2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
57 * Array of node states.
59 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
60 [N_POSSIBLE
] = NODE_MASK_ALL
,
61 [N_ONLINE
] = { { [0] = 1UL } },
63 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
65 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
67 [N_CPU
] = { { [0] = 1UL } },
70 EXPORT_SYMBOL(node_states
);
72 unsigned long totalram_pages __read_mostly
;
73 unsigned long totalreserve_pages __read_mostly
;
74 unsigned long highest_memmap_pfn __read_mostly
;
75 int percpu_pagelist_fraction
;
76 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly
;
82 static void __free_pages_ok(struct page
*page
, unsigned int order
);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
96 #ifdef CONFIG_ZONE_DMA
99 #ifdef CONFIG_ZONE_DMA32
102 #ifdef CONFIG_HIGHMEM
108 EXPORT_SYMBOL(totalram_pages
);
110 static char * const zone_names
[MAX_NR_ZONES
] = {
111 #ifdef CONFIG_ZONE_DMA
114 #ifdef CONFIG_ZONE_DMA32
118 #ifdef CONFIG_HIGHMEM
124 int min_free_kbytes
= 1024;
126 unsigned long __meminitdata nr_kernel_pages
;
127 unsigned long __meminitdata nr_all_pages
;
128 static unsigned long __meminitdata dma_reserve
;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
151 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
152 static int __meminitdata nr_nodemap_entries
;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 int nr_online_nodes __read_mostly
= 1;
167 EXPORT_SYMBOL(nr_node_ids
);
168 EXPORT_SYMBOL(nr_online_nodes
);
171 int page_group_by_mobility_disabled __read_mostly
;
173 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 if (unlikely(page_group_by_mobility_disabled
))
177 migratetype
= MIGRATE_UNMOVABLE
;
179 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
180 PB_migrate
, PB_migrate_end
);
183 bool oom_killer_disabled __read_mostly
;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
190 unsigned long pfn
= page_to_pfn(page
);
193 seq
= zone_span_seqbegin(zone
);
194 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
196 else if (pfn
< zone
->zone_start_pfn
)
198 } while (zone_span_seqretry(zone
, seq
));
203 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
205 if (!pfn_valid_within(page_to_pfn(page
)))
207 if (zone
!= page_zone(page
))
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone
*zone
, struct page
*page
)
217 if (page_outside_zone_boundaries(zone
, page
))
219 if (!page_is_consistent(zone
, page
))
225 static inline int bad_range(struct zone
*zone
, struct page
*page
)
231 static void bad_page(struct page
*page
)
233 static unsigned long resume
;
234 static unsigned long nr_shown
;
235 static unsigned long nr_unshown
;
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
241 if (nr_shown
== 60) {
242 if (time_before(jiffies
, resume
)) {
248 "BUG: Bad page state: %lu messages suppressed\n",
255 resume
= jiffies
+ 60 * HZ
;
257 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
258 current
->comm
, page_to_pfn(page
));
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page
, (void *)page
->flags
, page_count(page
),
262 page_mapcount(page
), page
->mapping
, page
->index
);
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page
);
268 add_taint(TAINT_BAD_PAGE
);
272 * Higher-order pages are called "compound pages". They are structured thusly:
274 * The first PAGE_SIZE page is called the "head page".
276 * The remaining PAGE_SIZE pages are called "tail pages".
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
286 static void free_compound_page(struct page
*page
)
288 __free_pages_ok(page
, compound_order(page
));
291 void prep_compound_page(struct page
*page
, unsigned long order
)
294 int nr_pages
= 1 << order
;
296 set_compound_page_dtor(page
, free_compound_page
);
297 set_compound_order(page
, order
);
299 for (i
= 1; i
< nr_pages
; i
++) {
300 struct page
*p
= page
+ i
;
303 p
->first_page
= page
;
307 static int destroy_compound_page(struct page
*page
, unsigned long order
)
310 int nr_pages
= 1 << order
;
313 if (unlikely(compound_order(page
) != order
) ||
314 unlikely(!PageHead(page
))) {
319 __ClearPageHead(page
);
321 for (i
= 1; i
< nr_pages
; i
++) {
322 struct page
*p
= page
+ i
;
324 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
334 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
343 for (i
= 0; i
< (1 << order
); i
++)
344 clear_highpage(page
+ i
);
347 static inline void set_page_order(struct page
*page
, int order
)
349 set_page_private(page
, order
);
350 __SetPageBuddy(page
);
353 static inline void rmv_page_order(struct page
*page
)
355 __ClearPageBuddy(page
);
356 set_page_private(page
, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
366 * For example, if the starting buddy (buddy2) is #8 its order
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page
*
377 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
379 unsigned long buddy_idx
= page_idx
^ (1 << order
);
381 return page
+ (buddy_idx
- page_idx
);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx
, unsigned int order
)
387 return (page_idx
& ~(1 << order
));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
406 if (!pfn_valid_within(page_to_pfn(buddy
)))
409 if (page_zone_id(page
) != page_zone_id(buddy
))
412 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
413 VM_BUG_ON(page_count(buddy
) != 0);
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
443 static inline void __free_one_page(struct page
*page
,
444 struct zone
*zone
, unsigned int order
,
447 unsigned long page_idx
;
449 if (unlikely(PageCompound(page
)))
450 if (unlikely(destroy_compound_page(page
, order
)))
453 VM_BUG_ON(migratetype
== -1);
455 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
457 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
458 VM_BUG_ON(bad_range(zone
, page
));
460 while (order
< MAX_ORDER
-1) {
461 unsigned long combined_idx
;
464 buddy
= __page_find_buddy(page
, page_idx
, order
);
465 if (!page_is_buddy(page
, buddy
, order
))
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy
->lru
);
470 zone
->free_area
[order
].nr_free
--;
471 rmv_page_order(buddy
);
472 combined_idx
= __find_combined_index(page_idx
, order
);
473 page
= page
+ (combined_idx
- page_idx
);
474 page_idx
= combined_idx
;
477 set_page_order(page
, order
);
479 &zone
->free_area
[order
].free_list
[migratetype
]);
480 zone
->free_area
[order
].nr_free
++;
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
489 static inline void free_page_mlock(struct page
*page
)
491 __dec_zone_page_state(page
, NR_MLOCK
);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
495 static void free_page_mlock(struct page
*page
) { }
498 static inline int free_pages_check(struct page
*page
)
500 if (unlikely(page_mapcount(page
) |
501 (page
->mapping
!= NULL
) |
502 (atomic_read(&page
->_count
) != 0) |
503 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
507 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
508 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
523 static void free_pages_bulk(struct zone
*zone
, int count
,
524 struct list_head
*list
, int order
)
526 spin_lock(&zone
->lock
);
527 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
528 zone
->pages_scanned
= 0;
530 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
<< order
);
534 VM_BUG_ON(list_empty(list
));
535 page
= list_entry(list
->prev
, struct page
, lru
);
536 /* have to delete it as __free_one_page list manipulates */
537 list_del(&page
->lru
);
538 __free_one_page(page
, zone
, order
, page_private(page
));
540 spin_unlock(&zone
->lock
);
543 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
546 spin_lock(&zone
->lock
);
547 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
548 zone
->pages_scanned
= 0;
550 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
551 __free_one_page(page
, zone
, order
, migratetype
);
552 spin_unlock(&zone
->lock
);
555 static void __free_pages_ok(struct page
*page
, unsigned int order
)
560 int wasMlocked
= TestClearPageMlocked(page
);
562 kmemcheck_free_shadow(page
, order
);
564 for (i
= 0 ; i
< (1 << order
) ; ++i
)
565 bad
+= free_pages_check(page
+ i
);
569 if (!PageHighMem(page
)) {
570 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
571 debug_check_no_obj_freed(page_address(page
),
574 arch_free_page(page
, order
);
575 kernel_map_pages(page
, 1 << order
, 0);
577 local_irq_save(flags
);
578 if (unlikely(wasMlocked
))
579 free_page_mlock(page
);
580 __count_vm_events(PGFREE
, 1 << order
);
581 free_one_page(page_zone(page
), page
, order
,
582 get_pageblock_migratetype(page
));
583 local_irq_restore(flags
);
587 * permit the bootmem allocator to evade page validation on high-order frees
589 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
592 __ClearPageReserved(page
);
593 set_page_count(page
, 0);
594 set_page_refcounted(page
);
600 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
601 struct page
*p
= &page
[loop
];
603 if (loop
+ 1 < BITS_PER_LONG
)
605 __ClearPageReserved(p
);
606 set_page_count(p
, 0);
609 set_page_refcounted(page
);
610 __free_pages(page
, order
);
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
629 static inline void expand(struct zone
*zone
, struct page
*page
,
630 int low
, int high
, struct free_area
*area
,
633 unsigned long size
= 1 << high
;
639 VM_BUG_ON(bad_range(zone
, &page
[size
]));
640 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
642 set_page_order(&page
[size
], high
);
647 * This page is about to be returned from the page allocator
649 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
651 if (unlikely(page_mapcount(page
) |
652 (page
->mapping
!= NULL
) |
653 (atomic_read(&page
->_count
) != 0) |
654 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
659 set_page_private(page
, 0);
660 set_page_refcounted(page
);
662 arch_alloc_page(page
, order
);
663 kernel_map_pages(page
, 1 << order
, 1);
665 if (gfp_flags
& __GFP_ZERO
)
666 prep_zero_page(page
, order
, gfp_flags
);
668 if (order
&& (gfp_flags
& __GFP_COMP
))
669 prep_compound_page(page
, order
);
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
679 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
682 unsigned int current_order
;
683 struct free_area
* area
;
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
688 area
= &(zone
->free_area
[current_order
]);
689 if (list_empty(&area
->free_list
[migratetype
]))
692 page
= list_entry(area
->free_list
[migratetype
].next
,
694 list_del(&page
->lru
);
695 rmv_page_order(page
);
697 expand(zone
, page
, order
, current_order
, area
, migratetype
);
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
709 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
710 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
711 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
712 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
713 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
721 static int move_freepages(struct zone
*zone
,
722 struct page
*start_page
, struct page
*end_page
,
729 #ifndef CONFIG_HOLES_IN_ZONE
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
735 * grouping pages by mobility
737 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
740 for (page
= start_page
; page
<= end_page
;) {
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
744 if (!pfn_valid_within(page_to_pfn(page
))) {
749 if (!PageBuddy(page
)) {
754 order
= page_order(page
);
755 list_del(&page
->lru
);
757 &zone
->free_area
[order
].free_list
[migratetype
]);
759 pages_moved
+= 1 << order
;
765 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
768 unsigned long start_pfn
, end_pfn
;
769 struct page
*start_page
, *end_page
;
771 start_pfn
= page_to_pfn(page
);
772 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
773 start_page
= pfn_to_page(start_pfn
);
774 end_page
= start_page
+ pageblock_nr_pages
- 1;
775 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
777 /* Do not cross zone boundaries */
778 if (start_pfn
< zone
->zone_start_pfn
)
780 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
783 return move_freepages(zone
, start_page
, end_page
, migratetype
);
786 /* Remove an element from the buddy allocator from the fallback list */
787 static inline struct page
*
788 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
790 struct free_area
* area
;
795 /* Find the largest possible block of pages in the other list */
796 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
798 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
799 migratetype
= fallbacks
[start_migratetype
][i
];
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype
== MIGRATE_RESERVE
)
805 area
= &(zone
->free_area
[current_order
]);
806 if (list_empty(&area
->free_list
[migratetype
]))
809 page
= list_entry(area
->free_list
[migratetype
].next
,
814 * If breaking a large block of pages, move all free
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
819 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
820 start_migratetype
== MIGRATE_RECLAIMABLE
) {
822 pages
= move_freepages_block(zone
, page
,
825 /* Claim the whole block if over half of it is free */
826 if (pages
>= (1 << (pageblock_order
-1)))
827 set_pageblock_migratetype(page
,
830 migratetype
= start_migratetype
;
833 /* Remove the page from the freelists */
834 list_del(&page
->lru
);
835 rmv_page_order(page
);
837 if (current_order
== pageblock_order
)
838 set_pageblock_migratetype(page
,
841 expand(zone
, page
, order
, current_order
, area
, migratetype
);
850 * Do the hard work of removing an element from the buddy allocator.
851 * Call me with the zone->lock already held.
853 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
859 page
= __rmqueue_smallest(zone
, order
, migratetype
);
861 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
862 page
= __rmqueue_fallback(zone
, order
, migratetype
);
865 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 * is used because __rmqueue_smallest is an inline function
867 * and we want just one call site
870 migratetype
= MIGRATE_RESERVE
;
879 * Obtain a specified number of elements from the buddy allocator, all under
880 * a single hold of the lock, for efficiency. Add them to the supplied list.
881 * Returns the number of new pages which were placed at *list.
883 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
884 unsigned long count
, struct list_head
*list
,
885 int migratetype
, int cold
)
889 spin_lock(&zone
->lock
);
890 for (i
= 0; i
< count
; ++i
) {
891 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
892 if (unlikely(page
== NULL
))
896 * Split buddy pages returned by expand() are received here
897 * in physical page order. The page is added to the callers and
898 * list and the list head then moves forward. From the callers
899 * perspective, the linked list is ordered by page number in
900 * some conditions. This is useful for IO devices that can
901 * merge IO requests if the physical pages are ordered
904 if (likely(cold
== 0))
905 list_add(&page
->lru
, list
);
907 list_add_tail(&page
->lru
, list
);
908 set_page_private(page
, migratetype
);
911 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
912 spin_unlock(&zone
->lock
);
918 * Called from the vmstat counter updater to drain pagesets of this
919 * currently executing processor on remote nodes after they have
922 * Note that this function must be called with the thread pinned to
923 * a single processor.
925 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
930 local_irq_save(flags
);
931 if (pcp
->count
>= pcp
->batch
)
932 to_drain
= pcp
->batch
;
934 to_drain
= pcp
->count
;
935 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
936 pcp
->count
-= to_drain
;
937 local_irq_restore(flags
);
942 * Drain pages of the indicated processor.
944 * The processor must either be the current processor and the
945 * thread pinned to the current processor or a processor that
948 static void drain_pages(unsigned int cpu
)
953 for_each_populated_zone(zone
) {
954 struct per_cpu_pageset
*pset
;
955 struct per_cpu_pages
*pcp
;
957 pset
= zone_pcp(zone
, cpu
);
960 local_irq_save(flags
);
961 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
963 local_irq_restore(flags
);
968 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
970 void drain_local_pages(void *arg
)
972 drain_pages(smp_processor_id());
976 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
978 void drain_all_pages(void)
980 on_each_cpu(drain_local_pages
, NULL
, 1);
983 #ifdef CONFIG_HIBERNATION
985 void mark_free_pages(struct zone
*zone
)
987 unsigned long pfn
, max_zone_pfn
;
990 struct list_head
*curr
;
992 if (!zone
->spanned_pages
)
995 spin_lock_irqsave(&zone
->lock
, flags
);
997 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
998 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
999 if (pfn_valid(pfn
)) {
1000 struct page
*page
= pfn_to_page(pfn
);
1002 if (!swsusp_page_is_forbidden(page
))
1003 swsusp_unset_page_free(page
);
1006 for_each_migratetype_order(order
, t
) {
1007 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1010 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1011 for (i
= 0; i
< (1UL << order
); i
++)
1012 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1015 spin_unlock_irqrestore(&zone
->lock
, flags
);
1017 #endif /* CONFIG_PM */
1020 * Free a 0-order page
1022 static void free_hot_cold_page(struct page
*page
, int cold
)
1024 struct zone
*zone
= page_zone(page
);
1025 struct per_cpu_pages
*pcp
;
1026 unsigned long flags
;
1027 int wasMlocked
= TestClearPageMlocked(page
);
1029 kmemcheck_free_shadow(page
, 0);
1032 page
->mapping
= NULL
;
1033 if (free_pages_check(page
))
1036 if (!PageHighMem(page
)) {
1037 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1038 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1040 arch_free_page(page
, 0);
1041 kernel_map_pages(page
, 1, 0);
1043 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1044 set_page_private(page
, get_pageblock_migratetype(page
));
1045 local_irq_save(flags
);
1046 if (unlikely(wasMlocked
))
1047 free_page_mlock(page
);
1048 __count_vm_event(PGFREE
);
1051 list_add_tail(&page
->lru
, &pcp
->list
);
1053 list_add(&page
->lru
, &pcp
->list
);
1055 if (pcp
->count
>= pcp
->high
) {
1056 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1057 pcp
->count
-= pcp
->batch
;
1059 local_irq_restore(flags
);
1063 void free_hot_page(struct page
*page
)
1065 free_hot_cold_page(page
, 0);
1068 void free_cold_page(struct page
*page
)
1070 free_hot_cold_page(page
, 1);
1074 * split_page takes a non-compound higher-order page, and splits it into
1075 * n (1<<order) sub-pages: page[0..n]
1076 * Each sub-page must be freed individually.
1078 * Note: this is probably too low level an operation for use in drivers.
1079 * Please consult with lkml before using this in your driver.
1081 void split_page(struct page
*page
, unsigned int order
)
1085 VM_BUG_ON(PageCompound(page
));
1086 VM_BUG_ON(!page_count(page
));
1088 #ifdef CONFIG_KMEMCHECK
1090 * Split shadow pages too, because free(page[0]) would
1091 * otherwise free the whole shadow.
1093 if (kmemcheck_page_is_tracked(page
))
1094 split_page(virt_to_page(page
[0].shadow
), order
);
1097 for (i
= 1; i
< (1 << order
); i
++)
1098 set_page_refcounted(page
+ i
);
1102 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1103 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1107 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1108 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1111 unsigned long flags
;
1113 int cold
= !!(gfp_flags
& __GFP_COLD
);
1118 if (likely(order
== 0)) {
1119 struct per_cpu_pages
*pcp
;
1121 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1122 local_irq_save(flags
);
1124 pcp
->count
= rmqueue_bulk(zone
, 0,
1125 pcp
->batch
, &pcp
->list
,
1127 if (unlikely(!pcp
->count
))
1131 /* Find a page of the appropriate migrate type */
1133 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1134 if (page_private(page
) == migratetype
)
1137 list_for_each_entry(page
, &pcp
->list
, lru
)
1138 if (page_private(page
) == migratetype
)
1142 /* Allocate more to the pcp list if necessary */
1143 if (unlikely(&page
->lru
== &pcp
->list
)) {
1144 pcp
->count
+= rmqueue_bulk(zone
, 0,
1145 pcp
->batch
, &pcp
->list
,
1147 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1150 list_del(&page
->lru
);
1153 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1155 * __GFP_NOFAIL is not to be used in new code.
1157 * All __GFP_NOFAIL callers should be fixed so that they
1158 * properly detect and handle allocation failures.
1160 * We most definitely don't want callers attempting to
1161 * allocate greater than order-1 page units with
1164 WARN_ON_ONCE(order
> 1);
1166 spin_lock_irqsave(&zone
->lock
, flags
);
1167 page
= __rmqueue(zone
, order
, migratetype
);
1168 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1169 spin_unlock(&zone
->lock
);
1174 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1175 zone_statistics(preferred_zone
, zone
);
1176 local_irq_restore(flags
);
1179 VM_BUG_ON(bad_range(zone
, page
));
1180 if (prep_new_page(page
, order
, gfp_flags
))
1185 local_irq_restore(flags
);
1190 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1191 #define ALLOC_WMARK_MIN WMARK_MIN
1192 #define ALLOC_WMARK_LOW WMARK_LOW
1193 #define ALLOC_WMARK_HIGH WMARK_HIGH
1194 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1196 /* Mask to get the watermark bits */
1197 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1199 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1200 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1201 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1203 #ifdef CONFIG_FAIL_PAGE_ALLOC
1205 static struct fail_page_alloc_attr
{
1206 struct fault_attr attr
;
1208 u32 ignore_gfp_highmem
;
1209 u32 ignore_gfp_wait
;
1212 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1214 struct dentry
*ignore_gfp_highmem_file
;
1215 struct dentry
*ignore_gfp_wait_file
;
1216 struct dentry
*min_order_file
;
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 } fail_page_alloc
= {
1221 .attr
= FAULT_ATTR_INITIALIZER
,
1222 .ignore_gfp_wait
= 1,
1223 .ignore_gfp_highmem
= 1,
1227 static int __init
setup_fail_page_alloc(char *str
)
1229 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1231 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1233 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1235 if (order
< fail_page_alloc
.min_order
)
1237 if (gfp_mask
& __GFP_NOFAIL
)
1239 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1241 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1244 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1247 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1249 static int __init
fail_page_alloc_debugfs(void)
1251 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1255 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1259 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1261 fail_page_alloc
.ignore_gfp_wait_file
=
1262 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1263 &fail_page_alloc
.ignore_gfp_wait
);
1265 fail_page_alloc
.ignore_gfp_highmem_file
=
1266 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1267 &fail_page_alloc
.ignore_gfp_highmem
);
1268 fail_page_alloc
.min_order_file
=
1269 debugfs_create_u32("min-order", mode
, dir
,
1270 &fail_page_alloc
.min_order
);
1272 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1273 !fail_page_alloc
.ignore_gfp_highmem_file
||
1274 !fail_page_alloc
.min_order_file
) {
1276 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1277 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1278 debugfs_remove(fail_page_alloc
.min_order_file
);
1279 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1285 late_initcall(fail_page_alloc_debugfs
);
1287 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1289 #else /* CONFIG_FAIL_PAGE_ALLOC */
1291 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1296 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1299 * Return 1 if free pages are above 'mark'. This takes into account the order
1300 * of the allocation.
1302 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1303 int classzone_idx
, int alloc_flags
)
1305 /* free_pages my go negative - that's OK */
1307 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1310 if (alloc_flags
& ALLOC_HIGH
)
1312 if (alloc_flags
& ALLOC_HARDER
)
1315 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1317 for (o
= 0; o
< order
; o
++) {
1318 /* At the next order, this order's pages become unavailable */
1319 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1321 /* Require fewer higher order pages to be free */
1324 if (free_pages
<= min
)
1332 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1333 * skip over zones that are not allowed by the cpuset, or that have
1334 * been recently (in last second) found to be nearly full. See further
1335 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1336 * that have to skip over a lot of full or unallowed zones.
1338 * If the zonelist cache is present in the passed in zonelist, then
1339 * returns a pointer to the allowed node mask (either the current
1340 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1342 * If the zonelist cache is not available for this zonelist, does
1343 * nothing and returns NULL.
1345 * If the fullzones BITMAP in the zonelist cache is stale (more than
1346 * a second since last zap'd) then we zap it out (clear its bits.)
1348 * We hold off even calling zlc_setup, until after we've checked the
1349 * first zone in the zonelist, on the theory that most allocations will
1350 * be satisfied from that first zone, so best to examine that zone as
1351 * quickly as we can.
1353 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1355 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1356 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1358 zlc
= zonelist
->zlcache_ptr
;
1362 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1363 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1364 zlc
->last_full_zap
= jiffies
;
1367 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1368 &cpuset_current_mems_allowed
:
1369 &node_states
[N_HIGH_MEMORY
];
1370 return allowednodes
;
1374 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1375 * if it is worth looking at further for free memory:
1376 * 1) Check that the zone isn't thought to be full (doesn't have its
1377 * bit set in the zonelist_cache fullzones BITMAP).
1378 * 2) Check that the zones node (obtained from the zonelist_cache
1379 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1380 * Return true (non-zero) if zone is worth looking at further, or
1381 * else return false (zero) if it is not.
1383 * This check -ignores- the distinction between various watermarks,
1384 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1385 * found to be full for any variation of these watermarks, it will
1386 * be considered full for up to one second by all requests, unless
1387 * we are so low on memory on all allowed nodes that we are forced
1388 * into the second scan of the zonelist.
1390 * In the second scan we ignore this zonelist cache and exactly
1391 * apply the watermarks to all zones, even it is slower to do so.
1392 * We are low on memory in the second scan, and should leave no stone
1393 * unturned looking for a free page.
1395 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1396 nodemask_t
*allowednodes
)
1398 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1399 int i
; /* index of *z in zonelist zones */
1400 int n
; /* node that zone *z is on */
1402 zlc
= zonelist
->zlcache_ptr
;
1406 i
= z
- zonelist
->_zonerefs
;
1409 /* This zone is worth trying if it is allowed but not full */
1410 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1414 * Given 'z' scanning a zonelist, set the corresponding bit in
1415 * zlc->fullzones, so that subsequent attempts to allocate a page
1416 * from that zone don't waste time re-examining it.
1418 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1420 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1421 int i
; /* index of *z in zonelist zones */
1423 zlc
= zonelist
->zlcache_ptr
;
1427 i
= z
- zonelist
->_zonerefs
;
1429 set_bit(i
, zlc
->fullzones
);
1432 #else /* CONFIG_NUMA */
1434 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1439 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1440 nodemask_t
*allowednodes
)
1445 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1448 #endif /* CONFIG_NUMA */
1451 * get_page_from_freelist goes through the zonelist trying to allocate
1454 static struct page
*
1455 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1456 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1457 struct zone
*preferred_zone
, int migratetype
)
1460 struct page
*page
= NULL
;
1463 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1464 int zlc_active
= 0; /* set if using zonelist_cache */
1465 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1467 classzone_idx
= zone_idx(preferred_zone
);
1470 * Scan zonelist, looking for a zone with enough free.
1471 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1473 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1474 high_zoneidx
, nodemask
) {
1475 if (NUMA_BUILD
&& zlc_active
&&
1476 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1478 if ((alloc_flags
& ALLOC_CPUSET
) &&
1479 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1483 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1487 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1488 if (zone_watermark_ok(zone
, order
, mark
,
1489 classzone_idx
, alloc_flags
))
1492 if (zone_reclaim_mode
== 0)
1493 goto this_zone_full
;
1495 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1497 case ZONE_RECLAIM_NOSCAN
:
1500 case ZONE_RECLAIM_FULL
:
1501 /* scanned but unreclaimable */
1502 goto this_zone_full
;
1504 /* did we reclaim enough */
1505 if (!zone_watermark_ok(zone
, order
, mark
,
1506 classzone_idx
, alloc_flags
))
1507 goto this_zone_full
;
1512 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1513 gfp_mask
, migratetype
);
1518 zlc_mark_zone_full(zonelist
, z
);
1520 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1522 * we do zlc_setup after the first zone is tried but only
1523 * if there are multiple nodes make it worthwhile
1525 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1531 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1532 /* Disable zlc cache for second zonelist scan */
1540 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1541 unsigned long pages_reclaimed
)
1543 /* Do not loop if specifically requested */
1544 if (gfp_mask
& __GFP_NORETRY
)
1548 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1549 * means __GFP_NOFAIL, but that may not be true in other
1552 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1556 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1557 * specified, then we retry until we no longer reclaim any pages
1558 * (above), or we've reclaimed an order of pages at least as
1559 * large as the allocation's order. In both cases, if the
1560 * allocation still fails, we stop retrying.
1562 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1566 * Don't let big-order allocations loop unless the caller
1567 * explicitly requests that.
1569 if (gfp_mask
& __GFP_NOFAIL
)
1575 static inline struct page
*
1576 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1577 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1578 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1583 /* Acquire the OOM killer lock for the zones in zonelist */
1584 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1585 schedule_timeout_uninterruptible(1);
1590 * Go through the zonelist yet one more time, keep very high watermark
1591 * here, this is only to catch a parallel oom killing, we must fail if
1592 * we're still under heavy pressure.
1594 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1595 order
, zonelist
, high_zoneidx
,
1596 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1597 preferred_zone
, migratetype
);
1601 /* The OOM killer will not help higher order allocs */
1602 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1605 /* Exhausted what can be done so it's blamo time */
1606 out_of_memory(zonelist
, gfp_mask
, order
);
1609 clear_zonelist_oom(zonelist
, gfp_mask
);
1613 /* The really slow allocator path where we enter direct reclaim */
1614 static inline struct page
*
1615 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1616 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1617 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1618 int migratetype
, unsigned long *did_some_progress
)
1620 struct page
*page
= NULL
;
1621 struct reclaim_state reclaim_state
;
1622 struct task_struct
*p
= current
;
1626 /* We now go into synchronous reclaim */
1627 cpuset_memory_pressure_bump();
1630 * The task's cpuset might have expanded its set of allowable nodes
1632 p
->flags
|= PF_MEMALLOC
;
1633 lockdep_set_current_reclaim_state(gfp_mask
);
1634 reclaim_state
.reclaimed_slab
= 0;
1635 p
->reclaim_state
= &reclaim_state
;
1637 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1639 p
->reclaim_state
= NULL
;
1640 lockdep_clear_current_reclaim_state();
1641 p
->flags
&= ~PF_MEMALLOC
;
1648 if (likely(*did_some_progress
))
1649 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1650 zonelist
, high_zoneidx
,
1651 alloc_flags
, preferred_zone
,
1657 * This is called in the allocator slow-path if the allocation request is of
1658 * sufficient urgency to ignore watermarks and take other desperate measures
1660 static inline struct page
*
1661 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1662 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1663 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1669 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1670 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1671 preferred_zone
, migratetype
);
1673 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1674 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1675 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1681 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1682 enum zone_type high_zoneidx
)
1687 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1688 wakeup_kswapd(zone
, order
);
1692 gfp_to_alloc_flags(gfp_t gfp_mask
)
1694 struct task_struct
*p
= current
;
1695 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1696 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1698 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1699 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1702 * The caller may dip into page reserves a bit more if the caller
1703 * cannot run direct reclaim, or if the caller has realtime scheduling
1704 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1705 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1707 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1710 alloc_flags
|= ALLOC_HARDER
;
1712 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1713 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1715 alloc_flags
&= ~ALLOC_CPUSET
;
1716 } else if (unlikely(rt_task(p
)))
1717 alloc_flags
|= ALLOC_HARDER
;
1719 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1720 if (!in_interrupt() &&
1721 ((p
->flags
& PF_MEMALLOC
) ||
1722 unlikely(test_thread_flag(TIF_MEMDIE
))))
1723 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1729 static inline struct page
*
1730 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1731 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1732 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1735 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1736 struct page
*page
= NULL
;
1738 unsigned long pages_reclaimed
= 0;
1739 unsigned long did_some_progress
;
1740 struct task_struct
*p
= current
;
1743 * In the slowpath, we sanity check order to avoid ever trying to
1744 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1745 * be using allocators in order of preference for an area that is
1748 if (order
>= MAX_ORDER
) {
1749 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1754 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1755 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1756 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1757 * using a larger set of nodes after it has established that the
1758 * allowed per node queues are empty and that nodes are
1761 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1764 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1767 * OK, we're below the kswapd watermark and have kicked background
1768 * reclaim. Now things get more complex, so set up alloc_flags according
1769 * to how we want to proceed.
1771 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1774 /* This is the last chance, in general, before the goto nopage. */
1775 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1776 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1777 preferred_zone
, migratetype
);
1782 /* Allocate without watermarks if the context allows */
1783 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1784 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1785 zonelist
, high_zoneidx
, nodemask
,
1786 preferred_zone
, migratetype
);
1791 /* Atomic allocations - we can't balance anything */
1795 /* Avoid recursion of direct reclaim */
1796 if (p
->flags
& PF_MEMALLOC
)
1799 /* Avoid allocations with no watermarks from looping endlessly */
1800 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1803 /* Try direct reclaim and then allocating */
1804 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1805 zonelist
, high_zoneidx
,
1807 alloc_flags
, preferred_zone
,
1808 migratetype
, &did_some_progress
);
1813 * If we failed to make any progress reclaiming, then we are
1814 * running out of options and have to consider going OOM
1816 if (!did_some_progress
) {
1817 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1818 if (oom_killer_disabled
)
1820 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1821 zonelist
, high_zoneidx
,
1822 nodemask
, preferred_zone
,
1828 * The OOM killer does not trigger for high-order
1829 * ~__GFP_NOFAIL allocations so if no progress is being
1830 * made, there are no other options and retrying is
1833 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1834 !(gfp_mask
& __GFP_NOFAIL
))
1841 /* Check if we should retry the allocation */
1842 pages_reclaimed
+= did_some_progress
;
1843 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1844 /* Wait for some write requests to complete then retry */
1845 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1850 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1851 printk(KERN_WARNING
"%s: page allocation failure."
1852 " order:%d, mode:0x%x\n",
1853 p
->comm
, order
, gfp_mask
);
1859 if (kmemcheck_enabled
)
1860 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1866 * This is the 'heart' of the zoned buddy allocator.
1869 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1870 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1872 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1873 struct zone
*preferred_zone
;
1875 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1877 gfp_mask
&= gfp_allowed_mask
;
1879 lockdep_trace_alloc(gfp_mask
);
1881 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1883 if (should_fail_alloc_page(gfp_mask
, order
))
1887 * Check the zones suitable for the gfp_mask contain at least one
1888 * valid zone. It's possible to have an empty zonelist as a result
1889 * of GFP_THISNODE and a memoryless node
1891 if (unlikely(!zonelist
->_zonerefs
->zone
))
1894 /* The preferred zone is used for statistics later */
1895 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1896 if (!preferred_zone
)
1899 /* First allocation attempt */
1900 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1901 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1902 preferred_zone
, migratetype
);
1903 if (unlikely(!page
))
1904 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1905 zonelist
, high_zoneidx
, nodemask
,
1906 preferred_zone
, migratetype
);
1910 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1913 * Common helper functions.
1915 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1918 page
= alloc_pages(gfp_mask
, order
);
1921 return (unsigned long) page_address(page
);
1924 EXPORT_SYMBOL(__get_free_pages
);
1926 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1931 * get_zeroed_page() returns a 32-bit address, which cannot represent
1934 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1936 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1938 return (unsigned long) page_address(page
);
1942 EXPORT_SYMBOL(get_zeroed_page
);
1944 void __pagevec_free(struct pagevec
*pvec
)
1946 int i
= pagevec_count(pvec
);
1949 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1952 void __free_pages(struct page
*page
, unsigned int order
)
1954 if (put_page_testzero(page
)) {
1956 free_hot_page(page
);
1958 __free_pages_ok(page
, order
);
1962 EXPORT_SYMBOL(__free_pages
);
1964 void free_pages(unsigned long addr
, unsigned int order
)
1967 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1968 __free_pages(virt_to_page((void *)addr
), order
);
1972 EXPORT_SYMBOL(free_pages
);
1975 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1976 * @size: the number of bytes to allocate
1977 * @gfp_mask: GFP flags for the allocation
1979 * This function is similar to alloc_pages(), except that it allocates the
1980 * minimum number of pages to satisfy the request. alloc_pages() can only
1981 * allocate memory in power-of-two pages.
1983 * This function is also limited by MAX_ORDER.
1985 * Memory allocated by this function must be released by free_pages_exact().
1987 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1989 unsigned int order
= get_order(size
);
1992 addr
= __get_free_pages(gfp_mask
, order
);
1994 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1995 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1997 split_page(virt_to_page((void *)addr
), order
);
1998 while (used
< alloc_end
) {
2004 return (void *)addr
;
2006 EXPORT_SYMBOL(alloc_pages_exact
);
2009 * free_pages_exact - release memory allocated via alloc_pages_exact()
2010 * @virt: the value returned by alloc_pages_exact.
2011 * @size: size of allocation, same value as passed to alloc_pages_exact().
2013 * Release the memory allocated by a previous call to alloc_pages_exact.
2015 void free_pages_exact(void *virt
, size_t size
)
2017 unsigned long addr
= (unsigned long)virt
;
2018 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2020 while (addr
< end
) {
2025 EXPORT_SYMBOL(free_pages_exact
);
2027 static unsigned int nr_free_zone_pages(int offset
)
2032 /* Just pick one node, since fallback list is circular */
2033 unsigned int sum
= 0;
2035 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2037 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2038 unsigned long size
= zone
->present_pages
;
2039 unsigned long high
= high_wmark_pages(zone
);
2048 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2050 unsigned int nr_free_buffer_pages(void)
2052 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2057 * Amount of free RAM allocatable within all zones
2059 unsigned int nr_free_pagecache_pages(void)
2061 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2064 static inline void show_node(struct zone
*zone
)
2067 printk("Node %d ", zone_to_nid(zone
));
2070 void si_meminfo(struct sysinfo
*val
)
2072 val
->totalram
= totalram_pages
;
2074 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2075 val
->bufferram
= nr_blockdev_pages();
2076 val
->totalhigh
= totalhigh_pages
;
2077 val
->freehigh
= nr_free_highpages();
2078 val
->mem_unit
= PAGE_SIZE
;
2081 EXPORT_SYMBOL(si_meminfo
);
2084 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2086 pg_data_t
*pgdat
= NODE_DATA(nid
);
2088 val
->totalram
= pgdat
->node_present_pages
;
2089 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2090 #ifdef CONFIG_HIGHMEM
2091 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2092 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2098 val
->mem_unit
= PAGE_SIZE
;
2102 #define K(x) ((x) << (PAGE_SHIFT-10))
2105 * Show free area list (used inside shift_scroll-lock stuff)
2106 * We also calculate the percentage fragmentation. We do this by counting the
2107 * memory on each free list with the exception of the first item on the list.
2109 void show_free_areas(void)
2114 for_each_populated_zone(zone
) {
2116 printk("%s per-cpu:\n", zone
->name
);
2118 for_each_online_cpu(cpu
) {
2119 struct per_cpu_pageset
*pageset
;
2121 pageset
= zone_pcp(zone
, cpu
);
2123 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2124 cpu
, pageset
->pcp
.high
,
2125 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2129 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2130 " inactive_file:%lu"
2132 " dirty:%lu writeback:%lu unstable:%lu\n"
2133 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2134 global_page_state(NR_ACTIVE_ANON
),
2135 global_page_state(NR_ACTIVE_FILE
),
2136 global_page_state(NR_INACTIVE_ANON
),
2137 global_page_state(NR_INACTIVE_FILE
),
2138 global_page_state(NR_UNEVICTABLE
),
2139 global_page_state(NR_FILE_DIRTY
),
2140 global_page_state(NR_WRITEBACK
),
2141 global_page_state(NR_UNSTABLE_NFS
),
2142 global_page_state(NR_FREE_PAGES
),
2143 global_page_state(NR_SLAB_RECLAIMABLE
) +
2144 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2145 global_page_state(NR_FILE_MAPPED
),
2146 global_page_state(NR_PAGETABLE
),
2147 global_page_state(NR_BOUNCE
));
2149 for_each_populated_zone(zone
) {
2158 " active_anon:%lukB"
2159 " inactive_anon:%lukB"
2160 " active_file:%lukB"
2161 " inactive_file:%lukB"
2162 " unevictable:%lukB"
2164 " pages_scanned:%lu"
2165 " all_unreclaimable? %s"
2168 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2169 K(min_wmark_pages(zone
)),
2170 K(low_wmark_pages(zone
)),
2171 K(high_wmark_pages(zone
)),
2172 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2173 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2174 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2175 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2176 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2177 K(zone
->present_pages
),
2178 zone
->pages_scanned
,
2179 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2181 printk("lowmem_reserve[]:");
2182 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2183 printk(" %lu", zone
->lowmem_reserve
[i
]);
2187 for_each_populated_zone(zone
) {
2188 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2191 printk("%s: ", zone
->name
);
2193 spin_lock_irqsave(&zone
->lock
, flags
);
2194 for (order
= 0; order
< MAX_ORDER
; order
++) {
2195 nr
[order
] = zone
->free_area
[order
].nr_free
;
2196 total
+= nr
[order
] << order
;
2198 spin_unlock_irqrestore(&zone
->lock
, flags
);
2199 for (order
= 0; order
< MAX_ORDER
; order
++)
2200 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2201 printk("= %lukB\n", K(total
));
2204 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2206 show_swap_cache_info();
2209 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2211 zoneref
->zone
= zone
;
2212 zoneref
->zone_idx
= zone_idx(zone
);
2216 * Builds allocation fallback zone lists.
2218 * Add all populated zones of a node to the zonelist.
2220 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2221 int nr_zones
, enum zone_type zone_type
)
2225 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2230 zone
= pgdat
->node_zones
+ zone_type
;
2231 if (populated_zone(zone
)) {
2232 zoneref_set_zone(zone
,
2233 &zonelist
->_zonerefs
[nr_zones
++]);
2234 check_highest_zone(zone_type
);
2237 } while (zone_type
);
2244 * 0 = automatic detection of better ordering.
2245 * 1 = order by ([node] distance, -zonetype)
2246 * 2 = order by (-zonetype, [node] distance)
2248 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2249 * the same zonelist. So only NUMA can configure this param.
2251 #define ZONELIST_ORDER_DEFAULT 0
2252 #define ZONELIST_ORDER_NODE 1
2253 #define ZONELIST_ORDER_ZONE 2
2255 /* zonelist order in the kernel.
2256 * set_zonelist_order() will set this to NODE or ZONE.
2258 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2259 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2263 /* The value user specified ....changed by config */
2264 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2265 /* string for sysctl */
2266 #define NUMA_ZONELIST_ORDER_LEN 16
2267 char numa_zonelist_order
[16] = "default";
2270 * interface for configure zonelist ordering.
2271 * command line option "numa_zonelist_order"
2272 * = "[dD]efault - default, automatic configuration.
2273 * = "[nN]ode - order by node locality, then by zone within node
2274 * = "[zZ]one - order by zone, then by locality within zone
2277 static int __parse_numa_zonelist_order(char *s
)
2279 if (*s
== 'd' || *s
== 'D') {
2280 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2281 } else if (*s
== 'n' || *s
== 'N') {
2282 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2283 } else if (*s
== 'z' || *s
== 'Z') {
2284 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2287 "Ignoring invalid numa_zonelist_order value: "
2294 static __init
int setup_numa_zonelist_order(char *s
)
2297 return __parse_numa_zonelist_order(s
);
2300 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2303 * sysctl handler for numa_zonelist_order
2305 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2306 struct file
*file
, void __user
*buffer
, size_t *length
,
2309 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2313 strncpy(saved_string
, (char*)table
->data
,
2314 NUMA_ZONELIST_ORDER_LEN
);
2315 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2319 int oldval
= user_zonelist_order
;
2320 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2322 * bogus value. restore saved string
2324 strncpy((char*)table
->data
, saved_string
,
2325 NUMA_ZONELIST_ORDER_LEN
);
2326 user_zonelist_order
= oldval
;
2327 } else if (oldval
!= user_zonelist_order
)
2328 build_all_zonelists();
2334 #define MAX_NODE_LOAD (nr_online_nodes)
2335 static int node_load
[MAX_NUMNODES
];
2338 * find_next_best_node - find the next node that should appear in a given node's fallback list
2339 * @node: node whose fallback list we're appending
2340 * @used_node_mask: nodemask_t of already used nodes
2342 * We use a number of factors to determine which is the next node that should
2343 * appear on a given node's fallback list. The node should not have appeared
2344 * already in @node's fallback list, and it should be the next closest node
2345 * according to the distance array (which contains arbitrary distance values
2346 * from each node to each node in the system), and should also prefer nodes
2347 * with no CPUs, since presumably they'll have very little allocation pressure
2348 * on them otherwise.
2349 * It returns -1 if no node is found.
2351 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2354 int min_val
= INT_MAX
;
2356 const struct cpumask
*tmp
= cpumask_of_node(0);
2358 /* Use the local node if we haven't already */
2359 if (!node_isset(node
, *used_node_mask
)) {
2360 node_set(node
, *used_node_mask
);
2364 for_each_node_state(n
, N_HIGH_MEMORY
) {
2366 /* Don't want a node to appear more than once */
2367 if (node_isset(n
, *used_node_mask
))
2370 /* Use the distance array to find the distance */
2371 val
= node_distance(node
, n
);
2373 /* Penalize nodes under us ("prefer the next node") */
2376 /* Give preference to headless and unused nodes */
2377 tmp
= cpumask_of_node(n
);
2378 if (!cpumask_empty(tmp
))
2379 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2381 /* Slight preference for less loaded node */
2382 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2383 val
+= node_load
[n
];
2385 if (val
< min_val
) {
2392 node_set(best_node
, *used_node_mask
);
2399 * Build zonelists ordered by node and zones within node.
2400 * This results in maximum locality--normal zone overflows into local
2401 * DMA zone, if any--but risks exhausting DMA zone.
2403 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2406 struct zonelist
*zonelist
;
2408 zonelist
= &pgdat
->node_zonelists
[0];
2409 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2411 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2413 zonelist
->_zonerefs
[j
].zone
= NULL
;
2414 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2418 * Build gfp_thisnode zonelists
2420 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2423 struct zonelist
*zonelist
;
2425 zonelist
= &pgdat
->node_zonelists
[1];
2426 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2427 zonelist
->_zonerefs
[j
].zone
= NULL
;
2428 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2432 * Build zonelists ordered by zone and nodes within zones.
2433 * This results in conserving DMA zone[s] until all Normal memory is
2434 * exhausted, but results in overflowing to remote node while memory
2435 * may still exist in local DMA zone.
2437 static int node_order
[MAX_NUMNODES
];
2439 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2442 int zone_type
; /* needs to be signed */
2444 struct zonelist
*zonelist
;
2446 zonelist
= &pgdat
->node_zonelists
[0];
2448 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2449 for (j
= 0; j
< nr_nodes
; j
++) {
2450 node
= node_order
[j
];
2451 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2452 if (populated_zone(z
)) {
2454 &zonelist
->_zonerefs
[pos
++]);
2455 check_highest_zone(zone_type
);
2459 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2460 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2463 static int default_zonelist_order(void)
2466 unsigned long low_kmem_size
,total_size
;
2470 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2471 * If they are really small and used heavily, the system can fall
2472 * into OOM very easily.
2473 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2475 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2478 for_each_online_node(nid
) {
2479 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2480 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2481 if (populated_zone(z
)) {
2482 if (zone_type
< ZONE_NORMAL
)
2483 low_kmem_size
+= z
->present_pages
;
2484 total_size
+= z
->present_pages
;
2488 if (!low_kmem_size
|| /* there are no DMA area. */
2489 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2490 return ZONELIST_ORDER_NODE
;
2492 * look into each node's config.
2493 * If there is a node whose DMA/DMA32 memory is very big area on
2494 * local memory, NODE_ORDER may be suitable.
2496 average_size
= total_size
/
2497 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2498 for_each_online_node(nid
) {
2501 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2502 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2503 if (populated_zone(z
)) {
2504 if (zone_type
< ZONE_NORMAL
)
2505 low_kmem_size
+= z
->present_pages
;
2506 total_size
+= z
->present_pages
;
2509 if (low_kmem_size
&&
2510 total_size
> average_size
&& /* ignore small node */
2511 low_kmem_size
> total_size
* 70/100)
2512 return ZONELIST_ORDER_NODE
;
2514 return ZONELIST_ORDER_ZONE
;
2517 static void set_zonelist_order(void)
2519 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2520 current_zonelist_order
= default_zonelist_order();
2522 current_zonelist_order
= user_zonelist_order
;
2525 static void build_zonelists(pg_data_t
*pgdat
)
2529 nodemask_t used_mask
;
2530 int local_node
, prev_node
;
2531 struct zonelist
*zonelist
;
2532 int order
= current_zonelist_order
;
2534 /* initialize zonelists */
2535 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2536 zonelist
= pgdat
->node_zonelists
+ i
;
2537 zonelist
->_zonerefs
[0].zone
= NULL
;
2538 zonelist
->_zonerefs
[0].zone_idx
= 0;
2541 /* NUMA-aware ordering of nodes */
2542 local_node
= pgdat
->node_id
;
2543 load
= nr_online_nodes
;
2544 prev_node
= local_node
;
2545 nodes_clear(used_mask
);
2547 memset(node_load
, 0, sizeof(node_load
));
2548 memset(node_order
, 0, sizeof(node_order
));
2551 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2552 int distance
= node_distance(local_node
, node
);
2555 * If another node is sufficiently far away then it is better
2556 * to reclaim pages in a zone before going off node.
2558 if (distance
> RECLAIM_DISTANCE
)
2559 zone_reclaim_mode
= 1;
2562 * We don't want to pressure a particular node.
2563 * So adding penalty to the first node in same
2564 * distance group to make it round-robin.
2566 if (distance
!= node_distance(local_node
, prev_node
))
2567 node_load
[node
] = load
;
2571 if (order
== ZONELIST_ORDER_NODE
)
2572 build_zonelists_in_node_order(pgdat
, node
);
2574 node_order
[j
++] = node
; /* remember order */
2577 if (order
== ZONELIST_ORDER_ZONE
) {
2578 /* calculate node order -- i.e., DMA last! */
2579 build_zonelists_in_zone_order(pgdat
, j
);
2582 build_thisnode_zonelists(pgdat
);
2585 /* Construct the zonelist performance cache - see further mmzone.h */
2586 static void build_zonelist_cache(pg_data_t
*pgdat
)
2588 struct zonelist
*zonelist
;
2589 struct zonelist_cache
*zlc
;
2592 zonelist
= &pgdat
->node_zonelists
[0];
2593 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2594 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2595 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2596 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2600 #else /* CONFIG_NUMA */
2602 static void set_zonelist_order(void)
2604 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2607 static void build_zonelists(pg_data_t
*pgdat
)
2609 int node
, local_node
;
2611 struct zonelist
*zonelist
;
2613 local_node
= pgdat
->node_id
;
2615 zonelist
= &pgdat
->node_zonelists
[0];
2616 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2619 * Now we build the zonelist so that it contains the zones
2620 * of all the other nodes.
2621 * We don't want to pressure a particular node, so when
2622 * building the zones for node N, we make sure that the
2623 * zones coming right after the local ones are those from
2624 * node N+1 (modulo N)
2626 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2627 if (!node_online(node
))
2629 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2632 for (node
= 0; node
< local_node
; node
++) {
2633 if (!node_online(node
))
2635 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2639 zonelist
->_zonerefs
[j
].zone
= NULL
;
2640 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2643 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2644 static void build_zonelist_cache(pg_data_t
*pgdat
)
2646 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2649 #endif /* CONFIG_NUMA */
2651 /* return values int ....just for stop_machine() */
2652 static int __build_all_zonelists(void *dummy
)
2656 for_each_online_node(nid
) {
2657 pg_data_t
*pgdat
= NODE_DATA(nid
);
2659 build_zonelists(pgdat
);
2660 build_zonelist_cache(pgdat
);
2665 void build_all_zonelists(void)
2667 set_zonelist_order();
2669 if (system_state
== SYSTEM_BOOTING
) {
2670 __build_all_zonelists(NULL
);
2671 mminit_verify_zonelist();
2672 cpuset_init_current_mems_allowed();
2674 /* we have to stop all cpus to guarantee there is no user
2676 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2677 /* cpuset refresh routine should be here */
2679 vm_total_pages
= nr_free_pagecache_pages();
2681 * Disable grouping by mobility if the number of pages in the
2682 * system is too low to allow the mechanism to work. It would be
2683 * more accurate, but expensive to check per-zone. This check is
2684 * made on memory-hotadd so a system can start with mobility
2685 * disabled and enable it later
2687 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2688 page_group_by_mobility_disabled
= 1;
2690 page_group_by_mobility_disabled
= 0;
2692 printk("Built %i zonelists in %s order, mobility grouping %s. "
2693 "Total pages: %ld\n",
2695 zonelist_order_name
[current_zonelist_order
],
2696 page_group_by_mobility_disabled
? "off" : "on",
2699 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2704 * Helper functions to size the waitqueue hash table.
2705 * Essentially these want to choose hash table sizes sufficiently
2706 * large so that collisions trying to wait on pages are rare.
2707 * But in fact, the number of active page waitqueues on typical
2708 * systems is ridiculously low, less than 200. So this is even
2709 * conservative, even though it seems large.
2711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2712 * waitqueues, i.e. the size of the waitq table given the number of pages.
2714 #define PAGES_PER_WAITQUEUE 256
2716 #ifndef CONFIG_MEMORY_HOTPLUG
2717 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2719 unsigned long size
= 1;
2721 pages
/= PAGES_PER_WAITQUEUE
;
2723 while (size
< pages
)
2727 * Once we have dozens or even hundreds of threads sleeping
2728 * on IO we've got bigger problems than wait queue collision.
2729 * Limit the size of the wait table to a reasonable size.
2731 size
= min(size
, 4096UL);
2733 return max(size
, 4UL);
2737 * A zone's size might be changed by hot-add, so it is not possible to determine
2738 * a suitable size for its wait_table. So we use the maximum size now.
2740 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2742 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2743 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2744 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2746 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2747 * or more by the traditional way. (See above). It equals:
2749 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2750 * ia64(16K page size) : = ( 8G + 4M)byte.
2751 * powerpc (64K page size) : = (32G +16M)byte.
2753 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2760 * This is an integer logarithm so that shifts can be used later
2761 * to extract the more random high bits from the multiplicative
2762 * hash function before the remainder is taken.
2764 static inline unsigned long wait_table_bits(unsigned long size
)
2769 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2772 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2773 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2774 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2775 * higher will lead to a bigger reserve which will get freed as contiguous
2776 * blocks as reclaim kicks in
2778 static void setup_zone_migrate_reserve(struct zone
*zone
)
2780 unsigned long start_pfn
, pfn
, end_pfn
;
2782 unsigned long reserve
, block_migratetype
;
2784 /* Get the start pfn, end pfn and the number of blocks to reserve */
2785 start_pfn
= zone
->zone_start_pfn
;
2786 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2787 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2790 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2791 if (!pfn_valid(pfn
))
2793 page
= pfn_to_page(pfn
);
2795 /* Watch out for overlapping nodes */
2796 if (page_to_nid(page
) != zone_to_nid(zone
))
2799 /* Blocks with reserved pages will never free, skip them. */
2800 if (PageReserved(page
))
2803 block_migratetype
= get_pageblock_migratetype(page
);
2805 /* If this block is reserved, account for it */
2806 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2811 /* Suitable for reserving if this block is movable */
2812 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2813 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2814 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2820 * If the reserve is met and this is a previous reserved block,
2823 if (block_migratetype
== MIGRATE_RESERVE
) {
2824 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2825 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2831 * Initially all pages are reserved - free ones are freed
2832 * up by free_all_bootmem() once the early boot process is
2833 * done. Non-atomic initialization, single-pass.
2835 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2836 unsigned long start_pfn
, enum memmap_context context
)
2839 unsigned long end_pfn
= start_pfn
+ size
;
2843 if (highest_memmap_pfn
< end_pfn
- 1)
2844 highest_memmap_pfn
= end_pfn
- 1;
2846 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2847 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2849 * There can be holes in boot-time mem_map[]s
2850 * handed to this function. They do not
2851 * exist on hotplugged memory.
2853 if (context
== MEMMAP_EARLY
) {
2854 if (!early_pfn_valid(pfn
))
2856 if (!early_pfn_in_nid(pfn
, nid
))
2859 page
= pfn_to_page(pfn
);
2860 set_page_links(page
, zone
, nid
, pfn
);
2861 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2862 init_page_count(page
);
2863 reset_page_mapcount(page
);
2864 SetPageReserved(page
);
2866 * Mark the block movable so that blocks are reserved for
2867 * movable at startup. This will force kernel allocations
2868 * to reserve their blocks rather than leaking throughout
2869 * the address space during boot when many long-lived
2870 * kernel allocations are made. Later some blocks near
2871 * the start are marked MIGRATE_RESERVE by
2872 * setup_zone_migrate_reserve()
2874 * bitmap is created for zone's valid pfn range. but memmap
2875 * can be created for invalid pages (for alignment)
2876 * check here not to call set_pageblock_migratetype() against
2879 if ((z
->zone_start_pfn
<= pfn
)
2880 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2881 && !(pfn
& (pageblock_nr_pages
- 1)))
2882 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2884 INIT_LIST_HEAD(&page
->lru
);
2885 #ifdef WANT_PAGE_VIRTUAL
2886 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2887 if (!is_highmem_idx(zone
))
2888 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2893 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2896 for_each_migratetype_order(order
, t
) {
2897 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2898 zone
->free_area
[order
].nr_free
= 0;
2902 #ifndef __HAVE_ARCH_MEMMAP_INIT
2903 #define memmap_init(size, nid, zone, start_pfn) \
2904 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2907 static int zone_batchsize(struct zone
*zone
)
2913 * The per-cpu-pages pools are set to around 1000th of the
2914 * size of the zone. But no more than 1/2 of a meg.
2916 * OK, so we don't know how big the cache is. So guess.
2918 batch
= zone
->present_pages
/ 1024;
2919 if (batch
* PAGE_SIZE
> 512 * 1024)
2920 batch
= (512 * 1024) / PAGE_SIZE
;
2921 batch
/= 4; /* We effectively *= 4 below */
2926 * Clamp the batch to a 2^n - 1 value. Having a power
2927 * of 2 value was found to be more likely to have
2928 * suboptimal cache aliasing properties in some cases.
2930 * For example if 2 tasks are alternately allocating
2931 * batches of pages, one task can end up with a lot
2932 * of pages of one half of the possible page colors
2933 * and the other with pages of the other colors.
2935 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
2940 /* The deferral and batching of frees should be suppressed under NOMMU
2943 * The problem is that NOMMU needs to be able to allocate large chunks
2944 * of contiguous memory as there's no hardware page translation to
2945 * assemble apparent contiguous memory from discontiguous pages.
2947 * Queueing large contiguous runs of pages for batching, however,
2948 * causes the pages to actually be freed in smaller chunks. As there
2949 * can be a significant delay between the individual batches being
2950 * recycled, this leads to the once large chunks of space being
2951 * fragmented and becoming unavailable for high-order allocations.
2957 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2959 struct per_cpu_pages
*pcp
;
2961 memset(p
, 0, sizeof(*p
));
2965 pcp
->high
= 6 * batch
;
2966 pcp
->batch
= max(1UL, 1 * batch
);
2967 INIT_LIST_HEAD(&pcp
->list
);
2971 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2972 * to the value high for the pageset p.
2975 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2978 struct per_cpu_pages
*pcp
;
2982 pcp
->batch
= max(1UL, high
/4);
2983 if ((high
/4) > (PAGE_SHIFT
* 8))
2984 pcp
->batch
= PAGE_SHIFT
* 8;
2990 * Boot pageset table. One per cpu which is going to be used for all
2991 * zones and all nodes. The parameters will be set in such a way
2992 * that an item put on a list will immediately be handed over to
2993 * the buddy list. This is safe since pageset manipulation is done
2994 * with interrupts disabled.
2996 * Some NUMA counter updates may also be caught by the boot pagesets.
2998 * The boot_pagesets must be kept even after bootup is complete for
2999 * unused processors and/or zones. They do play a role for bootstrapping
3000 * hotplugged processors.
3002 * zoneinfo_show() and maybe other functions do
3003 * not check if the processor is online before following the pageset pointer.
3004 * Other parts of the kernel may not check if the zone is available.
3006 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
3009 * Dynamically allocate memory for the
3010 * per cpu pageset array in struct zone.
3012 static int __cpuinit
process_zones(int cpu
)
3014 struct zone
*zone
, *dzone
;
3015 int node
= cpu_to_node(cpu
);
3017 node_set_state(node
, N_CPU
); /* this node has a cpu */
3019 for_each_populated_zone(zone
) {
3020 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3022 if (!zone_pcp(zone
, cpu
))
3025 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3027 if (percpu_pagelist_fraction
)
3028 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3029 (zone
->present_pages
/ percpu_pagelist_fraction
));
3034 for_each_zone(dzone
) {
3035 if (!populated_zone(dzone
))
3039 kfree(zone_pcp(dzone
, cpu
));
3040 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
3045 static inline void free_zone_pagesets(int cpu
)
3049 for_each_zone(zone
) {
3050 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3052 /* Free per_cpu_pageset if it is slab allocated */
3053 if (pset
!= &boot_pageset
[cpu
])
3055 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3059 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3060 unsigned long action
,
3063 int cpu
= (long)hcpu
;
3064 int ret
= NOTIFY_OK
;
3067 case CPU_UP_PREPARE
:
3068 case CPU_UP_PREPARE_FROZEN
:
3069 if (process_zones(cpu
))
3072 case CPU_UP_CANCELED
:
3073 case CPU_UP_CANCELED_FROZEN
:
3075 case CPU_DEAD_FROZEN
:
3076 free_zone_pagesets(cpu
);
3084 static struct notifier_block __cpuinitdata pageset_notifier
=
3085 { &pageset_cpuup_callback
, NULL
, 0 };
3087 void __init
setup_per_cpu_pageset(void)
3091 /* Initialize per_cpu_pageset for cpu 0.
3092 * A cpuup callback will do this for every cpu
3093 * as it comes online
3095 err
= process_zones(smp_processor_id());
3097 register_cpu_notifier(&pageset_notifier
);
3102 static noinline __init_refok
3103 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3106 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3110 * The per-page waitqueue mechanism uses hashed waitqueues
3113 zone
->wait_table_hash_nr_entries
=
3114 wait_table_hash_nr_entries(zone_size_pages
);
3115 zone
->wait_table_bits
=
3116 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3117 alloc_size
= zone
->wait_table_hash_nr_entries
3118 * sizeof(wait_queue_head_t
);
3120 if (!slab_is_available()) {
3121 zone
->wait_table
= (wait_queue_head_t
*)
3122 alloc_bootmem_node(pgdat
, alloc_size
);
3125 * This case means that a zone whose size was 0 gets new memory
3126 * via memory hot-add.
3127 * But it may be the case that a new node was hot-added. In
3128 * this case vmalloc() will not be able to use this new node's
3129 * memory - this wait_table must be initialized to use this new
3130 * node itself as well.
3131 * To use this new node's memory, further consideration will be
3134 zone
->wait_table
= vmalloc(alloc_size
);
3136 if (!zone
->wait_table
)
3139 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3140 init_waitqueue_head(zone
->wait_table
+ i
);
3145 static __meminit
void zone_pcp_init(struct zone
*zone
)
3148 unsigned long batch
= zone_batchsize(zone
);
3150 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3152 /* Early boot. Slab allocator not functional yet */
3153 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3154 setup_pageset(&boot_pageset
[cpu
],0);
3156 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3159 if (zone
->present_pages
)
3160 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3161 zone
->name
, zone
->present_pages
, batch
);
3164 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3165 unsigned long zone_start_pfn
,
3167 enum memmap_context context
)
3169 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3171 ret
= zone_wait_table_init(zone
, size
);
3174 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3176 zone
->zone_start_pfn
= zone_start_pfn
;
3178 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3179 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3181 (unsigned long)zone_idx(zone
),
3182 zone_start_pfn
, (zone_start_pfn
+ size
));
3184 zone_init_free_lists(zone
);
3189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3191 * Basic iterator support. Return the first range of PFNs for a node
3192 * Note: nid == MAX_NUMNODES returns first region regardless of node
3194 static int __meminit
first_active_region_index_in_nid(int nid
)
3198 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3199 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3206 * Basic iterator support. Return the next active range of PFNs for a node
3207 * Note: nid == MAX_NUMNODES returns next region regardless of node
3209 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3211 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3212 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3218 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3220 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3221 * Architectures may implement their own version but if add_active_range()
3222 * was used and there are no special requirements, this is a convenient
3225 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3229 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3230 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3231 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3233 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3234 return early_node_map
[i
].nid
;
3236 /* This is a memory hole */
3239 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3241 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3245 nid
= __early_pfn_to_nid(pfn
);
3248 /* just returns 0 */
3252 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3253 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3257 nid
= __early_pfn_to_nid(pfn
);
3258 if (nid
>= 0 && nid
!= node
)
3264 /* Basic iterator support to walk early_node_map[] */
3265 #define for_each_active_range_index_in_nid(i, nid) \
3266 for (i = first_active_region_index_in_nid(nid); i != -1; \
3267 i = next_active_region_index_in_nid(i, nid))
3270 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3271 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3272 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3274 * If an architecture guarantees that all ranges registered with
3275 * add_active_ranges() contain no holes and may be freed, this
3276 * this function may be used instead of calling free_bootmem() manually.
3278 void __init
free_bootmem_with_active_regions(int nid
,
3279 unsigned long max_low_pfn
)
3283 for_each_active_range_index_in_nid(i
, nid
) {
3284 unsigned long size_pages
= 0;
3285 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3287 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3290 if (end_pfn
> max_low_pfn
)
3291 end_pfn
= max_low_pfn
;
3293 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3294 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3295 PFN_PHYS(early_node_map
[i
].start_pfn
),
3296 size_pages
<< PAGE_SHIFT
);
3300 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3305 for_each_active_range_index_in_nid(i
, nid
) {
3306 ret
= work_fn(early_node_map
[i
].start_pfn
,
3307 early_node_map
[i
].end_pfn
, data
);
3313 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3314 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3316 * If an architecture guarantees that all ranges registered with
3317 * add_active_ranges() contain no holes and may be freed, this
3318 * function may be used instead of calling memory_present() manually.
3320 void __init
sparse_memory_present_with_active_regions(int nid
)
3324 for_each_active_range_index_in_nid(i
, nid
)
3325 memory_present(early_node_map
[i
].nid
,
3326 early_node_map
[i
].start_pfn
,
3327 early_node_map
[i
].end_pfn
);
3331 * get_pfn_range_for_nid - Return the start and end page frames for a node
3332 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3333 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3334 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3336 * It returns the start and end page frame of a node based on information
3337 * provided by an arch calling add_active_range(). If called for a node
3338 * with no available memory, a warning is printed and the start and end
3341 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3342 unsigned long *start_pfn
, unsigned long *end_pfn
)
3348 for_each_active_range_index_in_nid(i
, nid
) {
3349 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3350 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3353 if (*start_pfn
== -1UL)
3358 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3359 * assumption is made that zones within a node are ordered in monotonic
3360 * increasing memory addresses so that the "highest" populated zone is used
3362 static void __init
find_usable_zone_for_movable(void)
3365 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3366 if (zone_index
== ZONE_MOVABLE
)
3369 if (arch_zone_highest_possible_pfn
[zone_index
] >
3370 arch_zone_lowest_possible_pfn
[zone_index
])
3374 VM_BUG_ON(zone_index
== -1);
3375 movable_zone
= zone_index
;
3379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3380 * because it is sized independant of architecture. Unlike the other zones,
3381 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3382 * in each node depending on the size of each node and how evenly kernelcore
3383 * is distributed. This helper function adjusts the zone ranges
3384 * provided by the architecture for a given node by using the end of the
3385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3386 * zones within a node are in order of monotonic increases memory addresses
3388 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3389 unsigned long zone_type
,
3390 unsigned long node_start_pfn
,
3391 unsigned long node_end_pfn
,
3392 unsigned long *zone_start_pfn
,
3393 unsigned long *zone_end_pfn
)
3395 /* Only adjust if ZONE_MOVABLE is on this node */
3396 if (zone_movable_pfn
[nid
]) {
3397 /* Size ZONE_MOVABLE */
3398 if (zone_type
== ZONE_MOVABLE
) {
3399 *zone_start_pfn
= zone_movable_pfn
[nid
];
3400 *zone_end_pfn
= min(node_end_pfn
,
3401 arch_zone_highest_possible_pfn
[movable_zone
]);
3403 /* Adjust for ZONE_MOVABLE starting within this range */
3404 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3405 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3406 *zone_end_pfn
= zone_movable_pfn
[nid
];
3408 /* Check if this whole range is within ZONE_MOVABLE */
3409 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3410 *zone_start_pfn
= *zone_end_pfn
;
3415 * Return the number of pages a zone spans in a node, including holes
3416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3418 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3419 unsigned long zone_type
,
3420 unsigned long *ignored
)
3422 unsigned long node_start_pfn
, node_end_pfn
;
3423 unsigned long zone_start_pfn
, zone_end_pfn
;
3425 /* Get the start and end of the node and zone */
3426 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3427 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3428 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3429 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3430 node_start_pfn
, node_end_pfn
,
3431 &zone_start_pfn
, &zone_end_pfn
);
3433 /* Check that this node has pages within the zone's required range */
3434 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3437 /* Move the zone boundaries inside the node if necessary */
3438 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3439 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3441 /* Return the spanned pages */
3442 return zone_end_pfn
- zone_start_pfn
;
3446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3447 * then all holes in the requested range will be accounted for.
3449 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3450 unsigned long range_start_pfn
,
3451 unsigned long range_end_pfn
)
3454 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3455 unsigned long start_pfn
;
3457 /* Find the end_pfn of the first active range of pfns in the node */
3458 i
= first_active_region_index_in_nid(nid
);
3462 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3464 /* Account for ranges before physical memory on this node */
3465 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3466 hole_pages
= prev_end_pfn
- range_start_pfn
;
3468 /* Find all holes for the zone within the node */
3469 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3471 /* No need to continue if prev_end_pfn is outside the zone */
3472 if (prev_end_pfn
>= range_end_pfn
)
3475 /* Make sure the end of the zone is not within the hole */
3476 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3477 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3479 /* Update the hole size cound and move on */
3480 if (start_pfn
> range_start_pfn
) {
3481 BUG_ON(prev_end_pfn
> start_pfn
);
3482 hole_pages
+= start_pfn
- prev_end_pfn
;
3484 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3487 /* Account for ranges past physical memory on this node */
3488 if (range_end_pfn
> prev_end_pfn
)
3489 hole_pages
+= range_end_pfn
-
3490 max(range_start_pfn
, prev_end_pfn
);
3496 * absent_pages_in_range - Return number of page frames in holes within a range
3497 * @start_pfn: The start PFN to start searching for holes
3498 * @end_pfn: The end PFN to stop searching for holes
3500 * It returns the number of pages frames in memory holes within a range.
3502 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3503 unsigned long end_pfn
)
3505 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3508 /* Return the number of page frames in holes in a zone on a node */
3509 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3510 unsigned long zone_type
,
3511 unsigned long *ignored
)
3513 unsigned long node_start_pfn
, node_end_pfn
;
3514 unsigned long zone_start_pfn
, zone_end_pfn
;
3516 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3517 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3519 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3522 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3523 node_start_pfn
, node_end_pfn
,
3524 &zone_start_pfn
, &zone_end_pfn
);
3525 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3529 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3530 unsigned long zone_type
,
3531 unsigned long *zones_size
)
3533 return zones_size
[zone_type
];
3536 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3537 unsigned long zone_type
,
3538 unsigned long *zholes_size
)
3543 return zholes_size
[zone_type
];
3548 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3549 unsigned long *zones_size
, unsigned long *zholes_size
)
3551 unsigned long realtotalpages
, totalpages
= 0;
3554 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3555 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3557 pgdat
->node_spanned_pages
= totalpages
;
3559 realtotalpages
= totalpages
;
3560 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3562 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3564 pgdat
->node_present_pages
= realtotalpages
;
3565 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3569 #ifndef CONFIG_SPARSEMEM
3571 * Calculate the size of the zone->blockflags rounded to an unsigned long
3572 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3573 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3574 * round what is now in bits to nearest long in bits, then return it in
3577 static unsigned long __init
usemap_size(unsigned long zonesize
)
3579 unsigned long usemapsize
;
3581 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3582 usemapsize
= usemapsize
>> pageblock_order
;
3583 usemapsize
*= NR_PAGEBLOCK_BITS
;
3584 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3586 return usemapsize
/ 8;
3589 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3590 struct zone
*zone
, unsigned long zonesize
)
3592 unsigned long usemapsize
= usemap_size(zonesize
);
3593 zone
->pageblock_flags
= NULL
;
3595 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3598 static void inline setup_usemap(struct pglist_data
*pgdat
,
3599 struct zone
*zone
, unsigned long zonesize
) {}
3600 #endif /* CONFIG_SPARSEMEM */
3602 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3604 /* Return a sensible default order for the pageblock size. */
3605 static inline int pageblock_default_order(void)
3607 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3608 return HUGETLB_PAGE_ORDER
;
3613 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3614 static inline void __init
set_pageblock_order(unsigned int order
)
3616 /* Check that pageblock_nr_pages has not already been setup */
3617 if (pageblock_order
)
3621 * Assume the largest contiguous order of interest is a huge page.
3622 * This value may be variable depending on boot parameters on IA64
3624 pageblock_order
= order
;
3626 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3629 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3630 * and pageblock_default_order() are unused as pageblock_order is set
3631 * at compile-time. See include/linux/pageblock-flags.h for the values of
3632 * pageblock_order based on the kernel config
3634 static inline int pageblock_default_order(unsigned int order
)
3638 #define set_pageblock_order(x) do {} while (0)
3640 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3643 * Set up the zone data structures:
3644 * - mark all pages reserved
3645 * - mark all memory queues empty
3646 * - clear the memory bitmaps
3648 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3649 unsigned long *zones_size
, unsigned long *zholes_size
)
3652 int nid
= pgdat
->node_id
;
3653 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3656 pgdat_resize_init(pgdat
);
3657 pgdat
->nr_zones
= 0;
3658 init_waitqueue_head(&pgdat
->kswapd_wait
);
3659 pgdat
->kswapd_max_order
= 0;
3660 pgdat_page_cgroup_init(pgdat
);
3662 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3663 struct zone
*zone
= pgdat
->node_zones
+ j
;
3664 unsigned long size
, realsize
, memmap_pages
;
3667 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3668 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3672 * Adjust realsize so that it accounts for how much memory
3673 * is used by this zone for memmap. This affects the watermark
3674 * and per-cpu initialisations
3677 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3678 if (realsize
>= memmap_pages
) {
3679 realsize
-= memmap_pages
;
3682 " %s zone: %lu pages used for memmap\n",
3683 zone_names
[j
], memmap_pages
);
3686 " %s zone: %lu pages exceeds realsize %lu\n",
3687 zone_names
[j
], memmap_pages
, realsize
);
3689 /* Account for reserved pages */
3690 if (j
== 0 && realsize
> dma_reserve
) {
3691 realsize
-= dma_reserve
;
3692 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3693 zone_names
[0], dma_reserve
);
3696 if (!is_highmem_idx(j
))
3697 nr_kernel_pages
+= realsize
;
3698 nr_all_pages
+= realsize
;
3700 zone
->spanned_pages
= size
;
3701 zone
->present_pages
= realsize
;
3704 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3706 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3708 zone
->name
= zone_names
[j
];
3709 spin_lock_init(&zone
->lock
);
3710 spin_lock_init(&zone
->lru_lock
);
3711 zone_seqlock_init(zone
);
3712 zone
->zone_pgdat
= pgdat
;
3714 zone
->prev_priority
= DEF_PRIORITY
;
3716 zone_pcp_init(zone
);
3718 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3719 zone
->lru
[l
].nr_saved_scan
= 0;
3721 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3722 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3723 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3724 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3725 zap_zone_vm_stats(zone
);
3730 set_pageblock_order(pageblock_default_order());
3731 setup_usemap(pgdat
, zone
, size
);
3732 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3733 size
, MEMMAP_EARLY
);
3735 memmap_init(size
, nid
, j
, zone_start_pfn
);
3736 zone_start_pfn
+= size
;
3740 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3742 /* Skip empty nodes */
3743 if (!pgdat
->node_spanned_pages
)
3746 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3747 /* ia64 gets its own node_mem_map, before this, without bootmem */
3748 if (!pgdat
->node_mem_map
) {
3749 unsigned long size
, start
, end
;
3753 * The zone's endpoints aren't required to be MAX_ORDER
3754 * aligned but the node_mem_map endpoints must be in order
3755 * for the buddy allocator to function correctly.
3757 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3758 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3759 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3760 size
= (end
- start
) * sizeof(struct page
);
3761 map
= alloc_remap(pgdat
->node_id
, size
);
3763 map
= alloc_bootmem_node(pgdat
, size
);
3764 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3766 #ifndef CONFIG_NEED_MULTIPLE_NODES
3768 * With no DISCONTIG, the global mem_map is just set as node 0's
3770 if (pgdat
== NODE_DATA(0)) {
3771 mem_map
= NODE_DATA(0)->node_mem_map
;
3772 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3773 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3774 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3775 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3778 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3781 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3782 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3784 pg_data_t
*pgdat
= NODE_DATA(nid
);
3786 pgdat
->node_id
= nid
;
3787 pgdat
->node_start_pfn
= node_start_pfn
;
3788 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3790 alloc_node_mem_map(pgdat
);
3791 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3792 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3793 nid
, (unsigned long)pgdat
,
3794 (unsigned long)pgdat
->node_mem_map
);
3797 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3800 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3802 #if MAX_NUMNODES > 1
3804 * Figure out the number of possible node ids.
3806 static void __init
setup_nr_node_ids(void)
3809 unsigned int highest
= 0;
3811 for_each_node_mask(node
, node_possible_map
)
3813 nr_node_ids
= highest
+ 1;
3816 static inline void setup_nr_node_ids(void)
3822 * add_active_range - Register a range of PFNs backed by physical memory
3823 * @nid: The node ID the range resides on
3824 * @start_pfn: The start PFN of the available physical memory
3825 * @end_pfn: The end PFN of the available physical memory
3827 * These ranges are stored in an early_node_map[] and later used by
3828 * free_area_init_nodes() to calculate zone sizes and holes. If the
3829 * range spans a memory hole, it is up to the architecture to ensure
3830 * the memory is not freed by the bootmem allocator. If possible
3831 * the range being registered will be merged with existing ranges.
3833 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3834 unsigned long end_pfn
)
3838 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3839 "Entering add_active_range(%d, %#lx, %#lx) "
3840 "%d entries of %d used\n",
3841 nid
, start_pfn
, end_pfn
,
3842 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3844 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3846 /* Merge with existing active regions if possible */
3847 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3848 if (early_node_map
[i
].nid
!= nid
)
3851 /* Skip if an existing region covers this new one */
3852 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3853 end_pfn
<= early_node_map
[i
].end_pfn
)
3856 /* Merge forward if suitable */
3857 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3858 end_pfn
> early_node_map
[i
].end_pfn
) {
3859 early_node_map
[i
].end_pfn
= end_pfn
;
3863 /* Merge backward if suitable */
3864 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3865 end_pfn
>= early_node_map
[i
].start_pfn
) {
3866 early_node_map
[i
].start_pfn
= start_pfn
;
3871 /* Check that early_node_map is large enough */
3872 if (i
>= MAX_ACTIVE_REGIONS
) {
3873 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3874 MAX_ACTIVE_REGIONS
);
3878 early_node_map
[i
].nid
= nid
;
3879 early_node_map
[i
].start_pfn
= start_pfn
;
3880 early_node_map
[i
].end_pfn
= end_pfn
;
3881 nr_nodemap_entries
= i
+ 1;
3885 * remove_active_range - Shrink an existing registered range of PFNs
3886 * @nid: The node id the range is on that should be shrunk
3887 * @start_pfn: The new PFN of the range
3888 * @end_pfn: The new PFN of the range
3890 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3891 * The map is kept near the end physical page range that has already been
3892 * registered. This function allows an arch to shrink an existing registered
3895 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3896 unsigned long end_pfn
)
3901 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3902 nid
, start_pfn
, end_pfn
);
3904 /* Find the old active region end and shrink */
3905 for_each_active_range_index_in_nid(i
, nid
) {
3906 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3907 early_node_map
[i
].end_pfn
<= end_pfn
) {
3909 early_node_map
[i
].start_pfn
= 0;
3910 early_node_map
[i
].end_pfn
= 0;
3914 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3915 early_node_map
[i
].end_pfn
> start_pfn
) {
3916 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3917 early_node_map
[i
].end_pfn
= start_pfn
;
3918 if (temp_end_pfn
> end_pfn
)
3919 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3922 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3923 early_node_map
[i
].end_pfn
> end_pfn
&&
3924 early_node_map
[i
].start_pfn
< end_pfn
) {
3925 early_node_map
[i
].start_pfn
= end_pfn
;
3933 /* remove the blank ones */
3934 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3935 if (early_node_map
[i
].nid
!= nid
)
3937 if (early_node_map
[i
].end_pfn
)
3939 /* we found it, get rid of it */
3940 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3941 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3942 sizeof(early_node_map
[j
]));
3943 j
= nr_nodemap_entries
- 1;
3944 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3945 nr_nodemap_entries
--;
3950 * remove_all_active_ranges - Remove all currently registered regions
3952 * During discovery, it may be found that a table like SRAT is invalid
3953 * and an alternative discovery method must be used. This function removes
3954 * all currently registered regions.
3956 void __init
remove_all_active_ranges(void)
3958 memset(early_node_map
, 0, sizeof(early_node_map
));
3959 nr_nodemap_entries
= 0;
3962 /* Compare two active node_active_regions */
3963 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3965 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3966 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3968 /* Done this way to avoid overflows */
3969 if (arange
->start_pfn
> brange
->start_pfn
)
3971 if (arange
->start_pfn
< brange
->start_pfn
)
3977 /* sort the node_map by start_pfn */
3978 static void __init
sort_node_map(void)
3980 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3981 sizeof(struct node_active_region
),
3982 cmp_node_active_region
, NULL
);
3985 /* Find the lowest pfn for a node */
3986 static unsigned long __init
find_min_pfn_for_node(int nid
)
3989 unsigned long min_pfn
= ULONG_MAX
;
3991 /* Assuming a sorted map, the first range found has the starting pfn */
3992 for_each_active_range_index_in_nid(i
, nid
)
3993 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3995 if (min_pfn
== ULONG_MAX
) {
3997 "Could not find start_pfn for node %d\n", nid
);
4005 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4007 * It returns the minimum PFN based on information provided via
4008 * add_active_range().
4010 unsigned long __init
find_min_pfn_with_active_regions(void)
4012 return find_min_pfn_for_node(MAX_NUMNODES
);
4016 * early_calculate_totalpages()
4017 * Sum pages in active regions for movable zone.
4018 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4020 static unsigned long __init
early_calculate_totalpages(void)
4023 unsigned long totalpages
= 0;
4025 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4026 unsigned long pages
= early_node_map
[i
].end_pfn
-
4027 early_node_map
[i
].start_pfn
;
4028 totalpages
+= pages
;
4030 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4036 * Find the PFN the Movable zone begins in each node. Kernel memory
4037 * is spread evenly between nodes as long as the nodes have enough
4038 * memory. When they don't, some nodes will have more kernelcore than
4041 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4044 unsigned long usable_startpfn
;
4045 unsigned long kernelcore_node
, kernelcore_remaining
;
4046 /* save the state before borrow the nodemask */
4047 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4048 unsigned long totalpages
= early_calculate_totalpages();
4049 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4052 * If movablecore was specified, calculate what size of
4053 * kernelcore that corresponds so that memory usable for
4054 * any allocation type is evenly spread. If both kernelcore
4055 * and movablecore are specified, then the value of kernelcore
4056 * will be used for required_kernelcore if it's greater than
4057 * what movablecore would have allowed.
4059 if (required_movablecore
) {
4060 unsigned long corepages
;
4063 * Round-up so that ZONE_MOVABLE is at least as large as what
4064 * was requested by the user
4066 required_movablecore
=
4067 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4068 corepages
= totalpages
- required_movablecore
;
4070 required_kernelcore
= max(required_kernelcore
, corepages
);
4073 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4074 if (!required_kernelcore
)
4077 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4078 find_usable_zone_for_movable();
4079 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4082 /* Spread kernelcore memory as evenly as possible throughout nodes */
4083 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4084 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4086 * Recalculate kernelcore_node if the division per node
4087 * now exceeds what is necessary to satisfy the requested
4088 * amount of memory for the kernel
4090 if (required_kernelcore
< kernelcore_node
)
4091 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4094 * As the map is walked, we track how much memory is usable
4095 * by the kernel using kernelcore_remaining. When it is
4096 * 0, the rest of the node is usable by ZONE_MOVABLE
4098 kernelcore_remaining
= kernelcore_node
;
4100 /* Go through each range of PFNs within this node */
4101 for_each_active_range_index_in_nid(i
, nid
) {
4102 unsigned long start_pfn
, end_pfn
;
4103 unsigned long size_pages
;
4105 start_pfn
= max(early_node_map
[i
].start_pfn
,
4106 zone_movable_pfn
[nid
]);
4107 end_pfn
= early_node_map
[i
].end_pfn
;
4108 if (start_pfn
>= end_pfn
)
4111 /* Account for what is only usable for kernelcore */
4112 if (start_pfn
< usable_startpfn
) {
4113 unsigned long kernel_pages
;
4114 kernel_pages
= min(end_pfn
, usable_startpfn
)
4117 kernelcore_remaining
-= min(kernel_pages
,
4118 kernelcore_remaining
);
4119 required_kernelcore
-= min(kernel_pages
,
4120 required_kernelcore
);
4122 /* Continue if range is now fully accounted */
4123 if (end_pfn
<= usable_startpfn
) {
4126 * Push zone_movable_pfn to the end so
4127 * that if we have to rebalance
4128 * kernelcore across nodes, we will
4129 * not double account here
4131 zone_movable_pfn
[nid
] = end_pfn
;
4134 start_pfn
= usable_startpfn
;
4138 * The usable PFN range for ZONE_MOVABLE is from
4139 * start_pfn->end_pfn. Calculate size_pages as the
4140 * number of pages used as kernelcore
4142 size_pages
= end_pfn
- start_pfn
;
4143 if (size_pages
> kernelcore_remaining
)
4144 size_pages
= kernelcore_remaining
;
4145 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4148 * Some kernelcore has been met, update counts and
4149 * break if the kernelcore for this node has been
4152 required_kernelcore
-= min(required_kernelcore
,
4154 kernelcore_remaining
-= size_pages
;
4155 if (!kernelcore_remaining
)
4161 * If there is still required_kernelcore, we do another pass with one
4162 * less node in the count. This will push zone_movable_pfn[nid] further
4163 * along on the nodes that still have memory until kernelcore is
4167 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4170 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4171 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4172 zone_movable_pfn
[nid
] =
4173 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4176 /* restore the node_state */
4177 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4180 /* Any regular memory on that node ? */
4181 static void check_for_regular_memory(pg_data_t
*pgdat
)
4183 #ifdef CONFIG_HIGHMEM
4184 enum zone_type zone_type
;
4186 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4187 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4188 if (zone
->present_pages
)
4189 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4195 * free_area_init_nodes - Initialise all pg_data_t and zone data
4196 * @max_zone_pfn: an array of max PFNs for each zone
4198 * This will call free_area_init_node() for each active node in the system.
4199 * Using the page ranges provided by add_active_range(), the size of each
4200 * zone in each node and their holes is calculated. If the maximum PFN
4201 * between two adjacent zones match, it is assumed that the zone is empty.
4202 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4203 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4204 * starts where the previous one ended. For example, ZONE_DMA32 starts
4205 * at arch_max_dma_pfn.
4207 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4212 /* Sort early_node_map as initialisation assumes it is sorted */
4215 /* Record where the zone boundaries are */
4216 memset(arch_zone_lowest_possible_pfn
, 0,
4217 sizeof(arch_zone_lowest_possible_pfn
));
4218 memset(arch_zone_highest_possible_pfn
, 0,
4219 sizeof(arch_zone_highest_possible_pfn
));
4220 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4221 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4222 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4223 if (i
== ZONE_MOVABLE
)
4225 arch_zone_lowest_possible_pfn
[i
] =
4226 arch_zone_highest_possible_pfn
[i
-1];
4227 arch_zone_highest_possible_pfn
[i
] =
4228 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4230 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4231 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4233 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4234 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4235 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4237 /* Print out the zone ranges */
4238 printk("Zone PFN ranges:\n");
4239 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4240 if (i
== ZONE_MOVABLE
)
4242 printk(" %-8s %0#10lx -> %0#10lx\n",
4244 arch_zone_lowest_possible_pfn
[i
],
4245 arch_zone_highest_possible_pfn
[i
]);
4248 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4249 printk("Movable zone start PFN for each node\n");
4250 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4251 if (zone_movable_pfn
[i
])
4252 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4255 /* Print out the early_node_map[] */
4256 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4257 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4258 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4259 early_node_map
[i
].start_pfn
,
4260 early_node_map
[i
].end_pfn
);
4262 /* Initialise every node */
4263 mminit_verify_pageflags_layout();
4264 setup_nr_node_ids();
4265 for_each_online_node(nid
) {
4266 pg_data_t
*pgdat
= NODE_DATA(nid
);
4267 free_area_init_node(nid
, NULL
,
4268 find_min_pfn_for_node(nid
), NULL
);
4270 /* Any memory on that node */
4271 if (pgdat
->node_present_pages
)
4272 node_set_state(nid
, N_HIGH_MEMORY
);
4273 check_for_regular_memory(pgdat
);
4277 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4279 unsigned long long coremem
;
4283 coremem
= memparse(p
, &p
);
4284 *core
= coremem
>> PAGE_SHIFT
;
4286 /* Paranoid check that UL is enough for the coremem value */
4287 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4293 * kernelcore=size sets the amount of memory for use for allocations that
4294 * cannot be reclaimed or migrated.
4296 static int __init
cmdline_parse_kernelcore(char *p
)
4298 return cmdline_parse_core(p
, &required_kernelcore
);
4302 * movablecore=size sets the amount of memory for use for allocations that
4303 * can be reclaimed or migrated.
4305 static int __init
cmdline_parse_movablecore(char *p
)
4307 return cmdline_parse_core(p
, &required_movablecore
);
4310 early_param("kernelcore", cmdline_parse_kernelcore
);
4311 early_param("movablecore", cmdline_parse_movablecore
);
4313 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4316 * set_dma_reserve - set the specified number of pages reserved in the first zone
4317 * @new_dma_reserve: The number of pages to mark reserved
4319 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4320 * In the DMA zone, a significant percentage may be consumed by kernel image
4321 * and other unfreeable allocations which can skew the watermarks badly. This
4322 * function may optionally be used to account for unfreeable pages in the
4323 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4324 * smaller per-cpu batchsize.
4326 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4328 dma_reserve
= new_dma_reserve
;
4331 #ifndef CONFIG_NEED_MULTIPLE_NODES
4332 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4333 EXPORT_SYMBOL(contig_page_data
);
4336 void __init
free_area_init(unsigned long *zones_size
)
4338 free_area_init_node(0, zones_size
,
4339 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4342 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4343 unsigned long action
, void *hcpu
)
4345 int cpu
= (unsigned long)hcpu
;
4347 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4351 * Spill the event counters of the dead processor
4352 * into the current processors event counters.
4353 * This artificially elevates the count of the current
4356 vm_events_fold_cpu(cpu
);
4359 * Zero the differential counters of the dead processor
4360 * so that the vm statistics are consistent.
4362 * This is only okay since the processor is dead and cannot
4363 * race with what we are doing.
4365 refresh_cpu_vm_stats(cpu
);
4370 void __init
page_alloc_init(void)
4372 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4376 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4377 * or min_free_kbytes changes.
4379 static void calculate_totalreserve_pages(void)
4381 struct pglist_data
*pgdat
;
4382 unsigned long reserve_pages
= 0;
4383 enum zone_type i
, j
;
4385 for_each_online_pgdat(pgdat
) {
4386 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4387 struct zone
*zone
= pgdat
->node_zones
+ i
;
4388 unsigned long max
= 0;
4390 /* Find valid and maximum lowmem_reserve in the zone */
4391 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4392 if (zone
->lowmem_reserve
[j
] > max
)
4393 max
= zone
->lowmem_reserve
[j
];
4396 /* we treat the high watermark as reserved pages. */
4397 max
+= high_wmark_pages(zone
);
4399 if (max
> zone
->present_pages
)
4400 max
= zone
->present_pages
;
4401 reserve_pages
+= max
;
4404 totalreserve_pages
= reserve_pages
;
4408 * setup_per_zone_lowmem_reserve - called whenever
4409 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4410 * has a correct pages reserved value, so an adequate number of
4411 * pages are left in the zone after a successful __alloc_pages().
4413 static void setup_per_zone_lowmem_reserve(void)
4415 struct pglist_data
*pgdat
;
4416 enum zone_type j
, idx
;
4418 for_each_online_pgdat(pgdat
) {
4419 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4420 struct zone
*zone
= pgdat
->node_zones
+ j
;
4421 unsigned long present_pages
= zone
->present_pages
;
4423 zone
->lowmem_reserve
[j
] = 0;
4427 struct zone
*lower_zone
;
4431 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4432 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4434 lower_zone
= pgdat
->node_zones
+ idx
;
4435 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4436 sysctl_lowmem_reserve_ratio
[idx
];
4437 present_pages
+= lower_zone
->present_pages
;
4442 /* update totalreserve_pages */
4443 calculate_totalreserve_pages();
4447 * setup_per_zone_wmarks - called when min_free_kbytes changes
4448 * or when memory is hot-{added|removed}
4450 * Ensures that the watermark[min,low,high] values for each zone are set
4451 * correctly with respect to min_free_kbytes.
4453 void setup_per_zone_wmarks(void)
4455 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4456 unsigned long lowmem_pages
= 0;
4458 unsigned long flags
;
4460 /* Calculate total number of !ZONE_HIGHMEM pages */
4461 for_each_zone(zone
) {
4462 if (!is_highmem(zone
))
4463 lowmem_pages
+= zone
->present_pages
;
4466 for_each_zone(zone
) {
4469 spin_lock_irqsave(&zone
->lock
, flags
);
4470 tmp
= (u64
)pages_min
* zone
->present_pages
;
4471 do_div(tmp
, lowmem_pages
);
4472 if (is_highmem(zone
)) {
4474 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4475 * need highmem pages, so cap pages_min to a small
4478 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4479 * deltas controls asynch page reclaim, and so should
4480 * not be capped for highmem.
4484 min_pages
= zone
->present_pages
/ 1024;
4485 if (min_pages
< SWAP_CLUSTER_MAX
)
4486 min_pages
= SWAP_CLUSTER_MAX
;
4487 if (min_pages
> 128)
4489 zone
->watermark
[WMARK_MIN
] = min_pages
;
4492 * If it's a lowmem zone, reserve a number of pages
4493 * proportionate to the zone's size.
4495 zone
->watermark
[WMARK_MIN
] = tmp
;
4498 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4499 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4500 setup_zone_migrate_reserve(zone
);
4501 spin_unlock_irqrestore(&zone
->lock
, flags
);
4504 /* update totalreserve_pages */
4505 calculate_totalreserve_pages();
4509 * The inactive anon list should be small enough that the VM never has to
4510 * do too much work, but large enough that each inactive page has a chance
4511 * to be referenced again before it is swapped out.
4513 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4514 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4515 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4516 * the anonymous pages are kept on the inactive list.
4519 * memory ratio inactive anon
4520 * -------------------------------------
4529 void calculate_zone_inactive_ratio(struct zone
*zone
)
4531 unsigned int gb
, ratio
;
4533 /* Zone size in gigabytes */
4534 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4536 ratio
= int_sqrt(10 * gb
);
4540 zone
->inactive_ratio
= ratio
;
4543 static void __init
setup_per_zone_inactive_ratio(void)
4548 calculate_zone_inactive_ratio(zone
);
4552 * Initialise min_free_kbytes.
4554 * For small machines we want it small (128k min). For large machines
4555 * we want it large (64MB max). But it is not linear, because network
4556 * bandwidth does not increase linearly with machine size. We use
4558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4559 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4575 static int __init
init_per_zone_wmark_min(void)
4577 unsigned long lowmem_kbytes
;
4579 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4581 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4582 if (min_free_kbytes
< 128)
4583 min_free_kbytes
= 128;
4584 if (min_free_kbytes
> 65536)
4585 min_free_kbytes
= 65536;
4586 setup_per_zone_wmarks();
4587 setup_per_zone_lowmem_reserve();
4588 setup_per_zone_inactive_ratio();
4591 module_init(init_per_zone_wmark_min
)
4594 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4595 * that we can call two helper functions whenever min_free_kbytes
4598 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4599 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4601 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4603 setup_per_zone_wmarks();
4608 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4609 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4614 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4619 zone
->min_unmapped_pages
= (zone
->present_pages
*
4620 sysctl_min_unmapped_ratio
) / 100;
4624 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4625 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4630 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4635 zone
->min_slab_pages
= (zone
->present_pages
*
4636 sysctl_min_slab_ratio
) / 100;
4642 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4643 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4644 * whenever sysctl_lowmem_reserve_ratio changes.
4646 * The reserve ratio obviously has absolutely no relation with the
4647 * minimum watermarks. The lowmem reserve ratio can only make sense
4648 * if in function of the boot time zone sizes.
4650 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4651 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4653 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4654 setup_per_zone_lowmem_reserve();
4659 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4660 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4661 * can have before it gets flushed back to buddy allocator.
4664 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4665 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4671 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4672 if (!write
|| (ret
== -EINVAL
))
4674 for_each_populated_zone(zone
) {
4675 for_each_online_cpu(cpu
) {
4677 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4678 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4684 int hashdist
= HASHDIST_DEFAULT
;
4687 static int __init
set_hashdist(char *str
)
4691 hashdist
= simple_strtoul(str
, &str
, 0);
4694 __setup("hashdist=", set_hashdist
);
4698 * allocate a large system hash table from bootmem
4699 * - it is assumed that the hash table must contain an exact power-of-2
4700 * quantity of entries
4701 * - limit is the number of hash buckets, not the total allocation size
4703 void *__init
alloc_large_system_hash(const char *tablename
,
4704 unsigned long bucketsize
,
4705 unsigned long numentries
,
4708 unsigned int *_hash_shift
,
4709 unsigned int *_hash_mask
,
4710 unsigned long limit
)
4712 unsigned long long max
= limit
;
4713 unsigned long log2qty
, size
;
4716 /* allow the kernel cmdline to have a say */
4718 /* round applicable memory size up to nearest megabyte */
4719 numentries
= nr_kernel_pages
;
4720 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4721 numentries
>>= 20 - PAGE_SHIFT
;
4722 numentries
<<= 20 - PAGE_SHIFT
;
4724 /* limit to 1 bucket per 2^scale bytes of low memory */
4725 if (scale
> PAGE_SHIFT
)
4726 numentries
>>= (scale
- PAGE_SHIFT
);
4728 numentries
<<= (PAGE_SHIFT
- scale
);
4730 /* Make sure we've got at least a 0-order allocation.. */
4731 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4732 numentries
= PAGE_SIZE
/ bucketsize
;
4734 numentries
= roundup_pow_of_two(numentries
);
4736 /* limit allocation size to 1/16 total memory by default */
4738 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4739 do_div(max
, bucketsize
);
4742 if (numentries
> max
)
4745 log2qty
= ilog2(numentries
);
4748 size
= bucketsize
<< log2qty
;
4749 if (flags
& HASH_EARLY
)
4750 table
= alloc_bootmem_nopanic(size
);
4752 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4755 * If bucketsize is not a power-of-two, we may free
4756 * some pages at the end of hash table which
4757 * alloc_pages_exact() automatically does
4759 if (get_order(size
) < MAX_ORDER
) {
4760 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4761 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4764 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4767 panic("Failed to allocate %s hash table\n", tablename
);
4769 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4772 ilog2(size
) - PAGE_SHIFT
,
4776 *_hash_shift
= log2qty
;
4778 *_hash_mask
= (1 << log2qty
) - 1;
4783 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4784 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4787 #ifdef CONFIG_SPARSEMEM
4788 return __pfn_to_section(pfn
)->pageblock_flags
;
4790 return zone
->pageblock_flags
;
4791 #endif /* CONFIG_SPARSEMEM */
4794 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4796 #ifdef CONFIG_SPARSEMEM
4797 pfn
&= (PAGES_PER_SECTION
-1);
4798 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4800 pfn
= pfn
- zone
->zone_start_pfn
;
4801 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4802 #endif /* CONFIG_SPARSEMEM */
4806 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4807 * @page: The page within the block of interest
4808 * @start_bitidx: The first bit of interest to retrieve
4809 * @end_bitidx: The last bit of interest
4810 * returns pageblock_bits flags
4812 unsigned long get_pageblock_flags_group(struct page
*page
,
4813 int start_bitidx
, int end_bitidx
)
4816 unsigned long *bitmap
;
4817 unsigned long pfn
, bitidx
;
4818 unsigned long flags
= 0;
4819 unsigned long value
= 1;
4821 zone
= page_zone(page
);
4822 pfn
= page_to_pfn(page
);
4823 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4824 bitidx
= pfn_to_bitidx(zone
, pfn
);
4826 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4827 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4834 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4835 * @page: The page within the block of interest
4836 * @start_bitidx: The first bit of interest
4837 * @end_bitidx: The last bit of interest
4838 * @flags: The flags to set
4840 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4841 int start_bitidx
, int end_bitidx
)
4844 unsigned long *bitmap
;
4845 unsigned long pfn
, bitidx
;
4846 unsigned long value
= 1;
4848 zone
= page_zone(page
);
4849 pfn
= page_to_pfn(page
);
4850 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4851 bitidx
= pfn_to_bitidx(zone
, pfn
);
4852 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4853 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4855 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4857 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4859 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4863 * This is designed as sub function...plz see page_isolation.c also.
4864 * set/clear page block's type to be ISOLATE.
4865 * page allocater never alloc memory from ISOLATE block.
4868 int set_migratetype_isolate(struct page
*page
)
4871 unsigned long flags
;
4874 zone
= page_zone(page
);
4875 spin_lock_irqsave(&zone
->lock
, flags
);
4877 * In future, more migrate types will be able to be isolation target.
4879 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4881 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4882 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4885 spin_unlock_irqrestore(&zone
->lock
, flags
);
4891 void unset_migratetype_isolate(struct page
*page
)
4894 unsigned long flags
;
4895 zone
= page_zone(page
);
4896 spin_lock_irqsave(&zone
->lock
, flags
);
4897 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4899 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4900 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4902 spin_unlock_irqrestore(&zone
->lock
, flags
);
4905 #ifdef CONFIG_MEMORY_HOTREMOVE
4907 * All pages in the range must be isolated before calling this.
4910 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4916 unsigned long flags
;
4917 /* find the first valid pfn */
4918 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4923 zone
= page_zone(pfn_to_page(pfn
));
4924 spin_lock_irqsave(&zone
->lock
, flags
);
4926 while (pfn
< end_pfn
) {
4927 if (!pfn_valid(pfn
)) {
4931 page
= pfn_to_page(pfn
);
4932 BUG_ON(page_count(page
));
4933 BUG_ON(!PageBuddy(page
));
4934 order
= page_order(page
);
4935 #ifdef CONFIG_DEBUG_VM
4936 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4937 pfn
, 1 << order
, end_pfn
);
4939 list_del(&page
->lru
);
4940 rmv_page_order(page
);
4941 zone
->free_area
[order
].nr_free
--;
4942 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4944 for (i
= 0; i
< (1 << order
); i
++)
4945 SetPageReserved((page
+i
));
4946 pfn
+= (1 << order
);
4948 spin_unlock_irqrestore(&zone
->lock
, flags
);