2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
70 __le32 branch_address
;
72 __le16 transfer_status
;
73 } __attribute__((aligned(16)));
75 struct db_descriptor
{
78 __le16 second_req_count
;
79 __le16 first_req_count
;
80 __le32 branch_address
;
81 __le16 second_res_count
;
82 __le16 first_res_count
;
87 } __attribute__((aligned(16)));
89 #define CONTROL_SET(regs) (regs)
90 #define CONTROL_CLEAR(regs) ((regs) + 4)
91 #define COMMAND_PTR(regs) ((regs) + 12)
92 #define CONTEXT_MATCH(regs) ((regs) + 16)
95 struct descriptor descriptor
;
96 struct ar_buffer
*next
;
101 struct fw_ohci
*ohci
;
102 struct ar_buffer
*current_buffer
;
103 struct ar_buffer
*last_buffer
;
106 struct tasklet_struct tasklet
;
111 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
112 struct descriptor
*d
,
113 struct descriptor
*last
);
116 * A buffer that contains a block of DMA-able coherent memory used for
117 * storing a portion of a DMA descriptor program.
119 struct descriptor_buffer
{
120 struct list_head list
;
121 dma_addr_t buffer_bus
;
124 struct descriptor buffer
[0];
128 struct fw_ohci
*ohci
;
130 int total_allocation
;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
137 struct list_head buffer_list
;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer
*buffer_tail
;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor
*last
;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor
*prev
;
157 descriptor_callback_t callback
;
159 struct tasklet_struct tasklet
;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct fw_iso_context base
;
171 struct context context
;
174 size_t header_length
;
177 #define CONFIG_ROM_SIZE 1024
182 __iomem
char *registers
;
183 dma_addr_t self_id_bus
;
185 struct tasklet_struct bus_reset_tasklet
;
188 int request_generation
; /* for timestamping incoming requests */
189 atomic_t bus_seconds
;
193 bool bus_reset_packet_quirk
;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
200 u32 self_id_buffer
[512];
202 /* Config rom buffers */
204 dma_addr_t config_rom_bus
;
205 __be32
*next_config_rom
;
206 dma_addr_t next_config_rom_bus
;
209 struct ar_context ar_request_ctx
;
210 struct ar_context ar_response_ctx
;
211 struct context at_request_ctx
;
212 struct context at_response_ctx
;
215 struct iso_context
*it_context_list
;
216 u64 ir_context_channels
;
218 struct iso_context
*ir_context_list
;
221 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
223 return container_of(card
, struct fw_ohci
, card
);
226 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
227 #define IR_CONTEXT_BUFFER_FILL 0x80000000
228 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
229 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
230 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
231 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
233 #define CONTEXT_RUN 0x8000
234 #define CONTEXT_WAKE 0x1000
235 #define CONTEXT_DEAD 0x0800
236 #define CONTEXT_ACTIVE 0x0400
238 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
239 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
240 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
242 #define OHCI1394_REGISTER_SIZE 0x800
243 #define OHCI_LOOP_COUNT 500
244 #define OHCI1394_PCI_HCI_Control 0x40
245 #define SELF_ID_BUF_SIZE 0x800
246 #define OHCI_TCODE_PHY_PACKET 0x0e
247 #define OHCI_VERSION_1_1 0x010010
249 static char ohci_driver_name
[] = KBUILD_MODNAME
;
251 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
253 #define OHCI_PARAM_DEBUG_AT_AR 1
254 #define OHCI_PARAM_DEBUG_SELFIDS 2
255 #define OHCI_PARAM_DEBUG_IRQS 4
256 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
258 static int param_debug
;
259 module_param_named(debug
, param_debug
, int, 0644);
260 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
261 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
262 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
263 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
264 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
265 ", or a combination, or all = -1)");
267 static void log_irqs(u32 evt
)
269 if (likely(!(param_debug
&
270 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
273 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
274 !(evt
& OHCI1394_busReset
))
277 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
278 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
279 evt
& OHCI1394_RQPkt
? " AR_req" : "",
280 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
281 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
282 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
283 evt
& OHCI1394_isochRx
? " IR" : "",
284 evt
& OHCI1394_isochTx
? " IT" : "",
285 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
286 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
287 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
288 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
289 evt
& OHCI1394_busReset
? " busReset" : "",
290 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
291 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
292 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
293 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
294 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
295 OHCI1394_regAccessFail
| OHCI1394_busReset
)
299 static const char *speed
[] = {
300 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
302 static const char *power
[] = {
303 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
304 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
306 static const char port
[] = { '.', '-', 'p', 'c', };
308 static char _p(u32
*s
, int shift
)
310 return port
[*s
>> shift
& 3];
313 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
315 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
318 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
319 self_id_count
, generation
, node_id
);
321 for (; self_id_count
--; ++s
)
322 if ((*s
& 1 << 23) == 0)
323 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
324 "%s gc=%d %s %s%s%s\n",
325 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
326 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
327 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
328 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
330 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
332 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
333 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
336 static const char *evts
[] = {
337 [0x00] = "evt_no_status", [0x01] = "-reserved-",
338 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
339 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
340 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
341 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
342 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
343 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
344 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
345 [0x10] = "-reserved-", [0x11] = "ack_complete",
346 [0x12] = "ack_pending ", [0x13] = "-reserved-",
347 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
348 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
349 [0x18] = "-reserved-", [0x19] = "-reserved-",
350 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
351 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
352 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
353 [0x20] = "pending/cancelled",
355 static const char *tcodes
[] = {
356 [0x0] = "QW req", [0x1] = "BW req",
357 [0x2] = "W resp", [0x3] = "-reserved-",
358 [0x4] = "QR req", [0x5] = "BR req",
359 [0x6] = "QR resp", [0x7] = "BR resp",
360 [0x8] = "cycle start", [0x9] = "Lk req",
361 [0xa] = "async stream packet", [0xb] = "Lk resp",
362 [0xc] = "-reserved-", [0xd] = "-reserved-",
363 [0xe] = "link internal", [0xf] = "-reserved-",
365 static const char *phys
[] = {
366 [0x0] = "phy config packet", [0x1] = "link-on packet",
367 [0x2] = "self-id packet", [0x3] = "-reserved-",
370 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
372 int tcode
= header
[0] >> 4 & 0xf;
375 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
378 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
381 if (evt
== OHCI1394_evt_bus_reset
) {
382 fw_notify("A%c evt_bus_reset, generation %d\n",
383 dir
, (header
[2] >> 16) & 0xff);
387 if (header
[0] == ~header
[1]) {
388 fw_notify("A%c %s, %s, %08x\n",
389 dir
, evts
[evt
], phys
[header
[0] >> 30 & 0x3], header
[0]);
394 case 0x0: case 0x6: case 0x8:
395 snprintf(specific
, sizeof(specific
), " = %08x",
396 be32_to_cpu((__force __be32
)header
[3]));
398 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
399 snprintf(specific
, sizeof(specific
), " %x,%x",
400 header
[3] >> 16, header
[3] & 0xffff);
408 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
410 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
411 fw_notify("A%c spd %x tl %02x, "
414 dir
, speed
, header
[0] >> 10 & 0x3f,
415 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
416 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
419 fw_notify("A%c spd %x tl %02x, "
422 dir
, speed
, header
[0] >> 10 & 0x3f,
423 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
424 tcodes
[tcode
], specific
);
430 #define log_irqs(evt)
431 #define log_selfids(node_id, generation, self_id_count, sid)
432 #define log_ar_at_event(dir, speed, header, evt)
434 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
436 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
438 writel(data
, ohci
->registers
+ offset
);
441 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
443 return readl(ohci
->registers
+ offset
);
446 static inline void flush_writes(const struct fw_ohci
*ohci
)
448 /* Do a dummy read to flush writes. */
449 reg_read(ohci
, OHCI1394_Version
);
452 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
453 int clear_bits
, int set_bits
)
455 struct fw_ohci
*ohci
= fw_ohci(card
);
458 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
461 val
= reg_read(ohci
, OHCI1394_PhyControl
);
462 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
463 fw_error("failed to set phy reg bits.\n");
467 old
= OHCI1394_PhyControl_ReadData(val
);
468 old
= (old
& ~clear_bits
) | set_bits
;
469 reg_write(ohci
, OHCI1394_PhyControl
,
470 OHCI1394_PhyControl_Write(addr
, old
));
475 static int ar_context_add_page(struct ar_context
*ctx
)
477 struct device
*dev
= ctx
->ohci
->card
.device
;
478 struct ar_buffer
*ab
;
479 dma_addr_t
uninitialized_var(ab_bus
);
482 ab
= dma_alloc_coherent(dev
, PAGE_SIZE
, &ab_bus
, GFP_ATOMIC
);
487 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
488 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
490 DESCRIPTOR_BRANCH_ALWAYS
);
491 offset
= offsetof(struct ar_buffer
, data
);
492 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
493 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
494 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
495 ab
->descriptor
.branch_address
= 0;
497 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
498 ctx
->last_buffer
->next
= ab
;
499 ctx
->last_buffer
= ab
;
501 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
502 flush_writes(ctx
->ohci
);
507 static void ar_context_release(struct ar_context
*ctx
)
509 struct ar_buffer
*ab
, *ab_next
;
513 for (ab
= ctx
->current_buffer
; ab
; ab
= ab_next
) {
515 offset
= offsetof(struct ar_buffer
, data
);
516 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
517 dma_free_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
522 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
523 #define cond_le32_to_cpu(v) \
524 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
526 #define cond_le32_to_cpu(v) le32_to_cpu(v)
529 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
531 struct fw_ohci
*ohci
= ctx
->ohci
;
533 u32 status
, length
, tcode
;
536 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
537 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
538 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
540 tcode
= (p
.header
[0] >> 4) & 0x0f;
542 case TCODE_WRITE_QUADLET_REQUEST
:
543 case TCODE_READ_QUADLET_RESPONSE
:
544 p
.header
[3] = (__force __u32
) buffer
[3];
545 p
.header_length
= 16;
546 p
.payload_length
= 0;
549 case TCODE_READ_BLOCK_REQUEST
:
550 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
551 p
.header_length
= 16;
552 p
.payload_length
= 0;
555 case TCODE_WRITE_BLOCK_REQUEST
:
556 case TCODE_READ_BLOCK_RESPONSE
:
557 case TCODE_LOCK_REQUEST
:
558 case TCODE_LOCK_RESPONSE
:
559 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
560 p
.header_length
= 16;
561 p
.payload_length
= p
.header
[3] >> 16;
564 case TCODE_WRITE_RESPONSE
:
565 case TCODE_READ_QUADLET_REQUEST
:
566 case OHCI_TCODE_PHY_PACKET
:
567 p
.header_length
= 12;
568 p
.payload_length
= 0;
572 /* FIXME: Stop context, discard everything, and restart? */
574 p
.payload_length
= 0;
577 p
.payload
= (void *) buffer
+ p
.header_length
;
579 /* FIXME: What to do about evt_* errors? */
580 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
581 status
= cond_le32_to_cpu(buffer
[length
]);
582 evt
= (status
>> 16) & 0x1f;
585 p
.speed
= (status
>> 21) & 0x7;
586 p
.timestamp
= status
& 0xffff;
587 p
.generation
= ohci
->request_generation
;
589 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
592 * The OHCI bus reset handler synthesizes a phy packet with
593 * the new generation number when a bus reset happens (see
594 * section 8.4.2.3). This helps us determine when a request
595 * was received and make sure we send the response in the same
596 * generation. We only need this for requests; for responses
597 * we use the unique tlabel for finding the matching
600 * Alas some chips sometimes emit bus reset packets with a
601 * wrong generation. We set the correct generation for these
602 * at a slightly incorrect time (in bus_reset_tasklet).
604 if (evt
== OHCI1394_evt_bus_reset
) {
605 if (!ohci
->bus_reset_packet_quirk
)
606 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
607 } else if (ctx
== &ohci
->ar_request_ctx
) {
608 fw_core_handle_request(&ohci
->card
, &p
);
610 fw_core_handle_response(&ohci
->card
, &p
);
613 return buffer
+ length
+ 1;
616 static void ar_context_tasklet(unsigned long data
)
618 struct ar_context
*ctx
= (struct ar_context
*)data
;
619 struct fw_ohci
*ohci
= ctx
->ohci
;
620 struct ar_buffer
*ab
;
621 struct descriptor
*d
;
624 ab
= ctx
->current_buffer
;
627 if (d
->res_count
== 0) {
628 size_t size
, rest
, offset
;
629 dma_addr_t start_bus
;
633 * This descriptor is finished and we may have a
634 * packet split across this and the next buffer. We
635 * reuse the page for reassembling the split packet.
638 offset
= offsetof(struct ar_buffer
, data
);
640 start_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
644 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
645 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
646 memmove(buffer
, ctx
->pointer
, size
);
647 memcpy(buffer
+ size
, ab
->data
, rest
);
648 ctx
->current_buffer
= ab
;
649 ctx
->pointer
= (void *) ab
->data
+ rest
;
650 end
= buffer
+ size
+ rest
;
653 buffer
= handle_ar_packet(ctx
, buffer
);
655 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
657 ar_context_add_page(ctx
);
659 buffer
= ctx
->pointer
;
661 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
664 buffer
= handle_ar_packet(ctx
, buffer
);
668 static int ar_context_init(struct ar_context
*ctx
,
669 struct fw_ohci
*ohci
, u32 regs
)
675 ctx
->last_buffer
= &ab
;
676 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
678 ar_context_add_page(ctx
);
679 ar_context_add_page(ctx
);
680 ctx
->current_buffer
= ab
.next
;
681 ctx
->pointer
= ctx
->current_buffer
->data
;
686 static void ar_context_run(struct ar_context
*ctx
)
688 struct ar_buffer
*ab
= ctx
->current_buffer
;
692 offset
= offsetof(struct ar_buffer
, data
);
693 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
695 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
696 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
697 flush_writes(ctx
->ohci
);
700 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
704 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
705 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
707 /* figure out which descriptor the branch address goes in */
708 if (z
== 2 && (b
== 3 || key
== 2))
714 static void context_tasklet(unsigned long data
)
716 struct context
*ctx
= (struct context
*) data
;
717 struct descriptor
*d
, *last
;
720 struct descriptor_buffer
*desc
;
722 desc
= list_entry(ctx
->buffer_list
.next
,
723 struct descriptor_buffer
, list
);
725 while (last
->branch_address
!= 0) {
726 struct descriptor_buffer
*old_desc
= desc
;
727 address
= le32_to_cpu(last
->branch_address
);
731 /* If the branch address points to a buffer outside of the
732 * current buffer, advance to the next buffer. */
733 if (address
< desc
->buffer_bus
||
734 address
>= desc
->buffer_bus
+ desc
->used
)
735 desc
= list_entry(desc
->list
.next
,
736 struct descriptor_buffer
, list
);
737 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
738 last
= find_branch_descriptor(d
, z
);
740 if (!ctx
->callback(ctx
, d
, last
))
743 if (old_desc
!= desc
) {
744 /* If we've advanced to the next buffer, move the
745 * previous buffer to the free list. */
748 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
749 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
750 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
757 * Allocate a new buffer and add it to the list of free buffers for this
758 * context. Must be called with ohci->lock held.
760 static int context_add_buffer(struct context
*ctx
)
762 struct descriptor_buffer
*desc
;
763 dma_addr_t
uninitialized_var(bus_addr
);
767 * 16MB of descriptors should be far more than enough for any DMA
768 * program. This will catch run-away userspace or DoS attacks.
770 if (ctx
->total_allocation
>= 16*1024*1024)
773 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
774 &bus_addr
, GFP_ATOMIC
);
778 offset
= (void *)&desc
->buffer
- (void *)desc
;
779 desc
->buffer_size
= PAGE_SIZE
- offset
;
780 desc
->buffer_bus
= bus_addr
+ offset
;
783 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
784 ctx
->total_allocation
+= PAGE_SIZE
;
789 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
790 u32 regs
, descriptor_callback_t callback
)
794 ctx
->total_allocation
= 0;
796 INIT_LIST_HEAD(&ctx
->buffer_list
);
797 if (context_add_buffer(ctx
) < 0)
800 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
801 struct descriptor_buffer
, list
);
803 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
804 ctx
->callback
= callback
;
807 * We put a dummy descriptor in the buffer that has a NULL
808 * branch address and looks like it's been sent. That way we
809 * have a descriptor to append DMA programs to.
811 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
812 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
813 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
814 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
815 ctx
->last
= ctx
->buffer_tail
->buffer
;
816 ctx
->prev
= ctx
->buffer_tail
->buffer
;
821 static void context_release(struct context
*ctx
)
823 struct fw_card
*card
= &ctx
->ohci
->card
;
824 struct descriptor_buffer
*desc
, *tmp
;
826 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
827 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
829 ((void *)&desc
->buffer
- (void *)desc
));
832 /* Must be called with ohci->lock held */
833 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
834 int z
, dma_addr_t
*d_bus
)
836 struct descriptor
*d
= NULL
;
837 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
839 if (z
* sizeof(*d
) > desc
->buffer_size
)
842 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
843 /* No room for the descriptor in this buffer, so advance to the
846 if (desc
->list
.next
== &ctx
->buffer_list
) {
847 /* If there is no free buffer next in the list,
849 if (context_add_buffer(ctx
) < 0)
852 desc
= list_entry(desc
->list
.next
,
853 struct descriptor_buffer
, list
);
854 ctx
->buffer_tail
= desc
;
857 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
858 memset(d
, 0, z
* sizeof(*d
));
859 *d_bus
= desc
->buffer_bus
+ desc
->used
;
864 static void context_run(struct context
*ctx
, u32 extra
)
866 struct fw_ohci
*ohci
= ctx
->ohci
;
868 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
869 le32_to_cpu(ctx
->last
->branch_address
));
870 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
871 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
875 static void context_append(struct context
*ctx
,
876 struct descriptor
*d
, int z
, int extra
)
879 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
881 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
883 desc
->used
+= (z
+ extra
) * sizeof(*d
);
884 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
885 ctx
->prev
= find_branch_descriptor(d
, z
);
887 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
888 flush_writes(ctx
->ohci
);
891 static void context_stop(struct context
*ctx
)
896 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
897 flush_writes(ctx
->ohci
);
899 for (i
= 0; i
< 10; i
++) {
900 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
901 if ((reg
& CONTEXT_ACTIVE
) == 0)
906 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
910 struct fw_packet
*packet
;
914 * This function apppends a packet to the DMA queue for transmission.
915 * Must always be called with the ochi->lock held to ensure proper
916 * generation handling and locking around packet queue manipulation.
918 static int at_context_queue_packet(struct context
*ctx
,
919 struct fw_packet
*packet
)
921 struct fw_ohci
*ohci
= ctx
->ohci
;
922 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
923 struct driver_data
*driver_data
;
924 struct descriptor
*d
, *last
;
929 d
= context_get_descriptors(ctx
, 4, &d_bus
);
931 packet
->ack
= RCODE_SEND_ERROR
;
935 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
936 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
939 * The DMA format for asyncronous link packets is different
940 * from the IEEE1394 layout, so shift the fields around
941 * accordingly. If header_length is 8, it's a PHY packet, to
942 * which we need to prepend an extra quadlet.
945 header
= (__le32
*) &d
[1];
946 switch (packet
->header_length
) {
949 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
950 (packet
->speed
<< 16));
951 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
952 (packet
->header
[0] & 0xffff0000));
953 header
[2] = cpu_to_le32(packet
->header
[2]);
955 tcode
= (packet
->header
[0] >> 4) & 0x0f;
956 if (TCODE_IS_BLOCK_PACKET(tcode
))
957 header
[3] = cpu_to_le32(packet
->header
[3]);
959 header
[3] = (__force __le32
) packet
->header
[3];
961 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
965 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
966 (packet
->speed
<< 16));
967 header
[1] = cpu_to_le32(packet
->header
[0]);
968 header
[2] = cpu_to_le32(packet
->header
[1]);
969 d
[0].req_count
= cpu_to_le16(12);
973 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
974 (packet
->speed
<< 16));
975 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
976 d
[0].req_count
= cpu_to_le16(8);
981 packet
->ack
= RCODE_SEND_ERROR
;
985 driver_data
= (struct driver_data
*) &d
[3];
986 driver_data
->packet
= packet
;
987 packet
->driver_data
= driver_data
;
989 if (packet
->payload_length
> 0) {
991 dma_map_single(ohci
->card
.device
, packet
->payload
,
992 packet
->payload_length
, DMA_TO_DEVICE
);
993 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
994 packet
->ack
= RCODE_SEND_ERROR
;
997 packet
->payload_bus
= payload_bus
;
999 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1000 d
[2].data_address
= cpu_to_le32(payload_bus
);
1008 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1009 DESCRIPTOR_IRQ_ALWAYS
|
1010 DESCRIPTOR_BRANCH_ALWAYS
);
1013 * If the controller and packet generations don't match, we need to
1014 * bail out and try again. If IntEvent.busReset is set, the AT context
1015 * is halted, so appending to the context and trying to run it is
1016 * futile. Most controllers do the right thing and just flush the AT
1017 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1018 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1019 * up stalling out. So we just bail out in software and try again
1020 * later, and everyone is happy.
1021 * FIXME: Document how the locking works.
1023 if (ohci
->generation
!= packet
->generation
||
1024 reg_read(ohci
, OHCI1394_IntEventSet
) & OHCI1394_busReset
) {
1025 if (packet
->payload_length
> 0)
1026 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1027 packet
->payload_length
, DMA_TO_DEVICE
);
1028 packet
->ack
= RCODE_GENERATION
;
1032 context_append(ctx
, d
, z
, 4 - z
);
1034 /* If the context isn't already running, start it up. */
1035 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1036 if ((reg
& CONTEXT_RUN
) == 0)
1037 context_run(ctx
, 0);
1042 static int handle_at_packet(struct context
*context
,
1043 struct descriptor
*d
,
1044 struct descriptor
*last
)
1046 struct driver_data
*driver_data
;
1047 struct fw_packet
*packet
;
1048 struct fw_ohci
*ohci
= context
->ohci
;
1051 if (last
->transfer_status
== 0)
1052 /* This descriptor isn't done yet, stop iteration. */
1055 driver_data
= (struct driver_data
*) &d
[3];
1056 packet
= driver_data
->packet
;
1058 /* This packet was cancelled, just continue. */
1061 if (packet
->payload_bus
)
1062 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1063 packet
->payload_length
, DMA_TO_DEVICE
);
1065 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1066 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1068 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1071 case OHCI1394_evt_timeout
:
1072 /* Async response transmit timed out. */
1073 packet
->ack
= RCODE_CANCELLED
;
1076 case OHCI1394_evt_flushed
:
1078 * The packet was flushed should give same error as
1079 * when we try to use a stale generation count.
1081 packet
->ack
= RCODE_GENERATION
;
1084 case OHCI1394_evt_missing_ack
:
1086 * Using a valid (current) generation count, but the
1087 * node is not on the bus or not sending acks.
1089 packet
->ack
= RCODE_NO_ACK
;
1092 case ACK_COMPLETE
+ 0x10:
1093 case ACK_PENDING
+ 0x10:
1094 case ACK_BUSY_X
+ 0x10:
1095 case ACK_BUSY_A
+ 0x10:
1096 case ACK_BUSY_B
+ 0x10:
1097 case ACK_DATA_ERROR
+ 0x10:
1098 case ACK_TYPE_ERROR
+ 0x10:
1099 packet
->ack
= evt
- 0x10;
1103 packet
->ack
= RCODE_SEND_ERROR
;
1107 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1112 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1113 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1114 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1115 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1116 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1118 static void handle_local_rom(struct fw_ohci
*ohci
,
1119 struct fw_packet
*packet
, u32 csr
)
1121 struct fw_packet response
;
1122 int tcode
, length
, i
;
1124 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1125 if (TCODE_IS_BLOCK_PACKET(tcode
))
1126 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1130 i
= csr
- CSR_CONFIG_ROM
;
1131 if (i
+ length
> CONFIG_ROM_SIZE
) {
1132 fw_fill_response(&response
, packet
->header
,
1133 RCODE_ADDRESS_ERROR
, NULL
, 0);
1134 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1135 fw_fill_response(&response
, packet
->header
,
1136 RCODE_TYPE_ERROR
, NULL
, 0);
1138 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1139 (void *) ohci
->config_rom
+ i
, length
);
1142 fw_core_handle_response(&ohci
->card
, &response
);
1145 static void handle_local_lock(struct fw_ohci
*ohci
,
1146 struct fw_packet
*packet
, u32 csr
)
1148 struct fw_packet response
;
1149 int tcode
, length
, ext_tcode
, sel
;
1150 __be32
*payload
, lock_old
;
1151 u32 lock_arg
, lock_data
;
1153 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1154 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1155 payload
= packet
->payload
;
1156 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1158 if (tcode
== TCODE_LOCK_REQUEST
&&
1159 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1160 lock_arg
= be32_to_cpu(payload
[0]);
1161 lock_data
= be32_to_cpu(payload
[1]);
1162 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1166 fw_fill_response(&response
, packet
->header
,
1167 RCODE_TYPE_ERROR
, NULL
, 0);
1171 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1172 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1173 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1174 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1176 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
1177 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
1179 fw_notify("swap not done yet\n");
1181 fw_fill_response(&response
, packet
->header
,
1182 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
1184 fw_core_handle_response(&ohci
->card
, &response
);
1187 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1192 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1193 packet
->ack
= ACK_PENDING
;
1194 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1198 ((unsigned long long)
1199 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1201 csr
= offset
- CSR_REGISTER_BASE
;
1203 /* Handle config rom reads. */
1204 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1205 handle_local_rom(ctx
->ohci
, packet
, csr
);
1207 case CSR_BUS_MANAGER_ID
:
1208 case CSR_BANDWIDTH_AVAILABLE
:
1209 case CSR_CHANNELS_AVAILABLE_HI
:
1210 case CSR_CHANNELS_AVAILABLE_LO
:
1211 handle_local_lock(ctx
->ohci
, packet
, csr
);
1214 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1215 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1217 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1221 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1222 packet
->ack
= ACK_COMPLETE
;
1223 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1227 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1229 unsigned long flags
;
1232 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1234 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1235 ctx
->ohci
->generation
== packet
->generation
) {
1236 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1237 handle_local_request(ctx
, packet
);
1241 ret
= at_context_queue_packet(ctx
, packet
);
1242 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1245 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1249 static void bus_reset_tasklet(unsigned long data
)
1251 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1252 int self_id_count
, i
, j
, reg
;
1253 int generation
, new_generation
;
1254 unsigned long flags
;
1255 void *free_rom
= NULL
;
1256 dma_addr_t free_rom_bus
= 0;
1258 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1259 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1260 fw_notify("node ID not valid, new bus reset in progress\n");
1263 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1264 fw_notify("malconfigured bus\n");
1267 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1268 OHCI1394_NodeID_nodeNumber
);
1270 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1271 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1272 fw_notify("inconsistent self IDs\n");
1276 * The count in the SelfIDCount register is the number of
1277 * bytes in the self ID receive buffer. Since we also receive
1278 * the inverted quadlets and a header quadlet, we shift one
1279 * bit extra to get the actual number of self IDs.
1281 self_id_count
= (reg
>> 3) & 0x3ff;
1282 if (self_id_count
== 0) {
1283 fw_notify("inconsistent self IDs\n");
1286 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1289 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1290 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1291 fw_notify("inconsistent self IDs\n");
1294 ohci
->self_id_buffer
[j
] =
1295 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1300 * Check the consistency of the self IDs we just read. The
1301 * problem we face is that a new bus reset can start while we
1302 * read out the self IDs from the DMA buffer. If this happens,
1303 * the DMA buffer will be overwritten with new self IDs and we
1304 * will read out inconsistent data. The OHCI specification
1305 * (section 11.2) recommends a technique similar to
1306 * linux/seqlock.h, where we remember the generation of the
1307 * self IDs in the buffer before reading them out and compare
1308 * it to the current generation after reading them out. If
1309 * the two generations match we know we have a consistent set
1313 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1314 if (new_generation
!= generation
) {
1315 fw_notify("recursive bus reset detected, "
1316 "discarding self ids\n");
1320 /* FIXME: Document how the locking works. */
1321 spin_lock_irqsave(&ohci
->lock
, flags
);
1323 ohci
->generation
= generation
;
1324 context_stop(&ohci
->at_request_ctx
);
1325 context_stop(&ohci
->at_response_ctx
);
1326 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1328 if (ohci
->bus_reset_packet_quirk
)
1329 ohci
->request_generation
= generation
;
1332 * This next bit is unrelated to the AT context stuff but we
1333 * have to do it under the spinlock also. If a new config rom
1334 * was set up before this reset, the old one is now no longer
1335 * in use and we can free it. Update the config rom pointers
1336 * to point to the current config rom and clear the
1337 * next_config_rom pointer so a new udpate can take place.
1340 if (ohci
->next_config_rom
!= NULL
) {
1341 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1342 free_rom
= ohci
->config_rom
;
1343 free_rom_bus
= ohci
->config_rom_bus
;
1345 ohci
->config_rom
= ohci
->next_config_rom
;
1346 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1347 ohci
->next_config_rom
= NULL
;
1350 * Restore config_rom image and manually update
1351 * config_rom registers. Writing the header quadlet
1352 * will indicate that the config rom is ready, so we
1355 reg_write(ohci
, OHCI1394_BusOptions
,
1356 be32_to_cpu(ohci
->config_rom
[2]));
1357 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1358 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1361 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1362 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1363 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1366 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1369 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1370 free_rom
, free_rom_bus
);
1372 log_selfids(ohci
->node_id
, generation
,
1373 self_id_count
, ohci
->self_id_buffer
);
1375 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1376 self_id_count
, ohci
->self_id_buffer
);
1379 static irqreturn_t
irq_handler(int irq
, void *data
)
1381 struct fw_ohci
*ohci
= data
;
1382 u32 event
, iso_event
, cycle_time
;
1385 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1387 if (!event
|| !~event
)
1390 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1391 reg_write(ohci
, OHCI1394_IntEventClear
, event
& ~OHCI1394_busReset
);
1394 if (event
& OHCI1394_selfIDComplete
)
1395 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1397 if (event
& OHCI1394_RQPkt
)
1398 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1400 if (event
& OHCI1394_RSPkt
)
1401 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1403 if (event
& OHCI1394_reqTxComplete
)
1404 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1406 if (event
& OHCI1394_respTxComplete
)
1407 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1409 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1410 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1413 i
= ffs(iso_event
) - 1;
1414 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1415 iso_event
&= ~(1 << i
);
1418 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1419 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1422 i
= ffs(iso_event
) - 1;
1423 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1424 iso_event
&= ~(1 << i
);
1427 if (unlikely(event
& OHCI1394_regAccessFail
))
1428 fw_error("Register access failure - "
1429 "please notify linux1394-devel@lists.sf.net\n");
1431 if (unlikely(event
& OHCI1394_postedWriteErr
))
1432 fw_error("PCI posted write error\n");
1434 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1435 if (printk_ratelimit())
1436 fw_notify("isochronous cycle too long\n");
1437 reg_write(ohci
, OHCI1394_LinkControlSet
,
1438 OHCI1394_LinkControl_cycleMaster
);
1441 if (event
& OHCI1394_cycle64Seconds
) {
1442 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1443 if ((cycle_time
& 0x80000000) == 0)
1444 atomic_inc(&ohci
->bus_seconds
);
1450 static int software_reset(struct fw_ohci
*ohci
)
1454 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1456 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1457 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1458 OHCI1394_HCControl_softReset
) == 0)
1466 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1468 struct fw_ohci
*ohci
= fw_ohci(card
);
1469 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1473 if (software_reset(ohci
)) {
1474 fw_error("Failed to reset ohci card.\n");
1479 * Now enable LPS, which we need in order to start accessing
1480 * most of the registers. In fact, on some cards (ALI M5251),
1481 * accessing registers in the SClk domain without LPS enabled
1482 * will lock up the machine. Wait 50msec to make sure we have
1483 * full link enabled. However, with some cards (well, at least
1484 * a JMicron PCIe card), we have to try again sometimes.
1486 reg_write(ohci
, OHCI1394_HCControlSet
,
1487 OHCI1394_HCControl_LPS
|
1488 OHCI1394_HCControl_postedWriteEnable
);
1491 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
1493 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
1494 OHCI1394_HCControl_LPS
;
1498 fw_error("Failed to set Link Power Status\n");
1502 reg_write(ohci
, OHCI1394_HCControlClear
,
1503 OHCI1394_HCControl_noByteSwapData
);
1505 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1506 reg_write(ohci
, OHCI1394_LinkControlClear
,
1507 OHCI1394_LinkControl_rcvPhyPkt
);
1508 reg_write(ohci
, OHCI1394_LinkControlSet
,
1509 OHCI1394_LinkControl_rcvSelfID
|
1510 OHCI1394_LinkControl_cycleTimerEnable
|
1511 OHCI1394_LinkControl_cycleMaster
);
1513 reg_write(ohci
, OHCI1394_ATRetries
,
1514 OHCI1394_MAX_AT_REQ_RETRIES
|
1515 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1516 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1518 ar_context_run(&ohci
->ar_request_ctx
);
1519 ar_context_run(&ohci
->ar_response_ctx
);
1521 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1522 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1523 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1524 reg_write(ohci
, OHCI1394_IntMaskSet
,
1525 OHCI1394_selfIDComplete
|
1526 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1527 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1528 OHCI1394_isochRx
| OHCI1394_isochTx
|
1529 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1530 OHCI1394_cycle64Seconds
| OHCI1394_regAccessFail
|
1531 OHCI1394_masterIntEnable
);
1532 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
1533 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_busReset
);
1535 /* Activate link_on bit and contender bit in our self ID packets.*/
1536 if (ohci_update_phy_reg(card
, 4, 0,
1537 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1541 * When the link is not yet enabled, the atomic config rom
1542 * update mechanism described below in ohci_set_config_rom()
1543 * is not active. We have to update ConfigRomHeader and
1544 * BusOptions manually, and the write to ConfigROMmap takes
1545 * effect immediately. We tie this to the enabling of the
1546 * link, so we have a valid config rom before enabling - the
1547 * OHCI requires that ConfigROMhdr and BusOptions have valid
1548 * values before enabling.
1550 * However, when the ConfigROMmap is written, some controllers
1551 * always read back quadlets 0 and 2 from the config rom to
1552 * the ConfigRomHeader and BusOptions registers on bus reset.
1553 * They shouldn't do that in this initial case where the link
1554 * isn't enabled. This means we have to use the same
1555 * workaround here, setting the bus header to 0 and then write
1556 * the right values in the bus reset tasklet.
1560 ohci
->next_config_rom
=
1561 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1562 &ohci
->next_config_rom_bus
,
1564 if (ohci
->next_config_rom
== NULL
)
1567 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1568 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1571 * In the suspend case, config_rom is NULL, which
1572 * means that we just reuse the old config rom.
1574 ohci
->next_config_rom
= ohci
->config_rom
;
1575 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1578 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1579 ohci
->next_config_rom
[0] = 0;
1580 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1581 reg_write(ohci
, OHCI1394_BusOptions
,
1582 be32_to_cpu(ohci
->next_config_rom
[2]));
1583 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1585 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1587 if (request_irq(dev
->irq
, irq_handler
,
1588 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1589 fw_error("Failed to allocate shared interrupt %d.\n",
1591 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1592 ohci
->config_rom
, ohci
->config_rom_bus
);
1596 reg_write(ohci
, OHCI1394_HCControlSet
,
1597 OHCI1394_HCControl_linkEnable
|
1598 OHCI1394_HCControl_BIBimageValid
);
1602 * We are ready to go, initiate bus reset to finish the
1606 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1611 static int ohci_set_config_rom(struct fw_card
*card
,
1612 u32
*config_rom
, size_t length
)
1614 struct fw_ohci
*ohci
;
1615 unsigned long flags
;
1617 __be32
*next_config_rom
;
1618 dma_addr_t
uninitialized_var(next_config_rom_bus
);
1620 ohci
= fw_ohci(card
);
1623 * When the OHCI controller is enabled, the config rom update
1624 * mechanism is a bit tricky, but easy enough to use. See
1625 * section 5.5.6 in the OHCI specification.
1627 * The OHCI controller caches the new config rom address in a
1628 * shadow register (ConfigROMmapNext) and needs a bus reset
1629 * for the changes to take place. When the bus reset is
1630 * detected, the controller loads the new values for the
1631 * ConfigRomHeader and BusOptions registers from the specified
1632 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1633 * shadow register. All automatically and atomically.
1635 * Now, there's a twist to this story. The automatic load of
1636 * ConfigRomHeader and BusOptions doesn't honor the
1637 * noByteSwapData bit, so with a be32 config rom, the
1638 * controller will load be32 values in to these registers
1639 * during the atomic update, even on litte endian
1640 * architectures. The workaround we use is to put a 0 in the
1641 * header quadlet; 0 is endian agnostic and means that the
1642 * config rom isn't ready yet. In the bus reset tasklet we
1643 * then set up the real values for the two registers.
1645 * We use ohci->lock to avoid racing with the code that sets
1646 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1650 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1651 &next_config_rom_bus
, GFP_KERNEL
);
1652 if (next_config_rom
== NULL
)
1655 spin_lock_irqsave(&ohci
->lock
, flags
);
1657 if (ohci
->next_config_rom
== NULL
) {
1658 ohci
->next_config_rom
= next_config_rom
;
1659 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1661 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1662 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1665 ohci
->next_header
= config_rom
[0];
1666 ohci
->next_config_rom
[0] = 0;
1668 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1669 ohci
->next_config_rom_bus
);
1673 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1676 * Now initiate a bus reset to have the changes take
1677 * effect. We clean up the old config rom memory and DMA
1678 * mappings in the bus reset tasklet, since the OHCI
1679 * controller could need to access it before the bus reset
1683 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1685 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1686 next_config_rom
, next_config_rom_bus
);
1691 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1693 struct fw_ohci
*ohci
= fw_ohci(card
);
1695 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1698 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1700 struct fw_ohci
*ohci
= fw_ohci(card
);
1702 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1705 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1707 struct fw_ohci
*ohci
= fw_ohci(card
);
1708 struct context
*ctx
= &ohci
->at_request_ctx
;
1709 struct driver_data
*driver_data
= packet
->driver_data
;
1712 tasklet_disable(&ctx
->tasklet
);
1714 if (packet
->ack
!= 0)
1717 if (packet
->payload_bus
)
1718 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1719 packet
->payload_length
, DMA_TO_DEVICE
);
1721 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
1722 driver_data
->packet
= NULL
;
1723 packet
->ack
= RCODE_CANCELLED
;
1724 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1727 tasklet_enable(&ctx
->tasklet
);
1732 static int ohci_enable_phys_dma(struct fw_card
*card
,
1733 int node_id
, int generation
)
1735 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1738 struct fw_ohci
*ohci
= fw_ohci(card
);
1739 unsigned long flags
;
1743 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1744 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1747 spin_lock_irqsave(&ohci
->lock
, flags
);
1749 if (ohci
->generation
!= generation
) {
1755 * Note, if the node ID contains a non-local bus ID, physical DMA is
1756 * enabled for _all_ nodes on remote buses.
1759 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1761 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1763 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1767 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1770 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1773 static u64
ohci_get_bus_time(struct fw_card
*card
)
1775 struct fw_ohci
*ohci
= fw_ohci(card
);
1779 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1780 bus_time
= ((u64
)atomic_read(&ohci
->bus_seconds
) << 32) | cycle_time
;
1785 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
1787 int i
= ctx
->header_length
;
1789 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
1793 * The iso header is byteswapped to little endian by
1794 * the controller, but the remaining header quadlets
1795 * are big endian. We want to present all the headers
1796 * as big endian, so we have to swap the first quadlet.
1798 if (ctx
->base
.header_size
> 0)
1799 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1800 if (ctx
->base
.header_size
> 4)
1801 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
1802 if (ctx
->base
.header_size
> 8)
1803 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
1804 ctx
->header_length
+= ctx
->base
.header_size
;
1807 static int handle_ir_dualbuffer_packet(struct context
*context
,
1808 struct descriptor
*d
,
1809 struct descriptor
*last
)
1811 struct iso_context
*ctx
=
1812 container_of(context
, struct iso_context
, context
);
1813 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1815 size_t header_length
;
1818 if (db
->first_res_count
!= 0 && db
->second_res_count
!= 0) {
1819 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1820 /* This descriptor isn't done yet, stop iteration. */
1823 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1826 header_length
= le16_to_cpu(db
->first_req_count
) -
1827 le16_to_cpu(db
->first_res_count
);
1830 end
= p
+ header_length
;
1832 copy_iso_headers(ctx
, p
);
1833 ctx
->excess_bytes
+=
1834 (le32_to_cpu(*(__le32
*)(p
+ 4)) >> 16) & 0xffff;
1835 p
+= max(ctx
->base
.header_size
, (size_t)8);
1838 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1839 le16_to_cpu(db
->second_res_count
);
1841 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1842 ir_header
= (__le32
*) (db
+ 1);
1843 ctx
->base
.callback(&ctx
->base
,
1844 le32_to_cpu(ir_header
[0]) & 0xffff,
1845 ctx
->header_length
, ctx
->header
,
1846 ctx
->base
.callback_data
);
1847 ctx
->header_length
= 0;
1853 static int handle_ir_packet_per_buffer(struct context
*context
,
1854 struct descriptor
*d
,
1855 struct descriptor
*last
)
1857 struct iso_context
*ctx
=
1858 container_of(context
, struct iso_context
, context
);
1859 struct descriptor
*pd
;
1863 for (pd
= d
; pd
<= last
; pd
++) {
1864 if (pd
->transfer_status
)
1868 /* Descriptor(s) not done yet, stop iteration */
1872 copy_iso_headers(ctx
, p
);
1874 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1875 ir_header
= (__le32
*) p
;
1876 ctx
->base
.callback(&ctx
->base
,
1877 le32_to_cpu(ir_header
[0]) & 0xffff,
1878 ctx
->header_length
, ctx
->header
,
1879 ctx
->base
.callback_data
);
1880 ctx
->header_length
= 0;
1886 static int handle_it_packet(struct context
*context
,
1887 struct descriptor
*d
,
1888 struct descriptor
*last
)
1890 struct iso_context
*ctx
=
1891 container_of(context
, struct iso_context
, context
);
1893 if (last
->transfer_status
== 0)
1894 /* This descriptor isn't done yet, stop iteration. */
1897 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1898 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1899 0, NULL
, ctx
->base
.callback_data
);
1904 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
1905 int type
, int channel
, size_t header_size
)
1907 struct fw_ohci
*ohci
= fw_ohci(card
);
1908 struct iso_context
*ctx
, *list
;
1909 descriptor_callback_t callback
;
1910 u64
*channels
, dont_care
= ~0ULL;
1912 unsigned long flags
;
1913 int index
, ret
= -ENOMEM
;
1915 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1916 channels
= &dont_care
;
1917 mask
= &ohci
->it_context_mask
;
1918 list
= ohci
->it_context_list
;
1919 callback
= handle_it_packet
;
1921 channels
= &ohci
->ir_context_channels
;
1922 mask
= &ohci
->ir_context_mask
;
1923 list
= ohci
->ir_context_list
;
1924 if (ohci
->use_dualbuffer
)
1925 callback
= handle_ir_dualbuffer_packet
;
1927 callback
= handle_ir_packet_per_buffer
;
1930 spin_lock_irqsave(&ohci
->lock
, flags
);
1931 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
1933 *channels
&= ~(1ULL << channel
);
1934 *mask
&= ~(1 << index
);
1936 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1939 return ERR_PTR(-EBUSY
);
1941 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1942 regs
= OHCI1394_IsoXmitContextBase(index
);
1944 regs
= OHCI1394_IsoRcvContextBase(index
);
1947 memset(ctx
, 0, sizeof(*ctx
));
1948 ctx
->header_length
= 0;
1949 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1950 if (ctx
->header
== NULL
)
1953 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
1955 goto out_with_header
;
1960 free_page((unsigned long)ctx
->header
);
1962 spin_lock_irqsave(&ohci
->lock
, flags
);
1963 *mask
|= 1 << index
;
1964 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1966 return ERR_PTR(ret
);
1969 static int ohci_start_iso(struct fw_iso_context
*base
,
1970 s32 cycle
, u32 sync
, u32 tags
)
1972 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1973 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1977 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1978 index
= ctx
- ohci
->it_context_list
;
1981 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1982 (cycle
& 0x7fff) << 16;
1984 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1985 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1986 context_run(&ctx
->context
, match
);
1988 index
= ctx
- ohci
->ir_context_list
;
1989 control
= IR_CONTEXT_ISOCH_HEADER
;
1990 if (ohci
->use_dualbuffer
)
1991 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1992 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1994 match
|= (cycle
& 0x07fff) << 12;
1995 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1998 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1999 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2000 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2001 context_run(&ctx
->context
, control
);
2007 static int ohci_stop_iso(struct fw_iso_context
*base
)
2009 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2010 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2013 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2014 index
= ctx
- ohci
->it_context_list
;
2015 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2017 index
= ctx
- ohci
->ir_context_list
;
2018 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2021 context_stop(&ctx
->context
);
2026 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2028 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2029 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2030 unsigned long flags
;
2033 ohci_stop_iso(base
);
2034 context_release(&ctx
->context
);
2035 free_page((unsigned long)ctx
->header
);
2037 spin_lock_irqsave(&ohci
->lock
, flags
);
2039 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2040 index
= ctx
- ohci
->it_context_list
;
2041 ohci
->it_context_mask
|= 1 << index
;
2043 index
= ctx
- ohci
->ir_context_list
;
2044 ohci
->ir_context_mask
|= 1 << index
;
2045 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2048 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2051 static int ohci_queue_iso_transmit(struct fw_iso_context
*base
,
2052 struct fw_iso_packet
*packet
,
2053 struct fw_iso_buffer
*buffer
,
2054 unsigned long payload
)
2056 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2057 struct descriptor
*d
, *last
, *pd
;
2058 struct fw_iso_packet
*p
;
2060 dma_addr_t d_bus
, page_bus
;
2061 u32 z
, header_z
, payload_z
, irq
;
2062 u32 payload_index
, payload_end_index
, next_page_index
;
2063 int page
, end_page
, i
, length
, offset
;
2066 * FIXME: Cycle lost behavior should be configurable: lose
2067 * packet, retransmit or terminate..
2071 payload_index
= payload
;
2077 if (p
->header_length
> 0)
2080 /* Determine the first page the payload isn't contained in. */
2081 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2082 if (p
->payload_length
> 0)
2083 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2089 /* Get header size in number of descriptors. */
2090 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2092 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2097 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2098 d
[0].req_count
= cpu_to_le16(8);
2100 header
= (__le32
*) &d
[1];
2101 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2102 IT_HEADER_TAG(p
->tag
) |
2103 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2104 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2105 IT_HEADER_SPEED(ctx
->base
.speed
));
2107 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2108 p
->payload_length
));
2111 if (p
->header_length
> 0) {
2112 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2113 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2114 memcpy(&d
[z
], p
->header
, p
->header_length
);
2117 pd
= d
+ z
- payload_z
;
2118 payload_end_index
= payload_index
+ p
->payload_length
;
2119 for (i
= 0; i
< payload_z
; i
++) {
2120 page
= payload_index
>> PAGE_SHIFT
;
2121 offset
= payload_index
& ~PAGE_MASK
;
2122 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2124 min(next_page_index
, payload_end_index
) - payload_index
;
2125 pd
[i
].req_count
= cpu_to_le16(length
);
2127 page_bus
= page_private(buffer
->pages
[page
]);
2128 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2130 payload_index
+= length
;
2134 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2136 irq
= DESCRIPTOR_NO_IRQ
;
2138 last
= z
== 2 ? d
: d
+ z
- 1;
2139 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2141 DESCRIPTOR_BRANCH_ALWAYS
|
2144 context_append(&ctx
->context
, d
, z
, header_z
);
2149 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
2150 struct fw_iso_packet
*packet
,
2151 struct fw_iso_buffer
*buffer
,
2152 unsigned long payload
)
2154 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2155 struct db_descriptor
*db
= NULL
;
2156 struct descriptor
*d
;
2157 struct fw_iso_packet
*p
;
2158 dma_addr_t d_bus
, page_bus
;
2159 u32 z
, header_z
, length
, rest
;
2160 int page
, offset
, packet_count
, header_size
;
2163 * FIXME: Cycle lost behavior should be configurable: lose
2164 * packet, retransmit or terminate..
2171 * The OHCI controller puts the isochronous header and trailer in the
2172 * buffer, so we need at least 8 bytes.
2174 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2175 header_size
= packet_count
* max(ctx
->base
.header_size
, (size_t)8);
2177 /* Get header size in number of descriptors. */
2178 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2179 page
= payload
>> PAGE_SHIFT
;
2180 offset
= payload
& ~PAGE_MASK
;
2181 rest
= p
->payload_length
;
2183 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2185 d
= context_get_descriptors(&ctx
->context
,
2186 z
+ header_z
, &d_bus
);
2190 db
= (struct db_descriptor
*) d
;
2191 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2192 DESCRIPTOR_BRANCH_ALWAYS
);
2194 cpu_to_le16(max(ctx
->base
.header_size
, (size_t)8));
2195 if (p
->skip
&& rest
== p
->payload_length
) {
2196 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2197 db
->first_req_count
= db
->first_size
;
2199 db
->first_req_count
= cpu_to_le16(header_size
);
2201 db
->first_res_count
= db
->first_req_count
;
2202 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
2204 if (p
->skip
&& rest
== p
->payload_length
)
2206 else if (offset
+ rest
< PAGE_SIZE
)
2209 length
= PAGE_SIZE
- offset
;
2211 db
->second_req_count
= cpu_to_le16(length
);
2212 db
->second_res_count
= db
->second_req_count
;
2213 page_bus
= page_private(buffer
->pages
[page
]);
2214 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
2216 if (p
->interrupt
&& length
== rest
)
2217 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2219 context_append(&ctx
->context
, d
, z
, header_z
);
2220 offset
= (offset
+ length
) & ~PAGE_MASK
;
2229 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
2230 struct fw_iso_packet
*packet
,
2231 struct fw_iso_buffer
*buffer
,
2232 unsigned long payload
)
2234 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2235 struct descriptor
*d
= NULL
, *pd
= NULL
;
2236 struct fw_iso_packet
*p
= packet
;
2237 dma_addr_t d_bus
, page_bus
;
2238 u32 z
, header_z
, rest
;
2240 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2243 * The OHCI controller puts the isochronous header and trailer in the
2244 * buffer, so we need at least 8 bytes.
2246 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2247 header_size
= max(ctx
->base
.header_size
, (size_t)8);
2249 /* Get header size in number of descriptors. */
2250 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2251 page
= payload
>> PAGE_SHIFT
;
2252 offset
= payload
& ~PAGE_MASK
;
2253 payload_per_buffer
= p
->payload_length
/ packet_count
;
2255 for (i
= 0; i
< packet_count
; i
++) {
2256 /* d points to the header descriptor */
2257 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2258 d
= context_get_descriptors(&ctx
->context
,
2259 z
+ header_z
, &d_bus
);
2263 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2264 DESCRIPTOR_INPUT_MORE
);
2265 if (p
->skip
&& i
== 0)
2266 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2267 d
->req_count
= cpu_to_le16(header_size
);
2268 d
->res_count
= d
->req_count
;
2269 d
->transfer_status
= 0;
2270 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2272 rest
= payload_per_buffer
;
2273 for (j
= 1; j
< z
; j
++) {
2275 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2276 DESCRIPTOR_INPUT_MORE
);
2278 if (offset
+ rest
< PAGE_SIZE
)
2281 length
= PAGE_SIZE
- offset
;
2282 pd
->req_count
= cpu_to_le16(length
);
2283 pd
->res_count
= pd
->req_count
;
2284 pd
->transfer_status
= 0;
2286 page_bus
= page_private(buffer
->pages
[page
]);
2287 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
2289 offset
= (offset
+ length
) & ~PAGE_MASK
;
2294 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2295 DESCRIPTOR_INPUT_LAST
|
2296 DESCRIPTOR_BRANCH_ALWAYS
);
2297 if (p
->interrupt
&& i
== packet_count
- 1)
2298 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2300 context_append(&ctx
->context
, d
, z
, header_z
);
2306 static int ohci_queue_iso(struct fw_iso_context
*base
,
2307 struct fw_iso_packet
*packet
,
2308 struct fw_iso_buffer
*buffer
,
2309 unsigned long payload
)
2311 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2312 unsigned long flags
;
2315 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2316 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2317 ret
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2318 else if (ctx
->context
.ohci
->use_dualbuffer
)
2319 ret
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2322 ret
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2324 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2329 static const struct fw_card_driver ohci_driver
= {
2330 .enable
= ohci_enable
,
2331 .update_phy_reg
= ohci_update_phy_reg
,
2332 .set_config_rom
= ohci_set_config_rom
,
2333 .send_request
= ohci_send_request
,
2334 .send_response
= ohci_send_response
,
2335 .cancel_packet
= ohci_cancel_packet
,
2336 .enable_phys_dma
= ohci_enable_phys_dma
,
2337 .get_bus_time
= ohci_get_bus_time
,
2339 .allocate_iso_context
= ohci_allocate_iso_context
,
2340 .free_iso_context
= ohci_free_iso_context
,
2341 .queue_iso
= ohci_queue_iso
,
2342 .start_iso
= ohci_start_iso
,
2343 .stop_iso
= ohci_stop_iso
,
2346 #ifdef CONFIG_PPC_PMAC
2347 static void ohci_pmac_on(struct pci_dev
*dev
)
2349 if (machine_is(powermac
)) {
2350 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2353 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2354 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2359 static void ohci_pmac_off(struct pci_dev
*dev
)
2361 if (machine_is(powermac
)) {
2362 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2365 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2366 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2371 #define ohci_pmac_on(dev)
2372 #define ohci_pmac_off(dev)
2373 #endif /* CONFIG_PPC_PMAC */
2375 static int __devinit
pci_probe(struct pci_dev
*dev
,
2376 const struct pci_device_id
*ent
)
2378 struct fw_ohci
*ohci
;
2379 u32 bus_options
, max_receive
, link_speed
, version
;
2384 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2390 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2394 err
= pci_enable_device(dev
);
2396 fw_error("Failed to enable OHCI hardware\n");
2400 pci_set_master(dev
);
2401 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2402 pci_set_drvdata(dev
, ohci
);
2404 spin_lock_init(&ohci
->lock
);
2406 tasklet_init(&ohci
->bus_reset_tasklet
,
2407 bus_reset_tasklet
, (unsigned long)ohci
);
2409 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2411 fw_error("MMIO resource unavailable\n");
2415 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2416 if (ohci
->registers
== NULL
) {
2417 fw_error("Failed to remap registers\n");
2422 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2423 ohci
->use_dualbuffer
= version
>= OHCI_VERSION_1_1
;
2425 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2426 #if !defined(CONFIG_X86_32)
2427 /* dual-buffer mode is broken with descriptor addresses above 2G */
2428 if (dev
->vendor
== PCI_VENDOR_ID_TI
&&
2429 dev
->device
== PCI_DEVICE_ID_TI_TSB43AB22
)
2430 ohci
->use_dualbuffer
= false;
2433 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2434 ohci
->old_uninorth
= dev
->vendor
== PCI_VENDOR_ID_APPLE
&&
2435 dev
->device
== PCI_DEVICE_ID_APPLE_UNI_N_FW
;
2437 ohci
->bus_reset_packet_quirk
= dev
->vendor
== PCI_VENDOR_ID_TI
;
2439 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2440 OHCI1394_AsReqRcvContextControlSet
);
2442 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2443 OHCI1394_AsRspRcvContextControlSet
);
2445 context_init(&ohci
->at_request_ctx
, ohci
,
2446 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2448 context_init(&ohci
->at_response_ctx
, ohci
,
2449 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2451 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2452 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2453 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2454 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2455 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2457 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2458 ohci
->ir_context_channels
= ~0ULL;
2459 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2460 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2461 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2462 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2464 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2469 /* self-id dma buffer allocation */
2470 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2474 if (ohci
->self_id_cpu
== NULL
) {
2479 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2480 max_receive
= (bus_options
>> 12) & 0xf;
2481 link_speed
= bus_options
& 0x7;
2482 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2483 reg_read(ohci
, OHCI1394_GUIDLo
);
2485 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2489 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2490 dev_name(&dev
->dev
), version
>> 16, version
& 0xff);
2495 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2496 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2498 kfree(ohci
->ir_context_list
);
2499 kfree(ohci
->it_context_list
);
2500 context_release(&ohci
->at_response_ctx
);
2501 context_release(&ohci
->at_request_ctx
);
2502 ar_context_release(&ohci
->ar_response_ctx
);
2503 ar_context_release(&ohci
->ar_request_ctx
);
2504 pci_iounmap(dev
, ohci
->registers
);
2506 pci_release_region(dev
, 0);
2508 pci_disable_device(dev
);
2514 fw_error("Out of memory\n");
2519 static void pci_remove(struct pci_dev
*dev
)
2521 struct fw_ohci
*ohci
;
2523 ohci
= pci_get_drvdata(dev
);
2524 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2526 fw_core_remove_card(&ohci
->card
);
2529 * FIXME: Fail all pending packets here, now that the upper
2530 * layers can't queue any more.
2533 software_reset(ohci
);
2534 free_irq(dev
->irq
, ohci
);
2536 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
2537 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2538 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
2539 if (ohci
->config_rom
)
2540 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2541 ohci
->config_rom
, ohci
->config_rom_bus
);
2542 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2543 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2544 ar_context_release(&ohci
->ar_request_ctx
);
2545 ar_context_release(&ohci
->ar_response_ctx
);
2546 context_release(&ohci
->at_request_ctx
);
2547 context_release(&ohci
->at_response_ctx
);
2548 kfree(ohci
->it_context_list
);
2549 kfree(ohci
->ir_context_list
);
2550 pci_iounmap(dev
, ohci
->registers
);
2551 pci_release_region(dev
, 0);
2552 pci_disable_device(dev
);
2556 fw_notify("Removed fw-ohci device.\n");
2560 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
2562 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2565 software_reset(ohci
);
2566 free_irq(dev
->irq
, ohci
);
2567 err
= pci_save_state(dev
);
2569 fw_error("pci_save_state failed\n");
2572 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
2574 fw_error("pci_set_power_state failed with %d\n", err
);
2580 static int pci_resume(struct pci_dev
*dev
)
2582 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2586 pci_set_power_state(dev
, PCI_D0
);
2587 pci_restore_state(dev
);
2588 err
= pci_enable_device(dev
);
2590 fw_error("pci_enable_device failed\n");
2594 return ohci_enable(&ohci
->card
, NULL
, 0);
2598 static struct pci_device_id pci_table
[] = {
2599 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2603 MODULE_DEVICE_TABLE(pci
, pci_table
);
2605 static struct pci_driver fw_ohci_pci_driver
= {
2606 .name
= ohci_driver_name
,
2607 .id_table
= pci_table
,
2609 .remove
= pci_remove
,
2611 .resume
= pci_resume
,
2612 .suspend
= pci_suspend
,
2616 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2617 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2618 MODULE_LICENSE("GPL");
2620 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2621 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2622 MODULE_ALIAS("ohci1394");
2625 static int __init
fw_ohci_init(void)
2627 return pci_register_driver(&fw_ohci_pci_driver
);
2630 static void __exit
fw_ohci_cleanup(void)
2632 pci_unregister_driver(&fw_ohci_pci_driver
);
2635 module_init(fw_ohci_init
);
2636 module_exit(fw_ohci_cleanup
);