backtrack because of (as in, e.g., `a*a')
3987 then we can change to pop_failure_jump, because we'll
3988 never have to backtrack.
3990 This is not true in the case of alternatives: in
3991 `(a|ab)*' we do need to backtrack to the `ab' alternative
3992 (e.g., if the string was `ab'). But instead of trying to
3993 detect that here, the alternative has put on a dummy
3994 failure point which is what we will end up popping. */
3996 /* Skip over open/close-group commands. */
3997 while (p2 + 2 < pend
3998 && ((re_opcode_t) *p2 == stop_memory
3999 || (re_opcode_t) *p2 == start_memory))
4000 p2 += 3; /* Skip over args, too. */
4002 /* If we're at the end of the pattern, we can change. */
4003 if (p2 == pend)
4005 /* Consider what happens when matching ":\(.*\)"
4006 against ":/". I don't really understand this code
4007 yet. */
4008 p[-3] = (unsigned char) pop_failure_jump;
4009 DEBUG_PRINT1
4010 (" End of pattern: change to `pop_failure_jump'.\n");
4013 else if ((re_opcode_t) *p2 == exactn
4014 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4016 register unsigned char c
4017 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4018 p1 = p + mcnt;
4020 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4021 to the `maybe_finalize_jump' of this case. Examine what
4022 follows. */
4023 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4025 p[-3] = (unsigned char) pop_failure_jump;
4026 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4027 c, p1[5]);
4030 else if ((re_opcode_t) p1[3] == charset
4031 || (re_opcode_t) p1[3] == charset_not)
4033 int not = (re_opcode_t) p1[3] == charset_not;
4035 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4036 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4037 not = !not;
4039 /* `not' is equal to 1 if c would match, which means
4040 that we can't change to pop_failure_jump. */
4041 if (!not)
4043 p[-3] = (unsigned char) pop_failure_jump;
4044 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4049 p -= 2; /* Point at relative address again. */
4050 if ((re_opcode_t) p[-1] != pop_failure_jump)
4052 p[-1] = (unsigned char) jump;
4053 DEBUG_PRINT1 (" Match => jump.\n");
4054 goto unconditional_jump;
4056 /* Note fall through. */
4059 /* The end of a simple repeat has a pop_failure_jump back to
4060 its matching on_failure_jump, where the latter will push a
4061 failure point. The pop_failure_jump takes off failure
4062 points put on by this pop_failure_jump's matching
4063 on_failure_jump; we got through the pattern to here from the
4064 matching on_failure_jump, so didn't fail. */
4065 case pop_failure_jump:
4067 /* We need to pass separate storage for the lowest and
4068 highest registers, even though we don't care about the
4069 actual values. Otherwise, we will restore only one
4070 register from the stack, since lowest will == highest in
4071 `pop_failure_point'. */
4072 unsigned dummy_low_reg, dummy_high_reg;
4073 unsigned char *pdummy;
4074 const char *sdummy;
4076 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4077 POP_FAILURE_POINT (sdummy, pdummy,
4078 dummy_low_reg, dummy_high_reg,
4079 reg_dummy, reg_dummy, reg_info_dummy);
4081 /* Note fall through. */
4084 /* Unconditionally jump (without popping any failure points). */
4085 case jump:
4086 unconditional_jump:
4087 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4088 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4089 p += mcnt; /* Do the jump. */
4090 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4091 break;
4094 /* We need this opcode so we can detect where alternatives end
4095 in `group_match_null_string_p' et al. */
4096 case jump_past_alt:
4097 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4098 goto unconditional_jump;
4101 /* Normally, the on_failure_jump pushes a failure point, which
4102 then gets popped at pop_failure_jump. We will end up at
4103 pop_failure_jump, also, and with a pattern of, say, `a+', we
4104 are skipping over the on_failure_jump, so we have to push
4105 something meaningless for pop_failure_jump to pop. */
4106 case dummy_failure_jump:
4107 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4108 /* It doesn't matter what we push for the string here. What
4109 the code at `fail' tests is the value for the pattern. */
4110 PUSH_FAILURE_POINT (0, 0, -2);
4111 goto unconditional_jump;
4114 /* At the end of an alternative, we need to push a dummy failure
4115 point in case we are followed by a `pop_failure_jump', because
4116 we don't want the failure point for the alternative to be
4117 popped. For example, matching `(a|ab)*' against `aab'
4118 requires that we match the `ab' alternative. */
4119 case push_dummy_failure:
4120 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4121 /* See comments just above at `dummy_failure_jump' about the
4122 two zeroes. */
4123 PUSH_FAILURE_POINT (0, 0, -2);
4124 break;
4126 /* Have to succeed matching what follows at least n times.
4127 After that, handle like `on_failure_jump'. */
4128 case succeed_n:
4129 EXTRACT_NUMBER (mcnt, p + 2);
4130 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4132 assert (mcnt >= 0);
4133 /* Originally, this is how many times we HAVE to succeed. */
4134 if (mcnt > 0)
4136 mcnt--;
4137 p += 2;
4138 STORE_NUMBER_AND_INCR (p, mcnt);
4139 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4141 else if (mcnt == 0)
4143 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4144 p[2] = (unsigned char) no_op;
4145 p[3] = (unsigned char) no_op;
4146 goto on_failure;
4148 break;
4150 case jump_n:
4151 EXTRACT_NUMBER (mcnt, p + 2);
4152 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4154 /* Originally, this is how many times we CAN jump. */
4155 if (mcnt)
4157 mcnt--;
4158 STORE_NUMBER (p + 2, mcnt);
4159 goto unconditional_jump;
4161 /* If don't have to jump any more, skip over the rest of command. */
4162 else
4163 p += 4;
4164 break;
4166 case set_number_at:
4168 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4170 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4171 p1 = p + mcnt;
4172 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4173 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4174 STORE_NUMBER (p1, mcnt);
4175 break;
4178 case wordbound:
4179 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4180 if (AT_WORD_BOUNDARY (d))
4181 break;
4182 goto fail;
4184 case notwordbound:
4185 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4186 if (AT_WORD_BOUNDARY (d))
4187 goto fail;
4188 break;
4190 case wordbeg:
4191 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4192 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4193 break;
4194 goto fail;
4196 case wordend:
4197 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4198 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4199 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4200 break;
4201 goto fail;
4203 #ifdef emacs
4204 #ifdef emacs19
4205 case before_dot:
4206 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4207 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4208 goto fail;
4209 break;
4211 case at_dot:
4212 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4213 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4214 goto fail;
4215 break;
4217 case after_dot:
4218 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4219 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4220 goto fail;
4221 break;
4222 #else /* not emacs19 */
4223 case at_dot:
4224 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4225 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4226 goto fail;
4227 break;
4228 #endif /* not emacs19 */
4230 case syntaxspec:
4231 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4232 mcnt = *p++;
4233 goto matchsyntax;
4235 case wordchar:
4236 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4237 mcnt = (int) Sword;
4238 matchsyntax:
4239 PREFETCH ();
4240 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4241 goto fail;
4242 SET_REGS_MATCHED ();
4243 break;
4245 case notsyntaxspec:
4246 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4247 mcnt = *p++;
4248 goto matchnotsyntax;
4250 case notwordchar:
4251 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4252 mcnt = (int) Sword;
4253 matchnotsyntax:
4254 PREFETCH ();
4255 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4256 goto fail;
4257 SET_REGS_MATCHED ();
4258 break;
4260 #else /* not emacs */
4261 case wordchar:
4262 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4263 PREFETCH ();
4264 if (!WORDCHAR_P (d))
4265 goto fail;
4266 SET_REGS_MATCHED ();
4267 d++;
4268 break;
4270 case notwordchar:
4271 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4272 PREFETCH ();
4273 if (WORDCHAR_P (d))
4274 goto fail;
4275 SET_REGS_MATCHED ();
4276 d++;
4277 break;
4278 #endif /* not emacs */
4280 default:
4281 abort ();
4283 continue; /* Successfully executed one pattern command; keep going. */
4286 /* We goto here if a matching operation fails. */
4287 fail:
4288 if (!FAIL_STACK_EMPTY ())
4289 { /* A restart point is known. Restore to that state. */
4290 DEBUG_PRINT1 ("\nFAIL:\n");
4291 POP_FAILURE_POINT (d, p,
4292 lowest_active_reg, highest_active_reg,
4293 regstart, regend, reg_info);
4295 /* If this failure point is a dummy, try the next one. */
4296 if (!p)
4297 goto fail;
4299 /* If we failed to the end of the pattern, don't examine *p. */
4300 assert (p <= pend);
4301 if (p < pend)
4303 boolean is_a_jump_n = false;
4305 /* If failed to a backwards jump that's part of a repetition
4306 loop, need to pop this failure point and use the next one. */
4307 switch ((re_opcode_t) *p)
4309 case jump_n:
4310 is_a_jump_n = true;
4311 case maybe_pop_jump:
4312 case pop_failure_jump:
4313 case jump:
4314 p1 = p + 1;
4315 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4316 p1 += mcnt;
4318 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4319 || (!is_a_jump_n
4320 && (re_opcode_t) *p1 == on_failure_jump))
4321 goto fail;
4322 break;
4323 default:
4324 /* do nothing */ ;
4328 if (d >= string1 && d <= end1)
4329 dend = end_match_1;
4331 else
4332 break; /* Matching at this starting point really fails. */
4333 } /* for (;;) */
4335 if (best_regs_set)
4336 goto restore_best_regs;
4338 FREE_VARIABLES ();
4340 return -1; /* Failure to match. */
4341 } /* re_match_2 */
4343 /* Subroutine definitions for re_match_2. */
4346 /* We are passed P pointing to a register number after a start_memory.
4348 Return true if the pattern up to the corresponding stop_memory can
4349 match the empty string, and false otherwise.
4351 If we find the matching stop_memory, sets P to point to one past its number.
4352 Otherwise, sets P to an undefined byte less than or equal to END.
4354 We don't handle duplicates properly (yet). */
4356 static boolean
4357 group_match_null_string_p (p, end, reg_info)
4358 unsigned char **p, *end;
4359 register_info_type *reg_info;
4361 int mcnt;
4362 /* Point to after the args to the start_memory. */
4363 unsigned char *p1 = *p + 2;
4365 while (p1 < end)
4367 /* Skip over opcodes that can match nothing, and return true or
4368 false, as appropriate, when we get to one that can't, or to the
4369 matching stop_memory. */
4371 switch ((re_opcode_t) *p1)
4373 /* Could be either a loop or a series of alternatives. */
4374 case on_failure_jump:
4375 p1++;
4376 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4378 /* If the next operation is not a jump backwards in the
4379 pattern. */
4381 if (mcnt >= 0)
4383 /* Go through the on_failure_jumps of the alternatives,
4384 seeing if any of the alternatives cannot match nothing.
4385 The last alternative starts with only a jump,
4386 whereas the rest start with on_failure_jump and end
4387 with a jump, e.g., here is the pattern for `a|b|c':
4389 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4390 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4391 /exactn/1/c
4393 So, we have to first go through the first (n-1)
4394 alternatives and then deal with the last one separately. */
4397 /* Deal with the first (n-1) alternatives, which start
4398 with an on_failure_jump (see above) that jumps to right
4399 past a jump_past_alt. */
4401 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4403 /* `mcnt' holds how many bytes long the alternative
4404 is, including the ending `jump_past_alt' and
4405 its number. */
4407 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4408 reg_info))
4409 return false;
4411 /* Move to right after this alternative, including the
4412 jump_past_alt. */
4413 p1 += mcnt;
4415 /* Break if it's the beginning of an n-th alternative
4416 that doesn't begin with an on_failure_jump. */
4417 if ((re_opcode_t) *p1 != on_failure_jump)
4418 break;
4420 /* Still have to check that it's not an n-th
4421 alternative that starts with an on_failure_jump. */
4422 p1++;
4423 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4424 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4426 /* Get to the beginning of the n-th alternative. */
4427 p1 -= 3;
4428 break;
4432 /* Deal with the last alternative: go back and get number
4433 of the `jump_past_alt' just before it. `mcnt' contains
4434 the length of the alternative. */
4435 EXTRACT_NUMBER (mcnt, p1 - 2);
4437 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4438 return false;
4440 p1 += mcnt; /* Get past the n-th alternative. */
4441 } /* if mcnt > 0 */
4442 break;
4445 case stop_memory:
4446 assert (p1[1] == **p);
4447 *p = p1 + 2;
4448 return true;
4451 default:
4452 if (!common_op_match_null_string_p (&p1, end, reg_info))
4453 return false;
4455 } /* while p1 < end */
4457 return false;
4458 } /* group_match_null_string_p */
4461 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4462 It expects P to be the first byte of a single alternative and END one
4463 byte past the last. The alternative can contain groups. */
4465 static boolean
4466 alt_match_null_string_p (p, end, reg_info)
4467 unsigned char *p, *end;
4468 register_info_type *reg_info;
4470 int mcnt;
4471 unsigned char *p1 = p;
4473 while (p1 < end)
4475 /* Skip over opcodes that can match nothing, and break when we get
4476 to one that can't. */
4478 switch ((re_opcode_t) *p1)
4480 /* It's a loop. */
4481 case on_failure_jump:
4482 p1++;
4483 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4484 p1 += mcnt;
4485 break;
4487 default:
4488 if (!common_op_match_null_string_p (&p1, end, reg_info))
4489 return false;
4491 } /* while p1 < end */
4493 return true;
4494 } /* alt_match_null_string_p */
4497 /* Deals with the ops common to group_match_null_string_p and
4498 alt_match_null_string_p.
4500 Sets P to one after the op and its arguments, if any. */
4502 static boolean
4503 common_op_match_null_string_p (p, end, reg_info)
4504 unsigned char **p, *end;
4505 register_info_type *reg_info;
4507 int mcnt;
4508 boolean ret;
4509 int reg_no;
4510 unsigned char *p1 = *p;
4512 switch ((re_opcode_t) *p1++)
4514 case no_op:
4515 case begline:
4516 case endline:
4517 case begbuf:
4518 case endbuf:
4519 case wordbeg:
4520 case wordend:
4521 case wordbound:
4522 case notwordbound:
4523 #ifdef emacs
4524 case before_dot:
4525 case at_dot:
4526 case after_dot:
4527 #endif
4528 break;
4530 case start_memory:
4531 reg_no = *p1;
4532 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4533 ret = group_match_null_string_p (&p1, end, reg_info);
4535 /* Have to set this here in case we're checking a group which
4536 contains a group and a back reference to it. */
4538 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4539 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4541 if (!ret)
4542 return false;
4543 break;
4545 /* If this is an optimized succeed_n for zero times, make the jump. */
4546 case jump:
4547 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4548 if (mcnt >= 0)
4549 p1 += mcnt;
4550 else
4551 return false;
4552 break;
4554 case succeed_n:
4555 /* Get to the number of times to succeed. */
4556 p1 += 2;
4557 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4559 if (mcnt == 0)
4561 p1 -= 4;
4562 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4563 p1 += mcnt;
4565 else
4566 return false;
4567 break;
4569 case duplicate:
4570 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4571 return false;
4572 break;
4574 case set_number_at:
4575 p1 += 4;
4577 default:
4578 /* All other opcodes mean we cannot match the empty string. */
4579 return false;
4582 *p = p1;
4583 return true;
4584 } /* common_op_match_null_string_p */
4587 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4588 bytes; nonzero otherwise. */
4590 static int
4591 bcmp_translate (s1, s2, len, translate)
4592 unsigned char *s1, *s2;
4593 register int len;
4594 char *translate;
4596 register unsigned char *p1 = s1, *p2 = s2;
4597 while (len)
4599 if (translate[*p1++] != translate[*p2++]) return 1;
4600 len--;
4602 return 0;
4605 /* Entry points for GNU code. */
4607 /* re_compile_pattern is the GNU regular expression compiler: it
4608 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4609 Returns 0 if the pattern was valid, otherwise an error string.
4611 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4612 are set in BUFP on entry.
4614 We call regex_compile to do the actual compilation. */
4616 const char *
4617 re_compile_pattern (pattern, length, bufp)
4618 const char *pattern;
4619 int length;
4620 struct re_pattern_buffer *bufp;
4622 reg_errcode_t ret;
4624 /* GNU code is written to assume at least RE_NREGS registers will be set
4625 (and at least one extra will be -1). */
4626 bufp->regs_allocated = REGS_UNALLOCATED;
4628 /* And GNU code determines whether or not to get register information
4629 by passing null for the REGS argument to re_match, etc., not by
4630 setting no_sub. */
4631 bufp->no_sub = 0;
4633 /* Match anchors at newline. */
4634 bufp->newline_anchor = 1;
4636 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4638 return re_error_msg[(int) ret];
4641 /* Entry points compatible with 4.2 BSD regex library. We don't define
4642 them if this is an Emacs or POSIX compilation. */
4644 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4646 /* BSD has one and only one pattern buffer. */
4647 static struct re_pattern_buffer re_comp_buf;
4649 char *
4650 re_comp (s)
4651 const char *s;
4653 reg_errcode_t ret;
4655 if (!s)
4657 if (!re_comp_buf.buffer)
4658 return "No previous regular expression";
4659 return 0;
4662 if (!re_comp_buf.buffer)
4664 re_comp_buf.buffer = (unsigned char *) malloc (200);
4665 if (re_comp_buf.buffer == NULL)
4666 return "Memory exhausted";
4667 re_comp_buf.allocated = 200;
4669 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4670 if (re_comp_buf.fastmap == NULL)
4671 return "Memory exhausted";
4674 /* Since `re_exec' always passes NULL for the `regs' argument, we
4675 don't need to initialize the pattern buffer fields which affect it. */
4677 /* Match anchors at newlines. */
4678 re_comp_buf.newline_anchor = 1;
4680 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4682 /* Yes, we're discarding `const' here. */
4683 return (char *) re_error_msg[(int) ret];
4688 re_exec (s)
4689 const char *s;
4691 const int len = strlen (s);
4692 return
4693 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4695 #endif /* not emacs and not _POSIX_SOURCE */
4697 /* POSIX.2 functions. Don't define these for Emacs. */
4699 #ifndef emacs
4701 /* regcomp takes a regular expression as a string and compiles it.
4703 PREG is a regex_t *. We do not expect any fields to be initialized,
4704 since POSIX says we shouldn't. Thus, we set
4706 `buffer' to the compiled pattern;
4707 `used' to the length of the compiled pattern;
4708 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4709 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4710 RE_SYNTAX_POSIX_BASIC;
4711 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4712 `fastmap' and `fastmap_accurate' to zero;
4713 `re_nsub' to the number of subexpressions in PATTERN.
4715 PATTERN is the address of the pattern string.
4717 CFLAGS is a series of bits which affect compilation.
4719 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4720 use POSIX basic syntax.
4722 If REG_NEWLINE is set, then . and [^...] don't match newline.
4723 Also, regexec will try a match beginning after every newline.
4725 If REG_ICASE is set, then we considers upper- and lowercase
4726 versions of letters to be equivalent when matching.
4728 If REG_NOSUB is set, then when PREG is passed to regexec, that
4729 routine will report only success or failure, and nothing about the
4730 registers.
4732 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4733 the return codes and their meanings.) */
4736 regcomp (preg, pattern, cflags)
4737 regex_t *preg;
4738 const char *pattern;
4739 int cflags;
4741 reg_errcode_t ret;
4742 unsigned syntax
4743 = (cflags & REG_EXTENDED) ?
4744 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4746 /* regex_compile will allocate the space for the compiled pattern. */
4747 preg->buffer = 0;
4748 preg->allocated = 0;
4750 /* Don't bother to use a fastmap when searching. This simplifies the
4751 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4752 characters after newlines into the fastmap. This way, we just try
4753 every character. */
4754 preg->fastmap = 0;
4756 if (cflags & REG_ICASE)
4758 unsigned i;
4760 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4761 if (preg->translate == NULL)
4762 return (int) REG_ESPACE;
4764 /* Map uppercase characters to corresponding lowercase ones. */
4765 for (i = 0; i < CHAR_SET_SIZE; i++)
4766 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4768 else
4769 preg->translate = NULL;
4771 /* If REG_NEWLINE is set, newlines are treated differently. */
4772 if (cflags & REG_NEWLINE)
4773 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4774 syntax &= ~RE_DOT_NEWLINE;
4775 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4776 /* It also changes the matching behavior. */
4777 preg->newline_anchor = 1;
4779 else
4780 preg->newline_anchor = 0;
4782 preg->no_sub = !!(cflags & REG_NOSUB);
4784 /* POSIX says a null character in the pattern terminates it, so we
4785 can use strlen here in compiling the pattern. */
4786 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4788 /* POSIX doesn't distinguish between an unmatched open-group and an
4789 unmatched close-group: both are REG_EPAREN. */
4790 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4792 return (int) ret;
4796 /* regexec searches for a given pattern, specified by PREG, in the
4797 string STRING.
4799 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4800 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4801 least NMATCH elements, and we set them to the offsets of the
4802 corresponding matched substrings.
4804 EFLAGS specifies `execution flags' which affect matching: if
4805 REG_NOTBOL is set, then ^ does not match at the beginning of the
4806 string; if REG_NOTEOL is set, then $ does not match at the end.
4808 We return 0 if we find a match and REG_NOMATCH if not. */
4811 regexec (preg, string, nmatch, pmatch, eflags)
4812 const regex_t *preg;
4813 const char *string;
4814 size_t nmatch;
4815 regmatch_t pmatch[];
4816 int eflags;
4818 int ret;
4819 struct re_registers regs;
4820 regex_t private_preg;
4821 int len = strlen (string);
4822 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4824 private_preg = *preg;
4826 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4827 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4829 /* The user has told us exactly how many registers to return
4830 information about, via `nmatch'. We have to pass that on to the
4831 matching routines. */
4832 private_preg.regs_allocated = REGS_FIXED;
4834 if (want_reg_info)
4836 regs.num_regs = nmatch;
4837 regs.start = TALLOC (nmatch, regoff_t);
4838 regs.end = TALLOC (nmatch, regoff_t);
4839 if (regs.start == NULL || regs.end == NULL)
4840 return (int) REG_NOMATCH;
4843 /* Perform the searching operation. */
4844 ret = re_search (&private_preg, string, len,
4845 /* start: */ 0, /* range: */ len,
4846 want_reg_info ? &regs : (struct re_registers *) 0);
4848 /* Copy the register information to the POSIX structure. */
4849 if (want_reg_info)
4851 if (ret >= 0)
4853 unsigned r;
4855 for (r = 0; r < nmatch; r++)
4857 pmatch[r].rm_so = regs.start[r];
4858 pmatch[r].rm_eo = regs.end[r];
4862 /* If we needed the temporary register info, free the space now. */
4863 free (regs.start);
4864 free (regs.end);
4867 /* We want zero return to mean success, unlike `re_search'. */
4868 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4872 /* Returns a message corresponding to an error code, ERRCODE, returned
4873 from either regcomp or regexec. We don't use PREG here. */
4875 size_t
4876 regerror (errcode, preg, errbuf, errbuf_size)
4877 int errcode;
4878 const regex_t *preg;
4879 char *errbuf;
4880 size_t errbuf_size;
4882 const char *msg;
4883 size_t msg_size;
4885 if (errcode < 0
4886 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4887 /* Only error codes returned by the rest of the code should be passed
4888 to this routine. If we are given anything else, or if other regex
4889 code generates an invalid error code, then the program has a bug.
4890 Dump core so we can fix it. */
4891 abort ();
4893 msg = re_error_msg[errcode];
4895 /* POSIX doesn't require that we do anything in this case, but why
4896 not be nice. */
4897 if (! msg)
4898 msg = "Success";
4900 msg_size = strlen (msg) + 1; /* Includes the null. */
4902 if (errbuf_size != 0)
4904 if (msg_size > errbuf_size)
4906 strncpy (errbuf, msg, errbuf_size - 1);
4907 errbuf[errbuf_size - 1] = 0;
4909 else
4910 strcpy (errbuf, msg);
4913 return msg_size;
4917 /* Free dynamically allocated space used by PREG. */
4919 void
4920 regfree (preg)
4921 regex_t *preg;
4923 if (preg->buffer != NULL)
4924 free (preg->buffer);
4925 preg->buffer = NULL;
4927 preg->allocated = 0;
4928 preg->used = 0;
4930 if (preg->fastmap != NULL)
4931 free (preg->fastmap);
4932 preg->fastmap = NULL;
4933 preg->fastmap_accurate = 0;
4935 if (preg->translate != NULL)
4936 free (preg->translate);
4937 preg->translate = NULL;
4940 #endif /* not emacs */
4943 Local variables:
4944 make-backup-files: t
4945 version-control: t
4946 trim-versions-without-asking: nil
4947 End: