1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for OHCI 1394 controllers
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
8 #include <linux/bitops.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
34 #include <asm/byteorder.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
44 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
48 #define DESCRIPTOR_OUTPUT_MORE 0
49 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST (3 << 12)
52 #define DESCRIPTOR_STATUS (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54 #define DESCRIPTOR_PING (1 << 7)
55 #define DESCRIPTOR_YY (1 << 6)
56 #define DESCRIPTOR_NO_IRQ (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60 #define DESCRIPTOR_WAIT (3 << 0)
62 #define DESCRIPTOR_CMD (0xf << 12)
68 __le32 branch_address
;
70 __le16 transfer_status
;
71 } __attribute__((aligned(16)));
73 #define CONTROL_SET(regs) (regs)
74 #define CONTROL_CLEAR(regs) ((regs) + 4)
75 #define COMMAND_PTR(regs) ((regs) + 12)
76 #define CONTEXT_MATCH(regs) ((regs) + 16)
78 #define AR_BUFFER_SIZE (32*1024)
79 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
83 #define MAX_ASYNC_PAYLOAD 4096
84 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
89 struct page
*pages
[AR_BUFFERS
];
91 struct descriptor
*descriptors
;
92 dma_addr_t descriptors_bus
;
94 unsigned int last_buffer_index
;
96 struct tasklet_struct tasklet
;
101 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
102 struct descriptor
*d
,
103 struct descriptor
*last
);
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
109 struct descriptor_buffer
{
110 struct list_head list
;
111 dma_addr_t buffer_bus
;
114 struct descriptor buffer
[0];
118 struct fw_ohci
*ohci
;
120 int total_allocation
;
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
130 struct list_head buffer_list
;
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
136 struct descriptor_buffer
*buffer_tail
;
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
142 struct descriptor
*last
;
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
148 struct descriptor
*prev
;
151 descriptor_callback_t callback
;
153 struct tasklet_struct tasklet
;
156 #define IT_HEADER_SY(v) ((v) << 0)
157 #define IT_HEADER_TCODE(v) ((v) << 4)
158 #define IT_HEADER_CHANNEL(v) ((v) << 8)
159 #define IT_HEADER_TAG(v) ((v) << 14)
160 #define IT_HEADER_SPEED(v) ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
164 struct fw_iso_context base
;
165 struct context context
;
167 size_t header_length
;
168 unsigned long flushing_completions
;
176 #define CONFIG_ROM_SIZE 1024
181 __iomem
char *registers
;
184 int request_generation
; /* for timestamping incoming requests */
186 unsigned int pri_req_max
;
188 bool bus_time_running
;
190 bool csr_state_setclear_abdicate
;
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
199 struct mutex phy_reg_mutex
;
202 dma_addr_t misc_buffer_bus
;
204 struct ar_context ar_request_ctx
;
205 struct ar_context ar_response_ctx
;
206 struct context at_request_ctx
;
207 struct context at_response_ctx
;
209 u32 it_context_support
;
210 u32 it_context_mask
; /* unoccupied IT contexts */
211 struct iso_context
*it_context_list
;
212 u64 ir_context_channels
; /* unoccupied channels */
213 u32 ir_context_support
;
214 u32 ir_context_mask
; /* unoccupied IR contexts */
215 struct iso_context
*ir_context_list
;
216 u64 mc_channels
; /* channels in use by the multichannel IR context */
220 dma_addr_t config_rom_bus
;
221 __be32
*next_config_rom
;
222 dma_addr_t next_config_rom_bus
;
226 dma_addr_t self_id_bus
;
227 struct work_struct bus_reset_work
;
229 u32 self_id_buffer
[512];
232 static struct workqueue_struct
*selfid_workqueue
;
234 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
236 return container_of(card
, struct fw_ohci
, card
);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name
[] = KBUILD_MODNAME
;
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor
, device
, revision
, flags
;
286 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
289 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
292 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
295 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
298 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
301 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
304 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
307 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
308 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
310 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
311 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
313 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
314 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
316 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
317 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
319 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
322 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
323 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
325 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, 0,
326 QUIRK_CYCLE_TIMER
/* FIXME: necessary? */ | QUIRK_NO_MSI
},
328 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, PCI_ANY_ID
,
331 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
332 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks
;
337 module_param_named(quirks
, param_quirks
, int, 0644);
338 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
339 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
340 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
341 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
342 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
343 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
344 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
345 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
348 #define OHCI_PARAM_DEBUG_AT_AR 1
349 #define OHCI_PARAM_DEBUG_SELFIDS 2
350 #define OHCI_PARAM_DEBUG_IRQS 4
351 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
353 static int param_debug
;
354 module_param_named(debug
, param_debug
, int, 0644);
355 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
356 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
357 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
358 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
359 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
360 ", or a combination, or all = -1)");
362 static bool param_remote_dma
;
363 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
364 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
366 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
368 if (likely(!(param_debug
&
369 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
372 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
373 !(evt
& OHCI1394_busReset
))
376 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
377 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
378 evt
& OHCI1394_RQPkt
? " AR_req" : "",
379 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
380 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
381 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
382 evt
& OHCI1394_isochRx
? " IR" : "",
383 evt
& OHCI1394_isochTx
? " IT" : "",
384 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
385 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
386 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
387 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
388 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
389 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
390 evt
& OHCI1394_busReset
? " busReset" : "",
391 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
392 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
393 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
394 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
395 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
396 OHCI1394_cycleInconsistent
|
397 OHCI1394_regAccessFail
| OHCI1394_busReset
)
401 static const char *speed
[] = {
402 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
404 static const char *power
[] = {
405 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
406 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
408 static const char port
[] = { '.', '-', 'p', 'c', };
410 static char _p(u32
*s
, int shift
)
412 return port
[*s
>> shift
& 3];
415 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
419 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
422 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
423 self_id_count
, generation
, ohci
->node_id
);
425 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
426 if ((*s
& 1 << 23) == 0)
428 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
430 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
431 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
432 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
435 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
437 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
438 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
441 static const char *evts
[] = {
442 [0x00] = "evt_no_status", [0x01] = "-reserved-",
443 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
444 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
445 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
447 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
448 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
449 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
450 [0x10] = "-reserved-", [0x11] = "ack_complete",
451 [0x12] = "ack_pending ", [0x13] = "-reserved-",
452 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
453 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
454 [0x18] = "-reserved-", [0x19] = "-reserved-",
455 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
456 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
457 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
458 [0x20] = "pending/cancelled",
460 static const char *tcodes
[] = {
461 [0x0] = "QW req", [0x1] = "BW req",
462 [0x2] = "W resp", [0x3] = "-reserved-",
463 [0x4] = "QR req", [0x5] = "BR req",
464 [0x6] = "QR resp", [0x7] = "BR resp",
465 [0x8] = "cycle start", [0x9] = "Lk req",
466 [0xa] = "async stream packet", [0xb] = "Lk resp",
467 [0xc] = "-reserved-", [0xd] = "-reserved-",
468 [0xe] = "link internal", [0xf] = "-reserved-",
471 static void log_ar_at_event(struct fw_ohci
*ohci
,
472 char dir
, int speed
, u32
*header
, int evt
)
474 int tcode
= header
[0] >> 4 & 0xf;
477 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
480 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
483 if (evt
== OHCI1394_evt_bus_reset
) {
484 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
485 dir
, (header
[2] >> 16) & 0xff);
490 case 0x0: case 0x6: case 0x8:
491 snprintf(specific
, sizeof(specific
), " = %08x",
492 be32_to_cpu((__force __be32
)header
[3]));
494 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495 snprintf(specific
, sizeof(specific
), " %x,%x",
496 header
[3] >> 16, header
[3] & 0xffff);
504 ohci_notice(ohci
, "A%c %s, %s\n",
505 dir
, evts
[evt
], tcodes
[tcode
]);
508 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
509 dir
, evts
[evt
], header
[1], header
[2]);
511 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
513 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514 dir
, speed
, header
[0] >> 10 & 0x3f,
515 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
516 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521 dir
, speed
, header
[0] >> 10 & 0x3f,
522 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
523 tcodes
[tcode
], specific
);
527 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
529 writel(data
, ohci
->registers
+ offset
);
532 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
534 return readl(ohci
->registers
+ offset
);
537 static inline void flush_writes(const struct fw_ohci
*ohci
)
539 /* Do a dummy read to flush writes. */
540 reg_read(ohci
, OHCI1394_Version
);
544 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
549 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
554 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
555 for (i
= 0; i
< 3 + 100; i
++) {
556 val
= reg_read(ohci
, OHCI1394_PhyControl
);
558 return -ENODEV
; /* Card was ejected. */
560 if (val
& OHCI1394_PhyControl_ReadDone
)
561 return OHCI1394_PhyControl_ReadData(val
);
564 * Try a few times without waiting. Sleeping is necessary
565 * only when the link/PHY interface is busy.
570 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
576 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
580 reg_write(ohci
, OHCI1394_PhyControl
,
581 OHCI1394_PhyControl_Write(addr
, val
));
582 for (i
= 0; i
< 3 + 100; i
++) {
583 val
= reg_read(ohci
, OHCI1394_PhyControl
);
585 return -ENODEV
; /* Card was ejected. */
587 if (!(val
& OHCI1394_PhyControl_WritePending
))
593 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
599 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
600 int clear_bits
, int set_bits
)
602 int ret
= read_phy_reg(ohci
, addr
);
607 * The interrupt status bits are cleared by writing a one bit.
608 * Avoid clearing them unless explicitly requested in set_bits.
611 clear_bits
|= PHY_INT_STATUS_BITS
;
613 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
616 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
620 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
624 return read_phy_reg(ohci
, addr
);
627 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
629 struct fw_ohci
*ohci
= fw_ohci(card
);
632 mutex_lock(&ohci
->phy_reg_mutex
);
633 ret
= read_phy_reg(ohci
, addr
);
634 mutex_unlock(&ohci
->phy_reg_mutex
);
639 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
640 int clear_bits
, int set_bits
)
642 struct fw_ohci
*ohci
= fw_ohci(card
);
645 mutex_lock(&ohci
->phy_reg_mutex
);
646 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
647 mutex_unlock(&ohci
->phy_reg_mutex
);
652 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
654 return page_private(ctx
->pages
[i
]);
657 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
659 struct descriptor
*d
;
661 d
= &ctx
->descriptors
[index
];
662 d
->branch_address
&= cpu_to_le32(~0xf);
663 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
664 d
->transfer_status
= 0;
666 wmb(); /* finish init of new descriptors before branch_address update */
667 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
668 d
->branch_address
|= cpu_to_le32(1);
670 ctx
->last_buffer_index
= index
;
672 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
675 static void ar_context_release(struct ar_context
*ctx
)
681 for (i
= 0; i
< AR_BUFFERS
; i
++)
683 dma_unmap_page(ctx
->ohci
->card
.device
,
684 ar_buffer_bus(ctx
, i
),
685 PAGE_SIZE
, DMA_FROM_DEVICE
);
686 __free_page(ctx
->pages
[i
]);
690 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
692 struct fw_ohci
*ohci
= ctx
->ohci
;
694 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
695 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
698 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
700 /* FIXME: restart? */
703 static inline unsigned int ar_next_buffer_index(unsigned int index
)
705 return (index
+ 1) % AR_BUFFERS
;
708 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
710 return ar_next_buffer_index(ctx
->last_buffer_index
);
714 * We search for the buffer that contains the last AR packet DMA data written
717 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
718 unsigned int *buffer_offset
)
720 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
721 __le16 res_count
, next_res_count
;
723 i
= ar_first_buffer_index(ctx
);
724 res_count
= READ_ONCE(ctx
->descriptors
[i
].res_count
);
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i
!= last
&& res_count
== 0) {
729 /* Peek at the next descriptor. */
730 next_i
= ar_next_buffer_index(i
);
731 rmb(); /* read descriptors in order */
732 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
734 * If the next descriptor is still empty, we must stop at this
737 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
739 * The exception is when the DMA data for one packet is
740 * split over three buffers; in this case, the middle
741 * buffer's descriptor might be never updated by the
742 * controller and look still empty, and we have to peek
745 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
746 next_i
= ar_next_buffer_index(next_i
);
748 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
749 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
750 goto next_buffer_is_active
;
756 next_buffer_is_active
:
758 res_count
= next_res_count
;
761 rmb(); /* read res_count before the DMA data */
763 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
764 if (*buffer_offset
> PAGE_SIZE
) {
766 ar_context_abort(ctx
, "corrupted descriptor");
772 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
773 unsigned int end_buffer_index
,
774 unsigned int end_buffer_offset
)
778 i
= ar_first_buffer_index(ctx
);
779 while (i
!= end_buffer_index
) {
780 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
781 ar_buffer_bus(ctx
, i
),
782 PAGE_SIZE
, DMA_FROM_DEVICE
);
783 i
= ar_next_buffer_index(i
);
785 if (end_buffer_offset
> 0)
786 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
787 ar_buffer_bus(ctx
, i
),
788 end_buffer_offset
, DMA_FROM_DEVICE
);
791 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
792 #define cond_le32_to_cpu(v) \
793 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
795 #define cond_le32_to_cpu(v) le32_to_cpu(v)
798 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
800 struct fw_ohci
*ohci
= ctx
->ohci
;
802 u32 status
, length
, tcode
;
805 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
806 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
807 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
809 tcode
= (p
.header
[0] >> 4) & 0x0f;
811 case TCODE_WRITE_QUADLET_REQUEST
:
812 case TCODE_READ_QUADLET_RESPONSE
:
813 p
.header
[3] = (__force __u32
) buffer
[3];
814 p
.header_length
= 16;
815 p
.payload_length
= 0;
818 case TCODE_READ_BLOCK_REQUEST
:
819 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
820 p
.header_length
= 16;
821 p
.payload_length
= 0;
824 case TCODE_WRITE_BLOCK_REQUEST
:
825 case TCODE_READ_BLOCK_RESPONSE
:
826 case TCODE_LOCK_REQUEST
:
827 case TCODE_LOCK_RESPONSE
:
828 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
829 p
.header_length
= 16;
830 p
.payload_length
= p
.header
[3] >> 16;
831 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
832 ar_context_abort(ctx
, "invalid packet length");
837 case TCODE_WRITE_RESPONSE
:
838 case TCODE_READ_QUADLET_REQUEST
:
839 case OHCI_TCODE_PHY_PACKET
:
840 p
.header_length
= 12;
841 p
.payload_length
= 0;
845 ar_context_abort(ctx
, "invalid tcode");
849 p
.payload
= (void *) buffer
+ p
.header_length
;
851 /* FIXME: What to do about evt_* errors? */
852 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
853 status
= cond_le32_to_cpu(buffer
[length
]);
854 evt
= (status
>> 16) & 0x1f;
857 p
.speed
= (status
>> 21) & 0x7;
858 p
.timestamp
= status
& 0xffff;
859 p
.generation
= ohci
->request_generation
;
861 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
864 * Several controllers, notably from NEC and VIA, forget to
865 * write ack_complete status at PHY packet reception.
867 if (evt
== OHCI1394_evt_no_status
&&
868 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
869 p
.ack
= ACK_COMPLETE
;
872 * The OHCI bus reset handler synthesizes a PHY packet with
873 * the new generation number when a bus reset happens (see
874 * section 8.4.2.3). This helps us determine when a request
875 * was received and make sure we send the response in the same
876 * generation. We only need this for requests; for responses
877 * we use the unique tlabel for finding the matching
880 * Alas some chips sometimes emit bus reset packets with a
881 * wrong generation. We set the correct generation for these
882 * at a slightly incorrect time (in bus_reset_work).
884 if (evt
== OHCI1394_evt_bus_reset
) {
885 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
886 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
887 } else if (ctx
== &ohci
->ar_request_ctx
) {
888 fw_core_handle_request(&ohci
->card
, &p
);
890 fw_core_handle_response(&ohci
->card
, &p
);
893 return buffer
+ length
+ 1;
896 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
901 next
= handle_ar_packet(ctx
, p
);
910 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
914 i
= ar_first_buffer_index(ctx
);
915 while (i
!= end_buffer
) {
916 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
917 ar_buffer_bus(ctx
, i
),
918 PAGE_SIZE
, DMA_FROM_DEVICE
);
919 ar_context_link_page(ctx
, i
);
920 i
= ar_next_buffer_index(i
);
924 static void ar_context_tasklet(unsigned long data
)
926 struct ar_context
*ctx
= (struct ar_context
*)data
;
927 unsigned int end_buffer_index
, end_buffer_offset
;
934 end_buffer_index
= ar_search_last_active_buffer(ctx
,
936 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
937 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
939 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
941 * The filled part of the overall buffer wraps around; handle
942 * all packets up to the buffer end here. If the last packet
943 * wraps around, its tail will be visible after the buffer end
944 * because the buffer start pages are mapped there again.
946 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
947 p
= handle_ar_packets(ctx
, p
, buffer_end
);
950 /* adjust p to point back into the actual buffer */
951 p
-= AR_BUFFERS
* PAGE_SIZE
;
954 p
= handle_ar_packets(ctx
, p
, end
);
957 ar_context_abort(ctx
, "inconsistent descriptor");
962 ar_recycle_buffers(ctx
, end_buffer_index
);
970 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
971 unsigned int descriptors_offset
, u32 regs
)
975 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
976 struct descriptor
*d
;
980 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
982 for (i
= 0; i
< AR_BUFFERS
; i
++) {
983 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
986 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
987 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
988 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
989 __free_page(ctx
->pages
[i
]);
990 ctx
->pages
[i
] = NULL
;
993 set_page_private(ctx
->pages
[i
], dma_addr
);
996 for (i
= 0; i
< AR_BUFFERS
; i
++)
997 pages
[i
] = ctx
->pages
[i
];
998 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
999 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1000 ctx
->buffer
= vmap(pages
, ARRAY_SIZE(pages
), VM_MAP
, PAGE_KERNEL
);
1004 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1005 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1007 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1008 d
= &ctx
->descriptors
[i
];
1009 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1010 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1012 DESCRIPTOR_BRANCH_ALWAYS
);
1013 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1014 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1015 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1021 ar_context_release(ctx
);
1026 static void ar_context_run(struct ar_context
*ctx
)
1030 for (i
= 0; i
< AR_BUFFERS
; i
++)
1031 ar_context_link_page(ctx
, i
);
1033 ctx
->pointer
= ctx
->buffer
;
1035 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1036 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1039 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1043 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1045 /* figure out which descriptor the branch address goes in */
1046 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1052 static void context_tasklet(unsigned long data
)
1054 struct context
*ctx
= (struct context
*) data
;
1055 struct descriptor
*d
, *last
;
1058 struct descriptor_buffer
*desc
;
1060 desc
= list_entry(ctx
->buffer_list
.next
,
1061 struct descriptor_buffer
, list
);
1063 while (last
->branch_address
!= 0) {
1064 struct descriptor_buffer
*old_desc
= desc
;
1065 address
= le32_to_cpu(last
->branch_address
);
1068 ctx
->current_bus
= address
;
1070 /* If the branch address points to a buffer outside of the
1071 * current buffer, advance to the next buffer. */
1072 if (address
< desc
->buffer_bus
||
1073 address
>= desc
->buffer_bus
+ desc
->used
)
1074 desc
= list_entry(desc
->list
.next
,
1075 struct descriptor_buffer
, list
);
1076 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1077 last
= find_branch_descriptor(d
, z
);
1079 if (!ctx
->callback(ctx
, d
, last
))
1082 if (old_desc
!= desc
) {
1083 /* If we've advanced to the next buffer, move the
1084 * previous buffer to the free list. */
1085 unsigned long flags
;
1087 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1088 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1089 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1096 * Allocate a new buffer and add it to the list of free buffers for this
1097 * context. Must be called with ohci->lock held.
1099 static int context_add_buffer(struct context
*ctx
)
1101 struct descriptor_buffer
*desc
;
1102 dma_addr_t
uninitialized_var(bus_addr
);
1106 * 16MB of descriptors should be far more than enough for any DMA
1107 * program. This will catch run-away userspace or DoS attacks.
1109 if (ctx
->total_allocation
>= 16*1024*1024)
1112 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1113 &bus_addr
, GFP_ATOMIC
);
1117 offset
= (void *)&desc
->buffer
- (void *)desc
;
1119 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1120 * for descriptors, even 0x10-byte ones. This can cause page faults when
1121 * an IOMMU is in use and the oversized read crosses a page boundary.
1122 * Work around this by always leaving at least 0x10 bytes of padding.
1124 desc
->buffer_size
= PAGE_SIZE
- offset
- 0x10;
1125 desc
->buffer_bus
= bus_addr
+ offset
;
1128 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1129 ctx
->total_allocation
+= PAGE_SIZE
;
1134 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1135 u32 regs
, descriptor_callback_t callback
)
1139 ctx
->total_allocation
= 0;
1141 INIT_LIST_HEAD(&ctx
->buffer_list
);
1142 if (context_add_buffer(ctx
) < 0)
1145 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1146 struct descriptor_buffer
, list
);
1148 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1149 ctx
->callback
= callback
;
1152 * We put a dummy descriptor in the buffer that has a NULL
1153 * branch address and looks like it's been sent. That way we
1154 * have a descriptor to append DMA programs to.
1156 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1157 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1158 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1159 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1160 ctx
->last
= ctx
->buffer_tail
->buffer
;
1161 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1167 static void context_release(struct context
*ctx
)
1169 struct fw_card
*card
= &ctx
->ohci
->card
;
1170 struct descriptor_buffer
*desc
, *tmp
;
1172 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1173 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1175 ((void *)&desc
->buffer
- (void *)desc
));
1178 /* Must be called with ohci->lock held */
1179 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1180 int z
, dma_addr_t
*d_bus
)
1182 struct descriptor
*d
= NULL
;
1183 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1185 if (z
* sizeof(*d
) > desc
->buffer_size
)
1188 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1189 /* No room for the descriptor in this buffer, so advance to the
1192 if (desc
->list
.next
== &ctx
->buffer_list
) {
1193 /* If there is no free buffer next in the list,
1195 if (context_add_buffer(ctx
) < 0)
1198 desc
= list_entry(desc
->list
.next
,
1199 struct descriptor_buffer
, list
);
1200 ctx
->buffer_tail
= desc
;
1203 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1204 memset(d
, 0, z
* sizeof(*d
));
1205 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1210 static void context_run(struct context
*ctx
, u32 extra
)
1212 struct fw_ohci
*ohci
= ctx
->ohci
;
1214 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1215 le32_to_cpu(ctx
->last
->branch_address
));
1216 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1217 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1218 ctx
->running
= true;
1222 static void context_append(struct context
*ctx
,
1223 struct descriptor
*d
, int z
, int extra
)
1226 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1227 struct descriptor
*d_branch
;
1229 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1231 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1233 wmb(); /* finish init of new descriptors before branch_address update */
1235 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1236 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1239 * VT6306 incorrectly checks only the single descriptor at the
1240 * CommandPtr when the wake bit is written, so if it's a
1241 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1242 * the branch address in the first descriptor.
1244 * Not doing this for transmit contexts since not sure how it interacts
1245 * with skip addresses.
1247 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1248 d_branch
!= ctx
->prev
&&
1249 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1250 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1251 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1258 static void context_stop(struct context
*ctx
)
1260 struct fw_ohci
*ohci
= ctx
->ohci
;
1264 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1265 ctx
->running
= false;
1267 for (i
= 0; i
< 1000; i
++) {
1268 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1269 if ((reg
& CONTEXT_ACTIVE
) == 0)
1275 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1278 struct driver_data
{
1280 struct fw_packet
*packet
;
1284 * This function apppends a packet to the DMA queue for transmission.
1285 * Must always be called with the ochi->lock held to ensure proper
1286 * generation handling and locking around packet queue manipulation.
1288 static int at_context_queue_packet(struct context
*ctx
,
1289 struct fw_packet
*packet
)
1291 struct fw_ohci
*ohci
= ctx
->ohci
;
1292 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1293 struct driver_data
*driver_data
;
1294 struct descriptor
*d
, *last
;
1298 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1300 packet
->ack
= RCODE_SEND_ERROR
;
1304 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1305 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1308 * The DMA format for asynchronous link packets is different
1309 * from the IEEE1394 layout, so shift the fields around
1313 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1314 header
= (__le32
*) &d
[1];
1316 case TCODE_WRITE_QUADLET_REQUEST
:
1317 case TCODE_WRITE_BLOCK_REQUEST
:
1318 case TCODE_WRITE_RESPONSE
:
1319 case TCODE_READ_QUADLET_REQUEST
:
1320 case TCODE_READ_BLOCK_REQUEST
:
1321 case TCODE_READ_QUADLET_RESPONSE
:
1322 case TCODE_READ_BLOCK_RESPONSE
:
1323 case TCODE_LOCK_REQUEST
:
1324 case TCODE_LOCK_RESPONSE
:
1325 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1326 (packet
->speed
<< 16));
1327 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1328 (packet
->header
[0] & 0xffff0000));
1329 header
[2] = cpu_to_le32(packet
->header
[2]);
1331 if (TCODE_IS_BLOCK_PACKET(tcode
))
1332 header
[3] = cpu_to_le32(packet
->header
[3]);
1334 header
[3] = (__force __le32
) packet
->header
[3];
1336 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1339 case TCODE_LINK_INTERNAL
:
1340 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1341 (packet
->speed
<< 16));
1342 header
[1] = cpu_to_le32(packet
->header
[1]);
1343 header
[2] = cpu_to_le32(packet
->header
[2]);
1344 d
[0].req_count
= cpu_to_le16(12);
1346 if (is_ping_packet(&packet
->header
[1]))
1347 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1350 case TCODE_STREAM_DATA
:
1351 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1352 (packet
->speed
<< 16));
1353 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1354 d
[0].req_count
= cpu_to_le16(8);
1359 packet
->ack
= RCODE_SEND_ERROR
;
1363 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1364 driver_data
= (struct driver_data
*) &d
[3];
1365 driver_data
->packet
= packet
;
1366 packet
->driver_data
= driver_data
;
1368 if (packet
->payload_length
> 0) {
1369 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1370 payload_bus
= dma_map_single(ohci
->card
.device
,
1372 packet
->payload_length
,
1374 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1375 packet
->ack
= RCODE_SEND_ERROR
;
1378 packet
->payload_bus
= payload_bus
;
1379 packet
->payload_mapped
= true;
1381 memcpy(driver_data
->inline_data
, packet
->payload
,
1382 packet
->payload_length
);
1383 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1386 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1387 d
[2].data_address
= cpu_to_le32(payload_bus
);
1395 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1396 DESCRIPTOR_IRQ_ALWAYS
|
1397 DESCRIPTOR_BRANCH_ALWAYS
);
1399 /* FIXME: Document how the locking works. */
1400 if (ohci
->generation
!= packet
->generation
) {
1401 if (packet
->payload_mapped
)
1402 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1403 packet
->payload_length
, DMA_TO_DEVICE
);
1404 packet
->ack
= RCODE_GENERATION
;
1408 context_append(ctx
, d
, z
, 4 - z
);
1411 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1413 context_run(ctx
, 0);
1418 static void at_context_flush(struct context
*ctx
)
1420 tasklet_disable(&ctx
->tasklet
);
1422 ctx
->flushing
= true;
1423 context_tasklet((unsigned long)ctx
);
1424 ctx
->flushing
= false;
1426 tasklet_enable(&ctx
->tasklet
);
1429 static int handle_at_packet(struct context
*context
,
1430 struct descriptor
*d
,
1431 struct descriptor
*last
)
1433 struct driver_data
*driver_data
;
1434 struct fw_packet
*packet
;
1435 struct fw_ohci
*ohci
= context
->ohci
;
1438 if (last
->transfer_status
== 0 && !context
->flushing
)
1439 /* This descriptor isn't done yet, stop iteration. */
1442 driver_data
= (struct driver_data
*) &d
[3];
1443 packet
= driver_data
->packet
;
1445 /* This packet was cancelled, just continue. */
1448 if (packet
->payload_mapped
)
1449 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1450 packet
->payload_length
, DMA_TO_DEVICE
);
1452 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1453 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1455 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1458 case OHCI1394_evt_timeout
:
1459 /* Async response transmit timed out. */
1460 packet
->ack
= RCODE_CANCELLED
;
1463 case OHCI1394_evt_flushed
:
1465 * The packet was flushed should give same error as
1466 * when we try to use a stale generation count.
1468 packet
->ack
= RCODE_GENERATION
;
1471 case OHCI1394_evt_missing_ack
:
1472 if (context
->flushing
)
1473 packet
->ack
= RCODE_GENERATION
;
1476 * Using a valid (current) generation count, but the
1477 * node is not on the bus or not sending acks.
1479 packet
->ack
= RCODE_NO_ACK
;
1483 case ACK_COMPLETE
+ 0x10:
1484 case ACK_PENDING
+ 0x10:
1485 case ACK_BUSY_X
+ 0x10:
1486 case ACK_BUSY_A
+ 0x10:
1487 case ACK_BUSY_B
+ 0x10:
1488 case ACK_DATA_ERROR
+ 0x10:
1489 case ACK_TYPE_ERROR
+ 0x10:
1490 packet
->ack
= evt
- 0x10;
1493 case OHCI1394_evt_no_status
:
1494 if (context
->flushing
) {
1495 packet
->ack
= RCODE_GENERATION
;
1501 packet
->ack
= RCODE_SEND_ERROR
;
1505 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1510 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1511 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1512 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1513 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1514 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1516 static void handle_local_rom(struct fw_ohci
*ohci
,
1517 struct fw_packet
*packet
, u32 csr
)
1519 struct fw_packet response
;
1520 int tcode
, length
, i
;
1522 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1523 if (TCODE_IS_BLOCK_PACKET(tcode
))
1524 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1528 i
= csr
- CSR_CONFIG_ROM
;
1529 if (i
+ length
> CONFIG_ROM_SIZE
) {
1530 fw_fill_response(&response
, packet
->header
,
1531 RCODE_ADDRESS_ERROR
, NULL
, 0);
1532 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1533 fw_fill_response(&response
, packet
->header
,
1534 RCODE_TYPE_ERROR
, NULL
, 0);
1536 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1537 (void *) ohci
->config_rom
+ i
, length
);
1540 fw_core_handle_response(&ohci
->card
, &response
);
1543 static void handle_local_lock(struct fw_ohci
*ohci
,
1544 struct fw_packet
*packet
, u32 csr
)
1546 struct fw_packet response
;
1547 int tcode
, length
, ext_tcode
, sel
, try;
1548 __be32
*payload
, lock_old
;
1549 u32 lock_arg
, lock_data
;
1551 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1552 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1553 payload
= packet
->payload
;
1554 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1556 if (tcode
== TCODE_LOCK_REQUEST
&&
1557 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1558 lock_arg
= be32_to_cpu(payload
[0]);
1559 lock_data
= be32_to_cpu(payload
[1]);
1560 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1564 fw_fill_response(&response
, packet
->header
,
1565 RCODE_TYPE_ERROR
, NULL
, 0);
1569 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1570 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1571 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1572 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1574 for (try = 0; try < 20; try++)
1575 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1576 lock_old
= cpu_to_be32(reg_read(ohci
,
1578 fw_fill_response(&response
, packet
->header
,
1580 &lock_old
, sizeof(lock_old
));
1584 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1585 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1588 fw_core_handle_response(&ohci
->card
, &response
);
1591 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1595 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1596 packet
->ack
= ACK_PENDING
;
1597 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1601 ((unsigned long long)
1602 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1604 csr
= offset
- CSR_REGISTER_BASE
;
1606 /* Handle config rom reads. */
1607 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1608 handle_local_rom(ctx
->ohci
, packet
, csr
);
1610 case CSR_BUS_MANAGER_ID
:
1611 case CSR_BANDWIDTH_AVAILABLE
:
1612 case CSR_CHANNELS_AVAILABLE_HI
:
1613 case CSR_CHANNELS_AVAILABLE_LO
:
1614 handle_local_lock(ctx
->ohci
, packet
, csr
);
1617 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1618 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1620 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1624 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1625 packet
->ack
= ACK_COMPLETE
;
1626 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1630 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1632 unsigned long flags
;
1635 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1637 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1638 ctx
->ohci
->generation
== packet
->generation
) {
1639 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1640 handle_local_request(ctx
, packet
);
1644 ret
= at_context_queue_packet(ctx
, packet
);
1645 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1648 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1652 static void detect_dead_context(struct fw_ohci
*ohci
,
1653 const char *name
, unsigned int regs
)
1657 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1658 if (ctl
& CONTEXT_DEAD
)
1659 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1660 name
, evts
[ctl
& 0x1f]);
1663 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1668 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1669 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1670 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1671 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1672 for (i
= 0; i
< 32; ++i
) {
1673 if (!(ohci
->it_context_support
& (1 << i
)))
1675 sprintf(name
, "IT%u", i
);
1676 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1678 for (i
= 0; i
< 32; ++i
) {
1679 if (!(ohci
->ir_context_support
& (1 << i
)))
1681 sprintf(name
, "IR%u", i
);
1682 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1684 /* TODO: maybe try to flush and restart the dead contexts */
1687 static u32
cycle_timer_ticks(u32 cycle_timer
)
1691 ticks
= cycle_timer
& 0xfff;
1692 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1693 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1699 * Some controllers exhibit one or more of the following bugs when updating the
1700 * iso cycle timer register:
1701 * - When the lowest six bits are wrapping around to zero, a read that happens
1702 * at the same time will return garbage in the lowest ten bits.
1703 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1704 * not incremented for about 60 ns.
1705 * - Occasionally, the entire register reads zero.
1707 * To catch these, we read the register three times and ensure that the
1708 * difference between each two consecutive reads is approximately the same, i.e.
1709 * less than twice the other. Furthermore, any negative difference indicates an
1710 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1711 * execute, so we have enough precision to compute the ratio of the differences.)
1713 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1720 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1722 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1725 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1729 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1730 t0
= cycle_timer_ticks(c0
);
1731 t1
= cycle_timer_ticks(c1
);
1732 t2
= cycle_timer_ticks(c2
);
1735 } while ((diff01
<= 0 || diff12
<= 0 ||
1736 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1744 * This function has to be called at least every 64 seconds. The bus_time
1745 * field stores not only the upper 25 bits of the BUS_TIME register but also
1746 * the most significant bit of the cycle timer in bit 6 so that we can detect
1747 * changes in this bit.
1749 static u32
update_bus_time(struct fw_ohci
*ohci
)
1751 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1753 if (unlikely(!ohci
->bus_time_running
)) {
1754 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1755 ohci
->bus_time
= (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1756 (cycle_time_seconds
& 0x40);
1757 ohci
->bus_time_running
= true;
1760 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1761 ohci
->bus_time
+= 0x40;
1763 return ohci
->bus_time
| cycle_time_seconds
;
1766 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1770 mutex_lock(&ohci
->phy_reg_mutex
);
1771 reg
= write_phy_reg(ohci
, 7, port_index
);
1773 reg
= read_phy_reg(ohci
, 8);
1774 mutex_unlock(&ohci
->phy_reg_mutex
);
1778 switch (reg
& 0x0f) {
1780 return 2; /* is child node (connected to parent node) */
1782 return 3; /* is parent node (connected to child node) */
1784 return 1; /* not connected */
1787 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1793 for (i
= 0; i
< self_id_count
; i
++) {
1794 entry
= ohci
->self_id_buffer
[i
];
1795 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1797 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1803 static int initiated_reset(struct fw_ohci
*ohci
)
1808 mutex_lock(&ohci
->phy_reg_mutex
);
1809 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1811 reg
= read_phy_reg(ohci
, 8);
1813 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1815 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1817 if ((reg
& 0x08) == 0x08) {
1818 /* bit 3 indicates "initiated reset" */
1824 mutex_unlock(&ohci
->phy_reg_mutex
);
1829 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1830 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1831 * Construct the selfID from phy register contents.
1833 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1835 int reg
, i
, pos
, status
;
1836 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1837 u32 self_id
= 0x8040c800;
1839 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1840 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1842 "node ID not valid, new bus reset in progress\n");
1845 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1847 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1850 self_id
|= ((reg
& 0x07) << 8); /* power class */
1852 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1855 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1857 for (i
= 0; i
< 3; i
++) {
1858 status
= get_status_for_port(ohci
, i
);
1861 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1864 self_id
|= initiated_reset(ohci
);
1866 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1868 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1869 &(ohci
->self_id_buffer
[pos
]),
1870 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1871 ohci
->self_id_buffer
[pos
] = self_id
;
1874 return self_id_count
;
1877 static void bus_reset_work(struct work_struct
*work
)
1879 struct fw_ohci
*ohci
=
1880 container_of(work
, struct fw_ohci
, bus_reset_work
);
1881 int self_id_count
, generation
, new_generation
, i
, j
;
1883 void *free_rom
= NULL
;
1884 dma_addr_t free_rom_bus
= 0;
1887 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1888 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1890 "node ID not valid, new bus reset in progress\n");
1893 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1894 ohci_notice(ohci
, "malconfigured bus\n");
1897 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1898 OHCI1394_NodeID_nodeNumber
);
1900 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1901 if (!(ohci
->is_root
&& is_new_root
))
1902 reg_write(ohci
, OHCI1394_LinkControlSet
,
1903 OHCI1394_LinkControl_cycleMaster
);
1904 ohci
->is_root
= is_new_root
;
1906 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1907 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1908 ohci_notice(ohci
, "self ID receive error\n");
1912 * The count in the SelfIDCount register is the number of
1913 * bytes in the self ID receive buffer. Since we also receive
1914 * the inverted quadlets and a header quadlet, we shift one
1915 * bit extra to get the actual number of self IDs.
1917 self_id_count
= (reg
>> 3) & 0xff;
1919 if (self_id_count
> 252) {
1920 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1924 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1927 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1928 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1929 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1933 * If the invalid data looks like a cycle start packet,
1934 * it's likely to be the result of the cycle master
1935 * having a wrong gap count. In this case, the self IDs
1936 * so far are valid and should be processed so that the
1937 * bus manager can then correct the gap count.
1939 if (id
== 0xffff008f) {
1940 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1945 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1946 j
, self_id_count
, id
, id2
);
1949 ohci
->self_id_buffer
[j
] = id
;
1952 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1953 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1954 if (self_id_count
< 0) {
1956 "could not construct local self ID\n");
1961 if (self_id_count
== 0) {
1962 ohci_notice(ohci
, "no self IDs\n");
1968 * Check the consistency of the self IDs we just read. The
1969 * problem we face is that a new bus reset can start while we
1970 * read out the self IDs from the DMA buffer. If this happens,
1971 * the DMA buffer will be overwritten with new self IDs and we
1972 * will read out inconsistent data. The OHCI specification
1973 * (section 11.2) recommends a technique similar to
1974 * linux/seqlock.h, where we remember the generation of the
1975 * self IDs in the buffer before reading them out and compare
1976 * it to the current generation after reading them out. If
1977 * the two generations match we know we have a consistent set
1981 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1982 if (new_generation
!= generation
) {
1983 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
1987 /* FIXME: Document how the locking works. */
1988 spin_lock_irq(&ohci
->lock
);
1990 ohci
->generation
= -1; /* prevent AT packet queueing */
1991 context_stop(&ohci
->at_request_ctx
);
1992 context_stop(&ohci
->at_response_ctx
);
1994 spin_unlock_irq(&ohci
->lock
);
1997 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1998 * packets in the AT queues and software needs to drain them.
1999 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2001 at_context_flush(&ohci
->at_request_ctx
);
2002 at_context_flush(&ohci
->at_response_ctx
);
2004 spin_lock_irq(&ohci
->lock
);
2006 ohci
->generation
= generation
;
2007 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2009 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2010 ohci
->request_generation
= generation
;
2013 * This next bit is unrelated to the AT context stuff but we
2014 * have to do it under the spinlock also. If a new config rom
2015 * was set up before this reset, the old one is now no longer
2016 * in use and we can free it. Update the config rom pointers
2017 * to point to the current config rom and clear the
2018 * next_config_rom pointer so a new update can take place.
2021 if (ohci
->next_config_rom
!= NULL
) {
2022 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2023 free_rom
= ohci
->config_rom
;
2024 free_rom_bus
= ohci
->config_rom_bus
;
2026 ohci
->config_rom
= ohci
->next_config_rom
;
2027 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2028 ohci
->next_config_rom
= NULL
;
2031 * Restore config_rom image and manually update
2032 * config_rom registers. Writing the header quadlet
2033 * will indicate that the config rom is ready, so we
2036 reg_write(ohci
, OHCI1394_BusOptions
,
2037 be32_to_cpu(ohci
->config_rom
[2]));
2038 ohci
->config_rom
[0] = ohci
->next_header
;
2039 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2040 be32_to_cpu(ohci
->next_header
));
2043 if (param_remote_dma
) {
2044 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2045 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2048 spin_unlock_irq(&ohci
->lock
);
2051 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2052 free_rom
, free_rom_bus
);
2054 log_selfids(ohci
, generation
, self_id_count
);
2056 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2057 self_id_count
, ohci
->self_id_buffer
,
2058 ohci
->csr_state_setclear_abdicate
);
2059 ohci
->csr_state_setclear_abdicate
= false;
2062 static irqreturn_t
irq_handler(int irq
, void *data
)
2064 struct fw_ohci
*ohci
= data
;
2065 u32 event
, iso_event
;
2068 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2070 if (!event
|| !~event
)
2074 * busReset and postedWriteErr must not be cleared yet
2075 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2077 reg_write(ohci
, OHCI1394_IntEventClear
,
2078 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2079 log_irqs(ohci
, event
);
2081 if (event
& OHCI1394_selfIDComplete
)
2082 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2084 if (event
& OHCI1394_RQPkt
)
2085 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2087 if (event
& OHCI1394_RSPkt
)
2088 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2090 if (event
& OHCI1394_reqTxComplete
)
2091 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2093 if (event
& OHCI1394_respTxComplete
)
2094 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2096 if (event
& OHCI1394_isochRx
) {
2097 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2098 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2101 i
= ffs(iso_event
) - 1;
2103 &ohci
->ir_context_list
[i
].context
.tasklet
);
2104 iso_event
&= ~(1 << i
);
2108 if (event
& OHCI1394_isochTx
) {
2109 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2110 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2113 i
= ffs(iso_event
) - 1;
2115 &ohci
->it_context_list
[i
].context
.tasklet
);
2116 iso_event
&= ~(1 << i
);
2120 if (unlikely(event
& OHCI1394_regAccessFail
))
2121 ohci_err(ohci
, "register access failure\n");
2123 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2124 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2125 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2126 reg_write(ohci
, OHCI1394_IntEventClear
,
2127 OHCI1394_postedWriteErr
);
2128 if (printk_ratelimit())
2129 ohci_err(ohci
, "PCI posted write error\n");
2132 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2133 if (printk_ratelimit())
2134 ohci_notice(ohci
, "isochronous cycle too long\n");
2135 reg_write(ohci
, OHCI1394_LinkControlSet
,
2136 OHCI1394_LinkControl_cycleMaster
);
2139 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2141 * We need to clear this event bit in order to make
2142 * cycleMatch isochronous I/O work. In theory we should
2143 * stop active cycleMatch iso contexts now and restart
2144 * them at least two cycles later. (FIXME?)
2146 if (printk_ratelimit())
2147 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2150 if (unlikely(event
& OHCI1394_unrecoverableError
))
2151 handle_dead_contexts(ohci
);
2153 if (event
& OHCI1394_cycle64Seconds
) {
2154 spin_lock(&ohci
->lock
);
2155 update_bus_time(ohci
);
2156 spin_unlock(&ohci
->lock
);
2163 static int software_reset(struct fw_ohci
*ohci
)
2168 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2169 for (i
= 0; i
< 500; i
++) {
2170 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2172 return -ENODEV
; /* Card was ejected. */
2174 if (!(val
& OHCI1394_HCControl_softReset
))
2183 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2185 size_t size
= length
* 4;
2187 memcpy(dest
, src
, size
);
2188 if (size
< CONFIG_ROM_SIZE
)
2189 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2192 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2195 int ret
, clear
, set
, offset
;
2197 /* Check if the driver should configure link and PHY. */
2198 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2199 OHCI1394_HCControl_programPhyEnable
))
2202 /* Paranoia: check whether the PHY supports 1394a, too. */
2203 enable_1394a
= false;
2204 ret
= read_phy_reg(ohci
, 2);
2207 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2208 ret
= read_paged_phy_reg(ohci
, 1, 8);
2212 enable_1394a
= true;
2215 if (ohci
->quirks
& QUIRK_NO_1394A
)
2216 enable_1394a
= false;
2218 /* Configure PHY and link consistently. */
2221 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2223 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2226 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2231 offset
= OHCI1394_HCControlSet
;
2233 offset
= OHCI1394_HCControlClear
;
2234 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2236 /* Clean up: configuration has been taken care of. */
2237 reg_write(ohci
, OHCI1394_HCControlClear
,
2238 OHCI1394_HCControl_programPhyEnable
);
2243 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2245 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2246 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2249 reg
= read_phy_reg(ohci
, 2);
2252 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2255 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2256 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2265 static int ohci_enable(struct fw_card
*card
,
2266 const __be32
*config_rom
, size_t length
)
2268 struct fw_ohci
*ohci
= fw_ohci(card
);
2269 u32 lps
, version
, irqs
;
2272 ret
= software_reset(ohci
);
2274 ohci_err(ohci
, "failed to reset ohci card\n");
2279 * Now enable LPS, which we need in order to start accessing
2280 * most of the registers. In fact, on some cards (ALI M5251),
2281 * accessing registers in the SClk domain without LPS enabled
2282 * will lock up the machine. Wait 50msec to make sure we have
2283 * full link enabled. However, with some cards (well, at least
2284 * a JMicron PCIe card), we have to try again sometimes.
2286 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2287 * cannot actually use the phy at that time. These need tens of
2288 * millisecods pause between LPS write and first phy access too.
2291 reg_write(ohci
, OHCI1394_HCControlSet
,
2292 OHCI1394_HCControl_LPS
|
2293 OHCI1394_HCControl_postedWriteEnable
);
2296 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2298 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2299 OHCI1394_HCControl_LPS
;
2303 ohci_err(ohci
, "failed to set Link Power Status\n");
2307 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2308 ret
= probe_tsb41ba3d(ohci
);
2312 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2314 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2317 reg_write(ohci
, OHCI1394_HCControlClear
,
2318 OHCI1394_HCControl_noByteSwapData
);
2320 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2321 reg_write(ohci
, OHCI1394_LinkControlSet
,
2322 OHCI1394_LinkControl_cycleTimerEnable
|
2323 OHCI1394_LinkControl_cycleMaster
);
2325 reg_write(ohci
, OHCI1394_ATRetries
,
2326 OHCI1394_MAX_AT_REQ_RETRIES
|
2327 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2328 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2331 ohci
->bus_time_running
= false;
2333 for (i
= 0; i
< 32; i
++)
2334 if (ohci
->ir_context_support
& (1 << i
))
2335 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2336 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2338 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2339 if (version
>= OHCI_VERSION_1_1
) {
2340 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2342 card
->broadcast_channel_auto_allocated
= true;
2345 /* Get implemented bits of the priority arbitration request counter. */
2346 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2347 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2348 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2349 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2351 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2352 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2353 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2355 ret
= configure_1394a_enhancements(ohci
);
2359 /* Activate link_on bit and contender bit in our self ID packets.*/
2360 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2365 * When the link is not yet enabled, the atomic config rom
2366 * update mechanism described below in ohci_set_config_rom()
2367 * is not active. We have to update ConfigRomHeader and
2368 * BusOptions manually, and the write to ConfigROMmap takes
2369 * effect immediately. We tie this to the enabling of the
2370 * link, so we have a valid config rom before enabling - the
2371 * OHCI requires that ConfigROMhdr and BusOptions have valid
2372 * values before enabling.
2374 * However, when the ConfigROMmap is written, some controllers
2375 * always read back quadlets 0 and 2 from the config rom to
2376 * the ConfigRomHeader and BusOptions registers on bus reset.
2377 * They shouldn't do that in this initial case where the link
2378 * isn't enabled. This means we have to use the same
2379 * workaround here, setting the bus header to 0 and then write
2380 * the right values in the bus reset tasklet.
2384 ohci
->next_config_rom
=
2385 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2386 &ohci
->next_config_rom_bus
,
2388 if (ohci
->next_config_rom
== NULL
)
2391 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2394 * In the suspend case, config_rom is NULL, which
2395 * means that we just reuse the old config rom.
2397 ohci
->next_config_rom
= ohci
->config_rom
;
2398 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2401 ohci
->next_header
= ohci
->next_config_rom
[0];
2402 ohci
->next_config_rom
[0] = 0;
2403 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2404 reg_write(ohci
, OHCI1394_BusOptions
,
2405 be32_to_cpu(ohci
->next_config_rom
[2]));
2406 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2408 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2410 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2411 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2412 OHCI1394_isochTx
| OHCI1394_isochRx
|
2413 OHCI1394_postedWriteErr
|
2414 OHCI1394_selfIDComplete
|
2415 OHCI1394_regAccessFail
|
2416 OHCI1394_cycleInconsistent
|
2417 OHCI1394_unrecoverableError
|
2418 OHCI1394_cycleTooLong
|
2419 OHCI1394_masterIntEnable
;
2420 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2421 irqs
|= OHCI1394_busReset
;
2422 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2424 reg_write(ohci
, OHCI1394_HCControlSet
,
2425 OHCI1394_HCControl_linkEnable
|
2426 OHCI1394_HCControl_BIBimageValid
);
2428 reg_write(ohci
, OHCI1394_LinkControlSet
,
2429 OHCI1394_LinkControl_rcvSelfID
|
2430 OHCI1394_LinkControl_rcvPhyPkt
);
2432 ar_context_run(&ohci
->ar_request_ctx
);
2433 ar_context_run(&ohci
->ar_response_ctx
);
2437 /* We are ready to go, reset bus to finish initialization. */
2438 fw_schedule_bus_reset(&ohci
->card
, false, true);
2443 static int ohci_set_config_rom(struct fw_card
*card
,
2444 const __be32
*config_rom
, size_t length
)
2446 struct fw_ohci
*ohci
;
2447 __be32
*next_config_rom
;
2448 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2450 ohci
= fw_ohci(card
);
2453 * When the OHCI controller is enabled, the config rom update
2454 * mechanism is a bit tricky, but easy enough to use. See
2455 * section 5.5.6 in the OHCI specification.
2457 * The OHCI controller caches the new config rom address in a
2458 * shadow register (ConfigROMmapNext) and needs a bus reset
2459 * for the changes to take place. When the bus reset is
2460 * detected, the controller loads the new values for the
2461 * ConfigRomHeader and BusOptions registers from the specified
2462 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2463 * shadow register. All automatically and atomically.
2465 * Now, there's a twist to this story. The automatic load of
2466 * ConfigRomHeader and BusOptions doesn't honor the
2467 * noByteSwapData bit, so with a be32 config rom, the
2468 * controller will load be32 values in to these registers
2469 * during the atomic update, even on litte endian
2470 * architectures. The workaround we use is to put a 0 in the
2471 * header quadlet; 0 is endian agnostic and means that the
2472 * config rom isn't ready yet. In the bus reset tasklet we
2473 * then set up the real values for the two registers.
2475 * We use ohci->lock to avoid racing with the code that sets
2476 * ohci->next_config_rom to NULL (see bus_reset_work).
2480 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2481 &next_config_rom_bus
, GFP_KERNEL
);
2482 if (next_config_rom
== NULL
)
2485 spin_lock_irq(&ohci
->lock
);
2488 * If there is not an already pending config_rom update,
2489 * push our new allocation into the ohci->next_config_rom
2490 * and then mark the local variable as null so that we
2491 * won't deallocate the new buffer.
2493 * OTOH, if there is a pending config_rom update, just
2494 * use that buffer with the new config_rom data, and
2495 * let this routine free the unused DMA allocation.
2498 if (ohci
->next_config_rom
== NULL
) {
2499 ohci
->next_config_rom
= next_config_rom
;
2500 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2501 next_config_rom
= NULL
;
2504 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2506 ohci
->next_header
= config_rom
[0];
2507 ohci
->next_config_rom
[0] = 0;
2509 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2511 spin_unlock_irq(&ohci
->lock
);
2513 /* If we didn't use the DMA allocation, delete it. */
2514 if (next_config_rom
!= NULL
)
2515 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2516 next_config_rom
, next_config_rom_bus
);
2519 * Now initiate a bus reset to have the changes take
2520 * effect. We clean up the old config rom memory and DMA
2521 * mappings in the bus reset tasklet, since the OHCI
2522 * controller could need to access it before the bus reset
2526 fw_schedule_bus_reset(&ohci
->card
, true, true);
2531 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2533 struct fw_ohci
*ohci
= fw_ohci(card
);
2535 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2538 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2540 struct fw_ohci
*ohci
= fw_ohci(card
);
2542 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2545 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2547 struct fw_ohci
*ohci
= fw_ohci(card
);
2548 struct context
*ctx
= &ohci
->at_request_ctx
;
2549 struct driver_data
*driver_data
= packet
->driver_data
;
2552 tasklet_disable(&ctx
->tasklet
);
2554 if (packet
->ack
!= 0)
2557 if (packet
->payload_mapped
)
2558 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2559 packet
->payload_length
, DMA_TO_DEVICE
);
2561 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2562 driver_data
->packet
= NULL
;
2563 packet
->ack
= RCODE_CANCELLED
;
2564 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2567 tasklet_enable(&ctx
->tasklet
);
2572 static int ohci_enable_phys_dma(struct fw_card
*card
,
2573 int node_id
, int generation
)
2575 struct fw_ohci
*ohci
= fw_ohci(card
);
2576 unsigned long flags
;
2579 if (param_remote_dma
)
2583 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2584 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2587 spin_lock_irqsave(&ohci
->lock
, flags
);
2589 if (ohci
->generation
!= generation
) {
2595 * Note, if the node ID contains a non-local bus ID, physical DMA is
2596 * enabled for _all_ nodes on remote buses.
2599 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2601 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2603 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2607 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2612 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2614 struct fw_ohci
*ohci
= fw_ohci(card
);
2615 unsigned long flags
;
2618 switch (csr_offset
) {
2619 case CSR_STATE_CLEAR
:
2621 if (ohci
->is_root
&&
2622 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2623 OHCI1394_LinkControl_cycleMaster
))
2624 value
= CSR_STATE_BIT_CMSTR
;
2627 if (ohci
->csr_state_setclear_abdicate
)
2628 value
|= CSR_STATE_BIT_ABDICATE
;
2633 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2635 case CSR_CYCLE_TIME
:
2636 return get_cycle_time(ohci
);
2640 * We might be called just after the cycle timer has wrapped
2641 * around but just before the cycle64Seconds handler, so we
2642 * better check here, too, if the bus time needs to be updated.
2644 spin_lock_irqsave(&ohci
->lock
, flags
);
2645 value
= update_bus_time(ohci
);
2646 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2649 case CSR_BUSY_TIMEOUT
:
2650 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2651 return (value
>> 4) & 0x0ffff00f;
2653 case CSR_PRIORITY_BUDGET
:
2654 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2655 (ohci
->pri_req_max
<< 8);
2663 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2665 struct fw_ohci
*ohci
= fw_ohci(card
);
2666 unsigned long flags
;
2668 switch (csr_offset
) {
2669 case CSR_STATE_CLEAR
:
2670 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2671 reg_write(ohci
, OHCI1394_LinkControlClear
,
2672 OHCI1394_LinkControl_cycleMaster
);
2675 if (value
& CSR_STATE_BIT_ABDICATE
)
2676 ohci
->csr_state_setclear_abdicate
= false;
2680 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2681 reg_write(ohci
, OHCI1394_LinkControlSet
,
2682 OHCI1394_LinkControl_cycleMaster
);
2685 if (value
& CSR_STATE_BIT_ABDICATE
)
2686 ohci
->csr_state_setclear_abdicate
= true;
2690 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2694 case CSR_CYCLE_TIME
:
2695 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2696 reg_write(ohci
, OHCI1394_IntEventSet
,
2697 OHCI1394_cycleInconsistent
);
2702 spin_lock_irqsave(&ohci
->lock
, flags
);
2703 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2705 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2708 case CSR_BUSY_TIMEOUT
:
2709 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2710 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2711 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2715 case CSR_PRIORITY_BUDGET
:
2716 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2726 static void flush_iso_completions(struct iso_context
*ctx
)
2728 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2729 ctx
->header_length
, ctx
->header
,
2730 ctx
->base
.callback_data
);
2731 ctx
->header_length
= 0;
2734 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2738 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2739 if (ctx
->base
.drop_overflow_headers
)
2741 flush_iso_completions(ctx
);
2744 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2745 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2748 * The two iso header quadlets are byteswapped to little
2749 * endian by the controller, but we want to present them
2750 * as big endian for consistency with the bus endianness.
2752 if (ctx
->base
.header_size
> 0)
2753 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2754 if (ctx
->base
.header_size
> 4)
2755 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2756 if (ctx
->base
.header_size
> 8)
2757 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2758 ctx
->header_length
+= ctx
->base
.header_size
;
2761 static int handle_ir_packet_per_buffer(struct context
*context
,
2762 struct descriptor
*d
,
2763 struct descriptor
*last
)
2765 struct iso_context
*ctx
=
2766 container_of(context
, struct iso_context
, context
);
2767 struct descriptor
*pd
;
2770 for (pd
= d
; pd
<= last
; pd
++)
2771 if (pd
->transfer_status
)
2774 /* Descriptor(s) not done yet, stop iteration */
2777 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2779 buffer_dma
= le32_to_cpu(d
->data_address
);
2780 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2781 buffer_dma
& PAGE_MASK
,
2782 buffer_dma
& ~PAGE_MASK
,
2783 le16_to_cpu(d
->req_count
),
2787 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2789 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2790 flush_iso_completions(ctx
);
2795 /* d == last because each descriptor block is only a single descriptor. */
2796 static int handle_ir_buffer_fill(struct context
*context
,
2797 struct descriptor
*d
,
2798 struct descriptor
*last
)
2800 struct iso_context
*ctx
=
2801 container_of(context
, struct iso_context
, context
);
2802 unsigned int req_count
, res_count
, completed
;
2805 req_count
= le16_to_cpu(last
->req_count
);
2806 res_count
= le16_to_cpu(READ_ONCE(last
->res_count
));
2807 completed
= req_count
- res_count
;
2808 buffer_dma
= le32_to_cpu(last
->data_address
);
2810 if (completed
> 0) {
2811 ctx
->mc_buffer_bus
= buffer_dma
;
2812 ctx
->mc_completed
= completed
;
2816 /* Descriptor(s) not done yet, stop iteration */
2819 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2820 buffer_dma
& PAGE_MASK
,
2821 buffer_dma
& ~PAGE_MASK
,
2822 completed
, DMA_FROM_DEVICE
);
2824 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2825 ctx
->base
.callback
.mc(&ctx
->base
,
2826 buffer_dma
+ completed
,
2827 ctx
->base
.callback_data
);
2828 ctx
->mc_completed
= 0;
2834 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2836 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2837 ctx
->mc_buffer_bus
& PAGE_MASK
,
2838 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2839 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2841 ctx
->base
.callback
.mc(&ctx
->base
,
2842 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2843 ctx
->base
.callback_data
);
2844 ctx
->mc_completed
= 0;
2847 static inline void sync_it_packet_for_cpu(struct context
*context
,
2848 struct descriptor
*pd
)
2853 /* only packets beginning with OUTPUT_MORE* have data buffers */
2854 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2857 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2862 * data buffer is in the context program's coherent page and must not
2865 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2866 (context
->current_bus
& PAGE_MASK
)) {
2867 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2873 buffer_dma
= le32_to_cpu(pd
->data_address
);
2874 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2875 buffer_dma
& PAGE_MASK
,
2876 buffer_dma
& ~PAGE_MASK
,
2877 le16_to_cpu(pd
->req_count
),
2879 control
= pd
->control
;
2881 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2884 static int handle_it_packet(struct context
*context
,
2885 struct descriptor
*d
,
2886 struct descriptor
*last
)
2888 struct iso_context
*ctx
=
2889 container_of(context
, struct iso_context
, context
);
2890 struct descriptor
*pd
;
2893 for (pd
= d
; pd
<= last
; pd
++)
2894 if (pd
->transfer_status
)
2897 /* Descriptor(s) not done yet, stop iteration */
2900 sync_it_packet_for_cpu(context
, d
);
2902 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2903 if (ctx
->base
.drop_overflow_headers
)
2905 flush_iso_completions(ctx
);
2908 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2909 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2910 /* Present this value as big-endian to match the receive code */
2911 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2912 le16_to_cpu(pd
->res_count
));
2913 ctx
->header_length
+= 4;
2915 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2916 flush_iso_completions(ctx
);
2921 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2923 u32 hi
= channels
>> 32, lo
= channels
;
2925 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2926 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2927 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2928 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2929 ohci
->mc_channels
= channels
;
2932 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2933 int type
, int channel
, size_t header_size
)
2935 struct fw_ohci
*ohci
= fw_ohci(card
);
2936 struct iso_context
*uninitialized_var(ctx
);
2937 descriptor_callback_t
uninitialized_var(callback
);
2938 u64
*uninitialized_var(channels
);
2939 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2940 int index
, ret
= -EBUSY
;
2942 spin_lock_irq(&ohci
->lock
);
2945 case FW_ISO_CONTEXT_TRANSMIT
:
2946 mask
= &ohci
->it_context_mask
;
2947 callback
= handle_it_packet
;
2948 index
= ffs(*mask
) - 1;
2950 *mask
&= ~(1 << index
);
2951 regs
= OHCI1394_IsoXmitContextBase(index
);
2952 ctx
= &ohci
->it_context_list
[index
];
2956 case FW_ISO_CONTEXT_RECEIVE
:
2957 channels
= &ohci
->ir_context_channels
;
2958 mask
= &ohci
->ir_context_mask
;
2959 callback
= handle_ir_packet_per_buffer
;
2960 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2962 *channels
&= ~(1ULL << channel
);
2963 *mask
&= ~(1 << index
);
2964 regs
= OHCI1394_IsoRcvContextBase(index
);
2965 ctx
= &ohci
->ir_context_list
[index
];
2969 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2970 mask
= &ohci
->ir_context_mask
;
2971 callback
= handle_ir_buffer_fill
;
2972 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2974 ohci
->mc_allocated
= true;
2975 *mask
&= ~(1 << index
);
2976 regs
= OHCI1394_IsoRcvContextBase(index
);
2977 ctx
= &ohci
->ir_context_list
[index
];
2986 spin_unlock_irq(&ohci
->lock
);
2989 return ERR_PTR(ret
);
2991 memset(ctx
, 0, sizeof(*ctx
));
2992 ctx
->header_length
= 0;
2993 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2994 if (ctx
->header
== NULL
) {
2998 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3000 goto out_with_header
;
3002 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3003 set_multichannel_mask(ohci
, 0);
3004 ctx
->mc_completed
= 0;
3010 free_page((unsigned long)ctx
->header
);
3012 spin_lock_irq(&ohci
->lock
);
3015 case FW_ISO_CONTEXT_RECEIVE
:
3016 *channels
|= 1ULL << channel
;
3019 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3020 ohci
->mc_allocated
= false;
3023 *mask
|= 1 << index
;
3025 spin_unlock_irq(&ohci
->lock
);
3027 return ERR_PTR(ret
);
3030 static int ohci_start_iso(struct fw_iso_context
*base
,
3031 s32 cycle
, u32 sync
, u32 tags
)
3033 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3034 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3035 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3038 /* the controller cannot start without any queued packets */
3039 if (ctx
->context
.last
->branch_address
== 0)
3042 switch (ctx
->base
.type
) {
3043 case FW_ISO_CONTEXT_TRANSMIT
:
3044 index
= ctx
- ohci
->it_context_list
;
3047 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3048 (cycle
& 0x7fff) << 16;
3050 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3051 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3052 context_run(&ctx
->context
, match
);
3055 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3056 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3058 case FW_ISO_CONTEXT_RECEIVE
:
3059 index
= ctx
- ohci
->ir_context_list
;
3060 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3062 match
|= (cycle
& 0x07fff) << 12;
3063 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3066 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3067 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3068 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3069 context_run(&ctx
->context
, control
);
3080 static int ohci_stop_iso(struct fw_iso_context
*base
)
3082 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3083 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3086 switch (ctx
->base
.type
) {
3087 case FW_ISO_CONTEXT_TRANSMIT
:
3088 index
= ctx
- ohci
->it_context_list
;
3089 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3092 case FW_ISO_CONTEXT_RECEIVE
:
3093 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3094 index
= ctx
- ohci
->ir_context_list
;
3095 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3099 context_stop(&ctx
->context
);
3100 tasklet_kill(&ctx
->context
.tasklet
);
3105 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3107 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3108 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3109 unsigned long flags
;
3112 ohci_stop_iso(base
);
3113 context_release(&ctx
->context
);
3114 free_page((unsigned long)ctx
->header
);
3116 spin_lock_irqsave(&ohci
->lock
, flags
);
3118 switch (base
->type
) {
3119 case FW_ISO_CONTEXT_TRANSMIT
:
3120 index
= ctx
- ohci
->it_context_list
;
3121 ohci
->it_context_mask
|= 1 << index
;
3124 case FW_ISO_CONTEXT_RECEIVE
:
3125 index
= ctx
- ohci
->ir_context_list
;
3126 ohci
->ir_context_mask
|= 1 << index
;
3127 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3130 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3131 index
= ctx
- ohci
->ir_context_list
;
3132 ohci
->ir_context_mask
|= 1 << index
;
3133 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3134 ohci
->mc_channels
= 0;
3135 ohci
->mc_allocated
= false;
3139 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3142 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3144 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3145 unsigned long flags
;
3148 switch (base
->type
) {
3149 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3151 spin_lock_irqsave(&ohci
->lock
, flags
);
3153 /* Don't allow multichannel to grab other contexts' channels. */
3154 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3155 *channels
= ohci
->ir_context_channels
;
3158 set_multichannel_mask(ohci
, *channels
);
3162 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3173 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3176 struct iso_context
*ctx
;
3178 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3179 ctx
= &ohci
->ir_context_list
[i
];
3180 if (ctx
->context
.running
)
3181 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3184 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3185 ctx
= &ohci
->it_context_list
[i
];
3186 if (ctx
->context
.running
)
3187 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3192 static int queue_iso_transmit(struct iso_context
*ctx
,
3193 struct fw_iso_packet
*packet
,
3194 struct fw_iso_buffer
*buffer
,
3195 unsigned long payload
)
3197 struct descriptor
*d
, *last
, *pd
;
3198 struct fw_iso_packet
*p
;
3200 dma_addr_t d_bus
, page_bus
;
3201 u32 z
, header_z
, payload_z
, irq
;
3202 u32 payload_index
, payload_end_index
, next_page_index
;
3203 int page
, end_page
, i
, length
, offset
;
3206 payload_index
= payload
;
3212 if (p
->header_length
> 0)
3215 /* Determine the first page the payload isn't contained in. */
3216 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3217 if (p
->payload_length
> 0)
3218 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3224 /* Get header size in number of descriptors. */
3225 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3227 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3232 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3233 d
[0].req_count
= cpu_to_le16(8);
3235 * Link the skip address to this descriptor itself. This causes
3236 * a context to skip a cycle whenever lost cycles or FIFO
3237 * overruns occur, without dropping the data. The application
3238 * should then decide whether this is an error condition or not.
3239 * FIXME: Make the context's cycle-lost behaviour configurable?
3241 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3243 header
= (__le32
*) &d
[1];
3244 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3245 IT_HEADER_TAG(p
->tag
) |
3246 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3247 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3248 IT_HEADER_SPEED(ctx
->base
.speed
));
3250 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3251 p
->payload_length
));
3254 if (p
->header_length
> 0) {
3255 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3256 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3257 memcpy(&d
[z
], p
->header
, p
->header_length
);
3260 pd
= d
+ z
- payload_z
;
3261 payload_end_index
= payload_index
+ p
->payload_length
;
3262 for (i
= 0; i
< payload_z
; i
++) {
3263 page
= payload_index
>> PAGE_SHIFT
;
3264 offset
= payload_index
& ~PAGE_MASK
;
3265 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3267 min(next_page_index
, payload_end_index
) - payload_index
;
3268 pd
[i
].req_count
= cpu_to_le16(length
);
3270 page_bus
= page_private(buffer
->pages
[page
]);
3271 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3273 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3274 page_bus
, offset
, length
,
3277 payload_index
+= length
;
3281 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3283 irq
= DESCRIPTOR_NO_IRQ
;
3285 last
= z
== 2 ? d
: d
+ z
- 1;
3286 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3288 DESCRIPTOR_BRANCH_ALWAYS
|
3291 context_append(&ctx
->context
, d
, z
, header_z
);
3296 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3297 struct fw_iso_packet
*packet
,
3298 struct fw_iso_buffer
*buffer
,
3299 unsigned long payload
)
3301 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3302 struct descriptor
*d
, *pd
;
3303 dma_addr_t d_bus
, page_bus
;
3304 u32 z
, header_z
, rest
;
3306 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3309 * The OHCI controller puts the isochronous header and trailer in the
3310 * buffer, so we need at least 8 bytes.
3312 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3313 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3315 /* Get header size in number of descriptors. */
3316 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3317 page
= payload
>> PAGE_SHIFT
;
3318 offset
= payload
& ~PAGE_MASK
;
3319 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3321 for (i
= 0; i
< packet_count
; i
++) {
3322 /* d points to the header descriptor */
3323 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3324 d
= context_get_descriptors(&ctx
->context
,
3325 z
+ header_z
, &d_bus
);
3329 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3330 DESCRIPTOR_INPUT_MORE
);
3331 if (packet
->skip
&& i
== 0)
3332 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3333 d
->req_count
= cpu_to_le16(header_size
);
3334 d
->res_count
= d
->req_count
;
3335 d
->transfer_status
= 0;
3336 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3338 rest
= payload_per_buffer
;
3340 for (j
= 1; j
< z
; j
++) {
3342 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3343 DESCRIPTOR_INPUT_MORE
);
3345 if (offset
+ rest
< PAGE_SIZE
)
3348 length
= PAGE_SIZE
- offset
;
3349 pd
->req_count
= cpu_to_le16(length
);
3350 pd
->res_count
= pd
->req_count
;
3351 pd
->transfer_status
= 0;
3353 page_bus
= page_private(buffer
->pages
[page
]);
3354 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3356 dma_sync_single_range_for_device(device
, page_bus
,
3360 offset
= (offset
+ length
) & ~PAGE_MASK
;
3365 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3366 DESCRIPTOR_INPUT_LAST
|
3367 DESCRIPTOR_BRANCH_ALWAYS
);
3368 if (packet
->interrupt
&& i
== packet_count
- 1)
3369 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3371 context_append(&ctx
->context
, d
, z
, header_z
);
3377 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3378 struct fw_iso_packet
*packet
,
3379 struct fw_iso_buffer
*buffer
,
3380 unsigned long payload
)
3382 struct descriptor
*d
;
3383 dma_addr_t d_bus
, page_bus
;
3384 int page
, offset
, rest
, z
, i
, length
;
3386 page
= payload
>> PAGE_SHIFT
;
3387 offset
= payload
& ~PAGE_MASK
;
3388 rest
= packet
->payload_length
;
3390 /* We need one descriptor for each page in the buffer. */
3391 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3393 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3396 for (i
= 0; i
< z
; i
++) {
3397 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3401 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3402 DESCRIPTOR_BRANCH_ALWAYS
);
3403 if (packet
->skip
&& i
== 0)
3404 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3405 if (packet
->interrupt
&& i
== z
- 1)
3406 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3408 if (offset
+ rest
< PAGE_SIZE
)
3411 length
= PAGE_SIZE
- offset
;
3412 d
->req_count
= cpu_to_le16(length
);
3413 d
->res_count
= d
->req_count
;
3414 d
->transfer_status
= 0;
3416 page_bus
= page_private(buffer
->pages
[page
]);
3417 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3419 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3420 page_bus
, offset
, length
,
3427 context_append(&ctx
->context
, d
, 1, 0);
3433 static int ohci_queue_iso(struct fw_iso_context
*base
,
3434 struct fw_iso_packet
*packet
,
3435 struct fw_iso_buffer
*buffer
,
3436 unsigned long payload
)
3438 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3439 unsigned long flags
;
3442 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3443 switch (base
->type
) {
3444 case FW_ISO_CONTEXT_TRANSMIT
:
3445 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3447 case FW_ISO_CONTEXT_RECEIVE
:
3448 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3450 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3451 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3454 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3459 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3461 struct context
*ctx
=
3462 &container_of(base
, struct iso_context
, base
)->context
;
3464 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3467 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3469 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3472 tasklet_disable(&ctx
->context
.tasklet
);
3474 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3475 context_tasklet((unsigned long)&ctx
->context
);
3477 switch (base
->type
) {
3478 case FW_ISO_CONTEXT_TRANSMIT
:
3479 case FW_ISO_CONTEXT_RECEIVE
:
3480 if (ctx
->header_length
!= 0)
3481 flush_iso_completions(ctx
);
3483 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3484 if (ctx
->mc_completed
!= 0)
3485 flush_ir_buffer_fill(ctx
);
3491 clear_bit_unlock(0, &ctx
->flushing_completions
);
3492 smp_mb__after_atomic();
3495 tasklet_enable(&ctx
->context
.tasklet
);
3500 static const struct fw_card_driver ohci_driver
= {
3501 .enable
= ohci_enable
,
3502 .read_phy_reg
= ohci_read_phy_reg
,
3503 .update_phy_reg
= ohci_update_phy_reg
,
3504 .set_config_rom
= ohci_set_config_rom
,
3505 .send_request
= ohci_send_request
,
3506 .send_response
= ohci_send_response
,
3507 .cancel_packet
= ohci_cancel_packet
,
3508 .enable_phys_dma
= ohci_enable_phys_dma
,
3509 .read_csr
= ohci_read_csr
,
3510 .write_csr
= ohci_write_csr
,
3512 .allocate_iso_context
= ohci_allocate_iso_context
,
3513 .free_iso_context
= ohci_free_iso_context
,
3514 .set_iso_channels
= ohci_set_iso_channels
,
3515 .queue_iso
= ohci_queue_iso
,
3516 .flush_queue_iso
= ohci_flush_queue_iso
,
3517 .flush_iso_completions
= ohci_flush_iso_completions
,
3518 .start_iso
= ohci_start_iso
,
3519 .stop_iso
= ohci_stop_iso
,
3522 #ifdef CONFIG_PPC_PMAC
3523 static void pmac_ohci_on(struct pci_dev
*dev
)
3525 if (machine_is(powermac
)) {
3526 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3529 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3530 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3535 static void pmac_ohci_off(struct pci_dev
*dev
)
3537 if (machine_is(powermac
)) {
3538 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3541 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3542 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3547 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3548 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3549 #endif /* CONFIG_PPC_PMAC */
3551 static int pci_probe(struct pci_dev
*dev
,
3552 const struct pci_device_id
*ent
)
3554 struct fw_ohci
*ohci
;
3555 u32 bus_options
, max_receive
, link_speed
, version
;
3560 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3561 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3565 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3571 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3575 err
= pci_enable_device(dev
);
3577 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3581 pci_set_master(dev
);
3582 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3583 pci_set_drvdata(dev
, ohci
);
3585 spin_lock_init(&ohci
->lock
);
3586 mutex_init(&ohci
->phy_reg_mutex
);
3588 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3590 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3591 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3592 ohci_err(ohci
, "invalid MMIO resource\n");
3597 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3599 ohci_err(ohci
, "MMIO resource unavailable\n");
3603 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3604 if (ohci
->registers
== NULL
) {
3605 ohci_err(ohci
, "failed to remap registers\n");
3610 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3611 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3612 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3613 ohci_quirks
[i
].device
== dev
->device
) &&
3614 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3615 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3616 ohci
->quirks
= ohci_quirks
[i
].flags
;
3620 ohci
->quirks
= param_quirks
;
3623 * Because dma_alloc_coherent() allocates at least one page,
3624 * we save space by using a common buffer for the AR request/
3625 * response descriptors and the self IDs buffer.
3627 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3628 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3629 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3631 &ohci
->misc_buffer_bus
,
3633 if (!ohci
->misc_buffer
) {
3638 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3639 OHCI1394_AsReqRcvContextControlSet
);
3643 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3644 OHCI1394_AsRspRcvContextControlSet
);
3646 goto fail_arreq_ctx
;
3648 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3649 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3651 goto fail_arrsp_ctx
;
3653 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3654 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3656 goto fail_atreq_ctx
;
3658 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3659 ohci
->ir_context_channels
= ~0ULL;
3660 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3661 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3662 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3663 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3664 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3665 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3667 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3668 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3669 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3670 if (!ohci
->it_context_support
) {
3671 ohci_notice(ohci
, "overriding IsoXmitIntMask\n");
3672 ohci
->it_context_support
= 0xf;
3674 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3675 ohci
->it_context_mask
= ohci
->it_context_support
;
3676 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3677 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3678 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3680 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3685 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3686 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3688 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3689 max_receive
= (bus_options
>> 12) & 0xf;
3690 link_speed
= bus_options
& 0x7;
3691 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3692 reg_read(ohci
, OHCI1394_GUIDLo
);
3694 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3695 pci_enable_msi(dev
);
3696 if (request_irq(dev
->irq
, irq_handler
,
3697 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3698 ohci_driver_name
, ohci
)) {
3699 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3704 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3708 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3710 "added OHCI v%x.%x device as card %d, "
3711 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3712 version
>> 16, version
& 0xff, ohci
->card
.index
,
3713 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3714 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3720 free_irq(dev
->irq
, ohci
);
3722 pci_disable_msi(dev
);
3724 kfree(ohci
->ir_context_list
);
3725 kfree(ohci
->it_context_list
);
3726 context_release(&ohci
->at_response_ctx
);
3728 context_release(&ohci
->at_request_ctx
);
3730 ar_context_release(&ohci
->ar_response_ctx
);
3732 ar_context_release(&ohci
->ar_request_ctx
);
3734 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3735 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3737 pci_iounmap(dev
, ohci
->registers
);
3739 pci_release_region(dev
, 0);
3741 pci_disable_device(dev
);
3749 static void pci_remove(struct pci_dev
*dev
)
3751 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3754 * If the removal is happening from the suspend state, LPS won't be
3755 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3757 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3758 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3761 cancel_work_sync(&ohci
->bus_reset_work
);
3762 fw_core_remove_card(&ohci
->card
);
3765 * FIXME: Fail all pending packets here, now that the upper
3766 * layers can't queue any more.
3769 software_reset(ohci
);
3770 free_irq(dev
->irq
, ohci
);
3772 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3773 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3774 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3775 if (ohci
->config_rom
)
3776 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3777 ohci
->config_rom
, ohci
->config_rom_bus
);
3778 ar_context_release(&ohci
->ar_request_ctx
);
3779 ar_context_release(&ohci
->ar_response_ctx
);
3780 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3781 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3782 context_release(&ohci
->at_request_ctx
);
3783 context_release(&ohci
->at_response_ctx
);
3784 kfree(ohci
->it_context_list
);
3785 kfree(ohci
->ir_context_list
);
3786 pci_disable_msi(dev
);
3787 pci_iounmap(dev
, ohci
->registers
);
3788 pci_release_region(dev
, 0);
3789 pci_disable_device(dev
);
3793 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3797 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3799 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3802 software_reset(ohci
);
3803 err
= pci_save_state(dev
);
3805 ohci_err(ohci
, "pci_save_state failed\n");
3808 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3810 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3816 static int pci_resume(struct pci_dev
*dev
)
3818 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3822 pci_set_power_state(dev
, PCI_D0
);
3823 pci_restore_state(dev
);
3824 err
= pci_enable_device(dev
);
3826 ohci_err(ohci
, "pci_enable_device failed\n");
3830 /* Some systems don't setup GUID register on resume from ram */
3831 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3832 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3833 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3834 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3837 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3841 ohci_resume_iso_dma(ohci
);
3847 static const struct pci_device_id pci_table
[] = {
3848 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3852 MODULE_DEVICE_TABLE(pci
, pci_table
);
3854 static struct pci_driver fw_ohci_pci_driver
= {
3855 .name
= ohci_driver_name
,
3856 .id_table
= pci_table
,
3858 .remove
= pci_remove
,
3860 .resume
= pci_resume
,
3861 .suspend
= pci_suspend
,
3865 static int __init
fw_ohci_init(void)
3867 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3868 if (!selfid_workqueue
)
3871 return pci_register_driver(&fw_ohci_pci_driver
);
3874 static void __exit
fw_ohci_cleanup(void)
3876 pci_unregister_driver(&fw_ohci_pci_driver
);
3877 destroy_workqueue(selfid_workqueue
);
3880 module_init(fw_ohci_init
);
3881 module_exit(fw_ohci_cleanup
);
3883 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3884 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3885 MODULE_LICENSE("GPL");
3887 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3888 MODULE_ALIAS("ohci1394");