soc: Remove copyright notices
[coreboot.git] / src / soc / nvidia / tegra124 / clock.c
blobaab17051fee0f1a2b55f412f4c8649b06759824e
1 /*
2 * This file is part of the coreboot project.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 #include <assert.h>
15 #include <arch/clock.h>
16 #include <device/mmio.h>
17 #include <console/console.h>
18 #include <delay.h>
19 #include <soc/addressmap.h>
20 #include <soc/clk_rst.h>
21 #include <soc/clock.h>
22 #include <soc/flow.h>
23 #include <soc/maincpu.h>
24 #include <soc/pmc.h>
25 #include <soc/sysctr.h>
26 #include <symbols.h>
28 static struct clk_rst_ctlr *clk_rst = (void *)TEGRA_CLK_RST_BASE;
29 static struct flow_ctlr *flow = (void *)TEGRA_FLOW_BASE;
30 static struct tegra_pmc_regs *pmc = (void *)TEGRA_PMC_BASE;
31 static struct sysctr_regs *sysctr = (void *)TEGRA_SYSCTR0_BASE;
33 struct pll_dividers {
34 u32 n : 10;
35 u32 m : 8;
36 u32 p : 4;
37 u32 cpcon : 4;
38 u32 lfcon : 4;
39 u32 : 2;
42 /* Some PLLs have more restrictive divider bit lengths or are missing some
43 * fields. Make sure to use the right struct in the osc_table definition to get
44 * compile-time checking, but keep the bits aligned with struct pll_dividers so
45 * they can be used interchangeably at run time. Add new formats as required. */
46 struct pllcx_dividers {
47 u32 n : 8;
48 u32 : 2;
49 u32 m : 8;
50 u32 p : 4;
51 u32 : 10;
53 struct pllpad_dividers {
54 u32 n : 10;
55 u32 m : 5;
56 u32 : 3;
57 u32 p : 3;
58 u32 : 1;
59 u32 cpcon : 4;
60 u32 : 6;
62 struct pllu_dividers {
63 u32 n : 10;
64 u32 m : 5;
65 u32 : 3;
66 u32 p : 1;
67 u32 : 3;
68 u32 cpcon : 4;
69 u32 lfcon : 4;
70 u32 : 2;
73 union __attribute__((transparent_union)) pll_fields {
74 u32 raw;
75 struct pll_dividers div;
76 struct pllcx_dividers cx;
77 struct pllpad_dividers pad;
78 struct pllu_dividers u;
81 /* This table defines the frequency dividers for every PLL to turn the external
82 * OSC clock into the frequencies defined by TEGRA_PLL*_KHZ in soc/clock.h.
83 * All PLLs have three dividers (n, m and p), with the governing formula for
84 * the output frequency being CF = (IN / m), VCO = CF * n and OUT = VCO / (2^p).
85 * All divisor configurations must meet the PLL's constraints for VCO and CF:
86 * PLLX: 12 MHz < CF < 50 MHz, 700 MHz < VCO < 3000 MHz
87 * PLLC: 12 MHz < CF < 50 MHz, 600 MHz < VCO < 1400 MHz
88 * PLLM: 12 MHz < CF < 50 MHz, 400 MHz < VCO < 1066 MHz
89 * PLLP: 1 MHz < CF < 6 MHz, 200 MHz < VCO < 700 MHz
90 * PLLD: 1 MHz < CF < 6 MHz, 500 MHz < VCO < 1000 MHz
91 * PLLU: 1 MHz < CF < 6 MHz, 480 MHz < VCO < 960 MHz
92 * PLLDP: 12 MHz < CF < 38 MHz, 600 MHz < VCO < 1200 MHz
93 * (values taken from Linux' drivers/clk/tegra/clk-tegra124.c). */
94 struct {
95 int khz;
96 struct pllcx_dividers pllx; /* target: CONFIG_PLLX_KHZ */
97 struct pllcx_dividers pllc; /* target: 600 MHz */
98 /* PLLM is set up dynamically by clock_sdram(). */
99 /* PLLP is hardwired to 408 MHz in HW (unless we set BASE_OVRD). */
100 struct pllu_dividers pllu; /* target; 960 MHz */
101 struct pllcx_dividers plldp; /* target; 270 MHz */
102 /* PLLDP treats p differently (OUT = VCO / (p + 1) for p < 6). */
103 } static const osc_table[16] = {
104 [OSC_FREQ_12]{
105 .khz = 12000,
106 .pllx = {.n = TEGRA_PLLX_KHZ / 12000, .m = 1, .p = 0},
107 .pllc = {.n = 50, .m = 1, .p = 0},
108 .pllu = {.n = 960, .m = 12, .p = 0, .cpcon = 12, .lfcon = 2},
109 .plldp = {.n = 90, .m = 1, .p = 3},
111 [OSC_FREQ_13]{
112 .khz = 13000,
113 .pllx = {.n = TEGRA_PLLX_KHZ / 13000, .m = 1, .p = 0},
114 .pllc = {.n = 46, .m = 1, .p = 0}, /* 598.0 MHz */
115 .pllu = {.n = 960, .m = 13, .p = 0, .cpcon = 12, .lfcon = 2},
116 .plldp = {.n = 83, .m = 1, .p = 3}, /* 269.8 MHz */
118 [OSC_FREQ_16P8]{
119 .khz = 16800,
120 .pllx = {.n = TEGRA_PLLX_KHZ / 16800, .m = 1, .p = 0},
121 .pllc = {.n = 71, .m = 1, .p = 1}, /* 596.4 MHz */
122 .pllu = {.n = 400, .m = 7, .p = 0, .cpcon = 5, .lfcon = 2},
123 .plldp = {.n = 64, .m = 1, .p = 3}, /* 268.8 MHz */
125 [OSC_FREQ_19P2]{
126 .khz = 19200,
127 .pllx = {.n = TEGRA_PLLX_KHZ / 19200, .m = 1, .p = 0},
128 .pllc = {.n = 62, .m = 1, .p = 1}, /* 595.2 MHz */
129 .pllu = {.n = 200, .m = 4, .p = 0, .cpcon = 3, .lfcon = 2},
130 .plldp = {.n = 56, .m = 1, .p = 3}, /* 268.8 MHz */
132 [OSC_FREQ_26]{
133 .khz = 26000,
134 .pllx = {.n = TEGRA_PLLX_KHZ / 26000, .m = 1, .p = 0},
135 .pllc = {.n = 23, .m = 1, .p = 0}, /* 598.0 MHz */
136 .pllu = {.n = 960, .m = 26, .p = 0, .cpcon = 12, .lfcon = 2},
137 .plldp = {.n = 83, .m = 2, .p = 3}, /* 269.8 MHz */
139 /* These oscillators get predivided as PLL inputs... n/m/p divisors for
140 * 38.4 should always match 19.2, and 48 should always match 12. */
141 [OSC_FREQ_38P4]{
142 .khz = 38400,
143 .pllx = {.n = TEGRA_PLLX_KHZ / 19200, .m = 1, .p = 0},
144 .pllc = {.n = 62, .m = 1, .p = 1}, /* 595.2 MHz */
145 .pllu = {.n = 200, .m = 4, .p = 0, .cpcon = 3, .lfcon = 2},
146 .plldp = {.n = 56, .m = 1, .p = 3}, /* 268.8 MHz */
148 [OSC_FREQ_48]{
149 .khz = 48000,
150 .pllx = {.n = TEGRA_PLLX_KHZ / 12000, .m = 1, .p = 0},
151 .pllc = {.n = 50, .m = 1, .p = 0},
152 .pllu = {.n = 960, .m = 12, .p = 0, .cpcon = 12, .lfcon = 2},
153 .plldp = {.n = 90, .m = 1, .p = 3},
157 /* Get the oscillator frequency, from the corresponding hardware
158 * configuration field. This is actually a per-soc thing. Avoid the
159 * temptation to make it common.
161 static u32 clock_get_osc_bits(void)
163 return (read32(&clk_rst->osc_ctrl) & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
166 int clock_get_osc_khz(void)
168 return osc_table[clock_get_osc_bits()].khz;
171 int clock_get_pll_input_khz(void)
173 u32 osc_ctrl = read32(&clk_rst->osc_ctrl);
174 u32 osc_bits = (osc_ctrl & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
175 u32 pll_ref_div = (osc_ctrl & OSC_PREDIV_MASK) >> OSC_PREDIV_SHIFT;
176 return osc_table[osc_bits].khz >> pll_ref_div;
179 void clock_init_arm_generic_timer(void)
181 uint32_t freq = clock_get_osc_khz() * 1000;
182 // Set the cntfrq register.
183 set_cntfrq(freq);
185 // Record the system timer frequency.
186 write32(&sysctr->cntfid0, freq);
187 // Enable the system counter.
188 uint32_t cntcr = read32(&sysctr->cntcr);
189 cntcr |= SYSCTR_CNTCR_EN | SYSCTR_CNTCR_HDBG;
190 write32(&sysctr->cntcr, cntcr);
193 #define SOR0_CLK_SEL0 (1 << 14)
194 #define SOR0_CLK_SEL1 (1 << 15)
196 void sor_clock_stop(void)
198 /* The Serial Output Resource clock has to be off
199 * before we start the plldp. Learned the hard way.
200 * FIXME: this has to be cleaned up a bit more.
201 * Waiting on some new info from Nvidia.
203 clrbits32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0 | SOR0_CLK_SEL1);
206 void sor_clock_start(void)
208 /* uses PLLP, has a non-standard bit layout. */
209 setbits32(&clk_rst->clk_src_sor, SOR0_CLK_SEL0);
212 static void init_pll(u32 *base, u32 *misc, const union pll_fields pll, u32 lock)
214 u32 dividers = pll.div.n << PLL_BASE_DIVN_SHIFT |
215 pll.div.m << PLL_BASE_DIVM_SHIFT |
216 pll.div.p << PLL_BASE_DIVP_SHIFT;
217 u32 misc_con = pll.div.cpcon << PLL_MISC_CPCON_SHIFT |
218 pll.div.lfcon << PLL_MISC_LFCON_SHIFT;
220 /* Write dividers but BYPASS the PLL while we're messing with it. */
221 write32(base, dividers | PLL_BASE_BYPASS);
223 * Set Lock bit, CPCON and LFCON fields (default to 0 if it doesn't
224 * exist for this PLL)
226 write32(misc, lock | misc_con);
228 /* Enable PLL and take it back out of BYPASS */
229 write32(base, dividers | PLL_BASE_ENABLE);
231 /* Wait for lock ready */
232 while (!(read32(base) & PLL_BASE_LOCK));
235 static void init_utmip_pll(void)
237 int khz = clock_get_pll_input_khz();
239 /* Shut off PLL crystal clock while we mess with it */
240 clrbits32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
241 udelay(1);
243 write32(&clk_rst->utmip_pll_cfg0, /* 960MHz * 1 / 80 == 12 MHz */
244 80 << 16 | /* (rst) phy_divn */
245 1 << 8); /* (rst) phy_divm */
247 write32(&clk_rst->utmip_pll_cfg1,
248 DIV_ROUND_UP(khz, 8000) << 27 | /* pllu_enbl_cnt / 8 (1us) */
249 0 << 16 | /* PLLU pwrdn */
250 0 << 14 | /* pll_enable pwrdn */
251 0 << 12 | /* pll_active pwrdn */
252 DIV_ROUND_UP(khz, 102) << 0); /* phy_stbl_cnt / 256 (2.5ms) */
254 /* TODO: TRM can't decide if actv is 5us or 10us, keep an eye on it */
255 write32(&clk_rst->utmip_pll_cfg2,
256 0 << 24 | /* SAMP_D/XDEV pwrdn */
257 DIV_ROUND_UP(khz, 3200) << 18 | /* phy_actv_cnt / 16 (5us) */
258 DIV_ROUND_UP(khz, 256) << 6 | /* pllu_stbl_cnt / 256 (1ms) */
259 0 << 4 | /* SAMP_C/USB3 pwrdn */
260 0 << 2 | /* SAMP_B/XHOST pwrdn */
261 0 << 0); /* SAMP_A/USBD pwrdn */
263 setbits32(&clk_rst->utmip_pll_cfg2, 1 << 30); /* PHY_XTAL_CLKEN */
266 /* Graphics just has to be different. There's a few more bits we
267 * need to set in here, but it makes sense just to restrict all the
268 * special bits to this one function.
270 static void graphics_pll(void)
272 int osc = clock_get_osc_bits();
273 u32 *cfg = &clk_rst->plldp_ss_cfg;
274 /* the vendor code sets the dither bit (28)
275 * an undocumented bit (24)
276 * and clamp while we mess with it (22)
277 * Dither is pretty important to display port
278 * so we really do need to handle these bits.
279 * I'm not willing to not clamp it, even if
280 * it might "mostly work" with it not set,
281 * I don't want to find out in a few months
282 * that it is needed.
284 u32 scfg = (1<<28) | (1<<24) | (1<<22);
285 write32(cfg, scfg);
286 init_pll(&clk_rst->plldp_base, &clk_rst->plldp_misc,
287 osc_table[osc].plldp, PLLDPD2_MISC_LOCK_ENABLE);
288 /* leave dither and undoc bits set, release clamp */
289 scfg = (1<<28) | (1<<24);
290 write32(cfg, scfg);
292 /* disp1 will be set when panel information (pixel clock) is
293 * retrieved (clock_display).
298 * Init PLLD clock source.
300 * @frequency: the requested plld frequency
302 * Return the plld frequency if success, otherwise return 0.
305 clock_display(u32 frequency)
308 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
309 * = (cf * n) >> p, where 1MHz < cf < 6MHz
310 * = ((ref / m) * n) >> p
312 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
313 * safe vco, then find best (m, n). since m has only 5 bits, we can
314 * iterate all possible values. Note Tegra 124 supports 11 bits for n,
315 * but our pll_fields has only 10 bits for n.
317 * Note values undershoot or overshoot target output frequency may not
318 * work if the values are not in "safe" range by panel specification.
320 struct pllpad_dividers plld = { 0 };
321 u32 ref = clock_get_pll_input_khz() * 1000, m, n, p = 0;
322 u32 cf, vco, rounded_rate = frequency;
323 u32 diff, best_diff;
324 const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
325 mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
326 min_cf = 1 * mhz, max_cf = 6 * mhz;
328 for (vco = frequency; vco < min_vco && p < max_p; p++)
329 vco <<= 1;
331 if (vco < min_vco || vco > max_vco) {
332 printk(BIOS_ERR, "%s: Cannot find out a supported VCO"
333 " for Frequency (%u).\n", __func__, frequency);
334 return 0;
337 plld.p = p;
338 best_diff = vco;
340 for (m = 1; m < max_m && best_diff; m++) {
341 cf = ref / m;
342 if (cf < min_cf)
343 break;
344 if (cf > max_cf)
345 continue;
347 n = vco / cf;
348 if (n >= max_n)
349 continue;
351 diff = vco - n * cf;
352 if (n + 1 < max_n && diff > cf / 2) {
353 n++;
354 diff = cf - diff;
357 if (diff >= best_diff)
358 continue;
360 best_diff = diff;
361 plld.m = m;
362 plld.n = n;
365 if (plld.n < 50)
366 plld.cpcon = 2;
367 else if (plld.n < 300)
368 plld.cpcon = 3;
369 else if (plld.n < 600)
370 plld.cpcon = 8;
371 else
372 plld.cpcon = 12;
374 if (best_diff) {
375 printk(BIOS_WARNING, "%s: Failed to match output frequency %u, "
376 "best difference is %u.\n", __func__, frequency,
377 best_diff);
378 assert(plld.m != 0);
379 rounded_rate = (ref / plld.m * plld.n) >> plld.p;
382 printk(BIOS_DEBUG, "%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
383 __func__, rounded_rate, ref, plld.m, plld.n, plld.p, plld.cpcon);
385 init_pll(&clk_rst->plld_base, &clk_rst->plld_misc, plld,
386 (PLLUD_MISC_LOCK_ENABLE | PLLD_MISC_CLK_ENABLE));
388 return rounded_rate;
391 /* Initialize the UART and put it on CLK_M so we can use it during clock_init().
392 * Will later move it to PLLP in clock_config(). The divisor must be very small
393 * to accommodate 12KHz OSCs, so we override the 16.0 UART divider with the 15.1
394 * CLK_SOURCE divider to get more precision. (This might still not be enough for
395 * some OSCs... if you use 13KHz, be prepared to have a bad time.) The 1900 has
396 * been determined through trial and error (must lead to div 13 at 24MHz). */
397 void clock_early_uart(void)
399 write32(&clk_rst->clk_src_uarta, CLK_M << CLK_SOURCE_SHIFT |
400 CLK_UART_DIV_OVERRIDE | CLK_DIVIDER(TEGRA_CLK_M_KHZ, 1900));
401 setbits32(&clk_rst->clk_out_enb_l, CLK_L_UARTA);
402 udelay(2);
403 clrbits32(&clk_rst->rst_dev_l, CLK_L_UARTA);
406 /* Enable output clock (CLK1~3) for external peripherals. */
407 void clock_external_output(int clk_id)
409 switch (clk_id) {
410 case 1:
411 setbits32(&pmc->clk_out_cntrl, 1 << 2);
412 break;
413 case 2:
414 setbits32(&pmc->clk_out_cntrl, 1 << 10);
415 break;
416 case 3:
417 setbits32(&pmc->clk_out_cntrl, 1 << 18);
418 break;
419 default:
420 printk(BIOS_CRIT, "ERROR: Unknown output clock id %d\n",
421 clk_id);
422 break;
426 /* Start PLLM for SDRAM. */
427 void clock_sdram(u32 m, u32 n, u32 p, u32 setup, u32 ph45, u32 ph90,
428 u32 ph135, u32 kvco, u32 kcp, u32 stable_time, u32 emc_source,
429 u32 same_freq)
431 u32 misc1 = ((setup << PLLM_MISC1_SETUP_SHIFT) |
432 (ph45 << PLLM_MISC1_PD_LSHIFT_PH45_SHIFT) |
433 (ph90 << PLLM_MISC1_PD_LSHIFT_PH90_SHIFT) |
434 (ph135 << PLLM_MISC1_PD_LSHIFT_PH135_SHIFT)),
435 misc2 = ((kvco << PLLM_MISC2_KVCO_SHIFT) |
436 (kcp << PLLM_MISC2_KCP_SHIFT)),
437 base;
439 if (same_freq)
440 emc_source |= CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
441 else
442 emc_source &= ~CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
445 * Note PLLM_BASE.PLLM_OUT1_RSTN must be in RESET_ENABLE mode, and
446 * PLLM_BASE.ENABLE must be in DISABLE state (both are the default
447 * values after coldboot reset).
450 write32(&clk_rst->pllm_misc1, misc1);
451 write32(&clk_rst->pllm_misc2, misc2);
453 /* PLLM.BASE needs BYPASS=0, different from general init_pll */
454 base = read32(&clk_rst->pllm_base);
455 base &= ~(PLLCMX_BASE_DIVN_MASK | PLLCMX_BASE_DIVM_MASK |
456 PLLM_BASE_DIVP_MASK | PLL_BASE_BYPASS);
457 base |= ((m << PLL_BASE_DIVM_SHIFT) | (n << PLL_BASE_DIVN_SHIFT) |
458 (p << PLL_BASE_DIVP_SHIFT));
459 write32(&clk_rst->pllm_base, base);
461 setbits32(&clk_rst->pllm_base, PLL_BASE_ENABLE);
462 /* stable_time is required, before we can start to check lock. */
463 udelay(stable_time);
465 while (!(read32(&clk_rst->pllm_base) & PLL_BASE_LOCK)) {
466 udelay(1);
469 * After PLLM reports being locked, we have to delay 10us before
470 * enabling PLLM_OUT.
472 udelay(10);
474 /* Put OUT1 out of reset state (start to output). */
475 setbits32(&clk_rst->pllm_out, PLLM_OUT1_RSTN_RESET_DISABLE);
477 /* Enable and start MEM(MC) and EMC. */
478 clock_enable_clear_reset(0, CLK_H_MEM | CLK_H_EMC, 0, 0, 0, 0);
479 write32(&clk_rst->clk_src_emc, emc_source);
480 udelay(IO_STABILIZATION_DELAY);
483 void clock_cpu0_config(void *entry)
485 void *const evp_cpu_reset = (uint8_t *)TEGRA_EVP_BASE + 0x100;
487 write32(&maincpu_stack_pointer, (uintptr_t)_estack);
488 write32(&maincpu_entry_point, (uintptr_t)entry);
489 write32(evp_cpu_reset, (uintptr_t)&maincpu_setup);
491 /* Set active CPU cluster to G */
492 clrbits32(&flow->cluster_control, 1);
494 // Set up cclk_brst and divider.
495 write32(&clk_rst->cclk_brst_pol,
496 (CRC_CCLK_BRST_POL_PLLX_OUT0 << 0) |
497 (CRC_CCLK_BRST_POL_PLLX_OUT0 << 4) |
498 (CRC_CCLK_BRST_POL_PLLX_OUT0 << 8) |
499 (CRC_CCLK_BRST_POL_PLLX_OUT0 << 12) |
500 (CRC_CCLK_BRST_POL_CPU_STATE_RUN << 28));
501 write32(&clk_rst->super_cclk_div,
502 CRC_SUPER_CCLK_DIVIDER_SUPER_CDIV_ENB);
504 // Enable the clocks for CPUs 0-3.
505 uint32_t cpu_cmplx_clr = read32(&clk_rst->clk_cpu_cmplx_clr);
506 cpu_cmplx_clr |= CRC_CLK_CLR_CPU0_STP | CRC_CLK_CLR_CPU1_STP |
507 CRC_CLK_CLR_CPU2_STP | CRC_CLK_CLR_CPU3_STP;
508 write32(&clk_rst->clk_cpu_cmplx_clr, cpu_cmplx_clr);
510 // Enable other CPU related clocks.
511 setbits32(&clk_rst->clk_out_enb_l, CLK_L_CPU);
512 setbits32(&clk_rst->clk_out_enb_v, CLK_V_CPUG);
513 setbits32(&clk_rst->clk_out_enb_v, CLK_V_CPULP);
516 void clock_cpu0_remove_reset(void)
518 // Disable the reset on the non-CPU parts of the fast cluster.
519 write32(&clk_rst->rst_cpug_cmplx_clr, CRC_RST_CPUG_CLR_NONCPU);
520 // Disable the various resets on the CPUs.
521 write32(&clk_rst->rst_cpug_cmplx_clr,
522 CRC_RST_CPUG_CLR_CPU0 | CRC_RST_CPUG_CLR_CPU1 |
523 CRC_RST_CPUG_CLR_CPU2 | CRC_RST_CPUG_CLR_CPU3 |
524 CRC_RST_CPUG_CLR_DBG0 | CRC_RST_CPUG_CLR_DBG1 |
525 CRC_RST_CPUG_CLR_DBG2 | CRC_RST_CPUG_CLR_DBG3 |
526 CRC_RST_CPUG_CLR_CORE0 | CRC_RST_CPUG_CLR_CORE1 |
527 CRC_RST_CPUG_CLR_CORE2 | CRC_RST_CPUG_CLR_CORE3 |
528 CRC_RST_CPUG_CLR_CX0 | CRC_RST_CPUG_CLR_CX1 |
529 CRC_RST_CPUG_CLR_CX2 | CRC_RST_CPUG_CLR_CX3 |
530 CRC_RST_CPUG_CLR_L2 | CRC_RST_CPUG_CLR_PDBG);
532 // Disable the reset on the non-CPU parts of the slow cluster.
533 write32(&clk_rst->rst_cpulp_cmplx_clr, CRC_RST_CPULP_CLR_NONCPU);
534 // Disable the various resets on the LP CPU.
535 write32(&clk_rst->rst_cpulp_cmplx_clr,
536 CRC_RST_CPULP_CLR_CPU0 | CRC_RST_CPULP_CLR_DBG0 |
537 CRC_RST_CPULP_CLR_CORE0 | CRC_RST_CPULP_CLR_CX0 |
538 CRC_RST_CPULP_CLR_L2 | CRC_RST_CPULP_CLR_PDBG);
541 void clock_halt_avp(void)
543 for (;;) {
544 write32(&flow->halt_cop_events,
545 FLOW_EVENT_JTAG | FLOW_EVENT_LIC_IRQ |
546 FLOW_EVENT_GIC_IRQ | FLOW_MODE_WAITEVENT);
550 void clock_init(void)
552 u32 osc = clock_get_osc_bits();
554 /* Set PLLC dynramp_step A to 0x2b and B to 0xb (from U-Boot -- why? */
555 write32(&clk_rst->pllc_misc2, 0x2b << 17 | 0xb << 9);
557 /* Max out the AVP clock before everything else (need PLLC for that). */
558 init_pll(&clk_rst->pllc_base, &clk_rst->pllc_misc,
559 osc_table[osc].pllc, PLLC_MISC_LOCK_ENABLE);
561 /* Typical ratios are 1:2:2 or 1:2:3 sclk:hclk:pclk (See: APB DMA
562 * features section in the TRM). */
563 write32(&clk_rst->clk_sys_rate,
564 TEGRA_HCLK_RATIO << HCLK_DIVISOR_SHIFT |
565 TEGRA_PCLK_RATIO << PCLK_DIVISOR_SHIFT);
566 write32(&clk_rst->pllc_out, CLK_DIVIDER(TEGRA_PLLC_KHZ, TEGRA_SCLK_KHZ)
567 << PLL_OUT_RATIO_SHIFT | PLL_OUT_CLKEN | PLL_OUT_RSTN);
568 write32(&clk_rst->sclk_brst_pol, /* sclk = 300 MHz */
569 SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT |
570 SCLK_SOURCE_PLLC_OUT1 << SCLK_RUN_SHIFT);
572 /* Change the oscillator drive strength (from U-Boot -- why?) */
573 clrsetbits32(&clk_rst->osc_ctrl, OSC_XOFS_MASK,
574 OSC_DRIVE_STRENGTH << OSC_XOFS_SHIFT);
577 * Ambiguous quote from u-boot. TODO: what's this mean?
578 * "should update same value in PMC_OSC_EDPD_OVER XOFS
579 * field for warmboot "
581 clrsetbits32(&pmc->osc_edpd_over, PMC_OSC_EDPD_OVER_XOFS_MASK,
582 OSC_DRIVE_STRENGTH << PMC_OSC_EDPD_OVER_XOFS_SHIFT);
584 /* Disable IDDQ for PLLX before we set it up (from U-Boot -- why?) */
585 clrbits32(&clk_rst->pllx_misc3, PLLX_IDDQ_MASK);
587 /* Set up PLLP_OUT(1|2|3|4) divisor to generate (9.6|48|102|204)MHz */
588 write32(&clk_rst->pllp_outa,
589 (CLK_DIVIDER(TEGRA_PLLP_KHZ, 9600) << PLL_OUT_RATIO_SHIFT |
590 PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT1_SHIFT |
591 (CLK_DIVIDER(TEGRA_PLLP_KHZ, 48000) << PLL_OUT_RATIO_SHIFT |
592 PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT2_SHIFT);
593 write32(&clk_rst->pllp_outb,
594 (CLK_DIVIDER(TEGRA_PLLP_KHZ, 102000) << PLL_OUT_RATIO_SHIFT |
595 PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT3_SHIFT |
596 (CLK_DIVIDER(TEGRA_PLLP_KHZ, 204000) << PLL_OUT_RATIO_SHIFT |
597 PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT4_SHIFT);
599 /* init pllx */
600 init_pll(&clk_rst->pllx_base, &clk_rst->pllx_misc,
601 osc_table[osc].pllx, PLLPAXS_MISC_LOCK_ENABLE);
603 /* init pllu */
604 init_pll(&clk_rst->pllu_base, &clk_rst->pllu_misc,
605 osc_table[osc].pllu, PLLUD_MISC_LOCK_ENABLE);
607 init_utmip_pll();
608 graphics_pll();
611 void clock_enable_clear_reset(u32 l, u32 h, u32 u, u32 v, u32 w, u32 x)
613 if (l) write32(&clk_rst->clk_enb_l_set, l);
614 if (h) write32(&clk_rst->clk_enb_h_set, h);
615 if (u) write32(&clk_rst->clk_enb_u_set, u);
616 if (v) write32(&clk_rst->clk_enb_v_set, v);
617 if (w) write32(&clk_rst->clk_enb_w_set, w);
618 if (x) write32(&clk_rst->clk_enb_x_set, x);
620 /* Give clocks time to stabilize. */
621 udelay(IO_STABILIZATION_DELAY);
623 if (l) write32(&clk_rst->rst_dev_l_clr, l);
624 if (h) write32(&clk_rst->rst_dev_h_clr, h);
625 if (u) write32(&clk_rst->rst_dev_u_clr, u);
626 if (v) write32(&clk_rst->rst_dev_v_clr, v);
627 if (w) write32(&clk_rst->rst_dev_w_clr, w);
628 if (x) write32(&clk_rst->rst_dev_x_clr, x);
631 void clock_reset_l(u32 bit)
633 write32(&clk_rst->rst_dev_l_set, bit);
634 udelay(1);
635 write32(&clk_rst->rst_dev_l_clr, bit);
638 void clock_reset_h(u32 bit)
640 write32(&clk_rst->rst_dev_h_set, bit);
641 udelay(1);
642 write32(&clk_rst->rst_dev_h_clr, bit);
645 void clock_reset_u(u32 bit)
647 write32(&clk_rst->rst_dev_u_set, bit);
648 udelay(1);
649 write32(&clk_rst->rst_dev_u_clr, bit);
652 void clock_reset_v(u32 bit)
654 write32(&clk_rst->rst_dev_v_set, bit);
655 udelay(1);
656 write32(&clk_rst->rst_dev_v_clr, bit);
659 void clock_reset_w(u32 bit)
661 write32(&clk_rst->rst_dev_w_set, bit);
662 udelay(1);
663 write32(&clk_rst->rst_dev_w_clr, bit);
666 void clock_reset_x(u32 bit)
668 write32(&clk_rst->rst_dev_x_set, bit);
669 udelay(1);
670 write32(&clk_rst->rst_dev_x_clr, bit);