new buffering logic part 4
[cor_2_6_31.git] / tools / perf / builtin-stat.c
blobf9510eeeb6c7a3f7e832abecbc77d102644c6141
1 /*
2 * builtin-stat.c
4 * Builtin stat command: Give a precise performance counters summary
5 * overview about any workload, CPU or specific PID.
7 * Sample output:
9 $ perf stat ~/hackbench 10
10 Time: 0.104
12 Performance counter stats for '/home/mingo/hackbench':
14 1255.538611 task clock ticks # 10.143 CPU utilization factor
15 54011 context switches # 0.043 M/sec
16 385 CPU migrations # 0.000 M/sec
17 17755 pagefaults # 0.014 M/sec
18 3808323185 CPU cycles # 3033.219 M/sec
19 1575111190 instructions # 1254.530 M/sec
20 17367895 cache references # 13.833 M/sec
21 7674421 cache misses # 6.112 M/sec
23 Wall-clock time elapsed: 123.786620 msecs
26 * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
28 * Improvements and fixes by:
30 * Arjan van de Ven <arjan@linux.intel.com>
31 * Yanmin Zhang <yanmin.zhang@intel.com>
32 * Wu Fengguang <fengguang.wu@intel.com>
33 * Mike Galbraith <efault@gmx.de>
34 * Paul Mackerras <paulus@samba.org>
35 * Jaswinder Singh Rajput <jaswinder@kernel.org>
37 * Released under the GPL v2. (and only v2, not any later version)
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
46 #include <sys/prctl.h>
47 #include <math.h>
49 static struct perf_counter_attr default_attrs[] = {
51 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
52 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
53 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
54 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
56 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
57 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
58 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
59 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
63 #define MAX_RUN 100
65 static int system_wide = 0;
66 static int verbose = 0;
67 static unsigned int nr_cpus = 0;
68 static int run_idx = 0;
70 static int run_count = 1;
71 static int inherit = 1;
72 static int scale = 1;
73 static int target_pid = -1;
74 static int null_run = 0;
76 static int fd[MAX_NR_CPUS][MAX_COUNTERS];
78 static u64 runtime_nsecs[MAX_RUN];
79 static u64 walltime_nsecs[MAX_RUN];
80 static u64 runtime_cycles[MAX_RUN];
82 static u64 event_res[MAX_RUN][MAX_COUNTERS][3];
83 static u64 event_scaled[MAX_RUN][MAX_COUNTERS];
85 static u64 event_res_avg[MAX_COUNTERS][3];
86 static u64 event_res_noise[MAX_COUNTERS][3];
88 static u64 event_scaled_avg[MAX_COUNTERS];
90 static u64 runtime_nsecs_avg;
91 static u64 runtime_nsecs_noise;
93 static u64 walltime_nsecs_avg;
94 static u64 walltime_nsecs_noise;
96 static u64 runtime_cycles_avg;
97 static u64 runtime_cycles_noise;
99 #define MATCH_EVENT(t, c, counter) \
100 (attrs[counter].type == PERF_TYPE_##t && \
101 attrs[counter].config == PERF_COUNT_##c)
103 #define ERR_PERF_OPEN \
104 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
106 static void create_perf_stat_counter(int counter, int pid)
108 struct perf_counter_attr *attr = attrs + counter;
110 if (scale)
111 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
112 PERF_FORMAT_TOTAL_TIME_RUNNING;
114 if (system_wide) {
115 unsigned int cpu;
117 for (cpu = 0; cpu < nr_cpus; cpu++) {
118 fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
119 if (fd[cpu][counter] < 0 && verbose)
120 fprintf(stderr, ERR_PERF_OPEN, counter,
121 fd[cpu][counter], strerror(errno));
123 } else {
124 attr->inherit = inherit;
125 attr->disabled = 1;
126 attr->enable_on_exec = 1;
128 fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
129 if (fd[0][counter] < 0 && verbose)
130 fprintf(stderr, ERR_PERF_OPEN, counter,
131 fd[0][counter], strerror(errno));
136 * Does the counter have nsecs as a unit?
138 static inline int nsec_counter(int counter)
140 if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
141 MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
142 return 1;
144 return 0;
148 * Read out the results of a single counter:
150 static void read_counter(int counter)
152 u64 *count, single_count[3];
153 unsigned int cpu;
154 size_t res, nv;
155 int scaled;
157 count = event_res[run_idx][counter];
159 count[0] = count[1] = count[2] = 0;
161 nv = scale ? 3 : 1;
162 for (cpu = 0; cpu < nr_cpus; cpu++) {
163 if (fd[cpu][counter] < 0)
164 continue;
166 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
167 assert(res == nv * sizeof(u64));
169 close(fd[cpu][counter]);
170 fd[cpu][counter] = -1;
172 count[0] += single_count[0];
173 if (scale) {
174 count[1] += single_count[1];
175 count[2] += single_count[2];
179 scaled = 0;
180 if (scale) {
181 if (count[2] == 0) {
182 event_scaled[run_idx][counter] = -1;
183 count[0] = 0;
184 return;
187 if (count[2] < count[1]) {
188 event_scaled[run_idx][counter] = 1;
189 count[0] = (unsigned long long)
190 ((double)count[0] * count[1] / count[2] + 0.5);
194 * Save the full runtime - to allow normalization during printout:
196 if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
197 runtime_nsecs[run_idx] = count[0];
198 if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
199 runtime_cycles[run_idx] = count[0];
202 static int run_perf_stat(int argc __used, const char **argv)
204 unsigned long long t0, t1;
205 int status = 0;
206 int counter;
207 int pid;
208 int child_ready_pipe[2], go_pipe[2];
209 char buf;
211 if (!system_wide)
212 nr_cpus = 1;
214 if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
215 perror("failed to create pipes");
216 exit(1);
219 if ((pid = fork()) < 0)
220 perror("failed to fork");
222 if (!pid) {
223 close(child_ready_pipe[0]);
224 close(go_pipe[1]);
225 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
228 * Do a dummy execvp to get the PLT entry resolved,
229 * so we avoid the resolver overhead on the real
230 * execvp call.
232 execvp("", (char **)argv);
235 * Tell the parent we're ready to go
237 close(child_ready_pipe[1]);
240 * Wait until the parent tells us to go.
242 if (read(go_pipe[0], &buf, 1) == -1)
243 perror("unable to read pipe");
245 execvp(argv[0], (char **)argv);
247 perror(argv[0]);
248 exit(-1);
252 * Wait for the child to be ready to exec.
254 close(child_ready_pipe[1]);
255 close(go_pipe[0]);
256 if (read(child_ready_pipe[0], &buf, 1) == -1)
257 perror("unable to read pipe");
258 close(child_ready_pipe[0]);
260 for (counter = 0; counter < nr_counters; counter++)
261 create_perf_stat_counter(counter, pid);
264 * Enable counters and exec the command:
266 t0 = rdclock();
268 close(go_pipe[1]);
269 wait(&status);
271 t1 = rdclock();
273 walltime_nsecs[run_idx] = t1 - t0;
275 for (counter = 0; counter < nr_counters; counter++)
276 read_counter(counter);
278 return WEXITSTATUS(status);
281 static void print_noise(u64 *count, u64 *noise)
283 if (run_count > 1)
284 fprintf(stderr, " ( +- %7.3f%% )",
285 (double)noise[0]/(count[0]+1)*100.0);
288 static void nsec_printout(int counter, u64 *count, u64 *noise)
290 double msecs = (double)count[0] / 1000000;
292 fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter));
294 if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
295 if (walltime_nsecs_avg)
296 fprintf(stderr, " # %10.3f CPUs ",
297 (double)count[0] / (double)walltime_nsecs_avg);
299 print_noise(count, noise);
302 static void abs_printout(int counter, u64 *count, u64 *noise)
304 fprintf(stderr, " %14Ld %-24s", count[0], event_name(counter));
306 if (runtime_cycles_avg &&
307 MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
308 fprintf(stderr, " # %10.3f IPC ",
309 (double)count[0] / (double)runtime_cycles_avg);
310 } else {
311 if (runtime_nsecs_avg) {
312 fprintf(stderr, " # %10.3f M/sec",
313 (double)count[0]/runtime_nsecs_avg*1000.0);
316 print_noise(count, noise);
320 * Print out the results of a single counter:
322 static void print_counter(int counter)
324 u64 *count, *noise;
325 int scaled;
327 count = event_res_avg[counter];
328 noise = event_res_noise[counter];
329 scaled = event_scaled_avg[counter];
331 if (scaled == -1) {
332 fprintf(stderr, " %14s %-24s\n",
333 "<not counted>", event_name(counter));
334 return;
337 if (nsec_counter(counter))
338 nsec_printout(counter, count, noise);
339 else
340 abs_printout(counter, count, noise);
342 if (scaled)
343 fprintf(stderr, " (scaled from %.2f%%)",
344 (double) count[2] / count[1] * 100);
346 fprintf(stderr, "\n");
350 * normalize_noise noise values down to stddev:
352 static void normalize_noise(u64 *val)
354 double res;
356 res = (double)*val / (run_count * sqrt((double)run_count));
358 *val = (u64)res;
361 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
363 *avg += *val;
365 if (verbose > 1)
366 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
369 * Calculate the averages and noises:
371 static void calc_avg(void)
373 int i, j;
375 if (verbose > 1)
376 fprintf(stderr, "\n");
378 for (i = 0; i < run_count; i++) {
379 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
380 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
381 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
383 for (j = 0; j < nr_counters; j++) {
384 update_avg("counter/0", j,
385 event_res_avg[j]+0, event_res[i][j]+0);
386 update_avg("counter/1", j,
387 event_res_avg[j]+1, event_res[i][j]+1);
388 update_avg("counter/2", j,
389 event_res_avg[j]+2, event_res[i][j]+2);
390 if (event_scaled[i][j] != (u64)-1)
391 update_avg("scaled", j,
392 event_scaled_avg + j, event_scaled[i]+j);
393 else
394 event_scaled_avg[j] = -1;
397 runtime_nsecs_avg /= run_count;
398 walltime_nsecs_avg /= run_count;
399 runtime_cycles_avg /= run_count;
401 for (j = 0; j < nr_counters; j++) {
402 event_res_avg[j][0] /= run_count;
403 event_res_avg[j][1] /= run_count;
404 event_res_avg[j][2] /= run_count;
407 for (i = 0; i < run_count; i++) {
408 runtime_nsecs_noise +=
409 abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
410 walltime_nsecs_noise +=
411 abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
412 runtime_cycles_noise +=
413 abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
415 for (j = 0; j < nr_counters; j++) {
416 event_res_noise[j][0] +=
417 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
418 event_res_noise[j][1] +=
419 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
420 event_res_noise[j][2] +=
421 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
425 normalize_noise(&runtime_nsecs_noise);
426 normalize_noise(&walltime_nsecs_noise);
427 normalize_noise(&runtime_cycles_noise);
429 for (j = 0; j < nr_counters; j++) {
430 normalize_noise(&event_res_noise[j][0]);
431 normalize_noise(&event_res_noise[j][1]);
432 normalize_noise(&event_res_noise[j][2]);
436 static void print_stat(int argc, const char **argv)
438 int i, counter;
440 calc_avg();
442 fflush(stdout);
444 fprintf(stderr, "\n");
445 fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
447 for (i = 1; i < argc; i++)
448 fprintf(stderr, " %s", argv[i]);
450 fprintf(stderr, "\'");
451 if (run_count > 1)
452 fprintf(stderr, " (%d runs)", run_count);
453 fprintf(stderr, ":\n\n");
455 for (counter = 0; counter < nr_counters; counter++)
456 print_counter(counter);
458 fprintf(stderr, "\n");
459 fprintf(stderr, " %14.9f seconds time elapsed",
460 (double)walltime_nsecs_avg/1e9);
461 if (run_count > 1) {
462 fprintf(stderr, " ( +- %7.3f%% )",
463 100.0*(double)walltime_nsecs_noise/(double)walltime_nsecs_avg);
465 fprintf(stderr, "\n\n");
468 static volatile int signr = -1;
470 static void skip_signal(int signo)
472 signr = signo;
475 static void sig_atexit(void)
477 if (signr == -1)
478 return;
480 signal(signr, SIG_DFL);
481 kill(getpid(), signr);
484 static const char * const stat_usage[] = {
485 "perf stat [<options>] <command>",
486 NULL
489 static const struct option options[] = {
490 OPT_CALLBACK('e', "event", NULL, "event",
491 "event selector. use 'perf list' to list available events",
492 parse_events),
493 OPT_BOOLEAN('i', "inherit", &inherit,
494 "child tasks inherit counters"),
495 OPT_INTEGER('p', "pid", &target_pid,
496 "stat events on existing pid"),
497 OPT_BOOLEAN('a', "all-cpus", &system_wide,
498 "system-wide collection from all CPUs"),
499 OPT_BOOLEAN('S', "scale", &scale,
500 "scale/normalize counters"),
501 OPT_BOOLEAN('v', "verbose", &verbose,
502 "be more verbose (show counter open errors, etc)"),
503 OPT_INTEGER('r', "repeat", &run_count,
504 "repeat command and print average + stddev (max: 100)"),
505 OPT_BOOLEAN('n', "null", &null_run,
506 "null run - dont start any counters"),
507 OPT_END()
510 int cmd_stat(int argc, const char **argv, const char *prefix __used)
512 int status;
514 argc = parse_options(argc, argv, options, stat_usage,
515 PARSE_OPT_STOP_AT_NON_OPTION);
516 if (!argc)
517 usage_with_options(stat_usage, options);
518 if (run_count <= 0 || run_count > MAX_RUN)
519 usage_with_options(stat_usage, options);
521 /* Set attrs and nr_counters if no event is selected and !null_run */
522 if (!null_run && !nr_counters) {
523 memcpy(attrs, default_attrs, sizeof(default_attrs));
524 nr_counters = ARRAY_SIZE(default_attrs);
527 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
528 assert(nr_cpus <= MAX_NR_CPUS);
529 assert((int)nr_cpus >= 0);
532 * We dont want to block the signals - that would cause
533 * child tasks to inherit that and Ctrl-C would not work.
534 * What we want is for Ctrl-C to work in the exec()-ed
535 * task, but being ignored by perf stat itself:
537 atexit(sig_atexit);
538 signal(SIGINT, skip_signal);
539 signal(SIGALRM, skip_signal);
540 signal(SIGABRT, skip_signal);
542 status = 0;
543 for (run_idx = 0; run_idx < run_count; run_idx++) {
544 if (run_count != 1 && verbose)
545 fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
546 status = run_perf_stat(argc, argv);
549 print_stat(argc, argv);
551 return status;