bugfix: kernel oops in qos_waitexit
[cor.git] / mm / vmscan.c
blob74e8edce83ca4f148142cbec62e1b0d4f3026a13
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
61 #include "internal.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
74 nodemask_t *nodemask;
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Can active pages be deactivated as part of reclaim? */
83 #define DEACTIVATE_ANON 1
84 #define DEACTIVATE_FILE 2
85 unsigned int may_deactivate:2;
86 unsigned int force_deactivate:1;
87 unsigned int skipped_deactivate:1;
89 /* Writepage batching in laptop mode; RECLAIM_WRITE */
90 unsigned int may_writepage:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
99 * Cgroups are not reclaimed below their configured memory.low,
100 * unless we threaten to OOM. If any cgroups are skipped due to
101 * memory.low and nothing was reclaimed, go back for memory.low.
103 unsigned int memcg_low_reclaim:1;
104 unsigned int memcg_low_skipped:1;
106 unsigned int hibernation_mode:1;
108 /* One of the zones is ready for compaction */
109 unsigned int compaction_ready:1;
111 /* There is easily reclaimable cold cache in the current node */
112 unsigned int cache_trim_mode:1;
114 /* The file pages on the current node are dangerously low */
115 unsigned int file_is_tiny:1;
117 /* Allocation order */
118 s8 order;
120 /* Scan (total_size >> priority) pages at once */
121 s8 priority;
123 /* The highest zone to isolate pages for reclaim from */
124 s8 reclaim_idx;
126 /* This context's GFP mask */
127 gfp_t gfp_mask;
129 /* Incremented by the number of inactive pages that were scanned */
130 unsigned long nr_scanned;
132 /* Number of pages freed so far during a call to shrink_zones() */
133 unsigned long nr_reclaimed;
135 struct {
136 unsigned int dirty;
137 unsigned int unqueued_dirty;
138 unsigned int congested;
139 unsigned int writeback;
140 unsigned int immediate;
141 unsigned int file_taken;
142 unsigned int taken;
143 } nr;
145 /* for recording the reclaimed slab by now */
146 struct reclaim_state reclaim_state;
149 #ifdef ARCH_HAS_PREFETCH
150 #define prefetch_prev_lru_page(_page, _base, _field) \
151 do { \
152 if ((_page)->lru.prev != _base) { \
153 struct page *prev; \
155 prev = lru_to_page(&(_page->lru)); \
156 prefetch(&prev->_field); \
158 } while (0)
159 #else
160 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
161 #endif
163 #ifdef ARCH_HAS_PREFETCHW
164 #define prefetchw_prev_lru_page(_page, _base, _field) \
165 do { \
166 if ((_page)->lru.prev != _base) { \
167 struct page *prev; \
169 prev = lru_to_page(&(_page->lru)); \
170 prefetchw(&prev->_field); \
172 } while (0)
173 #else
174 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
175 #endif
178 * From 0 .. 100. Higher means more swappy.
180 int vm_swappiness = 60;
182 * The total number of pages which are beyond the high watermark within all
183 * zones.
185 unsigned long vm_total_pages;
187 static void set_task_reclaim_state(struct task_struct *task,
188 struct reclaim_state *rs)
190 /* Check for an overwrite */
191 WARN_ON_ONCE(rs && task->reclaim_state);
193 /* Check for the nulling of an already-nulled member */
194 WARN_ON_ONCE(!rs && !task->reclaim_state);
196 task->reclaim_state = rs;
199 static LIST_HEAD(shrinker_list);
200 static DECLARE_RWSEM(shrinker_rwsem);
202 #ifdef CONFIG_MEMCG
204 * We allow subsystems to populate their shrinker-related
205 * LRU lists before register_shrinker_prepared() is called
206 * for the shrinker, since we don't want to impose
207 * restrictions on their internal registration order.
208 * In this case shrink_slab_memcg() may find corresponding
209 * bit is set in the shrinkers map.
211 * This value is used by the function to detect registering
212 * shrinkers and to skip do_shrink_slab() calls for them.
214 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
216 static DEFINE_IDR(shrinker_idr);
217 static int shrinker_nr_max;
219 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
221 int id, ret = -ENOMEM;
223 down_write(&shrinker_rwsem);
224 /* This may call shrinker, so it must use down_read_trylock() */
225 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
226 if (id < 0)
227 goto unlock;
229 if (id >= shrinker_nr_max) {
230 if (memcg_expand_shrinker_maps(id)) {
231 idr_remove(&shrinker_idr, id);
232 goto unlock;
235 shrinker_nr_max = id + 1;
237 shrinker->id = id;
238 ret = 0;
239 unlock:
240 up_write(&shrinker_rwsem);
241 return ret;
244 static void unregister_memcg_shrinker(struct shrinker *shrinker)
246 int id = shrinker->id;
248 BUG_ON(id < 0);
250 down_write(&shrinker_rwsem);
251 idr_remove(&shrinker_idr, id);
252 up_write(&shrinker_rwsem);
255 static bool cgroup_reclaim(struct scan_control *sc)
257 return sc->target_mem_cgroup;
261 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
262 * @sc: scan_control in question
264 * The normal page dirty throttling mechanism in balance_dirty_pages() is
265 * completely broken with the legacy memcg and direct stalling in
266 * shrink_page_list() is used for throttling instead, which lacks all the
267 * niceties such as fairness, adaptive pausing, bandwidth proportional
268 * allocation and configurability.
270 * This function tests whether the vmscan currently in progress can assume
271 * that the normal dirty throttling mechanism is operational.
273 static bool writeback_throttling_sane(struct scan_control *sc)
275 if (!cgroup_reclaim(sc))
276 return true;
277 #ifdef CONFIG_CGROUP_WRITEBACK
278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
279 return true;
280 #endif
281 return false;
283 #else
284 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
286 return 0;
289 static void unregister_memcg_shrinker(struct shrinker *shrinker)
293 static bool cgroup_reclaim(struct scan_control *sc)
295 return false;
298 static bool writeback_throttling_sane(struct scan_control *sc)
300 return true;
302 #endif
305 * This misses isolated pages which are not accounted for to save counters.
306 * As the data only determines if reclaim or compaction continues, it is
307 * not expected that isolated pages will be a dominating factor.
309 unsigned long zone_reclaimable_pages(struct zone *zone)
311 unsigned long nr;
313 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
314 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
315 if (get_nr_swap_pages() > 0)
316 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
317 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
319 return nr;
323 * lruvec_lru_size - Returns the number of pages on the given LRU list.
324 * @lruvec: lru vector
325 * @lru: lru to use
326 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
328 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
330 unsigned long size = 0;
331 int zid;
333 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
334 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
336 if (!managed_zone(zone))
337 continue;
339 if (!mem_cgroup_disabled())
340 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
341 else
342 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
344 return size;
348 * Add a shrinker callback to be called from the vm.
350 int prealloc_shrinker(struct shrinker *shrinker)
352 unsigned int size = sizeof(*shrinker->nr_deferred);
354 if (shrinker->flags & SHRINKER_NUMA_AWARE)
355 size *= nr_node_ids;
357 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
358 if (!shrinker->nr_deferred)
359 return -ENOMEM;
361 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
362 if (prealloc_memcg_shrinker(shrinker))
363 goto free_deferred;
366 return 0;
368 free_deferred:
369 kfree(shrinker->nr_deferred);
370 shrinker->nr_deferred = NULL;
371 return -ENOMEM;
374 void free_prealloced_shrinker(struct shrinker *shrinker)
376 if (!shrinker->nr_deferred)
377 return;
379 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
380 unregister_memcg_shrinker(shrinker);
382 kfree(shrinker->nr_deferred);
383 shrinker->nr_deferred = NULL;
386 void register_shrinker_prepared(struct shrinker *shrinker)
388 down_write(&shrinker_rwsem);
389 list_add_tail(&shrinker->list, &shrinker_list);
390 #ifdef CONFIG_MEMCG_KMEM
391 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
392 idr_replace(&shrinker_idr, shrinker, shrinker->id);
393 #endif
394 up_write(&shrinker_rwsem);
397 int register_shrinker(struct shrinker *shrinker)
399 int err = prealloc_shrinker(shrinker);
401 if (err)
402 return err;
403 register_shrinker_prepared(shrinker);
404 return 0;
406 EXPORT_SYMBOL(register_shrinker);
409 * Remove one
411 void unregister_shrinker(struct shrinker *shrinker)
413 if (!shrinker->nr_deferred)
414 return;
415 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
416 unregister_memcg_shrinker(shrinker);
417 down_write(&shrinker_rwsem);
418 list_del(&shrinker->list);
419 up_write(&shrinker_rwsem);
420 kfree(shrinker->nr_deferred);
421 shrinker->nr_deferred = NULL;
423 EXPORT_SYMBOL(unregister_shrinker);
425 #define SHRINK_BATCH 128
427 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
428 struct shrinker *shrinker, int priority)
430 unsigned long freed = 0;
431 unsigned long long delta;
432 long total_scan;
433 long freeable;
434 long nr;
435 long new_nr;
436 int nid = shrinkctl->nid;
437 long batch_size = shrinker->batch ? shrinker->batch
438 : SHRINK_BATCH;
439 long scanned = 0, next_deferred;
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 nid = 0;
444 freeable = shrinker->count_objects(shrinker, shrinkctl);
445 if (freeable == 0 || freeable == SHRINK_EMPTY)
446 return freeable;
449 * copy the current shrinker scan count into a local variable
450 * and zero it so that other concurrent shrinker invocations
451 * don't also do this scanning work.
453 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
455 total_scan = nr;
456 if (shrinker->seeks) {
457 delta = freeable >> priority;
458 delta *= 4;
459 do_div(delta, shrinker->seeks);
460 } else {
462 * These objects don't require any IO to create. Trim
463 * them aggressively under memory pressure to keep
464 * them from causing refetches in the IO caches.
466 delta = freeable / 2;
469 total_scan += delta;
470 if (total_scan < 0) {
471 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
472 shrinker->scan_objects, total_scan);
473 total_scan = freeable;
474 next_deferred = nr;
475 } else
476 next_deferred = total_scan;
479 * We need to avoid excessive windup on filesystem shrinkers
480 * due to large numbers of GFP_NOFS allocations causing the
481 * shrinkers to return -1 all the time. This results in a large
482 * nr being built up so when a shrink that can do some work
483 * comes along it empties the entire cache due to nr >>>
484 * freeable. This is bad for sustaining a working set in
485 * memory.
487 * Hence only allow the shrinker to scan the entire cache when
488 * a large delta change is calculated directly.
490 if (delta < freeable / 4)
491 total_scan = min(total_scan, freeable / 2);
494 * Avoid risking looping forever due to too large nr value:
495 * never try to free more than twice the estimate number of
496 * freeable entries.
498 if (total_scan > freeable * 2)
499 total_scan = freeable * 2;
501 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
502 freeable, delta, total_scan, priority);
505 * Normally, we should not scan less than batch_size objects in one
506 * pass to avoid too frequent shrinker calls, but if the slab has less
507 * than batch_size objects in total and we are really tight on memory,
508 * we will try to reclaim all available objects, otherwise we can end
509 * up failing allocations although there are plenty of reclaimable
510 * objects spread over several slabs with usage less than the
511 * batch_size.
513 * We detect the "tight on memory" situations by looking at the total
514 * number of objects we want to scan (total_scan). If it is greater
515 * than the total number of objects on slab (freeable), we must be
516 * scanning at high prio and therefore should try to reclaim as much as
517 * possible.
519 while (total_scan >= batch_size ||
520 total_scan >= freeable) {
521 unsigned long ret;
522 unsigned long nr_to_scan = min(batch_size, total_scan);
524 shrinkctl->nr_to_scan = nr_to_scan;
525 shrinkctl->nr_scanned = nr_to_scan;
526 ret = shrinker->scan_objects(shrinker, shrinkctl);
527 if (ret == SHRINK_STOP)
528 break;
529 freed += ret;
531 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
532 total_scan -= shrinkctl->nr_scanned;
533 scanned += shrinkctl->nr_scanned;
535 cond_resched();
538 if (next_deferred >= scanned)
539 next_deferred -= scanned;
540 else
541 next_deferred = 0;
543 * move the unused scan count back into the shrinker in a
544 * manner that handles concurrent updates. If we exhausted the
545 * scan, there is no need to do an update.
547 if (next_deferred > 0)
548 new_nr = atomic_long_add_return(next_deferred,
549 &shrinker->nr_deferred[nid]);
550 else
551 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
553 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
554 return freed;
557 #ifdef CONFIG_MEMCG
558 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
559 struct mem_cgroup *memcg, int priority)
561 struct memcg_shrinker_map *map;
562 unsigned long ret, freed = 0;
563 int i;
565 if (!mem_cgroup_online(memcg))
566 return 0;
568 if (!down_read_trylock(&shrinker_rwsem))
569 return 0;
571 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
572 true);
573 if (unlikely(!map))
574 goto unlock;
576 for_each_set_bit(i, map->map, shrinker_nr_max) {
577 struct shrink_control sc = {
578 .gfp_mask = gfp_mask,
579 .nid = nid,
580 .memcg = memcg,
582 struct shrinker *shrinker;
584 shrinker = idr_find(&shrinker_idr, i);
585 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
586 if (!shrinker)
587 clear_bit(i, map->map);
588 continue;
591 /* Call non-slab shrinkers even though kmem is disabled */
592 if (!memcg_kmem_enabled() &&
593 !(shrinker->flags & SHRINKER_NONSLAB))
594 continue;
596 ret = do_shrink_slab(&sc, shrinker, priority);
597 if (ret == SHRINK_EMPTY) {
598 clear_bit(i, map->map);
600 * After the shrinker reported that it had no objects to
601 * free, but before we cleared the corresponding bit in
602 * the memcg shrinker map, a new object might have been
603 * added. To make sure, we have the bit set in this
604 * case, we invoke the shrinker one more time and reset
605 * the bit if it reports that it is not empty anymore.
606 * The memory barrier here pairs with the barrier in
607 * memcg_set_shrinker_bit():
609 * list_lru_add() shrink_slab_memcg()
610 * list_add_tail() clear_bit()
611 * <MB> <MB>
612 * set_bit() do_shrink_slab()
614 smp_mb__after_atomic();
615 ret = do_shrink_slab(&sc, shrinker, priority);
616 if (ret == SHRINK_EMPTY)
617 ret = 0;
618 else
619 memcg_set_shrinker_bit(memcg, nid, i);
621 freed += ret;
623 if (rwsem_is_contended(&shrinker_rwsem)) {
624 freed = freed ? : 1;
625 break;
628 unlock:
629 up_read(&shrinker_rwsem);
630 return freed;
632 #else /* CONFIG_MEMCG */
633 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
634 struct mem_cgroup *memcg, int priority)
636 return 0;
638 #endif /* CONFIG_MEMCG */
641 * shrink_slab - shrink slab caches
642 * @gfp_mask: allocation context
643 * @nid: node whose slab caches to target
644 * @memcg: memory cgroup whose slab caches to target
645 * @priority: the reclaim priority
647 * Call the shrink functions to age shrinkable caches.
649 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
650 * unaware shrinkers will receive a node id of 0 instead.
652 * @memcg specifies the memory cgroup to target. Unaware shrinkers
653 * are called only if it is the root cgroup.
655 * @priority is sc->priority, we take the number of objects and >> by priority
656 * in order to get the scan target.
658 * Returns the number of reclaimed slab objects.
660 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
661 struct mem_cgroup *memcg,
662 int priority)
664 unsigned long ret, freed = 0;
665 struct shrinker *shrinker;
668 * The root memcg might be allocated even though memcg is disabled
669 * via "cgroup_disable=memory" boot parameter. This could make
670 * mem_cgroup_is_root() return false, then just run memcg slab
671 * shrink, but skip global shrink. This may result in premature
672 * oom.
674 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
675 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
677 if (!down_read_trylock(&shrinker_rwsem))
678 goto out;
680 list_for_each_entry(shrinker, &shrinker_list, list) {
681 struct shrink_control sc = {
682 .gfp_mask = gfp_mask,
683 .nid = nid,
684 .memcg = memcg,
687 ret = do_shrink_slab(&sc, shrinker, priority);
688 if (ret == SHRINK_EMPTY)
689 ret = 0;
690 freed += ret;
692 * Bail out if someone want to register a new shrinker to
693 * prevent the regsitration from being stalled for long periods
694 * by parallel ongoing shrinking.
696 if (rwsem_is_contended(&shrinker_rwsem)) {
697 freed = freed ? : 1;
698 break;
702 up_read(&shrinker_rwsem);
703 out:
704 cond_resched();
705 return freed;
708 void drop_slab_node(int nid)
710 unsigned long freed;
712 do {
713 struct mem_cgroup *memcg = NULL;
715 freed = 0;
716 memcg = mem_cgroup_iter(NULL, NULL, NULL);
717 do {
718 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
719 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
720 } while (freed > 10);
723 void drop_slab(void)
725 int nid;
727 for_each_online_node(nid)
728 drop_slab_node(nid);
731 static inline int is_page_cache_freeable(struct page *page)
734 * A freeable page cache page is referenced only by the caller
735 * that isolated the page, the page cache and optional buffer
736 * heads at page->private.
738 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
739 HPAGE_PMD_NR : 1;
740 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
743 static int may_write_to_inode(struct inode *inode)
745 if (current->flags & PF_SWAPWRITE)
746 return 1;
747 if (!inode_write_congested(inode))
748 return 1;
749 if (inode_to_bdi(inode) == current->backing_dev_info)
750 return 1;
751 return 0;
755 * We detected a synchronous write error writing a page out. Probably
756 * -ENOSPC. We need to propagate that into the address_space for a subsequent
757 * fsync(), msync() or close().
759 * The tricky part is that after writepage we cannot touch the mapping: nothing
760 * prevents it from being freed up. But we have a ref on the page and once
761 * that page is locked, the mapping is pinned.
763 * We're allowed to run sleeping lock_page() here because we know the caller has
764 * __GFP_FS.
766 static void handle_write_error(struct address_space *mapping,
767 struct page *page, int error)
769 lock_page(page);
770 if (page_mapping(page) == mapping)
771 mapping_set_error(mapping, error);
772 unlock_page(page);
775 /* possible outcome of pageout() */
776 typedef enum {
777 /* failed to write page out, page is locked */
778 PAGE_KEEP,
779 /* move page to the active list, page is locked */
780 PAGE_ACTIVATE,
781 /* page has been sent to the disk successfully, page is unlocked */
782 PAGE_SUCCESS,
783 /* page is clean and locked */
784 PAGE_CLEAN,
785 } pageout_t;
788 * pageout is called by shrink_page_list() for each dirty page.
789 * Calls ->writepage().
791 static pageout_t pageout(struct page *page, struct address_space *mapping)
794 * If the page is dirty, only perform writeback if that write
795 * will be non-blocking. To prevent this allocation from being
796 * stalled by pagecache activity. But note that there may be
797 * stalls if we need to run get_block(). We could test
798 * PagePrivate for that.
800 * If this process is currently in __generic_file_write_iter() against
801 * this page's queue, we can perform writeback even if that
802 * will block.
804 * If the page is swapcache, write it back even if that would
805 * block, for some throttling. This happens by accident, because
806 * swap_backing_dev_info is bust: it doesn't reflect the
807 * congestion state of the swapdevs. Easy to fix, if needed.
809 if (!is_page_cache_freeable(page))
810 return PAGE_KEEP;
811 if (!mapping) {
813 * Some data journaling orphaned pages can have
814 * page->mapping == NULL while being dirty with clean buffers.
816 if (page_has_private(page)) {
817 if (try_to_free_buffers(page)) {
818 ClearPageDirty(page);
819 pr_info("%s: orphaned page\n", __func__);
820 return PAGE_CLEAN;
823 return PAGE_KEEP;
825 if (mapping->a_ops->writepage == NULL)
826 return PAGE_ACTIVATE;
827 if (!may_write_to_inode(mapping->host))
828 return PAGE_KEEP;
830 if (clear_page_dirty_for_io(page)) {
831 int res;
832 struct writeback_control wbc = {
833 .sync_mode = WB_SYNC_NONE,
834 .nr_to_write = SWAP_CLUSTER_MAX,
835 .range_start = 0,
836 .range_end = LLONG_MAX,
837 .for_reclaim = 1,
840 SetPageReclaim(page);
841 res = mapping->a_ops->writepage(page, &wbc);
842 if (res < 0)
843 handle_write_error(mapping, page, res);
844 if (res == AOP_WRITEPAGE_ACTIVATE) {
845 ClearPageReclaim(page);
846 return PAGE_ACTIVATE;
849 if (!PageWriteback(page)) {
850 /* synchronous write or broken a_ops? */
851 ClearPageReclaim(page);
853 trace_mm_vmscan_writepage(page);
854 inc_node_page_state(page, NR_VMSCAN_WRITE);
855 return PAGE_SUCCESS;
858 return PAGE_CLEAN;
862 * Same as remove_mapping, but if the page is removed from the mapping, it
863 * gets returned with a refcount of 0.
865 static int __remove_mapping(struct address_space *mapping, struct page *page,
866 bool reclaimed, struct mem_cgroup *target_memcg)
868 unsigned long flags;
869 int refcount;
871 BUG_ON(!PageLocked(page));
872 BUG_ON(mapping != page_mapping(page));
874 xa_lock_irqsave(&mapping->i_pages, flags);
876 * The non racy check for a busy page.
878 * Must be careful with the order of the tests. When someone has
879 * a ref to the page, it may be possible that they dirty it then
880 * drop the reference. So if PageDirty is tested before page_count
881 * here, then the following race may occur:
883 * get_user_pages(&page);
884 * [user mapping goes away]
885 * write_to(page);
886 * !PageDirty(page) [good]
887 * SetPageDirty(page);
888 * put_page(page);
889 * !page_count(page) [good, discard it]
891 * [oops, our write_to data is lost]
893 * Reversing the order of the tests ensures such a situation cannot
894 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
895 * load is not satisfied before that of page->_refcount.
897 * Note that if SetPageDirty is always performed via set_page_dirty,
898 * and thus under the i_pages lock, then this ordering is not required.
900 refcount = 1 + compound_nr(page);
901 if (!page_ref_freeze(page, refcount))
902 goto cannot_free;
903 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
904 if (unlikely(PageDirty(page))) {
905 page_ref_unfreeze(page, refcount);
906 goto cannot_free;
909 if (PageSwapCache(page)) {
910 swp_entry_t swap = { .val = page_private(page) };
911 mem_cgroup_swapout(page, swap);
912 __delete_from_swap_cache(page, swap);
913 xa_unlock_irqrestore(&mapping->i_pages, flags);
914 put_swap_page(page, swap);
915 } else {
916 void (*freepage)(struct page *);
917 void *shadow = NULL;
919 freepage = mapping->a_ops->freepage;
921 * Remember a shadow entry for reclaimed file cache in
922 * order to detect refaults, thus thrashing, later on.
924 * But don't store shadows in an address space that is
925 * already exiting. This is not just an optizimation,
926 * inode reclaim needs to empty out the radix tree or
927 * the nodes are lost. Don't plant shadows behind its
928 * back.
930 * We also don't store shadows for DAX mappings because the
931 * only page cache pages found in these are zero pages
932 * covering holes, and because we don't want to mix DAX
933 * exceptional entries and shadow exceptional entries in the
934 * same address_space.
936 if (reclaimed && page_is_file_cache(page) &&
937 !mapping_exiting(mapping) && !dax_mapping(mapping))
938 shadow = workingset_eviction(page, target_memcg);
939 __delete_from_page_cache(page, shadow);
940 xa_unlock_irqrestore(&mapping->i_pages, flags);
942 if (freepage != NULL)
943 freepage(page);
946 return 1;
948 cannot_free:
949 xa_unlock_irqrestore(&mapping->i_pages, flags);
950 return 0;
954 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
955 * someone else has a ref on the page, abort and return 0. If it was
956 * successfully detached, return 1. Assumes the caller has a single ref on
957 * this page.
959 int remove_mapping(struct address_space *mapping, struct page *page)
961 if (__remove_mapping(mapping, page, false, NULL)) {
963 * Unfreezing the refcount with 1 rather than 2 effectively
964 * drops the pagecache ref for us without requiring another
965 * atomic operation.
967 page_ref_unfreeze(page, 1);
968 return 1;
970 return 0;
974 * putback_lru_page - put previously isolated page onto appropriate LRU list
975 * @page: page to be put back to appropriate lru list
977 * Add previously isolated @page to appropriate LRU list.
978 * Page may still be unevictable for other reasons.
980 * lru_lock must not be held, interrupts must be enabled.
982 void putback_lru_page(struct page *page)
984 lru_cache_add(page);
985 put_page(page); /* drop ref from isolate */
988 enum page_references {
989 PAGEREF_RECLAIM,
990 PAGEREF_RECLAIM_CLEAN,
991 PAGEREF_KEEP,
992 PAGEREF_ACTIVATE,
995 static enum page_references page_check_references(struct page *page,
996 struct scan_control *sc)
998 int referenced_ptes, referenced_page;
999 unsigned long vm_flags;
1001 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1002 &vm_flags);
1003 referenced_page = TestClearPageReferenced(page);
1006 * Mlock lost the isolation race with us. Let try_to_unmap()
1007 * move the page to the unevictable list.
1009 if (vm_flags & VM_LOCKED)
1010 return PAGEREF_RECLAIM;
1012 if (referenced_ptes) {
1013 if (PageSwapBacked(page))
1014 return PAGEREF_ACTIVATE;
1016 * All mapped pages start out with page table
1017 * references from the instantiating fault, so we need
1018 * to look twice if a mapped file page is used more
1019 * than once.
1021 * Mark it and spare it for another trip around the
1022 * inactive list. Another page table reference will
1023 * lead to its activation.
1025 * Note: the mark is set for activated pages as well
1026 * so that recently deactivated but used pages are
1027 * quickly recovered.
1029 SetPageReferenced(page);
1031 if (referenced_page || referenced_ptes > 1)
1032 return PAGEREF_ACTIVATE;
1035 * Activate file-backed executable pages after first usage.
1037 if (vm_flags & VM_EXEC)
1038 return PAGEREF_ACTIVATE;
1040 return PAGEREF_KEEP;
1043 /* Reclaim if clean, defer dirty pages to writeback */
1044 if (referenced_page && !PageSwapBacked(page))
1045 return PAGEREF_RECLAIM_CLEAN;
1047 return PAGEREF_RECLAIM;
1050 /* Check if a page is dirty or under writeback */
1051 static void page_check_dirty_writeback(struct page *page,
1052 bool *dirty, bool *writeback)
1054 struct address_space *mapping;
1057 * Anonymous pages are not handled by flushers and must be written
1058 * from reclaim context. Do not stall reclaim based on them
1060 if (!page_is_file_cache(page) ||
1061 (PageAnon(page) && !PageSwapBacked(page))) {
1062 *dirty = false;
1063 *writeback = false;
1064 return;
1067 /* By default assume that the page flags are accurate */
1068 *dirty = PageDirty(page);
1069 *writeback = PageWriteback(page);
1071 /* Verify dirty/writeback state if the filesystem supports it */
1072 if (!page_has_private(page))
1073 return;
1075 mapping = page_mapping(page);
1076 if (mapping && mapping->a_ops->is_dirty_writeback)
1077 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1081 * shrink_page_list() returns the number of reclaimed pages
1083 static unsigned long shrink_page_list(struct list_head *page_list,
1084 struct pglist_data *pgdat,
1085 struct scan_control *sc,
1086 enum ttu_flags ttu_flags,
1087 struct reclaim_stat *stat,
1088 bool ignore_references)
1090 LIST_HEAD(ret_pages);
1091 LIST_HEAD(free_pages);
1092 unsigned nr_reclaimed = 0;
1093 unsigned pgactivate = 0;
1095 memset(stat, 0, sizeof(*stat));
1096 cond_resched();
1098 while (!list_empty(page_list)) {
1099 struct address_space *mapping;
1100 struct page *page;
1101 int may_enter_fs;
1102 enum page_references references = PAGEREF_RECLAIM;
1103 bool dirty, writeback;
1104 unsigned int nr_pages;
1106 cond_resched();
1108 page = lru_to_page(page_list);
1109 list_del(&page->lru);
1111 if (!trylock_page(page))
1112 goto keep;
1114 VM_BUG_ON_PAGE(PageActive(page), page);
1116 nr_pages = compound_nr(page);
1118 /* Account the number of base pages even though THP */
1119 sc->nr_scanned += nr_pages;
1121 if (unlikely(!page_evictable(page)))
1122 goto activate_locked;
1124 if (!sc->may_unmap && page_mapped(page))
1125 goto keep_locked;
1127 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1128 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1131 * The number of dirty pages determines if a node is marked
1132 * reclaim_congested which affects wait_iff_congested. kswapd
1133 * will stall and start writing pages if the tail of the LRU
1134 * is all dirty unqueued pages.
1136 page_check_dirty_writeback(page, &dirty, &writeback);
1137 if (dirty || writeback)
1138 stat->nr_dirty++;
1140 if (dirty && !writeback)
1141 stat->nr_unqueued_dirty++;
1144 * Treat this page as congested if the underlying BDI is or if
1145 * pages are cycling through the LRU so quickly that the
1146 * pages marked for immediate reclaim are making it to the
1147 * end of the LRU a second time.
1149 mapping = page_mapping(page);
1150 if (((dirty || writeback) && mapping &&
1151 inode_write_congested(mapping->host)) ||
1152 (writeback && PageReclaim(page)))
1153 stat->nr_congested++;
1156 * If a page at the tail of the LRU is under writeback, there
1157 * are three cases to consider.
1159 * 1) If reclaim is encountering an excessive number of pages
1160 * under writeback and this page is both under writeback and
1161 * PageReclaim then it indicates that pages are being queued
1162 * for IO but are being recycled through the LRU before the
1163 * IO can complete. Waiting on the page itself risks an
1164 * indefinite stall if it is impossible to writeback the
1165 * page due to IO error or disconnected storage so instead
1166 * note that the LRU is being scanned too quickly and the
1167 * caller can stall after page list has been processed.
1169 * 2) Global or new memcg reclaim encounters a page that is
1170 * not marked for immediate reclaim, or the caller does not
1171 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1172 * not to fs). In this case mark the page for immediate
1173 * reclaim and continue scanning.
1175 * Require may_enter_fs because we would wait on fs, which
1176 * may not have submitted IO yet. And the loop driver might
1177 * enter reclaim, and deadlock if it waits on a page for
1178 * which it is needed to do the write (loop masks off
1179 * __GFP_IO|__GFP_FS for this reason); but more thought
1180 * would probably show more reasons.
1182 * 3) Legacy memcg encounters a page that is already marked
1183 * PageReclaim. memcg does not have any dirty pages
1184 * throttling so we could easily OOM just because too many
1185 * pages are in writeback and there is nothing else to
1186 * reclaim. Wait for the writeback to complete.
1188 * In cases 1) and 2) we activate the pages to get them out of
1189 * the way while we continue scanning for clean pages on the
1190 * inactive list and refilling from the active list. The
1191 * observation here is that waiting for disk writes is more
1192 * expensive than potentially causing reloads down the line.
1193 * Since they're marked for immediate reclaim, they won't put
1194 * memory pressure on the cache working set any longer than it
1195 * takes to write them to disk.
1197 if (PageWriteback(page)) {
1198 /* Case 1 above */
1199 if (current_is_kswapd() &&
1200 PageReclaim(page) &&
1201 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1202 stat->nr_immediate++;
1203 goto activate_locked;
1205 /* Case 2 above */
1206 } else if (writeback_throttling_sane(sc) ||
1207 !PageReclaim(page) || !may_enter_fs) {
1209 * This is slightly racy - end_page_writeback()
1210 * might have just cleared PageReclaim, then
1211 * setting PageReclaim here end up interpreted
1212 * as PageReadahead - but that does not matter
1213 * enough to care. What we do want is for this
1214 * page to have PageReclaim set next time memcg
1215 * reclaim reaches the tests above, so it will
1216 * then wait_on_page_writeback() to avoid OOM;
1217 * and it's also appropriate in global reclaim.
1219 SetPageReclaim(page);
1220 stat->nr_writeback++;
1221 goto activate_locked;
1223 /* Case 3 above */
1224 } else {
1225 unlock_page(page);
1226 wait_on_page_writeback(page);
1227 /* then go back and try same page again */
1228 list_add_tail(&page->lru, page_list);
1229 continue;
1233 if (!ignore_references)
1234 references = page_check_references(page, sc);
1236 switch (references) {
1237 case PAGEREF_ACTIVATE:
1238 goto activate_locked;
1239 case PAGEREF_KEEP:
1240 stat->nr_ref_keep += nr_pages;
1241 goto keep_locked;
1242 case PAGEREF_RECLAIM:
1243 case PAGEREF_RECLAIM_CLEAN:
1244 ; /* try to reclaim the page below */
1248 * Anonymous process memory has backing store?
1249 * Try to allocate it some swap space here.
1250 * Lazyfree page could be freed directly
1252 if (PageAnon(page) && PageSwapBacked(page)) {
1253 if (!PageSwapCache(page)) {
1254 if (!(sc->gfp_mask & __GFP_IO))
1255 goto keep_locked;
1256 if (PageTransHuge(page)) {
1257 /* cannot split THP, skip it */
1258 if (!can_split_huge_page(page, NULL))
1259 goto activate_locked;
1261 * Split pages without a PMD map right
1262 * away. Chances are some or all of the
1263 * tail pages can be freed without IO.
1265 if (!compound_mapcount(page) &&
1266 split_huge_page_to_list(page,
1267 page_list))
1268 goto activate_locked;
1270 if (!add_to_swap(page)) {
1271 if (!PageTransHuge(page))
1272 goto activate_locked_split;
1273 /* Fallback to swap normal pages */
1274 if (split_huge_page_to_list(page,
1275 page_list))
1276 goto activate_locked;
1277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1278 count_vm_event(THP_SWPOUT_FALLBACK);
1279 #endif
1280 if (!add_to_swap(page))
1281 goto activate_locked_split;
1284 may_enter_fs = 1;
1286 /* Adding to swap updated mapping */
1287 mapping = page_mapping(page);
1289 } else if (unlikely(PageTransHuge(page))) {
1290 /* Split file THP */
1291 if (split_huge_page_to_list(page, page_list))
1292 goto keep_locked;
1296 * THP may get split above, need minus tail pages and update
1297 * nr_pages to avoid accounting tail pages twice.
1299 * The tail pages that are added into swap cache successfully
1300 * reach here.
1302 if ((nr_pages > 1) && !PageTransHuge(page)) {
1303 sc->nr_scanned -= (nr_pages - 1);
1304 nr_pages = 1;
1308 * The page is mapped into the page tables of one or more
1309 * processes. Try to unmap it here.
1311 if (page_mapped(page)) {
1312 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1314 if (unlikely(PageTransHuge(page)))
1315 flags |= TTU_SPLIT_HUGE_PMD;
1316 if (!try_to_unmap(page, flags)) {
1317 stat->nr_unmap_fail += nr_pages;
1318 goto activate_locked;
1322 if (PageDirty(page)) {
1324 * Only kswapd can writeback filesystem pages
1325 * to avoid risk of stack overflow. But avoid
1326 * injecting inefficient single-page IO into
1327 * flusher writeback as much as possible: only
1328 * write pages when we've encountered many
1329 * dirty pages, and when we've already scanned
1330 * the rest of the LRU for clean pages and see
1331 * the same dirty pages again (PageReclaim).
1333 if (page_is_file_cache(page) &&
1334 (!current_is_kswapd() || !PageReclaim(page) ||
1335 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1337 * Immediately reclaim when written back.
1338 * Similar in principal to deactivate_page()
1339 * except we already have the page isolated
1340 * and know it's dirty
1342 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1343 SetPageReclaim(page);
1345 goto activate_locked;
1348 if (references == PAGEREF_RECLAIM_CLEAN)
1349 goto keep_locked;
1350 if (!may_enter_fs)
1351 goto keep_locked;
1352 if (!sc->may_writepage)
1353 goto keep_locked;
1356 * Page is dirty. Flush the TLB if a writable entry
1357 * potentially exists to avoid CPU writes after IO
1358 * starts and then write it out here.
1360 try_to_unmap_flush_dirty();
1361 switch (pageout(page, mapping)) {
1362 case PAGE_KEEP:
1363 goto keep_locked;
1364 case PAGE_ACTIVATE:
1365 goto activate_locked;
1366 case PAGE_SUCCESS:
1367 if (PageWriteback(page))
1368 goto keep;
1369 if (PageDirty(page))
1370 goto keep;
1373 * A synchronous write - probably a ramdisk. Go
1374 * ahead and try to reclaim the page.
1376 if (!trylock_page(page))
1377 goto keep;
1378 if (PageDirty(page) || PageWriteback(page))
1379 goto keep_locked;
1380 mapping = page_mapping(page);
1381 case PAGE_CLEAN:
1382 ; /* try to free the page below */
1387 * If the page has buffers, try to free the buffer mappings
1388 * associated with this page. If we succeed we try to free
1389 * the page as well.
1391 * We do this even if the page is PageDirty().
1392 * try_to_release_page() does not perform I/O, but it is
1393 * possible for a page to have PageDirty set, but it is actually
1394 * clean (all its buffers are clean). This happens if the
1395 * buffers were written out directly, with submit_bh(). ext3
1396 * will do this, as well as the blockdev mapping.
1397 * try_to_release_page() will discover that cleanness and will
1398 * drop the buffers and mark the page clean - it can be freed.
1400 * Rarely, pages can have buffers and no ->mapping. These are
1401 * the pages which were not successfully invalidated in
1402 * truncate_complete_page(). We try to drop those buffers here
1403 * and if that worked, and the page is no longer mapped into
1404 * process address space (page_count == 1) it can be freed.
1405 * Otherwise, leave the page on the LRU so it is swappable.
1407 if (page_has_private(page)) {
1408 if (!try_to_release_page(page, sc->gfp_mask))
1409 goto activate_locked;
1410 if (!mapping && page_count(page) == 1) {
1411 unlock_page(page);
1412 if (put_page_testzero(page))
1413 goto free_it;
1414 else {
1416 * rare race with speculative reference.
1417 * the speculative reference will free
1418 * this page shortly, so we may
1419 * increment nr_reclaimed here (and
1420 * leave it off the LRU).
1422 nr_reclaimed++;
1423 continue;
1428 if (PageAnon(page) && !PageSwapBacked(page)) {
1429 /* follow __remove_mapping for reference */
1430 if (!page_ref_freeze(page, 1))
1431 goto keep_locked;
1432 if (PageDirty(page)) {
1433 page_ref_unfreeze(page, 1);
1434 goto keep_locked;
1437 count_vm_event(PGLAZYFREED);
1438 count_memcg_page_event(page, PGLAZYFREED);
1439 } else if (!mapping || !__remove_mapping(mapping, page, true,
1440 sc->target_mem_cgroup))
1441 goto keep_locked;
1443 unlock_page(page);
1444 free_it:
1446 * THP may get swapped out in a whole, need account
1447 * all base pages.
1449 nr_reclaimed += nr_pages;
1452 * Is there need to periodically free_page_list? It would
1453 * appear not as the counts should be low
1455 if (unlikely(PageTransHuge(page)))
1456 (*get_compound_page_dtor(page))(page);
1457 else
1458 list_add(&page->lru, &free_pages);
1459 continue;
1461 activate_locked_split:
1463 * The tail pages that are failed to add into swap cache
1464 * reach here. Fixup nr_scanned and nr_pages.
1466 if (nr_pages > 1) {
1467 sc->nr_scanned -= (nr_pages - 1);
1468 nr_pages = 1;
1470 activate_locked:
1471 /* Not a candidate for swapping, so reclaim swap space. */
1472 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1473 PageMlocked(page)))
1474 try_to_free_swap(page);
1475 VM_BUG_ON_PAGE(PageActive(page), page);
1476 if (!PageMlocked(page)) {
1477 int type = page_is_file_cache(page);
1478 SetPageActive(page);
1479 stat->nr_activate[type] += nr_pages;
1480 count_memcg_page_event(page, PGACTIVATE);
1482 keep_locked:
1483 unlock_page(page);
1484 keep:
1485 list_add(&page->lru, &ret_pages);
1486 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1489 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1491 mem_cgroup_uncharge_list(&free_pages);
1492 try_to_unmap_flush();
1493 free_unref_page_list(&free_pages);
1495 list_splice(&ret_pages, page_list);
1496 count_vm_events(PGACTIVATE, pgactivate);
1498 return nr_reclaimed;
1501 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1502 struct list_head *page_list)
1504 struct scan_control sc = {
1505 .gfp_mask = GFP_KERNEL,
1506 .priority = DEF_PRIORITY,
1507 .may_unmap = 1,
1509 struct reclaim_stat dummy_stat;
1510 unsigned long ret;
1511 struct page *page, *next;
1512 LIST_HEAD(clean_pages);
1514 list_for_each_entry_safe(page, next, page_list, lru) {
1515 if (page_is_file_cache(page) && !PageDirty(page) &&
1516 !__PageMovable(page) && !PageUnevictable(page)) {
1517 ClearPageActive(page);
1518 list_move(&page->lru, &clean_pages);
1522 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1523 TTU_IGNORE_ACCESS, &dummy_stat, true);
1524 list_splice(&clean_pages, page_list);
1525 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1526 return ret;
1530 * Attempt to remove the specified page from its LRU. Only take this page
1531 * if it is of the appropriate PageActive status. Pages which are being
1532 * freed elsewhere are also ignored.
1534 * page: page to consider
1535 * mode: one of the LRU isolation modes defined above
1537 * returns 0 on success, -ve errno on failure.
1539 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1541 int ret = -EINVAL;
1543 /* Only take pages on the LRU. */
1544 if (!PageLRU(page))
1545 return ret;
1547 /* Compaction should not handle unevictable pages but CMA can do so */
1548 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1549 return ret;
1551 ret = -EBUSY;
1554 * To minimise LRU disruption, the caller can indicate that it only
1555 * wants to isolate pages it will be able to operate on without
1556 * blocking - clean pages for the most part.
1558 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1559 * that it is possible to migrate without blocking
1561 if (mode & ISOLATE_ASYNC_MIGRATE) {
1562 /* All the caller can do on PageWriteback is block */
1563 if (PageWriteback(page))
1564 return ret;
1566 if (PageDirty(page)) {
1567 struct address_space *mapping;
1568 bool migrate_dirty;
1571 * Only pages without mappings or that have a
1572 * ->migratepage callback are possible to migrate
1573 * without blocking. However, we can be racing with
1574 * truncation so it's necessary to lock the page
1575 * to stabilise the mapping as truncation holds
1576 * the page lock until after the page is removed
1577 * from the page cache.
1579 if (!trylock_page(page))
1580 return ret;
1582 mapping = page_mapping(page);
1583 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1584 unlock_page(page);
1585 if (!migrate_dirty)
1586 return ret;
1590 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1591 return ret;
1593 if (likely(get_page_unless_zero(page))) {
1595 * Be careful not to clear PageLRU until after we're
1596 * sure the page is not being freed elsewhere -- the
1597 * page release code relies on it.
1599 ClearPageLRU(page);
1600 ret = 0;
1603 return ret;
1608 * Update LRU sizes after isolating pages. The LRU size updates must
1609 * be complete before mem_cgroup_update_lru_size due to a santity check.
1611 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1612 enum lru_list lru, unsigned long *nr_zone_taken)
1614 int zid;
1616 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1617 if (!nr_zone_taken[zid])
1618 continue;
1620 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1621 #ifdef CONFIG_MEMCG
1622 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623 #endif
1629 * pgdat->lru_lock is heavily contended. Some of the functions that
1630 * shrink the lists perform better by taking out a batch of pages
1631 * and working on them outside the LRU lock.
1633 * For pagecache intensive workloads, this function is the hottest
1634 * spot in the kernel (apart from copy_*_user functions).
1636 * Appropriate locks must be held before calling this function.
1638 * @nr_to_scan: The number of eligible pages to look through on the list.
1639 * @lruvec: The LRU vector to pull pages from.
1640 * @dst: The temp list to put pages on to.
1641 * @nr_scanned: The number of pages that were scanned.
1642 * @sc: The scan_control struct for this reclaim session
1643 * @mode: One of the LRU isolation modes
1644 * @lru: LRU list id for isolating
1646 * returns how many pages were moved onto *@dst.
1648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1649 struct lruvec *lruvec, struct list_head *dst,
1650 unsigned long *nr_scanned, struct scan_control *sc,
1651 enum lru_list lru)
1653 struct list_head *src = &lruvec->lists[lru];
1654 unsigned long nr_taken = 0;
1655 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1656 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1657 unsigned long skipped = 0;
1658 unsigned long scan, total_scan, nr_pages;
1659 LIST_HEAD(pages_skipped);
1660 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1662 total_scan = 0;
1663 scan = 0;
1664 while (scan < nr_to_scan && !list_empty(src)) {
1665 struct page *page;
1667 page = lru_to_page(src);
1668 prefetchw_prev_lru_page(page, src, flags);
1670 VM_BUG_ON_PAGE(!PageLRU(page), page);
1672 nr_pages = compound_nr(page);
1673 total_scan += nr_pages;
1675 if (page_zonenum(page) > sc->reclaim_idx) {
1676 list_move(&page->lru, &pages_skipped);
1677 nr_skipped[page_zonenum(page)] += nr_pages;
1678 continue;
1682 * Do not count skipped pages because that makes the function
1683 * return with no isolated pages if the LRU mostly contains
1684 * ineligible pages. This causes the VM to not reclaim any
1685 * pages, triggering a premature OOM.
1687 * Account all tail pages of THP. This would not cause
1688 * premature OOM since __isolate_lru_page() returns -EBUSY
1689 * only when the page is being freed somewhere else.
1691 scan += nr_pages;
1692 switch (__isolate_lru_page(page, mode)) {
1693 case 0:
1694 nr_taken += nr_pages;
1695 nr_zone_taken[page_zonenum(page)] += nr_pages;
1696 list_move(&page->lru, dst);
1697 break;
1699 case -EBUSY:
1700 /* else it is being freed elsewhere */
1701 list_move(&page->lru, src);
1702 continue;
1704 default:
1705 BUG();
1710 * Splice any skipped pages to the start of the LRU list. Note that
1711 * this disrupts the LRU order when reclaiming for lower zones but
1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 * scanning would soon rescan the same pages to skip and put the
1714 * system at risk of premature OOM.
1716 if (!list_empty(&pages_skipped)) {
1717 int zid;
1719 list_splice(&pages_skipped, src);
1720 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 if (!nr_skipped[zid])
1722 continue;
1724 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 skipped += nr_skipped[zid];
1728 *nr_scanned = total_scan;
1729 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 total_scan, skipped, nr_taken, mode, lru);
1731 update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 return nr_taken;
1736 * isolate_lru_page - tries to isolate a page from its LRU list
1737 * @page: page to isolate from its LRU list
1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 * Returns 0 if the page was removed from an LRU list.
1743 * Returns -EBUSY if the page was not on an LRU list.
1745 * The returned page will have PageLRU() cleared. If it was found on
1746 * the active list, it will have PageActive set. If it was found on
1747 * the unevictable list, it will have the PageUnevictable bit set. That flag
1748 * may need to be cleared by the caller before letting the page go.
1750 * The vmstat statistic corresponding to the list on which the page was
1751 * found will be decremented.
1753 * Restrictions:
1755 * (1) Must be called with an elevated refcount on the page. This is a
1756 * fundamentnal difference from isolate_lru_pages (which is called
1757 * without a stable reference).
1758 * (2) the lru_lock must not be held.
1759 * (3) interrupts must be enabled.
1761 int isolate_lru_page(struct page *page)
1763 int ret = -EBUSY;
1765 VM_BUG_ON_PAGE(!page_count(page), page);
1766 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768 if (PageLRU(page)) {
1769 pg_data_t *pgdat = page_pgdat(page);
1770 struct lruvec *lruvec;
1772 spin_lock_irq(&pgdat->lru_lock);
1773 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1774 if (PageLRU(page)) {
1775 int lru = page_lru(page);
1776 get_page(page);
1777 ClearPageLRU(page);
1778 del_page_from_lru_list(page, lruvec, lru);
1779 ret = 0;
1781 spin_unlock_irq(&pgdat->lru_lock);
1783 return ret;
1787 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1788 * then get rescheduled. When there are massive number of tasks doing page
1789 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1790 * the LRU list will go small and be scanned faster than necessary, leading to
1791 * unnecessary swapping, thrashing and OOM.
1793 static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 struct scan_control *sc)
1796 unsigned long inactive, isolated;
1798 if (current_is_kswapd())
1799 return 0;
1801 if (!writeback_throttling_sane(sc))
1802 return 0;
1804 if (file) {
1805 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1806 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807 } else {
1808 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1809 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1813 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1814 * won't get blocked by normal direct-reclaimers, forming a circular
1815 * deadlock.
1817 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 inactive >>= 3;
1820 return isolated > inactive;
1824 * This moves pages from @list to corresponding LRU list.
1826 * We move them the other way if the page is referenced by one or more
1827 * processes, from rmap.
1829 * If the pages are mostly unmapped, the processing is fast and it is
1830 * appropriate to hold zone_lru_lock across the whole operation. But if
1831 * the pages are mapped, the processing is slow (page_referenced()) so we
1832 * should drop zone_lru_lock around each page. It's impossible to balance
1833 * this, so instead we remove the pages from the LRU while processing them.
1834 * It is safe to rely on PG_active against the non-LRU pages in here because
1835 * nobody will play with that bit on a non-LRU page.
1837 * The downside is that we have to touch page->_refcount against each page.
1838 * But we had to alter page->flags anyway.
1840 * Returns the number of pages moved to the given lruvec.
1843 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1844 struct list_head *list)
1846 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1847 int nr_pages, nr_moved = 0;
1848 LIST_HEAD(pages_to_free);
1849 struct page *page;
1850 enum lru_list lru;
1852 while (!list_empty(list)) {
1853 page = lru_to_page(list);
1854 VM_BUG_ON_PAGE(PageLRU(page), page);
1855 if (unlikely(!page_evictable(page))) {
1856 list_del(&page->lru);
1857 spin_unlock_irq(&pgdat->lru_lock);
1858 putback_lru_page(page);
1859 spin_lock_irq(&pgdat->lru_lock);
1860 continue;
1862 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1864 SetPageLRU(page);
1865 lru = page_lru(page);
1867 nr_pages = hpage_nr_pages(page);
1868 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1869 list_move(&page->lru, &lruvec->lists[lru]);
1871 if (put_page_testzero(page)) {
1872 __ClearPageLRU(page);
1873 __ClearPageActive(page);
1874 del_page_from_lru_list(page, lruvec, lru);
1876 if (unlikely(PageCompound(page))) {
1877 spin_unlock_irq(&pgdat->lru_lock);
1878 (*get_compound_page_dtor(page))(page);
1879 spin_lock_irq(&pgdat->lru_lock);
1880 } else
1881 list_add(&page->lru, &pages_to_free);
1882 } else {
1883 nr_moved += nr_pages;
1888 * To save our caller's stack, now use input list for pages to free.
1890 list_splice(&pages_to_free, list);
1892 return nr_moved;
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested. In other cases it is safe to throttle.
1901 static int current_may_throttle(void)
1903 return !(current->flags & PF_LESS_THROTTLE) ||
1904 current->backing_dev_info == NULL ||
1905 bdi_write_congested(current->backing_dev_info);
1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1910 * of reclaimed pages
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 struct scan_control *sc, enum lru_list lru)
1916 LIST_HEAD(page_list);
1917 unsigned long nr_scanned;
1918 unsigned long nr_reclaimed = 0;
1919 unsigned long nr_taken;
1920 struct reclaim_stat stat;
1921 int file = is_file_lru(lru);
1922 enum vm_event_item item;
1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925 bool stalled = false;
1927 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1928 if (stalled)
1929 return 0;
1931 /* wait a bit for the reclaimer. */
1932 msleep(100);
1933 stalled = true;
1935 /* We are about to die and free our memory. Return now. */
1936 if (fatal_signal_pending(current))
1937 return SWAP_CLUSTER_MAX;
1940 lru_add_drain();
1942 spin_lock_irq(&pgdat->lru_lock);
1944 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1945 &nr_scanned, sc, lru);
1947 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1948 reclaim_stat->recent_scanned[file] += nr_taken;
1950 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1951 if (!cgroup_reclaim(sc))
1952 __count_vm_events(item, nr_scanned);
1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1954 spin_unlock_irq(&pgdat->lru_lock);
1956 if (nr_taken == 0)
1957 return 0;
1959 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1960 &stat, false);
1962 spin_lock_irq(&pgdat->lru_lock);
1964 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1965 if (!cgroup_reclaim(sc))
1966 __count_vm_events(item, nr_reclaimed);
1967 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1968 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1969 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1971 move_pages_to_lru(lruvec, &page_list);
1973 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1975 spin_unlock_irq(&pgdat->lru_lock);
1977 mem_cgroup_uncharge_list(&page_list);
1978 free_unref_page_list(&page_list);
1981 * If dirty pages are scanned that are not queued for IO, it
1982 * implies that flushers are not doing their job. This can
1983 * happen when memory pressure pushes dirty pages to the end of
1984 * the LRU before the dirty limits are breached and the dirty
1985 * data has expired. It can also happen when the proportion of
1986 * dirty pages grows not through writes but through memory
1987 * pressure reclaiming all the clean cache. And in some cases,
1988 * the flushers simply cannot keep up with the allocation
1989 * rate. Nudge the flusher threads in case they are asleep.
1991 if (stat.nr_unqueued_dirty == nr_taken)
1992 wakeup_flusher_threads(WB_REASON_VMSCAN);
1994 sc->nr.dirty += stat.nr_dirty;
1995 sc->nr.congested += stat.nr_congested;
1996 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1997 sc->nr.writeback += stat.nr_writeback;
1998 sc->nr.immediate += stat.nr_immediate;
1999 sc->nr.taken += nr_taken;
2000 if (file)
2001 sc->nr.file_taken += nr_taken;
2003 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005 return nr_reclaimed;
2008 static void shrink_active_list(unsigned long nr_to_scan,
2009 struct lruvec *lruvec,
2010 struct scan_control *sc,
2011 enum lru_list lru)
2013 unsigned long nr_taken;
2014 unsigned long nr_scanned;
2015 unsigned long vm_flags;
2016 LIST_HEAD(l_hold); /* The pages which were snipped off */
2017 LIST_HEAD(l_active);
2018 LIST_HEAD(l_inactive);
2019 struct page *page;
2020 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2021 unsigned nr_deactivate, nr_activate;
2022 unsigned nr_rotated = 0;
2023 int file = is_file_lru(lru);
2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2026 lru_add_drain();
2028 spin_lock_irq(&pgdat->lru_lock);
2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031 &nr_scanned, sc, lru);
2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034 reclaim_stat->recent_scanned[file] += nr_taken;
2036 __count_vm_events(PGREFILL, nr_scanned);
2037 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2039 spin_unlock_irq(&pgdat->lru_lock);
2041 while (!list_empty(&l_hold)) {
2042 cond_resched();
2043 page = lru_to_page(&l_hold);
2044 list_del(&page->lru);
2046 if (unlikely(!page_evictable(page))) {
2047 putback_lru_page(page);
2048 continue;
2051 if (unlikely(buffer_heads_over_limit)) {
2052 if (page_has_private(page) && trylock_page(page)) {
2053 if (page_has_private(page))
2054 try_to_release_page(page, 0);
2055 unlock_page(page);
2059 if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 &vm_flags)) {
2061 nr_rotated += hpage_nr_pages(page);
2063 * Identify referenced, file-backed active pages and
2064 * give them one more trip around the active list. So
2065 * that executable code get better chances to stay in
2066 * memory under moderate memory pressure. Anon pages
2067 * are not likely to be evicted by use-once streaming
2068 * IO, plus JVM can create lots of anon VM_EXEC pages,
2069 * so we ignore them here.
2071 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2072 list_add(&page->lru, &l_active);
2073 continue;
2077 ClearPageActive(page); /* we are de-activating */
2078 SetPageWorkingset(page);
2079 list_add(&page->lru, &l_inactive);
2083 * Move pages back to the lru list.
2085 spin_lock_irq(&pgdat->lru_lock);
2087 * Count referenced pages from currently used mappings as rotated,
2088 * even though only some of them are actually re-activated. This
2089 * helps balance scan pressure between file and anonymous pages in
2090 * get_scan_count.
2092 reclaim_stat->recent_rotated[file] += nr_rotated;
2094 nr_activate = move_pages_to_lru(lruvec, &l_active);
2095 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2096 /* Keep all free pages in l_active list */
2097 list_splice(&l_inactive, &l_active);
2099 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2100 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2102 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2103 spin_unlock_irq(&pgdat->lru_lock);
2105 mem_cgroup_uncharge_list(&l_active);
2106 free_unref_page_list(&l_active);
2107 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2108 nr_deactivate, nr_rotated, sc->priority, file);
2111 unsigned long reclaim_pages(struct list_head *page_list)
2113 int nid = -1;
2114 unsigned long nr_reclaimed = 0;
2115 LIST_HEAD(node_page_list);
2116 struct reclaim_stat dummy_stat;
2117 struct page *page;
2118 struct scan_control sc = {
2119 .gfp_mask = GFP_KERNEL,
2120 .priority = DEF_PRIORITY,
2121 .may_writepage = 1,
2122 .may_unmap = 1,
2123 .may_swap = 1,
2126 while (!list_empty(page_list)) {
2127 page = lru_to_page(page_list);
2128 if (nid == -1) {
2129 nid = page_to_nid(page);
2130 INIT_LIST_HEAD(&node_page_list);
2133 if (nid == page_to_nid(page)) {
2134 ClearPageActive(page);
2135 list_move(&page->lru, &node_page_list);
2136 continue;
2139 nr_reclaimed += shrink_page_list(&node_page_list,
2140 NODE_DATA(nid),
2141 &sc, 0,
2142 &dummy_stat, false);
2143 while (!list_empty(&node_page_list)) {
2144 page = lru_to_page(&node_page_list);
2145 list_del(&page->lru);
2146 putback_lru_page(page);
2149 nid = -1;
2152 if (!list_empty(&node_page_list)) {
2153 nr_reclaimed += shrink_page_list(&node_page_list,
2154 NODE_DATA(nid),
2155 &sc, 0,
2156 &dummy_stat, false);
2157 while (!list_empty(&node_page_list)) {
2158 page = lru_to_page(&node_page_list);
2159 list_del(&page->lru);
2160 putback_lru_page(page);
2164 return nr_reclaimed;
2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2168 struct lruvec *lruvec, struct scan_control *sc)
2170 if (is_active_lru(lru)) {
2171 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2172 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2173 else
2174 sc->skipped_deactivate = 1;
2175 return 0;
2178 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2182 * The inactive anon list should be small enough that the VM never has
2183 * to do too much work.
2185 * The inactive file list should be small enough to leave most memory
2186 * to the established workingset on the scan-resistant active list,
2187 * but large enough to avoid thrashing the aggregate readahead window.
2189 * Both inactive lists should also be large enough that each inactive
2190 * page has a chance to be referenced again before it is reclaimed.
2192 * If that fails and refaulting is observed, the inactive list grows.
2194 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2195 * on this LRU, maintained by the pageout code. An inactive_ratio
2196 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2198 * total target max
2199 * memory ratio inactive
2200 * -------------------------------------
2201 * 10MB 1 5MB
2202 * 100MB 1 50MB
2203 * 1GB 3 250MB
2204 * 10GB 10 0.9GB
2205 * 100GB 31 3GB
2206 * 1TB 101 10GB
2207 * 10TB 320 32GB
2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2211 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 unsigned long inactive, active;
2213 unsigned long inactive_ratio;
2214 unsigned long gb;
2216 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2217 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2219 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2220 if (gb)
2221 inactive_ratio = int_sqrt(10 * gb);
2222 else
2223 inactive_ratio = 1;
2225 return inactive * inactive_ratio < active;
2228 enum scan_balance {
2229 SCAN_EQUAL,
2230 SCAN_FRACT,
2231 SCAN_ANON,
2232 SCAN_FILE,
2236 * Determine how aggressively the anon and file LRU lists should be
2237 * scanned. The relative value of each set of LRU lists is determined
2238 * by looking at the fraction of the pages scanned we did rotate back
2239 * onto the active list instead of evict.
2241 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2242 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2245 unsigned long *nr)
2247 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2248 int swappiness = mem_cgroup_swappiness(memcg);
2249 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2250 u64 fraction[2];
2251 u64 denominator = 0; /* gcc */
2252 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2253 unsigned long anon_prio, file_prio;
2254 enum scan_balance scan_balance;
2255 unsigned long anon, file;
2256 unsigned long ap, fp;
2257 enum lru_list lru;
2259 /* If we have no swap space, do not bother scanning anon pages. */
2260 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2261 scan_balance = SCAN_FILE;
2262 goto out;
2266 * Global reclaim will swap to prevent OOM even with no
2267 * swappiness, but memcg users want to use this knob to
2268 * disable swapping for individual groups completely when
2269 * using the memory controller's swap limit feature would be
2270 * too expensive.
2272 if (cgroup_reclaim(sc) && !swappiness) {
2273 scan_balance = SCAN_FILE;
2274 goto out;
2278 * Do not apply any pressure balancing cleverness when the
2279 * system is close to OOM, scan both anon and file equally
2280 * (unless the swappiness setting disagrees with swapping).
2282 if (!sc->priority && swappiness) {
2283 scan_balance = SCAN_EQUAL;
2284 goto out;
2288 * If the system is almost out of file pages, force-scan anon.
2290 if (sc->file_is_tiny) {
2291 scan_balance = SCAN_ANON;
2292 goto out;
2296 * If there is enough inactive page cache, we do not reclaim
2297 * anything from the anonymous working right now.
2299 if (sc->cache_trim_mode) {
2300 scan_balance = SCAN_FILE;
2301 goto out;
2304 scan_balance = SCAN_FRACT;
2307 * With swappiness at 100, anonymous and file have the same priority.
2308 * This scanning priority is essentially the inverse of IO cost.
2310 anon_prio = swappiness;
2311 file_prio = 200 - anon_prio;
2314 * OK, so we have swap space and a fair amount of page cache
2315 * pages. We use the recently rotated / recently scanned
2316 * ratios to determine how valuable each cache is.
2318 * Because workloads change over time (and to avoid overflow)
2319 * we keep these statistics as a floating average, which ends
2320 * up weighing recent references more than old ones.
2322 * anon in [0], file in [1]
2325 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2326 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2327 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2328 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2330 spin_lock_irq(&pgdat->lru_lock);
2331 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2332 reclaim_stat->recent_scanned[0] /= 2;
2333 reclaim_stat->recent_rotated[0] /= 2;
2336 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2337 reclaim_stat->recent_scanned[1] /= 2;
2338 reclaim_stat->recent_rotated[1] /= 2;
2342 * The amount of pressure on anon vs file pages is inversely
2343 * proportional to the fraction of recently scanned pages on
2344 * each list that were recently referenced and in active use.
2346 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2347 ap /= reclaim_stat->recent_rotated[0] + 1;
2349 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2350 fp /= reclaim_stat->recent_rotated[1] + 1;
2351 spin_unlock_irq(&pgdat->lru_lock);
2353 fraction[0] = ap;
2354 fraction[1] = fp;
2355 denominator = ap + fp + 1;
2356 out:
2357 for_each_evictable_lru(lru) {
2358 int file = is_file_lru(lru);
2359 unsigned long lruvec_size;
2360 unsigned long scan;
2361 unsigned long protection;
2363 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2364 protection = mem_cgroup_protection(memcg,
2365 sc->memcg_low_reclaim);
2367 if (protection) {
2369 * Scale a cgroup's reclaim pressure by proportioning
2370 * its current usage to its memory.low or memory.min
2371 * setting.
2373 * This is important, as otherwise scanning aggression
2374 * becomes extremely binary -- from nothing as we
2375 * approach the memory protection threshold, to totally
2376 * nominal as we exceed it. This results in requiring
2377 * setting extremely liberal protection thresholds. It
2378 * also means we simply get no protection at all if we
2379 * set it too low, which is not ideal.
2381 * If there is any protection in place, we reduce scan
2382 * pressure by how much of the total memory used is
2383 * within protection thresholds.
2385 * There is one special case: in the first reclaim pass,
2386 * we skip over all groups that are within their low
2387 * protection. If that fails to reclaim enough pages to
2388 * satisfy the reclaim goal, we come back and override
2389 * the best-effort low protection. However, we still
2390 * ideally want to honor how well-behaved groups are in
2391 * that case instead of simply punishing them all
2392 * equally. As such, we reclaim them based on how much
2393 * memory they are using, reducing the scan pressure
2394 * again by how much of the total memory used is under
2395 * hard protection.
2397 unsigned long cgroup_size = mem_cgroup_size(memcg);
2399 /* Avoid TOCTOU with earlier protection check */
2400 cgroup_size = max(cgroup_size, protection);
2402 scan = lruvec_size - lruvec_size * protection /
2403 cgroup_size;
2406 * Minimally target SWAP_CLUSTER_MAX pages to keep
2407 * reclaim moving forwards, avoiding decremeting
2408 * sc->priority further than desirable.
2410 scan = max(scan, SWAP_CLUSTER_MAX);
2411 } else {
2412 scan = lruvec_size;
2415 scan >>= sc->priority;
2418 * If the cgroup's already been deleted, make sure to
2419 * scrape out the remaining cache.
2421 if (!scan && !mem_cgroup_online(memcg))
2422 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2424 switch (scan_balance) {
2425 case SCAN_EQUAL:
2426 /* Scan lists relative to size */
2427 break;
2428 case SCAN_FRACT:
2430 * Scan types proportional to swappiness and
2431 * their relative recent reclaim efficiency.
2432 * Make sure we don't miss the last page
2433 * because of a round-off error.
2435 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2436 denominator);
2437 break;
2438 case SCAN_FILE:
2439 case SCAN_ANON:
2440 /* Scan one type exclusively */
2441 if ((scan_balance == SCAN_FILE) != file) {
2442 lruvec_size = 0;
2443 scan = 0;
2445 break;
2446 default:
2447 /* Look ma, no brain */
2448 BUG();
2451 nr[lru] = scan;
2455 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2457 unsigned long nr[NR_LRU_LISTS];
2458 unsigned long targets[NR_LRU_LISTS];
2459 unsigned long nr_to_scan;
2460 enum lru_list lru;
2461 unsigned long nr_reclaimed = 0;
2462 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463 struct blk_plug plug;
2464 bool scan_adjusted;
2466 get_scan_count(lruvec, sc, nr);
2468 /* Record the original scan target for proportional adjustments later */
2469 memcpy(targets, nr, sizeof(nr));
2472 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473 * event that can occur when there is little memory pressure e.g.
2474 * multiple streaming readers/writers. Hence, we do not abort scanning
2475 * when the requested number of pages are reclaimed when scanning at
2476 * DEF_PRIORITY on the assumption that the fact we are direct
2477 * reclaiming implies that kswapd is not keeping up and it is best to
2478 * do a batch of work at once. For memcg reclaim one check is made to
2479 * abort proportional reclaim if either the file or anon lru has already
2480 * dropped to zero at the first pass.
2482 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2483 sc->priority == DEF_PRIORITY);
2485 blk_start_plug(&plug);
2486 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487 nr[LRU_INACTIVE_FILE]) {
2488 unsigned long nr_anon, nr_file, percentage;
2489 unsigned long nr_scanned;
2491 for_each_evictable_lru(lru) {
2492 if (nr[lru]) {
2493 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494 nr[lru] -= nr_to_scan;
2496 nr_reclaimed += shrink_list(lru, nr_to_scan,
2497 lruvec, sc);
2501 cond_resched();
2503 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504 continue;
2507 * For kswapd and memcg, reclaim at least the number of pages
2508 * requested. Ensure that the anon and file LRUs are scanned
2509 * proportionally what was requested by get_scan_count(). We
2510 * stop reclaiming one LRU and reduce the amount scanning
2511 * proportional to the original scan target.
2513 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2517 * It's just vindictive to attack the larger once the smaller
2518 * has gone to zero. And given the way we stop scanning the
2519 * smaller below, this makes sure that we only make one nudge
2520 * towards proportionality once we've got nr_to_reclaim.
2522 if (!nr_file || !nr_anon)
2523 break;
2525 if (nr_file > nr_anon) {
2526 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527 targets[LRU_ACTIVE_ANON] + 1;
2528 lru = LRU_BASE;
2529 percentage = nr_anon * 100 / scan_target;
2530 } else {
2531 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532 targets[LRU_ACTIVE_FILE] + 1;
2533 lru = LRU_FILE;
2534 percentage = nr_file * 100 / scan_target;
2537 /* Stop scanning the smaller of the LRU */
2538 nr[lru] = 0;
2539 nr[lru + LRU_ACTIVE] = 0;
2542 * Recalculate the other LRU scan count based on its original
2543 * scan target and the percentage scanning already complete
2545 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546 nr_scanned = targets[lru] - nr[lru];
2547 nr[lru] = targets[lru] * (100 - percentage) / 100;
2548 nr[lru] -= min(nr[lru], nr_scanned);
2550 lru += LRU_ACTIVE;
2551 nr_scanned = targets[lru] - nr[lru];
2552 nr[lru] = targets[lru] * (100 - percentage) / 100;
2553 nr[lru] -= min(nr[lru], nr_scanned);
2555 scan_adjusted = true;
2557 blk_finish_plug(&plug);
2558 sc->nr_reclaimed += nr_reclaimed;
2561 * Even if we did not try to evict anon pages at all, we want to
2562 * rebalance the anon lru active/inactive ratio.
2564 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2565 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566 sc, LRU_ACTIVE_ANON);
2569 /* Use reclaim/compaction for costly allocs or under memory pressure */
2570 static bool in_reclaim_compaction(struct scan_control *sc)
2572 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2573 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574 sc->priority < DEF_PRIORITY - 2))
2575 return true;
2577 return false;
2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583 * true if more pages should be reclaimed such that when the page allocator
2584 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585 * It will give up earlier than that if there is difficulty reclaiming pages.
2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 unsigned long nr_reclaimed,
2589 struct scan_control *sc)
2591 unsigned long pages_for_compaction;
2592 unsigned long inactive_lru_pages;
2593 int z;
2595 /* If not in reclaim/compaction mode, stop */
2596 if (!in_reclaim_compaction(sc))
2597 return false;
2600 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2601 * number of pages that were scanned. This will return to the caller
2602 * with the risk reclaim/compaction and the resulting allocation attempt
2603 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2604 * allocations through requiring that the full LRU list has been scanned
2605 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2606 * scan, but that approximation was wrong, and there were corner cases
2607 * where always a non-zero amount of pages were scanned.
2609 if (!nr_reclaimed)
2610 return false;
2612 /* If compaction would go ahead or the allocation would succeed, stop */
2613 for (z = 0; z <= sc->reclaim_idx; z++) {
2614 struct zone *zone = &pgdat->node_zones[z];
2615 if (!managed_zone(zone))
2616 continue;
2618 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2619 case COMPACT_SUCCESS:
2620 case COMPACT_CONTINUE:
2621 return false;
2622 default:
2623 /* check next zone */
2629 * If we have not reclaimed enough pages for compaction and the
2630 * inactive lists are large enough, continue reclaiming
2632 pages_for_compaction = compact_gap(sc->order);
2633 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2634 if (get_nr_swap_pages() > 0)
2635 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2637 return inactive_lru_pages > pages_for_compaction;
2640 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2642 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2643 struct mem_cgroup *memcg;
2645 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2646 do {
2647 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2648 unsigned long reclaimed;
2649 unsigned long scanned;
2651 switch (mem_cgroup_protected(target_memcg, memcg)) {
2652 case MEMCG_PROT_MIN:
2654 * Hard protection.
2655 * If there is no reclaimable memory, OOM.
2657 continue;
2658 case MEMCG_PROT_LOW:
2660 * Soft protection.
2661 * Respect the protection only as long as
2662 * there is an unprotected supply
2663 * of reclaimable memory from other cgroups.
2665 if (!sc->memcg_low_reclaim) {
2666 sc->memcg_low_skipped = 1;
2667 continue;
2669 memcg_memory_event(memcg, MEMCG_LOW);
2670 break;
2671 case MEMCG_PROT_NONE:
2673 * All protection thresholds breached. We may
2674 * still choose to vary the scan pressure
2675 * applied based on by how much the cgroup in
2676 * question has exceeded its protection
2677 * thresholds (see get_scan_count).
2679 break;
2682 reclaimed = sc->nr_reclaimed;
2683 scanned = sc->nr_scanned;
2685 shrink_lruvec(lruvec, sc);
2687 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2688 sc->priority);
2690 /* Record the group's reclaim efficiency */
2691 vmpressure(sc->gfp_mask, memcg, false,
2692 sc->nr_scanned - scanned,
2693 sc->nr_reclaimed - reclaimed);
2695 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2698 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2700 struct reclaim_state *reclaim_state = current->reclaim_state;
2701 unsigned long nr_reclaimed, nr_scanned;
2702 struct lruvec *target_lruvec;
2703 bool reclaimable = false;
2704 unsigned long file;
2706 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2708 again:
2709 memset(&sc->nr, 0, sizeof(sc->nr));
2711 nr_reclaimed = sc->nr_reclaimed;
2712 nr_scanned = sc->nr_scanned;
2715 * Target desirable inactive:active list ratios for the anon
2716 * and file LRU lists.
2718 if (!sc->force_deactivate) {
2719 unsigned long refaults;
2721 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2722 sc->may_deactivate |= DEACTIVATE_ANON;
2723 else
2724 sc->may_deactivate &= ~DEACTIVATE_ANON;
2727 * When refaults are being observed, it means a new
2728 * workingset is being established. Deactivate to get
2729 * rid of any stale active pages quickly.
2731 refaults = lruvec_page_state(target_lruvec,
2732 WORKINGSET_ACTIVATE);
2733 if (refaults != target_lruvec->refaults ||
2734 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2735 sc->may_deactivate |= DEACTIVATE_FILE;
2736 else
2737 sc->may_deactivate &= ~DEACTIVATE_FILE;
2738 } else
2739 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2742 * If we have plenty of inactive file pages that aren't
2743 * thrashing, try to reclaim those first before touching
2744 * anonymous pages.
2746 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2747 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2748 sc->cache_trim_mode = 1;
2749 else
2750 sc->cache_trim_mode = 0;
2753 * Prevent the reclaimer from falling into the cache trap: as
2754 * cache pages start out inactive, every cache fault will tip
2755 * the scan balance towards the file LRU. And as the file LRU
2756 * shrinks, so does the window for rotation from references.
2757 * This means we have a runaway feedback loop where a tiny
2758 * thrashing file LRU becomes infinitely more attractive than
2759 * anon pages. Try to detect this based on file LRU size.
2761 if (!cgroup_reclaim(sc)) {
2762 unsigned long total_high_wmark = 0;
2763 unsigned long free, anon;
2764 int z;
2766 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2767 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2768 node_page_state(pgdat, NR_INACTIVE_FILE);
2770 for (z = 0; z < MAX_NR_ZONES; z++) {
2771 struct zone *zone = &pgdat->node_zones[z];
2772 if (!managed_zone(zone))
2773 continue;
2775 total_high_wmark += high_wmark_pages(zone);
2779 * Consider anon: if that's low too, this isn't a
2780 * runaway file reclaim problem, but rather just
2781 * extreme pressure. Reclaim as per usual then.
2783 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2785 sc->file_is_tiny =
2786 file + free <= total_high_wmark &&
2787 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2788 anon >> sc->priority;
2791 shrink_node_memcgs(pgdat, sc);
2793 if (reclaim_state) {
2794 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2795 reclaim_state->reclaimed_slab = 0;
2798 /* Record the subtree's reclaim efficiency */
2799 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2800 sc->nr_scanned - nr_scanned,
2801 sc->nr_reclaimed - nr_reclaimed);
2803 if (sc->nr_reclaimed - nr_reclaimed)
2804 reclaimable = true;
2806 if (current_is_kswapd()) {
2808 * If reclaim is isolating dirty pages under writeback,
2809 * it implies that the long-lived page allocation rate
2810 * is exceeding the page laundering rate. Either the
2811 * global limits are not being effective at throttling
2812 * processes due to the page distribution throughout
2813 * zones or there is heavy usage of a slow backing
2814 * device. The only option is to throttle from reclaim
2815 * context which is not ideal as there is no guarantee
2816 * the dirtying process is throttled in the same way
2817 * balance_dirty_pages() manages.
2819 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2820 * count the number of pages under pages flagged for
2821 * immediate reclaim and stall if any are encountered
2822 * in the nr_immediate check below.
2824 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2825 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2827 /* Allow kswapd to start writing pages during reclaim.*/
2828 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2829 set_bit(PGDAT_DIRTY, &pgdat->flags);
2832 * If kswapd scans pages marked marked for immediate
2833 * reclaim and under writeback (nr_immediate), it
2834 * implies that pages are cycling through the LRU
2835 * faster than they are written so also forcibly stall.
2837 if (sc->nr.immediate)
2838 congestion_wait(BLK_RW_ASYNC, HZ/10);
2842 * Tag a node/memcg as congested if all the dirty pages
2843 * scanned were backed by a congested BDI and
2844 * wait_iff_congested will stall.
2846 * Legacy memcg will stall in page writeback so avoid forcibly
2847 * stalling in wait_iff_congested().
2849 if ((current_is_kswapd() ||
2850 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2851 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2852 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2855 * Stall direct reclaim for IO completions if underlying BDIs
2856 * and node is congested. Allow kswapd to continue until it
2857 * starts encountering unqueued dirty pages or cycling through
2858 * the LRU too quickly.
2860 if (!current_is_kswapd() && current_may_throttle() &&
2861 !sc->hibernation_mode &&
2862 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2863 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2865 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2866 sc))
2867 goto again;
2870 * Kswapd gives up on balancing particular nodes after too
2871 * many failures to reclaim anything from them and goes to
2872 * sleep. On reclaim progress, reset the failure counter. A
2873 * successful direct reclaim run will revive a dormant kswapd.
2875 if (reclaimable)
2876 pgdat->kswapd_failures = 0;
2878 return reclaimable;
2882 * Returns true if compaction should go ahead for a costly-order request, or
2883 * the allocation would already succeed without compaction. Return false if we
2884 * should reclaim first.
2886 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2888 unsigned long watermark;
2889 enum compact_result suitable;
2891 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2892 if (suitable == COMPACT_SUCCESS)
2893 /* Allocation should succeed already. Don't reclaim. */
2894 return true;
2895 if (suitable == COMPACT_SKIPPED)
2896 /* Compaction cannot yet proceed. Do reclaim. */
2897 return false;
2900 * Compaction is already possible, but it takes time to run and there
2901 * are potentially other callers using the pages just freed. So proceed
2902 * with reclaim to make a buffer of free pages available to give
2903 * compaction a reasonable chance of completing and allocating the page.
2904 * Note that we won't actually reclaim the whole buffer in one attempt
2905 * as the target watermark in should_continue_reclaim() is lower. But if
2906 * we are already above the high+gap watermark, don't reclaim at all.
2908 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2910 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2914 * This is the direct reclaim path, for page-allocating processes. We only
2915 * try to reclaim pages from zones which will satisfy the caller's allocation
2916 * request.
2918 * If a zone is deemed to be full of pinned pages then just give it a light
2919 * scan then give up on it.
2921 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2923 struct zoneref *z;
2924 struct zone *zone;
2925 unsigned long nr_soft_reclaimed;
2926 unsigned long nr_soft_scanned;
2927 gfp_t orig_mask;
2928 pg_data_t *last_pgdat = NULL;
2931 * If the number of buffer_heads in the machine exceeds the maximum
2932 * allowed level, force direct reclaim to scan the highmem zone as
2933 * highmem pages could be pinning lowmem pages storing buffer_heads
2935 orig_mask = sc->gfp_mask;
2936 if (buffer_heads_over_limit) {
2937 sc->gfp_mask |= __GFP_HIGHMEM;
2938 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2941 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2942 sc->reclaim_idx, sc->nodemask) {
2944 * Take care memory controller reclaiming has small influence
2945 * to global LRU.
2947 if (!cgroup_reclaim(sc)) {
2948 if (!cpuset_zone_allowed(zone,
2949 GFP_KERNEL | __GFP_HARDWALL))
2950 continue;
2953 * If we already have plenty of memory free for
2954 * compaction in this zone, don't free any more.
2955 * Even though compaction is invoked for any
2956 * non-zero order, only frequent costly order
2957 * reclamation is disruptive enough to become a
2958 * noticeable problem, like transparent huge
2959 * page allocations.
2961 if (IS_ENABLED(CONFIG_COMPACTION) &&
2962 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2963 compaction_ready(zone, sc)) {
2964 sc->compaction_ready = true;
2965 continue;
2969 * Shrink each node in the zonelist once. If the
2970 * zonelist is ordered by zone (not the default) then a
2971 * node may be shrunk multiple times but in that case
2972 * the user prefers lower zones being preserved.
2974 if (zone->zone_pgdat == last_pgdat)
2975 continue;
2978 * This steals pages from memory cgroups over softlimit
2979 * and returns the number of reclaimed pages and
2980 * scanned pages. This works for global memory pressure
2981 * and balancing, not for a memcg's limit.
2983 nr_soft_scanned = 0;
2984 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2985 sc->order, sc->gfp_mask,
2986 &nr_soft_scanned);
2987 sc->nr_reclaimed += nr_soft_reclaimed;
2988 sc->nr_scanned += nr_soft_scanned;
2989 /* need some check for avoid more shrink_zone() */
2992 /* See comment about same check for global reclaim above */
2993 if (zone->zone_pgdat == last_pgdat)
2994 continue;
2995 last_pgdat = zone->zone_pgdat;
2996 shrink_node(zone->zone_pgdat, sc);
3000 * Restore to original mask to avoid the impact on the caller if we
3001 * promoted it to __GFP_HIGHMEM.
3003 sc->gfp_mask = orig_mask;
3006 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3008 struct lruvec *target_lruvec;
3009 unsigned long refaults;
3011 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3012 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
3013 target_lruvec->refaults = refaults;
3017 * This is the main entry point to direct page reclaim.
3019 * If a full scan of the inactive list fails to free enough memory then we
3020 * are "out of memory" and something needs to be killed.
3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023 * high - the zone may be full of dirty or under-writeback pages, which this
3024 * caller can't do much about. We kick the writeback threads and take explicit
3025 * naps in the hope that some of these pages can be written. But if the
3026 * allocating task holds filesystem locks which prevent writeout this might not
3027 * work, and the allocation attempt will fail.
3029 * returns: 0, if no pages reclaimed
3030 * else, the number of pages reclaimed
3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033 struct scan_control *sc)
3035 int initial_priority = sc->priority;
3036 pg_data_t *last_pgdat;
3037 struct zoneref *z;
3038 struct zone *zone;
3039 retry:
3040 delayacct_freepages_start();
3042 if (!cgroup_reclaim(sc))
3043 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3045 do {
3046 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3047 sc->priority);
3048 sc->nr_scanned = 0;
3049 shrink_zones(zonelist, sc);
3051 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 break;
3054 if (sc->compaction_ready)
3055 break;
3058 * If we're getting trouble reclaiming, start doing
3059 * writepage even in laptop mode.
3061 if (sc->priority < DEF_PRIORITY - 2)
3062 sc->may_writepage = 1;
3063 } while (--sc->priority >= 0);
3065 last_pgdat = NULL;
3066 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3067 sc->nodemask) {
3068 if (zone->zone_pgdat == last_pgdat)
3069 continue;
3070 last_pgdat = zone->zone_pgdat;
3072 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3074 if (cgroup_reclaim(sc)) {
3075 struct lruvec *lruvec;
3077 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3078 zone->zone_pgdat);
3079 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3083 delayacct_freepages_end();
3085 if (sc->nr_reclaimed)
3086 return sc->nr_reclaimed;
3088 /* Aborted reclaim to try compaction? don't OOM, then */
3089 if (sc->compaction_ready)
3090 return 1;
3093 * We make inactive:active ratio decisions based on the node's
3094 * composition of memory, but a restrictive reclaim_idx or a
3095 * memory.low cgroup setting can exempt large amounts of
3096 * memory from reclaim. Neither of which are very common, so
3097 * instead of doing costly eligibility calculations of the
3098 * entire cgroup subtree up front, we assume the estimates are
3099 * good, and retry with forcible deactivation if that fails.
3101 if (sc->skipped_deactivate) {
3102 sc->priority = initial_priority;
3103 sc->force_deactivate = 1;
3104 sc->skipped_deactivate = 0;
3105 goto retry;
3108 /* Untapped cgroup reserves? Don't OOM, retry. */
3109 if (sc->memcg_low_skipped) {
3110 sc->priority = initial_priority;
3111 sc->force_deactivate = 0;
3112 sc->skipped_deactivate = 0;
3113 sc->memcg_low_reclaim = 1;
3114 sc->memcg_low_skipped = 0;
3115 goto retry;
3118 return 0;
3121 static bool allow_direct_reclaim(pg_data_t *pgdat)
3123 struct zone *zone;
3124 unsigned long pfmemalloc_reserve = 0;
3125 unsigned long free_pages = 0;
3126 int i;
3127 bool wmark_ok;
3129 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3130 return true;
3132 for (i = 0; i <= ZONE_NORMAL; i++) {
3133 zone = &pgdat->node_zones[i];
3134 if (!managed_zone(zone))
3135 continue;
3137 if (!zone_reclaimable_pages(zone))
3138 continue;
3140 pfmemalloc_reserve += min_wmark_pages(zone);
3141 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3144 /* If there are no reserves (unexpected config) then do not throttle */
3145 if (!pfmemalloc_reserve)
3146 return true;
3148 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3150 /* kswapd must be awake if processes are being throttled */
3151 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3152 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3153 (enum zone_type)ZONE_NORMAL);
3154 wake_up_interruptible(&pgdat->kswapd_wait);
3157 return wmark_ok;
3161 * Throttle direct reclaimers if backing storage is backed by the network
3162 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3163 * depleted. kswapd will continue to make progress and wake the processes
3164 * when the low watermark is reached.
3166 * Returns true if a fatal signal was delivered during throttling. If this
3167 * happens, the page allocator should not consider triggering the OOM killer.
3169 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3170 nodemask_t *nodemask)
3172 struct zoneref *z;
3173 struct zone *zone;
3174 pg_data_t *pgdat = NULL;
3177 * Kernel threads should not be throttled as they may be indirectly
3178 * responsible for cleaning pages necessary for reclaim to make forward
3179 * progress. kjournald for example may enter direct reclaim while
3180 * committing a transaction where throttling it could forcing other
3181 * processes to block on log_wait_commit().
3183 if (current->flags & PF_KTHREAD)
3184 goto out;
3187 * If a fatal signal is pending, this process should not throttle.
3188 * It should return quickly so it can exit and free its memory
3190 if (fatal_signal_pending(current))
3191 goto out;
3194 * Check if the pfmemalloc reserves are ok by finding the first node
3195 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3196 * GFP_KERNEL will be required for allocating network buffers when
3197 * swapping over the network so ZONE_HIGHMEM is unusable.
3199 * Throttling is based on the first usable node and throttled processes
3200 * wait on a queue until kswapd makes progress and wakes them. There
3201 * is an affinity then between processes waking up and where reclaim
3202 * progress has been made assuming the process wakes on the same node.
3203 * More importantly, processes running on remote nodes will not compete
3204 * for remote pfmemalloc reserves and processes on different nodes
3205 * should make reasonable progress.
3207 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3208 gfp_zone(gfp_mask), nodemask) {
3209 if (zone_idx(zone) > ZONE_NORMAL)
3210 continue;
3212 /* Throttle based on the first usable node */
3213 pgdat = zone->zone_pgdat;
3214 if (allow_direct_reclaim(pgdat))
3215 goto out;
3216 break;
3219 /* If no zone was usable by the allocation flags then do not throttle */
3220 if (!pgdat)
3221 goto out;
3223 /* Account for the throttling */
3224 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3227 * If the caller cannot enter the filesystem, it's possible that it
3228 * is due to the caller holding an FS lock or performing a journal
3229 * transaction in the case of a filesystem like ext[3|4]. In this case,
3230 * it is not safe to block on pfmemalloc_wait as kswapd could be
3231 * blocked waiting on the same lock. Instead, throttle for up to a
3232 * second before continuing.
3234 if (!(gfp_mask & __GFP_FS)) {
3235 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3236 allow_direct_reclaim(pgdat), HZ);
3238 goto check_pending;
3241 /* Throttle until kswapd wakes the process */
3242 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3243 allow_direct_reclaim(pgdat));
3245 check_pending:
3246 if (fatal_signal_pending(current))
3247 return true;
3249 out:
3250 return false;
3253 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3254 gfp_t gfp_mask, nodemask_t *nodemask)
3256 unsigned long nr_reclaimed;
3257 struct scan_control sc = {
3258 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3259 .gfp_mask = current_gfp_context(gfp_mask),
3260 .reclaim_idx = gfp_zone(gfp_mask),
3261 .order = order,
3262 .nodemask = nodemask,
3263 .priority = DEF_PRIORITY,
3264 .may_writepage = !laptop_mode,
3265 .may_unmap = 1,
3266 .may_swap = 1,
3270 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3271 * Confirm they are large enough for max values.
3273 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3274 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3275 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3278 * Do not enter reclaim if fatal signal was delivered while throttled.
3279 * 1 is returned so that the page allocator does not OOM kill at this
3280 * point.
3282 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3283 return 1;
3285 set_task_reclaim_state(current, &sc.reclaim_state);
3286 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3288 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3290 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3291 set_task_reclaim_state(current, NULL);
3293 return nr_reclaimed;
3296 #ifdef CONFIG_MEMCG
3298 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3299 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3300 gfp_t gfp_mask, bool noswap,
3301 pg_data_t *pgdat,
3302 unsigned long *nr_scanned)
3304 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3305 struct scan_control sc = {
3306 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3307 .target_mem_cgroup = memcg,
3308 .may_writepage = !laptop_mode,
3309 .may_unmap = 1,
3310 .reclaim_idx = MAX_NR_ZONES - 1,
3311 .may_swap = !noswap,
3314 WARN_ON_ONCE(!current->reclaim_state);
3316 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3317 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3319 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3320 sc.gfp_mask);
3323 * NOTE: Although we can get the priority field, using it
3324 * here is not a good idea, since it limits the pages we can scan.
3325 * if we don't reclaim here, the shrink_node from balance_pgdat
3326 * will pick up pages from other mem cgroup's as well. We hack
3327 * the priority and make it zero.
3329 shrink_lruvec(lruvec, &sc);
3331 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3333 *nr_scanned = sc.nr_scanned;
3335 return sc.nr_reclaimed;
3338 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3339 unsigned long nr_pages,
3340 gfp_t gfp_mask,
3341 bool may_swap)
3343 unsigned long nr_reclaimed;
3344 unsigned long pflags;
3345 unsigned int noreclaim_flag;
3346 struct scan_control sc = {
3347 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3348 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3349 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3350 .reclaim_idx = MAX_NR_ZONES - 1,
3351 .target_mem_cgroup = memcg,
3352 .priority = DEF_PRIORITY,
3353 .may_writepage = !laptop_mode,
3354 .may_unmap = 1,
3355 .may_swap = may_swap,
3358 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3359 * equal pressure on all the nodes. This is based on the assumption that
3360 * the reclaim does not bail out early.
3362 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3364 set_task_reclaim_state(current, &sc.reclaim_state);
3366 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3368 psi_memstall_enter(&pflags);
3369 noreclaim_flag = memalloc_noreclaim_save();
3371 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3373 memalloc_noreclaim_restore(noreclaim_flag);
3374 psi_memstall_leave(&pflags);
3376 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3377 set_task_reclaim_state(current, NULL);
3379 return nr_reclaimed;
3381 #endif
3383 static void age_active_anon(struct pglist_data *pgdat,
3384 struct scan_control *sc)
3386 struct mem_cgroup *memcg;
3387 struct lruvec *lruvec;
3389 if (!total_swap_pages)
3390 return;
3392 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3393 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3394 return;
3396 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3397 do {
3398 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3399 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3400 sc, LRU_ACTIVE_ANON);
3401 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3402 } while (memcg);
3405 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3407 int i;
3408 struct zone *zone;
3411 * Check for watermark boosts top-down as the higher zones
3412 * are more likely to be boosted. Both watermarks and boosts
3413 * should not be checked at the time time as reclaim would
3414 * start prematurely when there is no boosting and a lower
3415 * zone is balanced.
3417 for (i = classzone_idx; i >= 0; i--) {
3418 zone = pgdat->node_zones + i;
3419 if (!managed_zone(zone))
3420 continue;
3422 if (zone->watermark_boost)
3423 return true;
3426 return false;
3430 * Returns true if there is an eligible zone balanced for the request order
3431 * and classzone_idx
3433 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3435 int i;
3436 unsigned long mark = -1;
3437 struct zone *zone;
3440 * Check watermarks bottom-up as lower zones are more likely to
3441 * meet watermarks.
3443 for (i = 0; i <= classzone_idx; i++) {
3444 zone = pgdat->node_zones + i;
3446 if (!managed_zone(zone))
3447 continue;
3449 mark = high_wmark_pages(zone);
3450 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3451 return true;
3455 * If a node has no populated zone within classzone_idx, it does not
3456 * need balancing by definition. This can happen if a zone-restricted
3457 * allocation tries to wake a remote kswapd.
3459 if (mark == -1)
3460 return true;
3462 return false;
3465 /* Clear pgdat state for congested, dirty or under writeback. */
3466 static void clear_pgdat_congested(pg_data_t *pgdat)
3468 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3470 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3471 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3472 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3476 * Prepare kswapd for sleeping. This verifies that there are no processes
3477 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3479 * Returns true if kswapd is ready to sleep
3481 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3484 * The throttled processes are normally woken up in balance_pgdat() as
3485 * soon as allow_direct_reclaim() is true. But there is a potential
3486 * race between when kswapd checks the watermarks and a process gets
3487 * throttled. There is also a potential race if processes get
3488 * throttled, kswapd wakes, a large process exits thereby balancing the
3489 * zones, which causes kswapd to exit balance_pgdat() before reaching
3490 * the wake up checks. If kswapd is going to sleep, no process should
3491 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3492 * the wake up is premature, processes will wake kswapd and get
3493 * throttled again. The difference from wake ups in balance_pgdat() is
3494 * that here we are under prepare_to_wait().
3496 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3497 wake_up_all(&pgdat->pfmemalloc_wait);
3499 /* Hopeless node, leave it to direct reclaim */
3500 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3501 return true;
3503 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3504 clear_pgdat_congested(pgdat);
3505 return true;
3508 return false;
3512 * kswapd shrinks a node of pages that are at or below the highest usable
3513 * zone that is currently unbalanced.
3515 * Returns true if kswapd scanned at least the requested number of pages to
3516 * reclaim or if the lack of progress was due to pages under writeback.
3517 * This is used to determine if the scanning priority needs to be raised.
3519 static bool kswapd_shrink_node(pg_data_t *pgdat,
3520 struct scan_control *sc)
3522 struct zone *zone;
3523 int z;
3525 /* Reclaim a number of pages proportional to the number of zones */
3526 sc->nr_to_reclaim = 0;
3527 for (z = 0; z <= sc->reclaim_idx; z++) {
3528 zone = pgdat->node_zones + z;
3529 if (!managed_zone(zone))
3530 continue;
3532 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3536 * Historically care was taken to put equal pressure on all zones but
3537 * now pressure is applied based on node LRU order.
3539 shrink_node(pgdat, sc);
3542 * Fragmentation may mean that the system cannot be rebalanced for
3543 * high-order allocations. If twice the allocation size has been
3544 * reclaimed then recheck watermarks only at order-0 to prevent
3545 * excessive reclaim. Assume that a process requested a high-order
3546 * can direct reclaim/compact.
3548 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3549 sc->order = 0;
3551 return sc->nr_scanned >= sc->nr_to_reclaim;
3555 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3556 * that are eligible for use by the caller until at least one zone is
3557 * balanced.
3559 * Returns the order kswapd finished reclaiming at.
3561 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3562 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3563 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3564 * or lower is eligible for reclaim until at least one usable zone is
3565 * balanced.
3567 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3569 int i;
3570 unsigned long nr_soft_reclaimed;
3571 unsigned long nr_soft_scanned;
3572 unsigned long pflags;
3573 unsigned long nr_boost_reclaim;
3574 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3575 bool boosted;
3576 struct zone *zone;
3577 struct scan_control sc = {
3578 .gfp_mask = GFP_KERNEL,
3579 .order = order,
3580 .may_unmap = 1,
3583 set_task_reclaim_state(current, &sc.reclaim_state);
3584 psi_memstall_enter(&pflags);
3585 __fs_reclaim_acquire();
3587 count_vm_event(PAGEOUTRUN);
3590 * Account for the reclaim boost. Note that the zone boost is left in
3591 * place so that parallel allocations that are near the watermark will
3592 * stall or direct reclaim until kswapd is finished.
3594 nr_boost_reclaim = 0;
3595 for (i = 0; i <= classzone_idx; i++) {
3596 zone = pgdat->node_zones + i;
3597 if (!managed_zone(zone))
3598 continue;
3600 nr_boost_reclaim += zone->watermark_boost;
3601 zone_boosts[i] = zone->watermark_boost;
3603 boosted = nr_boost_reclaim;
3605 restart:
3606 sc.priority = DEF_PRIORITY;
3607 do {
3608 unsigned long nr_reclaimed = sc.nr_reclaimed;
3609 bool raise_priority = true;
3610 bool balanced;
3611 bool ret;
3613 sc.reclaim_idx = classzone_idx;
3616 * If the number of buffer_heads exceeds the maximum allowed
3617 * then consider reclaiming from all zones. This has a dual
3618 * purpose -- on 64-bit systems it is expected that
3619 * buffer_heads are stripped during active rotation. On 32-bit
3620 * systems, highmem pages can pin lowmem memory and shrinking
3621 * buffers can relieve lowmem pressure. Reclaim may still not
3622 * go ahead if all eligible zones for the original allocation
3623 * request are balanced to avoid excessive reclaim from kswapd.
3625 if (buffer_heads_over_limit) {
3626 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3627 zone = pgdat->node_zones + i;
3628 if (!managed_zone(zone))
3629 continue;
3631 sc.reclaim_idx = i;
3632 break;
3637 * If the pgdat is imbalanced then ignore boosting and preserve
3638 * the watermarks for a later time and restart. Note that the
3639 * zone watermarks will be still reset at the end of balancing
3640 * on the grounds that the normal reclaim should be enough to
3641 * re-evaluate if boosting is required when kswapd next wakes.
3643 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3644 if (!balanced && nr_boost_reclaim) {
3645 nr_boost_reclaim = 0;
3646 goto restart;
3650 * If boosting is not active then only reclaim if there are no
3651 * eligible zones. Note that sc.reclaim_idx is not used as
3652 * buffer_heads_over_limit may have adjusted it.
3654 if (!nr_boost_reclaim && balanced)
3655 goto out;
3657 /* Limit the priority of boosting to avoid reclaim writeback */
3658 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3659 raise_priority = false;
3662 * Do not writeback or swap pages for boosted reclaim. The
3663 * intent is to relieve pressure not issue sub-optimal IO
3664 * from reclaim context. If no pages are reclaimed, the
3665 * reclaim will be aborted.
3667 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3668 sc.may_swap = !nr_boost_reclaim;
3671 * Do some background aging of the anon list, to give
3672 * pages a chance to be referenced before reclaiming. All
3673 * pages are rotated regardless of classzone as this is
3674 * about consistent aging.
3676 age_active_anon(pgdat, &sc);
3679 * If we're getting trouble reclaiming, start doing writepage
3680 * even in laptop mode.
3682 if (sc.priority < DEF_PRIORITY - 2)
3683 sc.may_writepage = 1;
3685 /* Call soft limit reclaim before calling shrink_node. */
3686 sc.nr_scanned = 0;
3687 nr_soft_scanned = 0;
3688 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3689 sc.gfp_mask, &nr_soft_scanned);
3690 sc.nr_reclaimed += nr_soft_reclaimed;
3693 * There should be no need to raise the scanning priority if
3694 * enough pages are already being scanned that that high
3695 * watermark would be met at 100% efficiency.
3697 if (kswapd_shrink_node(pgdat, &sc))
3698 raise_priority = false;
3701 * If the low watermark is met there is no need for processes
3702 * to be throttled on pfmemalloc_wait as they should not be
3703 * able to safely make forward progress. Wake them
3705 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3706 allow_direct_reclaim(pgdat))
3707 wake_up_all(&pgdat->pfmemalloc_wait);
3709 /* Check if kswapd should be suspending */
3710 __fs_reclaim_release();
3711 ret = try_to_freeze();
3712 __fs_reclaim_acquire();
3713 if (ret || kthread_should_stop())
3714 break;
3717 * Raise priority if scanning rate is too low or there was no
3718 * progress in reclaiming pages
3720 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3721 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3724 * If reclaim made no progress for a boost, stop reclaim as
3725 * IO cannot be queued and it could be an infinite loop in
3726 * extreme circumstances.
3728 if (nr_boost_reclaim && !nr_reclaimed)
3729 break;
3731 if (raise_priority || !nr_reclaimed)
3732 sc.priority--;
3733 } while (sc.priority >= 1);
3735 if (!sc.nr_reclaimed)
3736 pgdat->kswapd_failures++;
3738 out:
3739 /* If reclaim was boosted, account for the reclaim done in this pass */
3740 if (boosted) {
3741 unsigned long flags;
3743 for (i = 0; i <= classzone_idx; i++) {
3744 if (!zone_boosts[i])
3745 continue;
3747 /* Increments are under the zone lock */
3748 zone = pgdat->node_zones + i;
3749 spin_lock_irqsave(&zone->lock, flags);
3750 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3751 spin_unlock_irqrestore(&zone->lock, flags);
3755 * As there is now likely space, wakeup kcompact to defragment
3756 * pageblocks.
3758 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3761 snapshot_refaults(NULL, pgdat);
3762 __fs_reclaim_release();
3763 psi_memstall_leave(&pflags);
3764 set_task_reclaim_state(current, NULL);
3767 * Return the order kswapd stopped reclaiming at as
3768 * prepare_kswapd_sleep() takes it into account. If another caller
3769 * entered the allocator slow path while kswapd was awake, order will
3770 * remain at the higher level.
3772 return sc.order;
3776 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3777 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3778 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3779 * after previous reclaim attempt (node is still unbalanced). In that case
3780 * return the zone index of the previous kswapd reclaim cycle.
3782 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3783 enum zone_type prev_classzone_idx)
3785 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3786 return prev_classzone_idx;
3787 return pgdat->kswapd_classzone_idx;
3790 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3791 unsigned int classzone_idx)
3793 long remaining = 0;
3794 DEFINE_WAIT(wait);
3796 if (freezing(current) || kthread_should_stop())
3797 return;
3799 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3802 * Try to sleep for a short interval. Note that kcompactd will only be
3803 * woken if it is possible to sleep for a short interval. This is
3804 * deliberate on the assumption that if reclaim cannot keep an
3805 * eligible zone balanced that it's also unlikely that compaction will
3806 * succeed.
3808 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3810 * Compaction records what page blocks it recently failed to
3811 * isolate pages from and skips them in the future scanning.
3812 * When kswapd is going to sleep, it is reasonable to assume
3813 * that pages and compaction may succeed so reset the cache.
3815 reset_isolation_suitable(pgdat);
3818 * We have freed the memory, now we should compact it to make
3819 * allocation of the requested order possible.
3821 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3823 remaining = schedule_timeout(HZ/10);
3826 * If woken prematurely then reset kswapd_classzone_idx and
3827 * order. The values will either be from a wakeup request or
3828 * the previous request that slept prematurely.
3830 if (remaining) {
3831 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3832 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3835 finish_wait(&pgdat->kswapd_wait, &wait);
3836 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3840 * After a short sleep, check if it was a premature sleep. If not, then
3841 * go fully to sleep until explicitly woken up.
3843 if (!remaining &&
3844 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3845 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3848 * vmstat counters are not perfectly accurate and the estimated
3849 * value for counters such as NR_FREE_PAGES can deviate from the
3850 * true value by nr_online_cpus * threshold. To avoid the zone
3851 * watermarks being breached while under pressure, we reduce the
3852 * per-cpu vmstat threshold while kswapd is awake and restore
3853 * them before going back to sleep.
3855 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3857 if (!kthread_should_stop())
3858 schedule();
3860 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3861 } else {
3862 if (remaining)
3863 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3864 else
3865 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3867 finish_wait(&pgdat->kswapd_wait, &wait);
3871 * The background pageout daemon, started as a kernel thread
3872 * from the init process.
3874 * This basically trickles out pages so that we have _some_
3875 * free memory available even if there is no other activity
3876 * that frees anything up. This is needed for things like routing
3877 * etc, where we otherwise might have all activity going on in
3878 * asynchronous contexts that cannot page things out.
3880 * If there are applications that are active memory-allocators
3881 * (most normal use), this basically shouldn't matter.
3883 static int kswapd(void *p)
3885 unsigned int alloc_order, reclaim_order;
3886 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3887 pg_data_t *pgdat = (pg_data_t*)p;
3888 struct task_struct *tsk = current;
3889 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3891 if (!cpumask_empty(cpumask))
3892 set_cpus_allowed_ptr(tsk, cpumask);
3895 * Tell the memory management that we're a "memory allocator",
3896 * and that if we need more memory we should get access to it
3897 * regardless (see "__alloc_pages()"). "kswapd" should
3898 * never get caught in the normal page freeing logic.
3900 * (Kswapd normally doesn't need memory anyway, but sometimes
3901 * you need a small amount of memory in order to be able to
3902 * page out something else, and this flag essentially protects
3903 * us from recursively trying to free more memory as we're
3904 * trying to free the first piece of memory in the first place).
3906 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3907 set_freezable();
3909 pgdat->kswapd_order = 0;
3910 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3911 for ( ; ; ) {
3912 bool ret;
3914 alloc_order = reclaim_order = pgdat->kswapd_order;
3915 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3917 kswapd_try_sleep:
3918 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3919 classzone_idx);
3921 /* Read the new order and classzone_idx */
3922 alloc_order = reclaim_order = pgdat->kswapd_order;
3923 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3924 pgdat->kswapd_order = 0;
3925 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3927 ret = try_to_freeze();
3928 if (kthread_should_stop())
3929 break;
3932 * We can speed up thawing tasks if we don't call balance_pgdat
3933 * after returning from the refrigerator
3935 if (ret)
3936 continue;
3939 * Reclaim begins at the requested order but if a high-order
3940 * reclaim fails then kswapd falls back to reclaiming for
3941 * order-0. If that happens, kswapd will consider sleeping
3942 * for the order it finished reclaiming at (reclaim_order)
3943 * but kcompactd is woken to compact for the original
3944 * request (alloc_order).
3946 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3947 alloc_order);
3948 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3949 if (reclaim_order < alloc_order)
3950 goto kswapd_try_sleep;
3953 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3955 return 0;
3959 * A zone is low on free memory or too fragmented for high-order memory. If
3960 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3961 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3962 * has failed or is not needed, still wake up kcompactd if only compaction is
3963 * needed.
3965 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3966 enum zone_type classzone_idx)
3968 pg_data_t *pgdat;
3970 if (!managed_zone(zone))
3971 return;
3973 if (!cpuset_zone_allowed(zone, gfp_flags))
3974 return;
3975 pgdat = zone->zone_pgdat;
3977 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3978 pgdat->kswapd_classzone_idx = classzone_idx;
3979 else
3980 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3981 classzone_idx);
3982 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3983 if (!waitqueue_active(&pgdat->kswapd_wait))
3984 return;
3986 /* Hopeless node, leave it to direct reclaim if possible */
3987 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3988 (pgdat_balanced(pgdat, order, classzone_idx) &&
3989 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3991 * There may be plenty of free memory available, but it's too
3992 * fragmented for high-order allocations. Wake up kcompactd
3993 * and rely on compaction_suitable() to determine if it's
3994 * needed. If it fails, it will defer subsequent attempts to
3995 * ratelimit its work.
3997 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3998 wakeup_kcompactd(pgdat, order, classzone_idx);
3999 return;
4002 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4003 gfp_flags);
4004 wake_up_interruptible(&pgdat->kswapd_wait);
4007 #ifdef CONFIG_HIBERNATION
4009 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4010 * freed pages.
4012 * Rather than trying to age LRUs the aim is to preserve the overall
4013 * LRU order by reclaiming preferentially
4014 * inactive > active > active referenced > active mapped
4016 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4018 struct scan_control sc = {
4019 .nr_to_reclaim = nr_to_reclaim,
4020 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4021 .reclaim_idx = MAX_NR_ZONES - 1,
4022 .priority = DEF_PRIORITY,
4023 .may_writepage = 1,
4024 .may_unmap = 1,
4025 .may_swap = 1,
4026 .hibernation_mode = 1,
4028 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4029 unsigned long nr_reclaimed;
4030 unsigned int noreclaim_flag;
4032 fs_reclaim_acquire(sc.gfp_mask);
4033 noreclaim_flag = memalloc_noreclaim_save();
4034 set_task_reclaim_state(current, &sc.reclaim_state);
4036 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4038 set_task_reclaim_state(current, NULL);
4039 memalloc_noreclaim_restore(noreclaim_flag);
4040 fs_reclaim_release(sc.gfp_mask);
4042 return nr_reclaimed;
4044 #endif /* CONFIG_HIBERNATION */
4046 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4047 not required for correctness. So if the last cpu in a node goes
4048 away, we get changed to run anywhere: as the first one comes back,
4049 restore their cpu bindings. */
4050 static int kswapd_cpu_online(unsigned int cpu)
4052 int nid;
4054 for_each_node_state(nid, N_MEMORY) {
4055 pg_data_t *pgdat = NODE_DATA(nid);
4056 const struct cpumask *mask;
4058 mask = cpumask_of_node(pgdat->node_id);
4060 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4061 /* One of our CPUs online: restore mask */
4062 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4064 return 0;
4068 * This kswapd start function will be called by init and node-hot-add.
4069 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4071 int kswapd_run(int nid)
4073 pg_data_t *pgdat = NODE_DATA(nid);
4074 int ret = 0;
4076 if (pgdat->kswapd)
4077 return 0;
4079 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4080 if (IS_ERR(pgdat->kswapd)) {
4081 /* failure at boot is fatal */
4082 BUG_ON(system_state < SYSTEM_RUNNING);
4083 pr_err("Failed to start kswapd on node %d\n", nid);
4084 ret = PTR_ERR(pgdat->kswapd);
4085 pgdat->kswapd = NULL;
4087 return ret;
4091 * Called by memory hotplug when all memory in a node is offlined. Caller must
4092 * hold mem_hotplug_begin/end().
4094 void kswapd_stop(int nid)
4096 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4098 if (kswapd) {
4099 kthread_stop(kswapd);
4100 NODE_DATA(nid)->kswapd = NULL;
4104 static int __init kswapd_init(void)
4106 int nid, ret;
4108 swap_setup();
4109 for_each_node_state(nid, N_MEMORY)
4110 kswapd_run(nid);
4111 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4112 "mm/vmscan:online", kswapd_cpu_online,
4113 NULL);
4114 WARN_ON(ret < 0);
4115 return 0;
4118 module_init(kswapd_init)
4120 #ifdef CONFIG_NUMA
4122 * Node reclaim mode
4124 * If non-zero call node_reclaim when the number of free pages falls below
4125 * the watermarks.
4127 int node_reclaim_mode __read_mostly;
4129 #define RECLAIM_OFF 0
4130 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4131 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4132 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4135 * Priority for NODE_RECLAIM. This determines the fraction of pages
4136 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4137 * a zone.
4139 #define NODE_RECLAIM_PRIORITY 4
4142 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4143 * occur.
4145 int sysctl_min_unmapped_ratio = 1;
4148 * If the number of slab pages in a zone grows beyond this percentage then
4149 * slab reclaim needs to occur.
4151 int sysctl_min_slab_ratio = 5;
4153 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4155 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4156 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4157 node_page_state(pgdat, NR_ACTIVE_FILE);
4160 * It's possible for there to be more file mapped pages than
4161 * accounted for by the pages on the file LRU lists because
4162 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4164 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4168 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4170 unsigned long nr_pagecache_reclaimable;
4171 unsigned long delta = 0;
4174 * If RECLAIM_UNMAP is set, then all file pages are considered
4175 * potentially reclaimable. Otherwise, we have to worry about
4176 * pages like swapcache and node_unmapped_file_pages() provides
4177 * a better estimate
4179 if (node_reclaim_mode & RECLAIM_UNMAP)
4180 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4181 else
4182 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4184 /* If we can't clean pages, remove dirty pages from consideration */
4185 if (!(node_reclaim_mode & RECLAIM_WRITE))
4186 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4188 /* Watch for any possible underflows due to delta */
4189 if (unlikely(delta > nr_pagecache_reclaimable))
4190 delta = nr_pagecache_reclaimable;
4192 return nr_pagecache_reclaimable - delta;
4196 * Try to free up some pages from this node through reclaim.
4198 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4200 /* Minimum pages needed in order to stay on node */
4201 const unsigned long nr_pages = 1 << order;
4202 struct task_struct *p = current;
4203 unsigned int noreclaim_flag;
4204 struct scan_control sc = {
4205 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4206 .gfp_mask = current_gfp_context(gfp_mask),
4207 .order = order,
4208 .priority = NODE_RECLAIM_PRIORITY,
4209 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4210 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4211 .may_swap = 1,
4212 .reclaim_idx = gfp_zone(gfp_mask),
4215 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4216 sc.gfp_mask);
4218 cond_resched();
4219 fs_reclaim_acquire(sc.gfp_mask);
4221 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4222 * and we also need to be able to write out pages for RECLAIM_WRITE
4223 * and RECLAIM_UNMAP.
4225 noreclaim_flag = memalloc_noreclaim_save();
4226 p->flags |= PF_SWAPWRITE;
4227 set_task_reclaim_state(p, &sc.reclaim_state);
4229 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4231 * Free memory by calling shrink node with increasing
4232 * priorities until we have enough memory freed.
4234 do {
4235 shrink_node(pgdat, &sc);
4236 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4239 set_task_reclaim_state(p, NULL);
4240 current->flags &= ~PF_SWAPWRITE;
4241 memalloc_noreclaim_restore(noreclaim_flag);
4242 fs_reclaim_release(sc.gfp_mask);
4244 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4246 return sc.nr_reclaimed >= nr_pages;
4249 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4251 int ret;
4254 * Node reclaim reclaims unmapped file backed pages and
4255 * slab pages if we are over the defined limits.
4257 * A small portion of unmapped file backed pages is needed for
4258 * file I/O otherwise pages read by file I/O will be immediately
4259 * thrown out if the node is overallocated. So we do not reclaim
4260 * if less than a specified percentage of the node is used by
4261 * unmapped file backed pages.
4263 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4264 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4265 return NODE_RECLAIM_FULL;
4268 * Do not scan if the allocation should not be delayed.
4270 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4271 return NODE_RECLAIM_NOSCAN;
4274 * Only run node reclaim on the local node or on nodes that do not
4275 * have associated processors. This will favor the local processor
4276 * over remote processors and spread off node memory allocations
4277 * as wide as possible.
4279 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4280 return NODE_RECLAIM_NOSCAN;
4282 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4283 return NODE_RECLAIM_NOSCAN;
4285 ret = __node_reclaim(pgdat, gfp_mask, order);
4286 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4288 if (!ret)
4289 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4291 return ret;
4293 #endif
4296 * page_evictable - test whether a page is evictable
4297 * @page: the page to test
4299 * Test whether page is evictable--i.e., should be placed on active/inactive
4300 * lists vs unevictable list.
4302 * Reasons page might not be evictable:
4303 * (1) page's mapping marked unevictable
4304 * (2) page is part of an mlocked VMA
4307 int page_evictable(struct page *page)
4309 int ret;
4311 /* Prevent address_space of inode and swap cache from being freed */
4312 rcu_read_lock();
4313 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4314 rcu_read_unlock();
4315 return ret;
4319 * check_move_unevictable_pages - check pages for evictability and move to
4320 * appropriate zone lru list
4321 * @pvec: pagevec with lru pages to check
4323 * Checks pages for evictability, if an evictable page is in the unevictable
4324 * lru list, moves it to the appropriate evictable lru list. This function
4325 * should be only used for lru pages.
4327 void check_move_unevictable_pages(struct pagevec *pvec)
4329 struct lruvec *lruvec;
4330 struct pglist_data *pgdat = NULL;
4331 int pgscanned = 0;
4332 int pgrescued = 0;
4333 int i;
4335 for (i = 0; i < pvec->nr; i++) {
4336 struct page *page = pvec->pages[i];
4337 struct pglist_data *pagepgdat = page_pgdat(page);
4339 pgscanned++;
4340 if (pagepgdat != pgdat) {
4341 if (pgdat)
4342 spin_unlock_irq(&pgdat->lru_lock);
4343 pgdat = pagepgdat;
4344 spin_lock_irq(&pgdat->lru_lock);
4346 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4348 if (!PageLRU(page) || !PageUnevictable(page))
4349 continue;
4351 if (page_evictable(page)) {
4352 enum lru_list lru = page_lru_base_type(page);
4354 VM_BUG_ON_PAGE(PageActive(page), page);
4355 ClearPageUnevictable(page);
4356 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4357 add_page_to_lru_list(page, lruvec, lru);
4358 pgrescued++;
4362 if (pgdat) {
4363 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4364 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4365 spin_unlock_irq(&pgdat->lru_lock);
4368 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);