tegra: Move pinmux enum constants from tegra/pinmux.h to soc-specific pinmux.h
[coreboot.git] / src / device / device.c
blobcf418eb4d19a25ce9e41e4414195517083978c88
1 /*
2 * This file is part of the coreboot project.
4 * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
6 * Modifications are:
7 * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
8 * Copyright (C) 2003-2004 Linux Networx
9 * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
10 * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
11 * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
12 * Copyright (C) 2005-2006 Tyan
13 * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
14 * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
15 * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
19 * (c) 1999--2000 Martin Mares <mj@suse.cz>
23 * Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
24 * the final architecture guidance from Tom Merritt <tjm@codegen.com>.
26 * In particular, we changed from the one-pass original version to
27 * Tom's recommended multiple-pass version. I wasn't sure about doing
28 * it with multiple passes, until I actually started doing it and saw
29 * the wisdom of Tom's recommendations...
31 * Lots of cleanups by Eric Biederman to handle bridges, and to
32 * handle resource allocation for non-PCI devices.
35 #include <console/console.h>
36 #include <arch/io.h>
37 #include <device/device.h>
38 #include <device/pci_def.h>
39 #include <device/pci_ids.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <smp/spinlock.h>
43 #if CONFIG_ARCH_X86
44 #include <arch/ebda.h>
45 #endif
46 #include <timer.h>
48 /** Linked list of ALL devices */
49 struct device *all_devices = &dev_root;
50 /** Pointer to the last device */
51 extern struct device *last_dev;
52 /** Linked list of free resources */
53 struct resource *free_resources = NULL;
55 /**
56 * Initialize all chips of statically known devices.
58 * Will be called before bus enumeration to initialize chips stated in the
59 * device tree.
61 void dev_initialize_chips(void)
63 struct device *dev;
65 for (dev = all_devices; dev; dev = dev->next) {
66 /* Initialize chip if we haven't yet. */
67 if (dev->chip_ops && dev->chip_ops->init &&
68 !dev->chip_ops->initialized) {
69 post_log_path(dev);
70 dev->chip_ops->init(dev->chip_info);
71 dev->chip_ops->initialized = 1;
74 post_log_clear();
77 /**
78 * Finalize all chips of statically known devices.
80 * This is the last call before calling the payload. This is a good place
81 * to lock registers or other final cleanup.
83 void dev_finalize_chips(void)
85 struct device *dev;
87 for (dev = all_devices; dev; dev = dev->next) {
88 /* Initialize chip if we haven't yet. */
89 if (dev->chip_ops && dev->chip_ops->final &&
90 !dev->chip_ops->finalized) {
91 dev->chip_ops->final(dev->chip_info);
92 dev->chip_ops->finalized = 1;
97 DECLARE_SPIN_LOCK(dev_lock)
99 #if CONFIG_GFXUMA
100 /* IGD UMA memory */
101 uint64_t uma_memory_base = 0;
102 uint64_t uma_memory_size = 0;
103 #endif
106 * Allocate a new device structure.
108 * Allocate a new device structure and attach it to the device tree as a
109 * child of the parent bus.
111 * @param parent Parent bus the newly created device should be attached to.
112 * @param path Path to the device to be created.
113 * @return Pointer to the newly created device structure.
115 * @see device_path
117 static device_t __alloc_dev(struct bus *parent, struct device_path *path)
119 device_t dev, child;
121 /* Find the last child of our parent. */
122 for (child = parent->children; child && child->sibling; /* */ )
123 child = child->sibling;
125 dev = malloc(sizeof(*dev));
126 if (dev == 0)
127 die("alloc_dev(): out of memory.\n");
129 memset(dev, 0, sizeof(*dev));
130 memcpy(&dev->path, path, sizeof(*path));
132 /* By default devices are enabled. */
133 dev->enabled = 1;
135 /* Add the new device to the list of children of the bus. */
136 dev->bus = parent;
137 if (child)
138 child->sibling = dev;
139 else
140 parent->children = dev;
142 /* Append a new device to the global device list.
143 * The list is used to find devices once everything is set up.
145 last_dev->next = dev;
146 last_dev = dev;
148 return dev;
151 device_t alloc_dev(struct bus *parent, struct device_path *path)
153 device_t dev;
154 spin_lock(&dev_lock);
155 dev = __alloc_dev(parent, path);
156 spin_unlock(&dev_lock);
157 return dev;
161 * See if a device structure already exists and if not allocate it.
163 * @param parent The bus to find the device on.
164 * @param path The relative path from the bus to the appropriate device.
165 * @return Pointer to a device structure for the device on bus at path.
167 device_t alloc_find_dev(struct bus *parent, struct device_path *path)
169 device_t child;
170 spin_lock(&dev_lock);
171 child = find_dev_path(parent, path);
172 if (!child)
173 child = __alloc_dev(parent, path);
174 spin_unlock(&dev_lock);
175 return child;
179 * Round a number up to an alignment.
181 * @param val The starting value.
182 * @param pow Alignment as a power of two.
183 * @return Rounded up number.
185 static resource_t round(resource_t val, unsigned long pow)
187 resource_t mask;
188 mask = (1ULL << pow) - 1ULL;
189 val += mask;
190 val &= ~mask;
191 return val;
194 static const char * resource2str(struct resource *res)
196 if (res->flags & IORESOURCE_IO)
197 return "io";
198 if (res->flags & IORESOURCE_PREFETCH)
199 return "prefmem";
200 if (res->flags & IORESOURCE_MEM)
201 return "mem";
202 return "undefined";
206 * Read the resources on all devices of a given bus.
208 * @param bus Bus to read the resources on.
210 static void read_resources(struct bus *bus)
212 struct device *curdev;
214 printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
215 __func__, bus->secondary, bus->link_num);
217 /* Walk through all devices and find which resources they need. */
218 for (curdev = bus->children; curdev; curdev = curdev->sibling) {
219 struct bus *link;
221 if (!curdev->enabled)
222 continue;
224 if (!curdev->ops || !curdev->ops->read_resources) {
225 printk(BIOS_ERR, "%s missing read_resources\n",
226 dev_path(curdev));
227 continue;
229 post_log_path(curdev);
230 curdev->ops->read_resources(curdev);
232 /* Read in the resources behind the current device's links. */
233 for (link = curdev->link_list; link; link = link->next)
234 read_resources(link);
236 post_log_clear();
237 printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
238 dev_path(bus->dev), bus->secondary, bus->link_num);
241 struct pick_largest_state {
242 struct resource *last;
243 struct device *result_dev;
244 struct resource *result;
245 int seen_last;
248 static void pick_largest_resource(void *gp, struct device *dev,
249 struct resource *resource)
251 struct pick_largest_state *state = gp;
252 struct resource *last;
254 last = state->last;
256 /* Be certain to pick the successor to last. */
257 if (resource == last) {
258 state->seen_last = 1;
259 return;
261 if (resource->flags & IORESOURCE_FIXED)
262 return; /* Skip it. */
263 if (last && ((last->align < resource->align) ||
264 ((last->align == resource->align) &&
265 (last->size < resource->size)) ||
266 ((last->align == resource->align) &&
267 (last->size == resource->size) && (!state->seen_last)))) {
268 return;
270 if (!state->result ||
271 (state->result->align < resource->align) ||
272 ((state->result->align == resource->align) &&
273 (state->result->size < resource->size))) {
274 state->result_dev = dev;
275 state->result = resource;
279 static struct device *largest_resource(struct bus *bus,
280 struct resource **result_res,
281 unsigned long type_mask,
282 unsigned long type)
284 struct pick_largest_state state;
286 state.last = *result_res;
287 state.result_dev = NULL;
288 state.result = NULL;
289 state.seen_last = 0;
291 search_bus_resources(bus, type_mask, type, pick_largest_resource,
292 &state);
294 *result_res = state.result;
295 return state.result_dev;
299 * This function is the guts of the resource allocator.
301 * The problem.
302 * - Allocate resource locations for every device.
303 * - Don't overlap, and follow the rules of bridges.
304 * - Don't overlap with resources in fixed locations.
305 * - Be efficient so we don't have ugly strategies.
307 * The strategy.
308 * - Devices that have fixed addresses are the minority so don't
309 * worry about them too much. Instead only use part of the address
310 * space for devices with programmable addresses. This easily handles
311 * everything except bridges.
313 * - PCI devices are required to have their sizes and their alignments
314 * equal. In this case an optimal solution to the packing problem
315 * exists. Allocate all devices from highest alignment to least
316 * alignment or vice versa. Use this.
318 * - So we can handle more than PCI run two allocation passes on bridges. The
319 * first to see how large the resources are behind the bridge, and what
320 * their alignment requirements are. The second to assign a safe address to
321 * the devices behind the bridge. This allows us to treat a bridge as just
322 * a device with a couple of resources, and not need to special case it in
323 * the allocator. Also this allows handling of other types of bridges.
325 * @param bus The bus we are traversing.
326 * @param bridge The bridge resource which must contain the bus' resources.
327 * @param type_mask This value gets ANDed with the resource type.
328 * @param type This value must match the result of the AND.
329 * @return TODO
331 static void compute_resources(struct bus *bus, struct resource *bridge,
332 unsigned long type_mask, unsigned long type)
334 struct device *dev;
335 struct resource *resource;
336 resource_t base;
337 base = round(bridge->base, bridge->align);
339 printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
340 " limit: %llx\n", dev_path(bus->dev), resource2str(bridge),
341 base, bridge->size, bridge->align,
342 bridge->gran, bridge->limit);
344 /* For each child which is a bridge, compute the resource needs. */
345 for (dev = bus->children; dev; dev = dev->sibling) {
346 struct resource *child_bridge;
348 if (!dev->link_list)
349 continue;
351 /* Find the resources with matching type flags. */
352 for (child_bridge = dev->resource_list; child_bridge;
353 child_bridge = child_bridge->next) {
354 struct bus* link;
356 if (!(child_bridge->flags & IORESOURCE_BRIDGE)
357 || (child_bridge->flags & type_mask) != type)
358 continue;
361 * Split prefetchable memory if combined. Many domains
362 * use the same address space for prefetchable memory
363 * and non-prefetchable memory. Bridges below them need
364 * it separated. Add the PREFETCH flag to the type_mask
365 * and type.
367 link = dev->link_list;
368 while (link && link->link_num !=
369 IOINDEX_LINK(child_bridge->index))
370 link = link->next;
372 if (link == NULL) {
373 printk(BIOS_ERR, "link %ld not found on %s\n",
374 IOINDEX_LINK(child_bridge->index),
375 dev_path(dev));
378 compute_resources(link, child_bridge,
379 type_mask | IORESOURCE_PREFETCH,
380 type | (child_bridge->flags &
381 IORESOURCE_PREFETCH));
385 /* Remember we haven't found anything yet. */
386 resource = NULL;
389 * Walk through all the resources on the current bus and compute the
390 * amount of address space taken by them. Take granularity and
391 * alignment into account.
393 while ((dev = largest_resource(bus, &resource, type_mask, type))) {
395 /* Size 0 resources can be skipped. */
396 if (!resource->size)
397 continue;
399 /* Propagate the resource alignment to the bridge resource. */
400 if (resource->align > bridge->align)
401 bridge->align = resource->align;
403 /* Propagate the resource limit to the bridge register. */
404 if (bridge->limit > resource->limit)
405 bridge->limit = resource->limit;
407 /* Warn if it looks like APICs aren't declared. */
408 if ((resource->limit == 0xffffffff) &&
409 (resource->flags & IORESOURCE_ASSIGNED)) {
410 printk(BIOS_ERR,
411 "Resource limit looks wrong! (no APIC?)\n");
412 printk(BIOS_ERR, "%s %02lx limit %08llx\n",
413 dev_path(dev), resource->index, resource->limit);
416 if (resource->flags & IORESOURCE_IO) {
418 * Don't allow potential aliases over the legacy PCI
419 * expansion card addresses. The legacy PCI decodes
420 * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
421 * 0x00 - 0xff can be used out of each 0x400 block of
422 * I/O space.
424 if ((base & 0x300) != 0) {
425 base = (base & ~0x3ff) + 0x400;
428 * Don't allow allocations in the VGA I/O range.
429 * PCI has special cases for that.
431 else if ((base >= 0x3b0) && (base <= 0x3df)) {
432 base = 0x3e0;
435 /* Base must be aligned. */
436 base = round(base, resource->align);
437 resource->base = base;
438 base += resource->size;
440 printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
441 dev_path(dev), resource->index, resource->base,
442 resource->base + resource->size - 1,
443 resource2str(resource));
447 * A PCI bridge resource does not need to be a power of two size, but
448 * it does have a minimum granularity. Round the size up to that
449 * minimum granularity so we know not to place something else at an
450 * address positively decoded by the bridge.
452 bridge->size = round(base, bridge->gran) -
453 round(bridge->base, bridge->align);
455 printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
456 " limit: %llx done\n", dev_path(bus->dev),
457 resource2str(bridge),
458 base, bridge->size, bridge->align, bridge->gran, bridge->limit);
462 * This function is the second part of the resource allocator.
464 * See the compute_resources function for a more detailed explanation.
466 * This function assigns the resources a value.
468 * @param bus The bus we are traversing.
469 * @param bridge The bridge resource which must contain the bus' resources.
470 * @param type_mask This value gets ANDed with the resource type.
471 * @param type This value must match the result of the AND.
473 * @see compute_resources
475 static void allocate_resources(struct bus *bus, struct resource *bridge,
476 unsigned long type_mask, unsigned long type)
478 struct device *dev;
479 struct resource *resource;
480 resource_t base;
481 base = bridge->base;
483 printk(BIOS_SPEW, "%s %s: base:%llx size:%llx align:%d gran:%d "
484 "limit:%llx\n", dev_path(bus->dev),
485 resource2str(bridge),
486 base, bridge->size, bridge->align, bridge->gran, bridge->limit);
488 /* Remember we haven't found anything yet. */
489 resource = NULL;
492 * Walk through all the resources on the current bus and allocate them
493 * address space.
495 while ((dev = largest_resource(bus, &resource, type_mask, type))) {
497 /* Propagate the bridge limit to the resource register. */
498 if (resource->limit > bridge->limit)
499 resource->limit = bridge->limit;
501 /* Size 0 resources can be skipped. */
502 if (!resource->size) {
503 /* Set the base to limit so it doesn't confuse tolm. */
504 resource->base = resource->limit;
505 resource->flags |= IORESOURCE_ASSIGNED;
506 continue;
509 if (resource->flags & IORESOURCE_IO) {
511 * Don't allow potential aliases over the legacy PCI
512 * expansion card addresses. The legacy PCI decodes
513 * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
514 * 0x00 - 0xff can be used out of each 0x400 block of
515 * I/O space.
517 if ((base & 0x300) != 0) {
518 base = (base & ~0x3ff) + 0x400;
521 * Don't allow allocations in the VGA I/O range.
522 * PCI has special cases for that.
524 else if ((base >= 0x3b0) && (base <= 0x3df)) {
525 base = 0x3e0;
529 if ((round(base, resource->align) + resource->size - 1) <=
530 resource->limit) {
531 /* Base must be aligned. */
532 base = round(base, resource->align);
533 resource->base = base;
534 resource->limit = resource->base + resource->size - 1;
535 resource->flags |= IORESOURCE_ASSIGNED;
536 resource->flags &= ~IORESOURCE_STORED;
537 base += resource->size;
538 } else {
539 printk(BIOS_ERR, "!! Resource didn't fit !!\n");
540 printk(BIOS_ERR, " aligned base %llx size %llx "
541 "limit %llx\n", round(base, resource->align),
542 resource->size, resource->limit);
543 printk(BIOS_ERR, " %llx needs to be <= %llx "
544 "(limit)\n", (round(base, resource->align) +
545 resource->size) - 1, resource->limit);
546 printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
547 " %s\n", (resource->flags & IORESOURCE_ASSIGNED)
548 ? "Assigned: " : "", dev_path(dev),
549 resource->index, resource->base,
550 resource->base + resource->size - 1,
551 resource2str(resource));
554 printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
555 dev_path(dev), resource->index, resource->base,
556 resource->size ? resource->base + resource->size - 1 :
557 resource->base, resource2str(resource));
561 * A PCI bridge resource does not need to be a power of two size, but
562 * it does have a minimum granularity. Round the size up to that
563 * minimum granularity so we know not to place something else at an
564 * address positively decoded by the bridge.
567 bridge->flags |= IORESOURCE_ASSIGNED;
569 printk(BIOS_SPEW, "%s %s: next_base: %llx size: %llx align: %d "
570 "gran: %d done\n", dev_path(bus->dev),
571 resource2str(bridge), base, bridge->size, bridge->align,
572 bridge->gran);
574 /* For each child which is a bridge, allocate_resources. */
575 for (dev = bus->children; dev; dev = dev->sibling) {
576 struct resource *child_bridge;
578 if (!dev->link_list)
579 continue;
581 /* Find the resources with matching type flags. */
582 for (child_bridge = dev->resource_list; child_bridge;
583 child_bridge = child_bridge->next) {
584 struct bus* link;
586 if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
587 (child_bridge->flags & type_mask) != type)
588 continue;
591 * Split prefetchable memory if combined. Many domains
592 * use the same address space for prefetchable memory
593 * and non-prefetchable memory. Bridges below them need
594 * it separated. Add the PREFETCH flag to the type_mask
595 * and type.
597 link = dev->link_list;
598 while (link && link->link_num !=
599 IOINDEX_LINK(child_bridge->index))
600 link = link->next;
601 if (link == NULL)
602 printk(BIOS_ERR, "link %ld not found on %s\n",
603 IOINDEX_LINK(child_bridge->index),
604 dev_path(dev));
606 allocate_resources(link, child_bridge,
607 type_mask | IORESOURCE_PREFETCH,
608 type | (child_bridge->flags &
609 IORESOURCE_PREFETCH));
614 static int resource_is(struct resource *res, u32 type)
616 return (res->flags & IORESOURCE_TYPE_MASK) == type;
619 struct constraints {
620 struct resource io, mem;
623 static struct resource * resource_limit(struct constraints *limits, struct resource *res)
625 struct resource *lim = NULL;
627 /* MEM, or I/O - skip any others. */
628 if (resource_is(res, IORESOURCE_MEM))
629 lim = &limits->mem;
630 else if (resource_is(res, IORESOURCE_IO))
631 lim = &limits->io;
633 return lim;
636 static void constrain_resources(struct device *dev, struct constraints* limits)
638 struct device *child;
639 struct resource *res;
640 struct resource *lim;
641 struct bus *link;
643 /* Constrain limits based on the fixed resources of this device. */
644 for (res = dev->resource_list; res; res = res->next) {
645 if (!(res->flags & IORESOURCE_FIXED))
646 continue;
647 if (!res->size) {
648 /* It makes no sense to have 0-sized, fixed resources.*/
649 printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
650 "size=0!\n", dev_path(dev), res->index);
651 continue;
654 lim = resource_limit(limits, res);
655 if (!lim)
656 continue;
659 * Is it a fixed resource outside the current known region?
660 * If so, we don't have to consider it - it will be handled
661 * correctly and doesn't affect current region's limits.
663 if (((res->base + res->size -1) < lim->base)
664 || (res->base > lim->limit))
665 continue;
667 printk(BIOS_SPEW, "%s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
668 __func__, dev_path(dev), res->index, res->base,
669 res->base + res->size - 1, resource2str(res));
672 * Choose to be above or below fixed resources. This check is
673 * signed so that "negative" amounts of space are handled
674 * correctly.
676 if ((signed long long)(lim->limit - (res->base + res->size -1))
677 > (signed long long)(res->base - lim->base))
678 lim->base = res->base + res->size;
679 else
680 lim->limit = res->base -1;
683 /* Descend into every enabled child and look for fixed resources. */
684 for (link = dev->link_list; link; link = link->next) {
685 for (child = link->children; child; child = child->sibling) {
686 if (child->enabled)
687 constrain_resources(child, limits);
692 static void avoid_fixed_resources(struct device *dev)
694 struct constraints limits;
695 struct resource *res;
696 struct resource *lim;
698 printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
700 /* Initialize constraints to maximum size. */
701 limits.io.base = 0;
702 limits.io.limit = 0xffffffffffffffffULL;
703 limits.mem.base = 0;
704 limits.mem.limit = 0xffffffffffffffffULL;
706 /* Constrain the limits to dev's initial resources. */
707 for (res = dev->resource_list; res; res = res->next) {
708 if ((res->flags & IORESOURCE_FIXED))
709 continue;
710 printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
711 dev_path(dev), res->index, res->limit);
713 lim = resource_limit(&limits, res);
714 if (!lim)
715 continue;
717 if (res->base > lim->base)
718 lim->base = res->base;
719 if (res->limit < lim->limit)
720 lim->limit = res->limit;
723 /* Look through the tree for fixed resources and update the limits. */
724 constrain_resources(dev, &limits);
726 /* Update dev's resources with new limits. */
727 for (res = dev->resource_list; res; res = res->next) {
728 if ((res->flags & IORESOURCE_FIXED))
729 continue;
731 lim = resource_limit(&limits, res);
732 if (!lim)
733 continue;
735 /* Is the resource outside the limits? */
736 if (lim->base > res->base)
737 res->base = lim->base;
738 if (res->limit > lim->limit)
739 res->limit = lim->limit;
741 /* MEM resources need to start at the highest address manageable. */
742 if (res->flags & IORESOURCE_MEM)
743 res->base = resource_max(res);
745 printk(BIOS_SPEW, "%s:@%s %02lx base %08llx limit %08llx\n",
746 __func__, dev_path(dev), res->index, res->base, res->limit);
750 device_t vga_pri = 0;
751 static void set_vga_bridge_bits(void)
754 * FIXME: Modify set_vga_bridge() so it is less PCI-centric!
755 * This function knows too much about PCI stuff, it should be just
756 * an iterator/visitor.
759 /* FIXME: Handle the VGA palette snooping. */
760 struct device *dev, *vga, *vga_onboard;
761 struct bus *bus;
763 bus = 0;
764 vga = 0;
765 vga_onboard = 0;
767 dev = NULL;
768 while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
769 if (!dev->enabled)
770 continue;
772 printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
774 if (dev->on_mainboard) {
775 vga_onboard = dev;
776 } else {
777 vga = dev;
780 /* It isn't safe to enable all VGA cards. */
781 dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
784 if (!vga)
785 vga = vga_onboard;
787 if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
788 vga = vga_onboard;
790 /* If we prefer plugin VGA over chipset VGA, the chipset might
791 want to know. */
792 if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
793 vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
794 printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
795 vga_onboard->ops->disable(vga_onboard);
798 if (vga) {
799 /* VGA is first add-on card or the only onboard VGA. */
800 printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
801 /* All legacy VGA cards have MEM & I/O space registers. */
802 vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
803 vga_pri = vga;
804 bus = vga->bus;
807 /* Now walk up the bridges setting the VGA enable. */
808 while (bus) {
809 printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
810 dev_path(bus->dev));
811 bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
812 bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
817 * Assign the computed resources to the devices on the bus.
819 * Use the device specific set_resources() method to store the computed
820 * resources to hardware. For bridge devices, the set_resources() method
821 * has to recurse into every down stream buses.
823 * Mutual recursion:
824 * assign_resources() -> device_operation::set_resources()
825 * device_operation::set_resources() -> assign_resources()
827 * @param bus Pointer to the structure for this bus.
829 void assign_resources(struct bus *bus)
831 struct device *curdev;
833 printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
834 dev_path(bus->dev), bus->secondary, bus->link_num);
836 for (curdev = bus->children; curdev; curdev = curdev->sibling) {
837 if (!curdev->enabled || !curdev->resource_list)
838 continue;
840 if (!curdev->ops || !curdev->ops->set_resources) {
841 printk(BIOS_ERR, "%s missing set_resources\n",
842 dev_path(curdev));
843 continue;
845 post_log_path(curdev);
846 curdev->ops->set_resources(curdev);
848 post_log_clear();
849 printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
850 dev_path(bus->dev), bus->secondary, bus->link_num);
854 * Enable the resources for devices on a link.
856 * Enable resources of the device by calling the device specific
857 * enable_resources() method.
859 * The parent's resources should be enabled first to avoid having enabling
860 * order problem. This is done by calling the parent's enable_resources()
861 * method before its children's enable_resources() methods.
863 * @param link The link whose devices' resources are to be enabled.
865 static void enable_resources(struct bus *link)
867 struct device *dev;
868 struct bus *c_link;
870 for (dev = link->children; dev; dev = dev->sibling) {
871 if (dev->enabled && dev->ops && dev->ops->enable_resources) {
872 post_log_path(dev);
873 dev->ops->enable_resources(dev);
877 for (dev = link->children; dev; dev = dev->sibling) {
878 for (c_link = dev->link_list; c_link; c_link = c_link->next)
879 enable_resources(c_link);
881 post_log_clear();
885 * Reset all of the devices on a bus and clear the bus's reset_needed flag.
887 * @param bus Pointer to the bus structure.
888 * @return 1 if the bus was successfully reset, 0 otherwise.
890 int reset_bus(struct bus *bus)
892 if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
893 bus->dev->ops->reset_bus(bus);
894 bus->reset_needed = 0;
895 return 1;
897 return 0;
901 * Scan for devices on a bus.
903 * If there are bridges on the bus, recursively scan the buses behind the
904 * bridges. If the setting up and tuning of the bus causes a reset to be
905 * required, reset the bus and scan it again.
907 * @param busdev Pointer to the bus device.
909 static void scan_bus(struct device *busdev)
911 int do_scan_bus;
913 if (!busdev->enabled)
914 return;
916 printk(BIOS_SPEW, "%s scanning...\n", dev_path(busdev));
918 post_log_path(busdev);
920 do_scan_bus = 1;
921 while (do_scan_bus) {
922 struct bus *link;
923 busdev->ops->scan_bus(busdev);
924 do_scan_bus = 0;
925 for (link = busdev->link_list; link; link = link->next) {
926 if (link->reset_needed) {
927 if (reset_bus(link))
928 do_scan_bus = 1;
929 else
930 busdev->bus->reset_needed = 1;
936 void scan_bridges(struct bus *bus)
938 struct device *child;
940 for (child = bus->children; child; child = child->sibling) {
941 if (!child->ops || !child->ops->scan_bus)
942 continue;
943 scan_bus(child);
948 * Determine the existence of devices and extend the device tree.
950 * Most of the devices in the system are listed in the mainboard devicetree.cb
951 * file. The device structures for these devices are generated at compile
952 * time by the config tool and are organized into the device tree. This
953 * function determines if the devices created at compile time actually exist
954 * in the physical system.
956 * For devices in the physical system but not listed in devicetree.cb,
957 * the device structures have to be created at run time and attached to the
958 * device tree.
960 * This function starts from the root device 'dev_root', scans the buses in
961 * the system recursively, and modifies the device tree according to the
962 * result of the probe.
964 * This function has no idea how to scan and probe buses and devices at all.
965 * It depends on the bus/device specific scan_bus() method to do it. The
966 * scan_bus() method also has to create the device structure and attach
967 * it to the device tree.
969 void dev_enumerate(void)
971 struct device *root;
973 printk(BIOS_INFO, "Enumerating buses...\n");
975 root = &dev_root;
977 show_all_devs(BIOS_SPEW, "Before device enumeration.");
978 printk(BIOS_SPEW, "Compare with tree...\n");
979 show_devs_tree(root, BIOS_SPEW, 0, 0);
981 if (root->chip_ops && root->chip_ops->enable_dev)
982 root->chip_ops->enable_dev(root);
984 if (!root->ops || !root->ops->scan_bus) {
985 printk(BIOS_ERR, "dev_root missing scan_bus operation");
986 return;
988 scan_bus(root);
989 post_log_clear();
990 printk(BIOS_INFO, "done\n");
994 * Configure devices on the devices tree.
996 * Starting at the root of the device tree, travel it recursively in two
997 * passes. In the first pass, we compute and allocate resources (ranges)
998 * required by each device. In the second pass, the resources ranges are
999 * relocated to their final position and stored to the hardware.
1001 * I/O resources grow upward. MEM resources grow downward.
1003 * Since the assignment is hierarchical we set the values into the dev_root
1004 * struct.
1006 void dev_configure(void)
1008 struct resource *res;
1009 struct device *root;
1010 struct device *child;
1012 set_vga_bridge_bits();
1014 printk(BIOS_INFO, "Allocating resources...\n");
1016 root = &dev_root;
1019 * Each domain should create resources which contain the entire address
1020 * space for IO, MEM, and PREFMEM resources in the domain. The
1021 * allocation of device resources will be done from this address space.
1024 /* Read the resources for the entire tree. */
1026 printk(BIOS_INFO, "Reading resources...\n");
1027 read_resources(root->link_list);
1028 printk(BIOS_INFO, "Done reading resources.\n");
1030 print_resource_tree(root, BIOS_SPEW, "After reading.");
1032 /* Compute resources for all domains. */
1033 for (child = root->link_list->children; child; child = child->sibling) {
1034 if (!(child->path.type == DEVICE_PATH_DOMAIN))
1035 continue;
1036 post_log_path(child);
1037 for (res = child->resource_list; res; res = res->next) {
1038 if (res->flags & IORESOURCE_FIXED)
1039 continue;
1040 if (res->flags & IORESOURCE_MEM) {
1041 compute_resources(child->link_list,
1042 res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
1043 continue;
1045 if (res->flags & IORESOURCE_IO) {
1046 compute_resources(child->link_list,
1047 res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
1048 continue;
1053 /* For all domains. */
1054 for (child = root->link_list->children; child; child=child->sibling)
1055 if (child->path.type == DEVICE_PATH_DOMAIN)
1056 avoid_fixed_resources(child);
1058 /* Store the computed resource allocations into device registers ... */
1059 printk(BIOS_INFO, "Setting resources...\n");
1060 for (child = root->link_list->children; child; child = child->sibling) {
1061 if (!(child->path.type == DEVICE_PATH_DOMAIN))
1062 continue;
1063 post_log_path(child);
1064 for (res = child->resource_list; res; res = res->next) {
1065 if (res->flags & IORESOURCE_FIXED)
1066 continue;
1067 if (res->flags & IORESOURCE_MEM) {
1068 allocate_resources(child->link_list,
1069 res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
1070 continue;
1072 if (res->flags & IORESOURCE_IO) {
1073 allocate_resources(child->link_list,
1074 res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
1075 continue;
1079 assign_resources(root->link_list);
1080 printk(BIOS_INFO, "Done setting resources.\n");
1081 print_resource_tree(root, BIOS_SPEW, "After assigning values.");
1083 printk(BIOS_INFO, "Done allocating resources.\n");
1087 * Enable devices on the device tree.
1089 * Starting at the root, walk the tree and enable all devices/bridges by
1090 * calling the device's enable_resources() method.
1092 void dev_enable(void)
1094 struct bus *link;
1096 printk(BIOS_INFO, "Enabling resources...\n");
1098 /* Now enable everything. */
1099 for (link = dev_root.link_list; link; link = link->next)
1100 enable_resources(link);
1102 printk(BIOS_INFO, "done.\n");
1106 * Initialize a specific device.
1108 * The parent should be initialized first to avoid having an ordering problem.
1109 * This is done by calling the parent's init() method before its children's
1110 * init() methods.
1112 * @param dev The device to be initialized.
1114 static void init_dev(struct device *dev)
1116 if (!dev->enabled)
1117 return;
1119 if (!dev->initialized && dev->ops && dev->ops->init) {
1120 #if CONFIG_HAVE_MONOTONIC_TIMER
1121 struct stopwatch sw;
1122 stopwatch_init(&sw);
1123 #endif
1124 if (dev->path.type == DEVICE_PATH_I2C) {
1125 printk(BIOS_DEBUG, "smbus: %s[%d]->",
1126 dev_path(dev->bus->dev), dev->bus->link_num);
1129 printk(BIOS_DEBUG, "%s init ...\n", dev_path(dev));
1130 dev->initialized = 1;
1131 dev->ops->init(dev);
1132 #if CONFIG_HAVE_MONOTONIC_TIMER
1133 printk(BIOS_DEBUG, "%s init finished in %ld usecs\n", dev_path(dev),
1134 stopwatch_duration_usecs(&sw));
1135 #endif
1139 static void init_link(struct bus *link)
1141 struct device *dev;
1142 struct bus *c_link;
1144 for (dev = link->children; dev; dev = dev->sibling) {
1145 post_code(POST_BS_DEV_INIT);
1146 post_log_path(dev);
1147 init_dev(dev);
1150 for (dev = link->children; dev; dev = dev->sibling) {
1151 for (c_link = dev->link_list; c_link; c_link = c_link->next)
1152 init_link(c_link);
1157 * Initialize all devices in the global device tree.
1159 * Starting at the root device, call the device's init() method to do
1160 * device-specific setup, then call each child's init() method.
1162 void dev_initialize(void)
1164 struct bus *link;
1166 printk(BIOS_INFO, "Initializing devices...\n");
1168 #if CONFIG_ARCH_X86
1169 /* Ensure EBDA is prepared before Option ROMs. */
1170 setup_default_ebda();
1171 #endif
1173 /* First call the mainboard init. */
1174 init_dev(&dev_root);
1176 /* Now initialize everything. */
1177 for (link = dev_root.link_list; link; link = link->next)
1178 init_link(link);
1179 post_log_clear();
1181 printk(BIOS_INFO, "Devices initialized\n");
1182 show_all_devs(BIOS_SPEW, "After init.");
1186 * Finalize a specific device.
1188 * The parent should be finalized first to avoid having an ordering problem.
1189 * This is done by calling the parent's final() method before its childrens'
1190 * final() methods.
1192 * @param dev The device to be initialized.
1194 static void final_dev(struct device *dev)
1196 if (!dev->enabled)
1197 return;
1199 if (dev->ops && dev->ops->final) {
1200 printk(BIOS_DEBUG, "%s final\n", dev_path(dev));
1201 dev->ops->final(dev);
1205 static void final_link(struct bus *link)
1207 struct device *dev;
1208 struct bus *c_link;
1210 for (dev = link->children; dev; dev = dev->sibling)
1211 final_dev(dev);
1213 for (dev = link->children; dev; dev = dev->sibling) {
1214 for (c_link = dev->link_list; c_link; c_link = c_link->next)
1215 final_link(c_link);
1219 * Finalize all devices in the global device tree.
1221 * Starting at the root device, call the device's final() method to do
1222 * device-specific cleanup, then call each child's final() method.
1224 void dev_finalize(void)
1226 struct bus *link;
1228 printk(BIOS_INFO, "Finalize devices...\n");
1230 /* First call the mainboard finalize. */
1231 final_dev(&dev_root);
1233 /* Now finalize everything. */
1234 for (link = dev_root.link_list; link; link = link->next)
1235 final_link(link);
1237 printk(BIOS_INFO, "Devices finalized\n");