1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr
;
94 EXPORT_SYMBOL(max_mapnr
);
97 EXPORT_SYMBOL(mem_map
);
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 EXPORT_SYMBOL(high_memory
);
111 * Randomize the address space (stacks, mmaps, brk, etc.).
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
116 int randomize_va_space __read_mostly
=
117 #ifdef CONFIG_COMPAT_BRK
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
135 static int __init
disable_randmaps(char *s
)
137 randomize_va_space
= 0;
140 __setup("norandmaps", disable_randmaps
);
142 unsigned long zero_pfn __read_mostly
;
143 EXPORT_SYMBOL(zero_pfn
);
145 unsigned long highest_memmap_pfn __read_mostly
;
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 static int __init
init_zero_pfn(void)
152 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
155 core_initcall(init_zero_pfn
);
157 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
, long count
)
159 trace_rss_stat(mm
, member
, count
);
162 #if defined(SPLIT_RSS_COUNTING)
164 void sync_mm_rss(struct mm_struct
*mm
)
168 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
169 if (current
->rss_stat
.count
[i
]) {
170 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
171 current
->rss_stat
.count
[i
] = 0;
174 current
->rss_stat
.events
= 0;
177 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
179 struct task_struct
*task
= current
;
181 if (likely(task
->mm
== mm
))
182 task
->rss_stat
.count
[member
] += val
;
184 add_mm_counter(mm
, member
, val
);
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct
*task
)
193 if (unlikely(task
!= current
))
195 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
196 sync_mm_rss(task
->mm
);
198 #else /* SPLIT_RSS_COUNTING */
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 static void check_sync_rss_stat(struct task_struct
*task
)
207 #endif /* SPLIT_RSS_COUNTING */
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
213 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
216 pgtable_t token
= pmd_pgtable(*pmd
);
218 pte_free_tlb(tlb
, token
, addr
);
219 mm_dec_nr_ptes(tlb
->mm
);
222 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
223 unsigned long addr
, unsigned long end
,
224 unsigned long floor
, unsigned long ceiling
)
231 pmd
= pmd_offset(pud
, addr
);
233 next
= pmd_addr_end(addr
, end
);
234 if (pmd_none_or_clear_bad(pmd
))
236 free_pte_range(tlb
, pmd
, addr
);
237 } while (pmd
++, addr
= next
, addr
!= end
);
247 if (end
- 1 > ceiling
- 1)
250 pmd
= pmd_offset(pud
, start
);
252 pmd_free_tlb(tlb
, pmd
, start
);
253 mm_dec_nr_pmds(tlb
->mm
);
256 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
257 unsigned long addr
, unsigned long end
,
258 unsigned long floor
, unsigned long ceiling
)
265 pud
= pud_offset(p4d
, addr
);
267 next
= pud_addr_end(addr
, end
);
268 if (pud_none_or_clear_bad(pud
))
270 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
271 } while (pud
++, addr
= next
, addr
!= end
);
281 if (end
- 1 > ceiling
- 1)
284 pud
= pud_offset(p4d
, start
);
286 pud_free_tlb(tlb
, pud
, start
);
287 mm_dec_nr_puds(tlb
->mm
);
290 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
291 unsigned long addr
, unsigned long end
,
292 unsigned long floor
, unsigned long ceiling
)
299 p4d
= p4d_offset(pgd
, addr
);
301 next
= p4d_addr_end(addr
, end
);
302 if (p4d_none_or_clear_bad(p4d
))
304 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
305 } while (p4d
++, addr
= next
, addr
!= end
);
311 ceiling
&= PGDIR_MASK
;
315 if (end
- 1 > ceiling
- 1)
318 p4d
= p4d_offset(pgd
, start
);
320 p4d_free_tlb(tlb
, p4d
, start
);
324 * This function frees user-level page tables of a process.
326 void free_pgd_range(struct mmu_gather
*tlb
,
327 unsigned long addr
, unsigned long end
,
328 unsigned long floor
, unsigned long ceiling
)
334 * The next few lines have given us lots of grief...
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
370 if (end
- 1 > ceiling
- 1)
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
378 tlb_change_page_size(tlb
, PAGE_SIZE
);
379 pgd
= pgd_offset(tlb
->mm
, addr
);
381 next
= pgd_addr_end(addr
, end
);
382 if (pgd_none_or_clear_bad(pgd
))
384 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
385 } while (pgd
++, addr
= next
, addr
!= end
);
388 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
389 unsigned long floor
, unsigned long ceiling
)
392 struct vm_area_struct
*next
= vma
->vm_next
;
393 unsigned long addr
= vma
->vm_start
;
396 * Hide vma from rmap and truncate_pagecache before freeing
399 unlink_anon_vmas(vma
);
400 unlink_file_vma(vma
);
402 if (is_vm_hugetlb_page(vma
)) {
403 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
404 floor
, next
? next
->vm_start
: ceiling
);
407 * Optimization: gather nearby vmas into one call down
409 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
410 && !is_vm_hugetlb_page(next
)) {
413 unlink_anon_vmas(vma
);
414 unlink_file_vma(vma
);
416 free_pgd_range(tlb
, addr
, vma
->vm_end
,
417 floor
, next
? next
->vm_start
: ceiling
);
423 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
426 pgtable_t
new = pte_alloc_one(mm
);
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 ptl
= pmd_lock(mm
, pmd
);
446 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
448 pmd_populate(mm
, pmd
, new);
457 int __pte_alloc_kernel(pmd_t
*pmd
)
459 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
463 smp_wmb(); /* See comment in __pte_alloc */
465 spin_lock(&init_mm
.page_table_lock
);
466 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm
, pmd
, new);
470 spin_unlock(&init_mm
.page_table_lock
);
472 pte_free_kernel(&init_mm
, new);
476 static inline void init_rss_vec(int *rss
)
478 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
481 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
485 if (current
->mm
== mm
)
487 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
489 add_mm_counter(mm
, i
, rss
[i
]);
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
497 * The calling function must still handle the error.
499 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
500 pte_t pte
, struct page
*page
)
502 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
503 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
504 pud_t
*pud
= pud_offset(p4d
, addr
);
505 pmd_t
*pmd
= pmd_offset(pud
, addr
);
506 struct address_space
*mapping
;
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
529 resume
= jiffies
+ 60 * HZ
;
531 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
532 index
= linear_page_index(vma
, addr
);
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
538 dump_page(page
, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
544 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
545 mapping
? mapping
->a_ops
->readpage
: NULL
);
547 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
595 unsigned long pfn
= pte_pfn(pte
);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
598 if (likely(!pte_special(pte
)))
600 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
601 return vma
->vm_ops
->find_special_page(vma
, addr
);
602 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
604 if (is_zero_pfn(pfn
))
609 print_bad_pte(vma
, addr
, pte
, NULL
);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
616 if (vma
->vm_flags
& VM_MIXEDMAP
) {
622 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
623 if (pfn
== vma
->vm_pgoff
+ off
)
625 if (!is_cow_mapping(vma
->vm_flags
))
630 if (is_zero_pfn(pfn
))
634 if (unlikely(pfn
> highest_memmap_pfn
)) {
635 print_bad_pte(vma
, addr
, pte
, NULL
);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn
);
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
651 unsigned long pfn
= pmd_pfn(pmd
);
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
659 if (vma
->vm_flags
& VM_MIXEDMAP
) {
665 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
666 if (pfn
== vma
->vm_pgoff
+ off
)
668 if (!is_cow_mapping(vma
->vm_flags
))
675 if (is_huge_zero_pmd(pmd
))
677 if (unlikely(pfn
> highest_memmap_pfn
))
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
685 return pfn_to_page(pfn
);
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
695 static inline unsigned long
696 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
697 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
698 unsigned long addr
, int *rss
)
700 unsigned long vm_flags
= vma
->vm_flags
;
701 pte_t pte
= *src_pte
;
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte
))) {
706 swp_entry_t entry
= pte_to_swp_entry(pte
);
708 if (likely(!non_swap_entry(entry
))) {
709 if (swap_duplicate(entry
) < 0)
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
714 spin_lock(&mmlist_lock
);
715 if (list_empty(&dst_mm
->mmlist
))
716 list_add(&dst_mm
->mmlist
,
718 spin_unlock(&mmlist_lock
);
721 } else if (is_migration_entry(entry
)) {
722 page
= migration_entry_to_page(entry
);
724 rss
[mm_counter(page
)]++;
726 if (is_write_migration_entry(entry
) &&
727 is_cow_mapping(vm_flags
)) {
729 * COW mappings require pages in both
730 * parent and child to be set to read.
732 make_migration_entry_read(&entry
);
733 pte
= swp_entry_to_pte(entry
);
734 if (pte_swp_soft_dirty(*src_pte
))
735 pte
= pte_swp_mksoft_dirty(pte
);
736 set_pte_at(src_mm
, addr
, src_pte
, pte
);
738 } else if (is_device_private_entry(entry
)) {
739 page
= device_private_entry_to_page(entry
);
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
751 rss
[mm_counter(page
)]++;
752 page_dup_rmap(page
, false);
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
761 if (is_write_device_private_entry(entry
) &&
762 is_cow_mapping(vm_flags
)) {
763 make_device_private_entry_read(&entry
);
764 pte
= swp_entry_to_pte(entry
);
765 set_pte_at(src_mm
, addr
, src_pte
, pte
);
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
775 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
776 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
777 pte
= pte_wrprotect(pte
);
781 * If it's a shared mapping, mark it clean in
784 if (vm_flags
& VM_SHARED
)
785 pte
= pte_mkclean(pte
);
786 pte
= pte_mkold(pte
);
788 page
= vm_normal_page(vma
, addr
, pte
);
791 page_dup_rmap(page
, false);
792 rss
[mm_counter(page
)]++;
793 } else if (pte_devmap(pte
)) {
794 page
= pte_page(pte
);
798 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
802 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
803 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
804 unsigned long addr
, unsigned long end
)
806 pte_t
*orig_src_pte
, *orig_dst_pte
;
807 pte_t
*src_pte
, *dst_pte
;
808 spinlock_t
*src_ptl
, *dst_ptl
;
810 int rss
[NR_MM_COUNTERS
];
811 swp_entry_t entry
= (swp_entry_t
){0};
816 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
819 src_pte
= pte_offset_map(src_pmd
, addr
);
820 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
821 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
822 orig_src_pte
= src_pte
;
823 orig_dst_pte
= dst_pte
;
824 arch_enter_lazy_mmu_mode();
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
831 if (progress
>= 32) {
833 if (need_resched() ||
834 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
837 if (pte_none(*src_pte
)) {
841 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
846 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
848 arch_leave_lazy_mmu_mode();
849 spin_unlock(src_ptl
);
850 pte_unmap(orig_src_pte
);
851 add_mm_rss_vec(dst_mm
, rss
);
852 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
856 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
865 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
866 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
867 unsigned long addr
, unsigned long end
)
869 pmd_t
*src_pmd
, *dst_pmd
;
872 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
875 src_pmd
= pmd_offset(src_pud
, addr
);
877 next
= pmd_addr_end(addr
, end
);
878 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
879 || pmd_devmap(*src_pmd
)) {
881 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
882 err
= copy_huge_pmd(dst_mm
, src_mm
,
883 dst_pmd
, src_pmd
, addr
, vma
);
890 if (pmd_none_or_clear_bad(src_pmd
))
892 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
895 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
899 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
900 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
901 unsigned long addr
, unsigned long end
)
903 pud_t
*src_pud
, *dst_pud
;
906 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
909 src_pud
= pud_offset(src_p4d
, addr
);
911 next
= pud_addr_end(addr
, end
);
912 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
915 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
916 err
= copy_huge_pud(dst_mm
, src_mm
,
917 dst_pud
, src_pud
, addr
, vma
);
924 if (pud_none_or_clear_bad(src_pud
))
926 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
929 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
933 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
934 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
935 unsigned long addr
, unsigned long end
)
937 p4d_t
*src_p4d
, *dst_p4d
;
940 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
943 src_p4d
= p4d_offset(src_pgd
, addr
);
945 next
= p4d_addr_end(addr
, end
);
946 if (p4d_none_or_clear_bad(src_p4d
))
948 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
951 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
955 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
956 struct vm_area_struct
*vma
)
958 pgd_t
*src_pgd
, *dst_pgd
;
960 unsigned long addr
= vma
->vm_start
;
961 unsigned long end
= vma
->vm_end
;
962 struct mmu_notifier_range range
;
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
972 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
976 if (is_vm_hugetlb_page(vma
))
977 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
979 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
984 ret
= track_pfn_copy(vma
);
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
995 is_cow
= is_cow_mapping(vma
->vm_flags
);
998 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
999 0, vma
, src_mm
, addr
, end
);
1000 mmu_notifier_invalidate_range_start(&range
);
1004 dst_pgd
= pgd_offset(dst_mm
, addr
);
1005 src_pgd
= pgd_offset(src_mm
, addr
);
1007 next
= pgd_addr_end(addr
, end
);
1008 if (pgd_none_or_clear_bad(src_pgd
))
1010 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1011 vma
, addr
, next
))) {
1015 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1018 mmu_notifier_invalidate_range_end(&range
);
1022 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1023 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1024 unsigned long addr
, unsigned long end
,
1025 struct zap_details
*details
)
1027 struct mm_struct
*mm
= tlb
->mm
;
1028 int force_flush
= 0;
1029 int rss
[NR_MM_COUNTERS
];
1035 tlb_change_page_size(tlb
, PAGE_SIZE
);
1038 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1040 flush_tlb_batched_pending(mm
);
1041 arch_enter_lazy_mmu_mode();
1044 if (pte_none(ptent
))
1050 if (pte_present(ptent
)) {
1053 page
= vm_normal_page(vma
, addr
, ptent
);
1054 if (unlikely(details
) && page
) {
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1060 if (details
->check_mapping
&&
1061 details
->check_mapping
!= page_rmapping(page
))
1064 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1066 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1067 if (unlikely(!page
))
1070 if (!PageAnon(page
)) {
1071 if (pte_dirty(ptent
)) {
1073 set_page_dirty(page
);
1075 if (pte_young(ptent
) &&
1076 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1077 mark_page_accessed(page
);
1079 rss
[mm_counter(page
)]--;
1080 page_remove_rmap(page
, false);
1081 if (unlikely(page_mapcount(page
) < 0))
1082 print_bad_pte(vma
, addr
, ptent
, page
);
1083 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1091 entry
= pte_to_swp_entry(ptent
);
1092 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1093 struct page
*page
= device_private_entry_to_page(entry
);
1095 if (unlikely(details
&& details
->check_mapping
)) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details
->check_mapping
!=
1102 page_rmapping(page
))
1106 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1107 rss
[mm_counter(page
)]--;
1108 page_remove_rmap(page
, false);
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details
))
1117 if (!non_swap_entry(entry
))
1119 else if (is_migration_entry(entry
)) {
1122 page
= migration_entry_to_page(entry
);
1123 rss
[mm_counter(page
)]--;
1125 if (unlikely(!free_swap_and_cache(entry
)))
1126 print_bad_pte(vma
, addr
, ptent
, NULL
);
1127 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1128 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1130 add_mm_rss_vec(mm
, rss
);
1131 arch_leave_lazy_mmu_mode();
1133 /* Do the actual TLB flush before dropping ptl */
1135 tlb_flush_mmu_tlbonly(tlb
);
1136 pte_unmap_unlock(start_pte
, ptl
);
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1157 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1158 struct vm_area_struct
*vma
, pud_t
*pud
,
1159 unsigned long addr
, unsigned long end
,
1160 struct zap_details
*details
)
1165 pmd
= pmd_offset(pud
, addr
);
1167 next
= pmd_addr_end(addr
, end
);
1168 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1169 if (next
- addr
!= HPAGE_PMD_SIZE
)
1170 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1171 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1184 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1187 } while (pmd
++, addr
= next
, addr
!= end
);
1192 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1193 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1194 unsigned long addr
, unsigned long end
,
1195 struct zap_details
*details
)
1200 pud
= pud_offset(p4d
, addr
);
1202 next
= pud_addr_end(addr
, end
);
1203 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1204 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1206 split_huge_pud(vma
, pud
, addr
);
1207 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1211 if (pud_none_or_clear_bad(pud
))
1213 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1216 } while (pud
++, addr
= next
, addr
!= end
);
1221 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1222 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1223 unsigned long addr
, unsigned long end
,
1224 struct zap_details
*details
)
1229 p4d
= p4d_offset(pgd
, addr
);
1231 next
= p4d_addr_end(addr
, end
);
1232 if (p4d_none_or_clear_bad(p4d
))
1234 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1235 } while (p4d
++, addr
= next
, addr
!= end
);
1240 void unmap_page_range(struct mmu_gather
*tlb
,
1241 struct vm_area_struct
*vma
,
1242 unsigned long addr
, unsigned long end
,
1243 struct zap_details
*details
)
1248 BUG_ON(addr
>= end
);
1249 tlb_start_vma(tlb
, vma
);
1250 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1252 next
= pgd_addr_end(addr
, end
);
1253 if (pgd_none_or_clear_bad(pgd
))
1255 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1256 } while (pgd
++, addr
= next
, addr
!= end
);
1257 tlb_end_vma(tlb
, vma
);
1261 static void unmap_single_vma(struct mmu_gather
*tlb
,
1262 struct vm_area_struct
*vma
, unsigned long start_addr
,
1263 unsigned long end_addr
,
1264 struct zap_details
*details
)
1266 unsigned long start
= max(vma
->vm_start
, start_addr
);
1269 if (start
>= vma
->vm_end
)
1271 end
= min(vma
->vm_end
, end_addr
);
1272 if (end
<= vma
->vm_start
)
1276 uprobe_munmap(vma
, start
, end
);
1278 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1279 untrack_pfn(vma
, 0, 0);
1282 if (unlikely(is_vm_hugetlb_page(vma
))) {
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1295 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1296 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1297 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1300 unmap_page_range(tlb
, vma
, start
, end
, details
);
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1311 * Unmap all pages in the vma list.
1313 * Only addresses between `start' and `end' will be unmapped.
1315 * The VMA list must be sorted in ascending virtual address order.
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1322 void unmap_vmas(struct mmu_gather
*tlb
,
1323 struct vm_area_struct
*vma
, unsigned long start_addr
,
1324 unsigned long end_addr
)
1326 struct mmu_notifier_range range
;
1328 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1329 start_addr
, end_addr
);
1330 mmu_notifier_invalidate_range_start(&range
);
1331 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1332 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1333 mmu_notifier_invalidate_range_end(&range
);
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
1339 * @start: starting address of pages to zap
1340 * @size: number of bytes to zap
1342 * Caller must protect the VMA list
1344 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1347 struct mmu_notifier_range range
;
1348 struct mmu_gather tlb
;
1351 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1352 start
, start
+ size
);
1353 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1354 update_hiwater_rss(vma
->vm_mm
);
1355 mmu_notifier_invalidate_range_start(&range
);
1356 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1357 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1358 mmu_notifier_invalidate_range_end(&range
);
1359 tlb_finish_mmu(&tlb
, start
, range
.end
);
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1369 * The range must fit into one VMA.
1371 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1372 unsigned long size
, struct zap_details
*details
)
1374 struct mmu_notifier_range range
;
1375 struct mmu_gather tlb
;
1378 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1379 address
, address
+ size
);
1380 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1381 update_hiwater_rss(vma
->vm_mm
);
1382 mmu_notifier_invalidate_range_start(&range
);
1383 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1384 mmu_notifier_invalidate_range_end(&range
);
1385 tlb_finish_mmu(&tlb
, address
, range
.end
);
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 * The entire address range must be fully contained within the vma.
1399 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1402 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1403 !(vma
->vm_flags
& VM_PFNMAP
))
1406 zap_page_range_single(vma
, address
, size
, NULL
);
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1410 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1418 pgd
= pgd_offset(mm
, addr
);
1419 p4d
= p4d_alloc(mm
, pgd
, addr
);
1422 pud
= pud_alloc(mm
, p4d
, addr
);
1425 pmd
= pmd_alloc(mm
, pud
, addr
);
1429 VM_BUG_ON(pmd_trans_huge(*pmd
));
1430 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1434 * This is the old fallback for page remapping.
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1440 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1441 struct page
*page
, pgprot_t prot
)
1443 struct mm_struct
*mm
= vma
->vm_mm
;
1449 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1452 flush_dcache_page(page
);
1453 pte
= get_locked_pte(mm
, addr
, &ptl
);
1457 if (!pte_none(*pte
))
1460 /* Ok, finally just insert the thing.. */
1462 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1463 page_add_file_rmap(page
, false);
1464 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1468 pte_unmap_unlock(pte
, ptl
);
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1479 * This allows drivers to insert individual pages they've allocated
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1493 * The page does not need to be reserved.
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1500 * Return: %0 on success, negative error code otherwise.
1502 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1505 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1507 if (!page_count(page
))
1509 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1510 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1511 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1512 vma
->vm_flags
|= VM_MIXEDMAP
;
1514 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1516 EXPORT_SYMBOL(vm_insert_page
);
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1525 * This allows drivers to map range of kernel pages into a user vma.
1527 * Return: 0 on success and error code otherwise.
1529 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1530 unsigned long num
, unsigned long offset
)
1532 unsigned long count
= vma_pages(vma
);
1533 unsigned long uaddr
= vma
->vm_start
;
1536 /* Fail if the user requested offset is beyond the end of the object */
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count
> num
- offset
)
1544 for (i
= 0; i
< count
; i
++) {
1545 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1572 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1575 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1577 EXPORT_SYMBOL(vm_map_pages
);
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1592 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1595 return __vm_map_pages(vma
, pages
, num
, 0);
1597 EXPORT_SYMBOL(vm_map_pages_zero
);
1599 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1600 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1602 struct mm_struct
*mm
= vma
->vm_mm
;
1606 pte
= get_locked_pte(mm
, addr
, &ptl
);
1608 return VM_FAULT_OOM
;
1609 if (!pte_none(*pte
)) {
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1621 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1625 entry
= pte_mkyoung(*pte
);
1626 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1627 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1628 update_mmu_cache(vma
, addr
, pte
);
1633 /* Ok, finally just insert the thing.. */
1634 if (pfn_t_devmap(pfn
))
1635 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1637 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1640 entry
= pte_mkyoung(entry
);
1641 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1644 set_pte_at(mm
, addr
, pte
, entry
);
1645 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1648 pte_unmap_unlock(pte
, ptl
);
1649 return VM_FAULT_NOPAGE
;
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1667 * Context: Process context. May allocate using %GFP_KERNEL.
1668 * Return: vm_fault_t value.
1670 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1671 unsigned long pfn
, pgprot_t pgprot
)
1674 * Technically, architectures with pte_special can avoid all these
1675 * restrictions (same for remap_pfn_range). However we would like
1676 * consistency in testing and feature parity among all, so we should
1677 * try to keep these invariants in place for everybody.
1679 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1680 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1681 (VM_PFNMAP
|VM_MIXEDMAP
));
1682 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1683 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1685 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1686 return VM_FAULT_SIGBUS
;
1688 if (!pfn_modify_allowed(pfn
, pgprot
))
1689 return VM_FAULT_SIGBUS
;
1691 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1693 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1696 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1699 * vmf_insert_pfn - insert single pfn into user vma
1700 * @vma: user vma to map to
1701 * @addr: target user address of this page
1702 * @pfn: source kernel pfn
1704 * Similar to vm_insert_page, this allows drivers to insert individual pages
1705 * they've allocated into a user vma. Same comments apply.
1707 * This function should only be called from a vm_ops->fault handler, and
1708 * in that case the handler should return the result of this function.
1710 * vma cannot be a COW mapping.
1712 * As this is called only for pages that do not currently exist, we
1713 * do not need to flush old virtual caches or the TLB.
1715 * Context: Process context. May allocate using %GFP_KERNEL.
1716 * Return: vm_fault_t value.
1718 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1721 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1723 EXPORT_SYMBOL(vmf_insert_pfn
);
1725 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1727 /* these checks mirror the abort conditions in vm_normal_page */
1728 if (vma
->vm_flags
& VM_MIXEDMAP
)
1730 if (pfn_t_devmap(pfn
))
1732 if (pfn_t_special(pfn
))
1734 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1739 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1740 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
1742 pgprot_t pgprot
= vma
->vm_page_prot
;
1745 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1747 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1748 return VM_FAULT_SIGBUS
;
1750 track_pfn_insert(vma
, &pgprot
, pfn
);
1752 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1753 return VM_FAULT_SIGBUS
;
1756 * If we don't have pte special, then we have to use the pfn_valid()
1757 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1758 * refcount the page if pfn_valid is true (hence insert_page rather
1759 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1760 * without pte special, it would there be refcounted as a normal page.
1762 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1763 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1767 * At this point we are committed to insert_page()
1768 * regardless of whether the caller specified flags that
1769 * result in pfn_t_has_page() == false.
1771 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1772 err
= insert_page(vma
, addr
, page
, pgprot
);
1774 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1778 return VM_FAULT_OOM
;
1779 if (err
< 0 && err
!= -EBUSY
)
1780 return VM_FAULT_SIGBUS
;
1782 return VM_FAULT_NOPAGE
;
1785 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1788 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1790 EXPORT_SYMBOL(vmf_insert_mixed
);
1793 * If the insertion of PTE failed because someone else already added a
1794 * different entry in the mean time, we treat that as success as we assume
1795 * the same entry was actually inserted.
1797 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1798 unsigned long addr
, pfn_t pfn
)
1800 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1802 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1805 * maps a range of physical memory into the requested pages. the old
1806 * mappings are removed. any references to nonexistent pages results
1807 * in null mappings (currently treated as "copy-on-access")
1809 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1810 unsigned long addr
, unsigned long end
,
1811 unsigned long pfn
, pgprot_t prot
)
1817 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1820 arch_enter_lazy_mmu_mode();
1822 BUG_ON(!pte_none(*pte
));
1823 if (!pfn_modify_allowed(pfn
, prot
)) {
1827 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1829 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1830 arch_leave_lazy_mmu_mode();
1831 pte_unmap_unlock(pte
- 1, ptl
);
1835 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1836 unsigned long addr
, unsigned long end
,
1837 unsigned long pfn
, pgprot_t prot
)
1843 pfn
-= addr
>> PAGE_SHIFT
;
1844 pmd
= pmd_alloc(mm
, pud
, addr
);
1847 VM_BUG_ON(pmd_trans_huge(*pmd
));
1849 next
= pmd_addr_end(addr
, end
);
1850 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1851 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1854 } while (pmd
++, addr
= next
, addr
!= end
);
1858 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1859 unsigned long addr
, unsigned long end
,
1860 unsigned long pfn
, pgprot_t prot
)
1866 pfn
-= addr
>> PAGE_SHIFT
;
1867 pud
= pud_alloc(mm
, p4d
, addr
);
1871 next
= pud_addr_end(addr
, end
);
1872 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1873 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1876 } while (pud
++, addr
= next
, addr
!= end
);
1880 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1881 unsigned long addr
, unsigned long end
,
1882 unsigned long pfn
, pgprot_t prot
)
1888 pfn
-= addr
>> PAGE_SHIFT
;
1889 p4d
= p4d_alloc(mm
, pgd
, addr
);
1893 next
= p4d_addr_end(addr
, end
);
1894 err
= remap_pud_range(mm
, p4d
, addr
, next
,
1895 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1898 } while (p4d
++, addr
= next
, addr
!= end
);
1903 * remap_pfn_range - remap kernel memory to userspace
1904 * @vma: user vma to map to
1905 * @addr: target user address to start at
1906 * @pfn: physical address of kernel memory
1907 * @size: size of map area
1908 * @prot: page protection flags for this mapping
1910 * Note: this is only safe if the mm semaphore is held when called.
1912 * Return: %0 on success, negative error code otherwise.
1914 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1915 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1919 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1920 struct mm_struct
*mm
= vma
->vm_mm
;
1921 unsigned long remap_pfn
= pfn
;
1925 * Physically remapped pages are special. Tell the
1926 * rest of the world about it:
1927 * VM_IO tells people not to look at these pages
1928 * (accesses can have side effects).
1929 * VM_PFNMAP tells the core MM that the base pages are just
1930 * raw PFN mappings, and do not have a "struct page" associated
1933 * Disable vma merging and expanding with mremap().
1935 * Omit vma from core dump, even when VM_IO turned off.
1937 * There's a horrible special case to handle copy-on-write
1938 * behaviour that some programs depend on. We mark the "original"
1939 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1940 * See vm_normal_page() for details.
1942 if (is_cow_mapping(vma
->vm_flags
)) {
1943 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1945 vma
->vm_pgoff
= pfn
;
1948 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1952 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1954 BUG_ON(addr
>= end
);
1955 pfn
-= addr
>> PAGE_SHIFT
;
1956 pgd
= pgd_offset(mm
, addr
);
1957 flush_cache_range(vma
, addr
, end
);
1959 next
= pgd_addr_end(addr
, end
);
1960 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1961 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1964 } while (pgd
++, addr
= next
, addr
!= end
);
1967 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1971 EXPORT_SYMBOL(remap_pfn_range
);
1974 * vm_iomap_memory - remap memory to userspace
1975 * @vma: user vma to map to
1976 * @start: start of area
1977 * @len: size of area
1979 * This is a simplified io_remap_pfn_range() for common driver use. The
1980 * driver just needs to give us the physical memory range to be mapped,
1981 * we'll figure out the rest from the vma information.
1983 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1984 * whatever write-combining details or similar.
1986 * Return: %0 on success, negative error code otherwise.
1988 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1990 unsigned long vm_len
, pfn
, pages
;
1992 /* Check that the physical memory area passed in looks valid */
1993 if (start
+ len
< start
)
1996 * You *really* shouldn't map things that aren't page-aligned,
1997 * but we've historically allowed it because IO memory might
1998 * just have smaller alignment.
2000 len
+= start
& ~PAGE_MASK
;
2001 pfn
= start
>> PAGE_SHIFT
;
2002 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2003 if (pfn
+ pages
< pfn
)
2006 /* We start the mapping 'vm_pgoff' pages into the area */
2007 if (vma
->vm_pgoff
> pages
)
2009 pfn
+= vma
->vm_pgoff
;
2010 pages
-= vma
->vm_pgoff
;
2012 /* Can we fit all of the mapping? */
2013 vm_len
= vma
->vm_end
- vma
->vm_start
;
2014 if (vm_len
>> PAGE_SHIFT
> pages
)
2017 /* Ok, let it rip */
2018 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2020 EXPORT_SYMBOL(vm_iomap_memory
);
2022 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2023 unsigned long addr
, unsigned long end
,
2024 pte_fn_t fn
, void *data
)
2028 spinlock_t
*uninitialized_var(ptl
);
2030 pte
= (mm
== &init_mm
) ?
2031 pte_alloc_kernel(pmd
, addr
) :
2032 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2036 BUG_ON(pmd_huge(*pmd
));
2038 arch_enter_lazy_mmu_mode();
2041 err
= fn(pte
++, addr
, data
);
2044 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2046 arch_leave_lazy_mmu_mode();
2049 pte_unmap_unlock(pte
-1, ptl
);
2053 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2054 unsigned long addr
, unsigned long end
,
2055 pte_fn_t fn
, void *data
)
2061 BUG_ON(pud_huge(*pud
));
2063 pmd
= pmd_alloc(mm
, pud
, addr
);
2067 next
= pmd_addr_end(addr
, end
);
2068 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2071 } while (pmd
++, addr
= next
, addr
!= end
);
2075 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2076 unsigned long addr
, unsigned long end
,
2077 pte_fn_t fn
, void *data
)
2083 pud
= pud_alloc(mm
, p4d
, addr
);
2087 next
= pud_addr_end(addr
, end
);
2088 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2091 } while (pud
++, addr
= next
, addr
!= end
);
2095 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2096 unsigned long addr
, unsigned long end
,
2097 pte_fn_t fn
, void *data
)
2103 p4d
= p4d_alloc(mm
, pgd
, addr
);
2107 next
= p4d_addr_end(addr
, end
);
2108 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2111 } while (p4d
++, addr
= next
, addr
!= end
);
2116 * Scan a region of virtual memory, filling in page tables as necessary
2117 * and calling a provided function on each leaf page table.
2119 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2120 unsigned long size
, pte_fn_t fn
, void *data
)
2124 unsigned long end
= addr
+ size
;
2127 if (WARN_ON(addr
>= end
))
2130 pgd
= pgd_offset(mm
, addr
);
2132 next
= pgd_addr_end(addr
, end
);
2133 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2136 } while (pgd
++, addr
= next
, addr
!= end
);
2140 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2143 * handle_pte_fault chooses page fault handler according to an entry which was
2144 * read non-atomically. Before making any commitment, on those architectures
2145 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2146 * parts, do_swap_page must check under lock before unmapping the pte and
2147 * proceeding (but do_wp_page is only called after already making such a check;
2148 * and do_anonymous_page can safely check later on).
2150 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2151 pte_t
*page_table
, pte_t orig_pte
)
2154 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2155 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2156 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2158 same
= pte_same(*page_table
, orig_pte
);
2162 pte_unmap(page_table
);
2166 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2167 struct vm_fault
*vmf
)
2173 struct vm_area_struct
*vma
= vmf
->vma
;
2174 struct mm_struct
*mm
= vma
->vm_mm
;
2175 unsigned long addr
= vmf
->address
;
2177 debug_dma_assert_idle(src
);
2180 copy_user_highpage(dst
, src
, addr
, vma
);
2185 * If the source page was a PFN mapping, we don't have
2186 * a "struct page" for it. We do a best-effort copy by
2187 * just copying from the original user address. If that
2188 * fails, we just zero-fill it. Live with it.
2190 kaddr
= kmap_atomic(dst
);
2191 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2194 * On architectures with software "accessed" bits, we would
2195 * take a double page fault, so mark it accessed here.
2197 force_mkyoung
= arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
);
2198 if (force_mkyoung
) {
2201 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2202 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2204 * Other thread has already handled the fault
2205 * and we don't need to do anything. If it's
2206 * not the case, the fault will be triggered
2207 * again on the same address.
2213 entry
= pte_mkyoung(vmf
->orig_pte
);
2214 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2215 update_mmu_cache(vma
, addr
, vmf
->pte
);
2219 * This really shouldn't fail, because the page is there
2220 * in the page tables. But it might just be unreadable,
2221 * in which case we just give up and fill the result with
2224 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2226 * Give a warn in case there can be some obscure
2237 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2238 kunmap_atomic(kaddr
);
2239 flush_dcache_page(dst
);
2244 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2246 struct file
*vm_file
= vma
->vm_file
;
2249 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2252 * Special mappings (e.g. VDSO) do not have any file so fake
2253 * a default GFP_KERNEL for them.
2259 * Notify the address space that the page is about to become writable so that
2260 * it can prohibit this or wait for the page to get into an appropriate state.
2262 * We do this without the lock held, so that it can sleep if it needs to.
2264 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2267 struct page
*page
= vmf
->page
;
2268 unsigned int old_flags
= vmf
->flags
;
2270 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2272 if (vmf
->vma
->vm_file
&&
2273 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
2274 return VM_FAULT_SIGBUS
;
2276 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2277 /* Restore original flags so that caller is not surprised */
2278 vmf
->flags
= old_flags
;
2279 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2281 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2283 if (!page
->mapping
) {
2285 return 0; /* retry */
2287 ret
|= VM_FAULT_LOCKED
;
2289 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2294 * Handle dirtying of a page in shared file mapping on a write fault.
2296 * The function expects the page to be locked and unlocks it.
2298 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
2300 struct vm_area_struct
*vma
= vmf
->vma
;
2301 struct address_space
*mapping
;
2302 struct page
*page
= vmf
->page
;
2304 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2306 dirtied
= set_page_dirty(page
);
2307 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2309 * Take a local copy of the address_space - page.mapping may be zeroed
2310 * by truncate after unlock_page(). The address_space itself remains
2311 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2312 * release semantics to prevent the compiler from undoing this copying.
2314 mapping
= page_rmapping(page
);
2318 file_update_time(vma
->vm_file
);
2321 * Throttle page dirtying rate down to writeback speed.
2323 * mapping may be NULL here because some device drivers do not
2324 * set page.mapping but still dirty their pages
2326 * Drop the mmap_sem before waiting on IO, if we can. The file
2327 * is pinning the mapping, as per above.
2329 if ((dirtied
|| page_mkwrite
) && mapping
) {
2332 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2333 balance_dirty_pages_ratelimited(mapping
);
2336 return VM_FAULT_RETRY
;
2344 * Handle write page faults for pages that can be reused in the current vma
2346 * This can happen either due to the mapping being with the VM_SHARED flag,
2347 * or due to us being the last reference standing to the page. In either
2348 * case, all we need to do here is to mark the page as writable and update
2349 * any related book-keeping.
2351 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2352 __releases(vmf
->ptl
)
2354 struct vm_area_struct
*vma
= vmf
->vma
;
2355 struct page
*page
= vmf
->page
;
2358 * Clear the pages cpupid information as the existing
2359 * information potentially belongs to a now completely
2360 * unrelated process.
2363 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2365 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2366 entry
= pte_mkyoung(vmf
->orig_pte
);
2367 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2368 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2369 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2370 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2374 * Handle the case of a page which we actually need to copy to a new page.
2376 * Called with mmap_sem locked and the old page referenced, but
2377 * without the ptl held.
2379 * High level logic flow:
2381 * - Allocate a page, copy the content of the old page to the new one.
2382 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2383 * - Take the PTL. If the pte changed, bail out and release the allocated page
2384 * - If the pte is still the way we remember it, update the page table and all
2385 * relevant references. This includes dropping the reference the page-table
2386 * held to the old page, as well as updating the rmap.
2387 * - In any case, unlock the PTL and drop the reference we took to the old page.
2389 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2391 struct vm_area_struct
*vma
= vmf
->vma
;
2392 struct mm_struct
*mm
= vma
->vm_mm
;
2393 struct page
*old_page
= vmf
->page
;
2394 struct page
*new_page
= NULL
;
2396 int page_copied
= 0;
2397 struct mem_cgroup
*memcg
;
2398 struct mmu_notifier_range range
;
2400 if (unlikely(anon_vma_prepare(vma
)))
2403 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2404 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2409 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2414 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2416 * COW failed, if the fault was solved by other,
2417 * it's fine. If not, userspace would re-fault on
2418 * the same address and we will handle the fault
2419 * from the second attempt.
2428 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2431 __SetPageUptodate(new_page
);
2433 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2434 vmf
->address
& PAGE_MASK
,
2435 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2436 mmu_notifier_invalidate_range_start(&range
);
2439 * Re-check the pte - we dropped the lock
2441 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2442 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2444 if (!PageAnon(old_page
)) {
2445 dec_mm_counter_fast(mm
,
2446 mm_counter_file(old_page
));
2447 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2450 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2452 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2453 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2454 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2456 * Clear the pte entry and flush it first, before updating the
2457 * pte with the new entry. This will avoid a race condition
2458 * seen in the presence of one thread doing SMC and another
2461 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2462 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2463 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2464 lru_cache_add_active_or_unevictable(new_page
, vma
);
2466 * We call the notify macro here because, when using secondary
2467 * mmu page tables (such as kvm shadow page tables), we want the
2468 * new page to be mapped directly into the secondary page table.
2470 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2471 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2474 * Only after switching the pte to the new page may
2475 * we remove the mapcount here. Otherwise another
2476 * process may come and find the rmap count decremented
2477 * before the pte is switched to the new page, and
2478 * "reuse" the old page writing into it while our pte
2479 * here still points into it and can be read by other
2482 * The critical issue is to order this
2483 * page_remove_rmap with the ptp_clear_flush above.
2484 * Those stores are ordered by (if nothing else,)
2485 * the barrier present in the atomic_add_negative
2486 * in page_remove_rmap.
2488 * Then the TLB flush in ptep_clear_flush ensures that
2489 * no process can access the old page before the
2490 * decremented mapcount is visible. And the old page
2491 * cannot be reused until after the decremented
2492 * mapcount is visible. So transitively, TLBs to
2493 * old page will be flushed before it can be reused.
2495 page_remove_rmap(old_page
, false);
2498 /* Free the old page.. */
2499 new_page
= old_page
;
2502 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2508 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2510 * No need to double call mmu_notifier->invalidate_range() callback as
2511 * the above ptep_clear_flush_notify() did already call it.
2513 mmu_notifier_invalidate_range_only_end(&range
);
2516 * Don't let another task, with possibly unlocked vma,
2517 * keep the mlocked page.
2519 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2520 lock_page(old_page
); /* LRU manipulation */
2521 if (PageMlocked(old_page
))
2522 munlock_vma_page(old_page
);
2523 unlock_page(old_page
);
2527 return page_copied
? VM_FAULT_WRITE
: 0;
2533 return VM_FAULT_OOM
;
2537 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2538 * writeable once the page is prepared
2540 * @vmf: structure describing the fault
2542 * This function handles all that is needed to finish a write page fault in a
2543 * shared mapping due to PTE being read-only once the mapped page is prepared.
2544 * It handles locking of PTE and modifying it.
2546 * The function expects the page to be locked or other protection against
2547 * concurrent faults / writeback (such as DAX radix tree locks).
2549 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2550 * we acquired PTE lock.
2552 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2554 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2555 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2558 * We might have raced with another page fault while we released the
2559 * pte_offset_map_lock.
2561 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2562 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2563 return VM_FAULT_NOPAGE
;
2570 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2573 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2575 struct vm_area_struct
*vma
= vmf
->vma
;
2577 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2580 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2581 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2582 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2583 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2585 return finish_mkwrite_fault(vmf
);
2588 return VM_FAULT_WRITE
;
2591 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2592 __releases(vmf
->ptl
)
2594 struct vm_area_struct
*vma
= vmf
->vma
;
2595 vm_fault_t ret
= VM_FAULT_WRITE
;
2597 get_page(vmf
->page
);
2599 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2602 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2603 tmp
= do_page_mkwrite(vmf
);
2604 if (unlikely(!tmp
|| (tmp
&
2605 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2606 put_page(vmf
->page
);
2609 tmp
= finish_mkwrite_fault(vmf
);
2610 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2611 unlock_page(vmf
->page
);
2612 put_page(vmf
->page
);
2617 lock_page(vmf
->page
);
2619 ret
|= fault_dirty_shared_page(vmf
);
2620 put_page(vmf
->page
);
2626 * This routine handles present pages, when users try to write
2627 * to a shared page. It is done by copying the page to a new address
2628 * and decrementing the shared-page counter for the old page.
2630 * Note that this routine assumes that the protection checks have been
2631 * done by the caller (the low-level page fault routine in most cases).
2632 * Thus we can safely just mark it writable once we've done any necessary
2635 * We also mark the page dirty at this point even though the page will
2636 * change only once the write actually happens. This avoids a few races,
2637 * and potentially makes it more efficient.
2639 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2640 * but allow concurrent faults), with pte both mapped and locked.
2641 * We return with mmap_sem still held, but pte unmapped and unlocked.
2643 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2644 __releases(vmf
->ptl
)
2646 struct vm_area_struct
*vma
= vmf
->vma
;
2648 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2651 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2654 * We should not cow pages in a shared writeable mapping.
2655 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2657 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2658 (VM_WRITE
|VM_SHARED
))
2659 return wp_pfn_shared(vmf
);
2661 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2662 return wp_page_copy(vmf
);
2666 * Take out anonymous pages first, anonymous shared vmas are
2667 * not dirty accountable.
2669 if (PageAnon(vmf
->page
)) {
2670 int total_map_swapcount
;
2671 if (PageKsm(vmf
->page
) && (PageSwapCache(vmf
->page
) ||
2672 page_count(vmf
->page
) != 1))
2674 if (!trylock_page(vmf
->page
)) {
2675 get_page(vmf
->page
);
2676 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2677 lock_page(vmf
->page
);
2678 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2679 vmf
->address
, &vmf
->ptl
);
2680 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2681 unlock_page(vmf
->page
);
2682 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2683 put_page(vmf
->page
);
2686 put_page(vmf
->page
);
2688 if (PageKsm(vmf
->page
)) {
2689 bool reused
= reuse_ksm_page(vmf
->page
, vmf
->vma
,
2691 unlock_page(vmf
->page
);
2695 return VM_FAULT_WRITE
;
2697 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2698 if (total_map_swapcount
== 1) {
2700 * The page is all ours. Move it to
2701 * our anon_vma so the rmap code will
2702 * not search our parent or siblings.
2703 * Protected against the rmap code by
2706 page_move_anon_rmap(vmf
->page
, vma
);
2708 unlock_page(vmf
->page
);
2710 return VM_FAULT_WRITE
;
2712 unlock_page(vmf
->page
);
2713 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2714 (VM_WRITE
|VM_SHARED
))) {
2715 return wp_page_shared(vmf
);
2719 * Ok, we need to copy. Oh, well..
2721 get_page(vmf
->page
);
2723 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2724 return wp_page_copy(vmf
);
2727 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2728 unsigned long start_addr
, unsigned long end_addr
,
2729 struct zap_details
*details
)
2731 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2734 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2735 struct zap_details
*details
)
2737 struct vm_area_struct
*vma
;
2738 pgoff_t vba
, vea
, zba
, zea
;
2740 vma_interval_tree_foreach(vma
, root
,
2741 details
->first_index
, details
->last_index
) {
2743 vba
= vma
->vm_pgoff
;
2744 vea
= vba
+ vma_pages(vma
) - 1;
2745 zba
= details
->first_index
;
2748 zea
= details
->last_index
;
2752 unmap_mapping_range_vma(vma
,
2753 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2754 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2760 * unmap_mapping_pages() - Unmap pages from processes.
2761 * @mapping: The address space containing pages to be unmapped.
2762 * @start: Index of first page to be unmapped.
2763 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2764 * @even_cows: Whether to unmap even private COWed pages.
2766 * Unmap the pages in this address space from any userspace process which
2767 * has them mmaped. Generally, you want to remove COWed pages as well when
2768 * a file is being truncated, but not when invalidating pages from the page
2771 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2772 pgoff_t nr
, bool even_cows
)
2774 struct zap_details details
= { };
2776 details
.check_mapping
= even_cows
? NULL
: mapping
;
2777 details
.first_index
= start
;
2778 details
.last_index
= start
+ nr
- 1;
2779 if (details
.last_index
< details
.first_index
)
2780 details
.last_index
= ULONG_MAX
;
2782 i_mmap_lock_write(mapping
);
2783 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2784 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2785 i_mmap_unlock_write(mapping
);
2789 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2790 * address_space corresponding to the specified byte range in the underlying
2793 * @mapping: the address space containing mmaps to be unmapped.
2794 * @holebegin: byte in first page to unmap, relative to the start of
2795 * the underlying file. This will be rounded down to a PAGE_SIZE
2796 * boundary. Note that this is different from truncate_pagecache(), which
2797 * must keep the partial page. In contrast, we must get rid of
2799 * @holelen: size of prospective hole in bytes. This will be rounded
2800 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2802 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2803 * but 0 when invalidating pagecache, don't throw away private data.
2805 void unmap_mapping_range(struct address_space
*mapping
,
2806 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2808 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2809 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2811 /* Check for overflow. */
2812 if (sizeof(holelen
) > sizeof(hlen
)) {
2814 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2815 if (holeend
& ~(long long)ULONG_MAX
)
2816 hlen
= ULONG_MAX
- hba
+ 1;
2819 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2821 EXPORT_SYMBOL(unmap_mapping_range
);
2824 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2825 * but allow concurrent faults), and pte mapped but not yet locked.
2826 * We return with pte unmapped and unlocked.
2828 * We return with the mmap_sem locked or unlocked in the same cases
2829 * as does filemap_fault().
2831 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2833 struct vm_area_struct
*vma
= vmf
->vma
;
2834 struct page
*page
= NULL
, *swapcache
;
2835 struct mem_cgroup
*memcg
;
2842 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2845 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2846 if (unlikely(non_swap_entry(entry
))) {
2847 if (is_migration_entry(entry
)) {
2848 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2850 } else if (is_device_private_entry(entry
)) {
2851 vmf
->page
= device_private_entry_to_page(entry
);
2852 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
2853 } else if (is_hwpoison_entry(entry
)) {
2854 ret
= VM_FAULT_HWPOISON
;
2856 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2857 ret
= VM_FAULT_SIGBUS
;
2863 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2864 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2868 struct swap_info_struct
*si
= swp_swap_info(entry
);
2870 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2871 __swap_count(entry
) == 1) {
2872 /* skip swapcache */
2873 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2876 __SetPageLocked(page
);
2877 __SetPageSwapBacked(page
);
2878 set_page_private(page
, entry
.val
);
2879 lru_cache_add_anon(page
);
2880 swap_readpage(page
, true);
2883 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2890 * Back out if somebody else faulted in this pte
2891 * while we released the pte lock.
2893 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2894 vmf
->address
, &vmf
->ptl
);
2895 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2897 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2901 /* Had to read the page from swap area: Major fault */
2902 ret
= VM_FAULT_MAJOR
;
2903 count_vm_event(PGMAJFAULT
);
2904 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2905 } else if (PageHWPoison(page
)) {
2907 * hwpoisoned dirty swapcache pages are kept for killing
2908 * owner processes (which may be unknown at hwpoison time)
2910 ret
= VM_FAULT_HWPOISON
;
2911 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2915 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2917 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2919 ret
|= VM_FAULT_RETRY
;
2924 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2925 * release the swapcache from under us. The page pin, and pte_same
2926 * test below, are not enough to exclude that. Even if it is still
2927 * swapcache, we need to check that the page's swap has not changed.
2929 if (unlikely((!PageSwapCache(page
) ||
2930 page_private(page
) != entry
.val
)) && swapcache
)
2933 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2934 if (unlikely(!page
)) {
2940 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
2947 * Back out if somebody else already faulted in this pte.
2949 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2951 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2954 if (unlikely(!PageUptodate(page
))) {
2955 ret
= VM_FAULT_SIGBUS
;
2960 * The page isn't present yet, go ahead with the fault.
2962 * Be careful about the sequence of operations here.
2963 * To get its accounting right, reuse_swap_page() must be called
2964 * while the page is counted on swap but not yet in mapcount i.e.
2965 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2966 * must be called after the swap_free(), or it will never succeed.
2969 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2970 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2971 pte
= mk_pte(page
, vma
->vm_page_prot
);
2972 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2973 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2974 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2975 ret
|= VM_FAULT_WRITE
;
2976 exclusive
= RMAP_EXCLUSIVE
;
2978 flush_icache_page(vma
, page
);
2979 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2980 pte
= pte_mksoft_dirty(pte
);
2981 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2982 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
2983 vmf
->orig_pte
= pte
;
2985 /* ksm created a completely new copy */
2986 if (unlikely(page
!= swapcache
&& swapcache
)) {
2987 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2988 mem_cgroup_commit_charge(page
, memcg
, false, false);
2989 lru_cache_add_active_or_unevictable(page
, vma
);
2991 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2992 mem_cgroup_commit_charge(page
, memcg
, true, false);
2993 activate_page(page
);
2997 if (mem_cgroup_swap_full(page
) ||
2998 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2999 try_to_free_swap(page
);
3001 if (page
!= swapcache
&& swapcache
) {
3003 * Hold the lock to avoid the swap entry to be reused
3004 * until we take the PT lock for the pte_same() check
3005 * (to avoid false positives from pte_same). For
3006 * further safety release the lock after the swap_free
3007 * so that the swap count won't change under a
3008 * parallel locked swapcache.
3010 unlock_page(swapcache
);
3011 put_page(swapcache
);
3014 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3015 ret
|= do_wp_page(vmf
);
3016 if (ret
& VM_FAULT_ERROR
)
3017 ret
&= VM_FAULT_ERROR
;
3021 /* No need to invalidate - it was non-present before */
3022 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3024 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3028 mem_cgroup_cancel_charge(page
, memcg
, false);
3029 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3034 if (page
!= swapcache
&& swapcache
) {
3035 unlock_page(swapcache
);
3036 put_page(swapcache
);
3042 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3043 * but allow concurrent faults), and pte mapped but not yet locked.
3044 * We return with mmap_sem still held, but pte unmapped and unlocked.
3046 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3048 struct vm_area_struct
*vma
= vmf
->vma
;
3049 struct mem_cgroup
*memcg
;
3054 /* File mapping without ->vm_ops ? */
3055 if (vma
->vm_flags
& VM_SHARED
)
3056 return VM_FAULT_SIGBUS
;
3059 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3060 * pte_offset_map() on pmds where a huge pmd might be created
3061 * from a different thread.
3063 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3064 * parallel threads are excluded by other means.
3066 * Here we only have down_read(mmap_sem).
3068 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
3069 return VM_FAULT_OOM
;
3071 /* See the comment in pte_alloc_one_map() */
3072 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3075 /* Use the zero-page for reads */
3076 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3077 !mm_forbids_zeropage(vma
->vm_mm
)) {
3078 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3079 vma
->vm_page_prot
));
3080 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3081 vmf
->address
, &vmf
->ptl
);
3082 if (!pte_none(*vmf
->pte
))
3084 ret
= check_stable_address_space(vma
->vm_mm
);
3087 /* Deliver the page fault to userland, check inside PT lock */
3088 if (userfaultfd_missing(vma
)) {
3089 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3090 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3095 /* Allocate our own private page. */
3096 if (unlikely(anon_vma_prepare(vma
)))
3098 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3102 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3107 * The memory barrier inside __SetPageUptodate makes sure that
3108 * preceding stores to the page contents become visible before
3109 * the set_pte_at() write.
3111 __SetPageUptodate(page
);
3113 entry
= mk_pte(page
, vma
->vm_page_prot
);
3114 if (vma
->vm_flags
& VM_WRITE
)
3115 entry
= pte_mkwrite(pte_mkdirty(entry
));
3117 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3119 if (!pte_none(*vmf
->pte
))
3122 ret
= check_stable_address_space(vma
->vm_mm
);
3126 /* Deliver the page fault to userland, check inside PT lock */
3127 if (userfaultfd_missing(vma
)) {
3128 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3129 mem_cgroup_cancel_charge(page
, memcg
, false);
3131 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3134 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3135 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3136 mem_cgroup_commit_charge(page
, memcg
, false, false);
3137 lru_cache_add_active_or_unevictable(page
, vma
);
3139 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3141 /* No need to invalidate - it was non-present before */
3142 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3144 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3147 mem_cgroup_cancel_charge(page
, memcg
, false);
3153 return VM_FAULT_OOM
;
3157 * The mmap_sem must have been held on entry, and may have been
3158 * released depending on flags and vma->vm_ops->fault() return value.
3159 * See filemap_fault() and __lock_page_retry().
3161 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3163 struct vm_area_struct
*vma
= vmf
->vma
;
3167 * Preallocate pte before we take page_lock because this might lead to
3168 * deadlocks for memcg reclaim which waits for pages under writeback:
3170 * SetPageWriteback(A)
3176 * wait_on_page_writeback(A)
3177 * SetPageWriteback(B)
3179 * # flush A, B to clear the writeback
3181 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3182 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3183 if (!vmf
->prealloc_pte
)
3184 return VM_FAULT_OOM
;
3185 smp_wmb(); /* See comment in __pte_alloc() */
3188 ret
= vma
->vm_ops
->fault(vmf
);
3189 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3190 VM_FAULT_DONE_COW
)))
3193 if (unlikely(PageHWPoison(vmf
->page
))) {
3194 if (ret
& VM_FAULT_LOCKED
)
3195 unlock_page(vmf
->page
);
3196 put_page(vmf
->page
);
3198 return VM_FAULT_HWPOISON
;
3201 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3202 lock_page(vmf
->page
);
3204 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3210 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3211 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3212 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3213 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3215 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3217 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3220 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3222 struct vm_area_struct
*vma
= vmf
->vma
;
3224 if (!pmd_none(*vmf
->pmd
))
3226 if (vmf
->prealloc_pte
) {
3227 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3228 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3229 spin_unlock(vmf
->ptl
);
3233 mm_inc_nr_ptes(vma
->vm_mm
);
3234 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3235 spin_unlock(vmf
->ptl
);
3236 vmf
->prealloc_pte
= NULL
;
3237 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3238 return VM_FAULT_OOM
;
3242 * If a huge pmd materialized under us just retry later. Use
3243 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3244 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3245 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3246 * running immediately after a huge pmd fault in a different thread of
3247 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3248 * All we have to ensure is that it is a regular pmd that we can walk
3249 * with pte_offset_map() and we can do that through an atomic read in
3250 * C, which is what pmd_trans_unstable() provides.
3252 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3253 return VM_FAULT_NOPAGE
;
3256 * At this point we know that our vmf->pmd points to a page of ptes
3257 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3258 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3259 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3260 * be valid and we will re-check to make sure the vmf->pte isn't
3261 * pte_none() under vmf->ptl protection when we return to
3264 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3269 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3270 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3272 struct vm_area_struct
*vma
= vmf
->vma
;
3274 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3276 * We are going to consume the prealloc table,
3277 * count that as nr_ptes.
3279 mm_inc_nr_ptes(vma
->vm_mm
);
3280 vmf
->prealloc_pte
= NULL
;
3283 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3285 struct vm_area_struct
*vma
= vmf
->vma
;
3286 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3287 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3292 if (!transhuge_vma_suitable(vma
, haddr
))
3293 return VM_FAULT_FALLBACK
;
3295 ret
= VM_FAULT_FALLBACK
;
3296 page
= compound_head(page
);
3299 * Archs like ppc64 need additonal space to store information
3300 * related to pte entry. Use the preallocated table for that.
3302 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3303 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3304 if (!vmf
->prealloc_pte
)
3305 return VM_FAULT_OOM
;
3306 smp_wmb(); /* See comment in __pte_alloc() */
3309 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3310 if (unlikely(!pmd_none(*vmf
->pmd
)))
3313 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3314 flush_icache_page(vma
, page
+ i
);
3316 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3318 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3320 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3321 page_add_file_rmap(page
, true);
3323 * deposit and withdraw with pmd lock held
3325 if (arch_needs_pgtable_deposit())
3326 deposit_prealloc_pte(vmf
);
3328 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3330 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3332 /* fault is handled */
3334 count_vm_event(THP_FILE_MAPPED
);
3336 spin_unlock(vmf
->ptl
);
3340 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3348 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3349 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3351 * @vmf: fault environment
3352 * @memcg: memcg to charge page (only for private mappings)
3353 * @page: page to map
3355 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3358 * Target users are page handler itself and implementations of
3359 * vm_ops->map_pages.
3361 * Return: %0 on success, %VM_FAULT_ code in case of error.
3363 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3366 struct vm_area_struct
*vma
= vmf
->vma
;
3367 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3371 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3372 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3374 VM_BUG_ON_PAGE(memcg
, page
);
3376 ret
= do_set_pmd(vmf
, page
);
3377 if (ret
!= VM_FAULT_FALLBACK
)
3382 ret
= pte_alloc_one_map(vmf
);
3387 /* Re-check under ptl */
3388 if (unlikely(!pte_none(*vmf
->pte
)))
3389 return VM_FAULT_NOPAGE
;
3391 flush_icache_page(vma
, page
);
3392 entry
= mk_pte(page
, vma
->vm_page_prot
);
3394 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3395 /* copy-on-write page */
3396 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3397 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3398 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3399 mem_cgroup_commit_charge(page
, memcg
, false, false);
3400 lru_cache_add_active_or_unevictable(page
, vma
);
3402 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3403 page_add_file_rmap(page
, false);
3405 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3407 /* no need to invalidate: a not-present page won't be cached */
3408 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3415 * finish_fault - finish page fault once we have prepared the page to fault
3417 * @vmf: structure describing the fault
3419 * This function handles all that is needed to finish a page fault once the
3420 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3421 * given page, adds reverse page mapping, handles memcg charges and LRU
3424 * The function expects the page to be locked and on success it consumes a
3425 * reference of a page being mapped (for the PTE which maps it).
3427 * Return: %0 on success, %VM_FAULT_ code in case of error.
3429 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3434 /* Did we COW the page? */
3435 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3436 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3437 page
= vmf
->cow_page
;
3442 * check even for read faults because we might have lost our CoWed
3445 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3446 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3448 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3450 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3454 static unsigned long fault_around_bytes __read_mostly
=
3455 rounddown_pow_of_two(65536);
3457 #ifdef CONFIG_DEBUG_FS
3458 static int fault_around_bytes_get(void *data
, u64
*val
)
3460 *val
= fault_around_bytes
;
3465 * fault_around_bytes must be rounded down to the nearest page order as it's
3466 * what do_fault_around() expects to see.
3468 static int fault_around_bytes_set(void *data
, u64 val
)
3470 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3472 if (val
> PAGE_SIZE
)
3473 fault_around_bytes
= rounddown_pow_of_two(val
);
3475 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3478 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3479 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3481 static int __init
fault_around_debugfs(void)
3483 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3484 &fault_around_bytes_fops
);
3487 late_initcall(fault_around_debugfs
);
3491 * do_fault_around() tries to map few pages around the fault address. The hope
3492 * is that the pages will be needed soon and this will lower the number of
3495 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3496 * not ready to be mapped: not up-to-date, locked, etc.
3498 * This function is called with the page table lock taken. In the split ptlock
3499 * case the page table lock only protects only those entries which belong to
3500 * the page table corresponding to the fault address.
3502 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3505 * fault_around_bytes defines how many bytes we'll try to map.
3506 * do_fault_around() expects it to be set to a power of two less than or equal
3509 * The virtual address of the area that we map is naturally aligned to
3510 * fault_around_bytes rounded down to the machine page size
3511 * (and therefore to page order). This way it's easier to guarantee
3512 * that we don't cross page table boundaries.
3514 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3516 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3517 pgoff_t start_pgoff
= vmf
->pgoff
;
3522 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3523 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3525 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3526 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3530 * end_pgoff is either the end of the page table, the end of
3531 * the vma or nr_pages from start_pgoff, depending what is nearest.
3533 end_pgoff
= start_pgoff
-
3534 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3536 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3537 start_pgoff
+ nr_pages
- 1);
3539 if (pmd_none(*vmf
->pmd
)) {
3540 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3541 if (!vmf
->prealloc_pte
)
3543 smp_wmb(); /* See comment in __pte_alloc() */
3546 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3548 /* Huge page is mapped? Page fault is solved */
3549 if (pmd_trans_huge(*vmf
->pmd
)) {
3550 ret
= VM_FAULT_NOPAGE
;
3554 /* ->map_pages() haven't done anything useful. Cold page cache? */
3558 /* check if the page fault is solved */
3559 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3560 if (!pte_none(*vmf
->pte
))
3561 ret
= VM_FAULT_NOPAGE
;
3562 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3564 vmf
->address
= address
;
3569 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3571 struct vm_area_struct
*vma
= vmf
->vma
;
3575 * Let's call ->map_pages() first and use ->fault() as fallback
3576 * if page by the offset is not ready to be mapped (cold cache or
3579 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3580 ret
= do_fault_around(vmf
);
3585 ret
= __do_fault(vmf
);
3586 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3589 ret
|= finish_fault(vmf
);
3590 unlock_page(vmf
->page
);
3591 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3592 put_page(vmf
->page
);
3596 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3598 struct vm_area_struct
*vma
= vmf
->vma
;
3601 if (unlikely(anon_vma_prepare(vma
)))
3602 return VM_FAULT_OOM
;
3604 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3606 return VM_FAULT_OOM
;
3608 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3609 &vmf
->memcg
, false)) {
3610 put_page(vmf
->cow_page
);
3611 return VM_FAULT_OOM
;
3614 ret
= __do_fault(vmf
);
3615 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3617 if (ret
& VM_FAULT_DONE_COW
)
3620 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3621 __SetPageUptodate(vmf
->cow_page
);
3623 ret
|= finish_fault(vmf
);
3624 unlock_page(vmf
->page
);
3625 put_page(vmf
->page
);
3626 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3630 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3631 put_page(vmf
->cow_page
);
3635 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3637 struct vm_area_struct
*vma
= vmf
->vma
;
3638 vm_fault_t ret
, tmp
;
3640 ret
= __do_fault(vmf
);
3641 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3645 * Check if the backing address space wants to know that the page is
3646 * about to become writable
3648 if (vma
->vm_ops
->page_mkwrite
) {
3649 unlock_page(vmf
->page
);
3650 tmp
= do_page_mkwrite(vmf
);
3651 if (unlikely(!tmp
||
3652 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3653 put_page(vmf
->page
);
3658 ret
|= finish_fault(vmf
);
3659 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3661 unlock_page(vmf
->page
);
3662 put_page(vmf
->page
);
3666 ret
|= fault_dirty_shared_page(vmf
);
3671 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3672 * but allow concurrent faults).
3673 * The mmap_sem may have been released depending on flags and our
3674 * return value. See filemap_fault() and __lock_page_or_retry().
3675 * If mmap_sem is released, vma may become invalid (for example
3676 * by other thread calling munmap()).
3678 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3680 struct vm_area_struct
*vma
= vmf
->vma
;
3681 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3685 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3687 if (!vma
->vm_ops
->fault
) {
3689 * If we find a migration pmd entry or a none pmd entry, which
3690 * should never happen, return SIGBUS
3692 if (unlikely(!pmd_present(*vmf
->pmd
)))
3693 ret
= VM_FAULT_SIGBUS
;
3695 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3700 * Make sure this is not a temporary clearing of pte
3701 * by holding ptl and checking again. A R/M/W update
3702 * of pte involves: take ptl, clearing the pte so that
3703 * we don't have concurrent modification by hardware
3704 * followed by an update.
3706 if (unlikely(pte_none(*vmf
->pte
)))
3707 ret
= VM_FAULT_SIGBUS
;
3709 ret
= VM_FAULT_NOPAGE
;
3711 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3713 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3714 ret
= do_read_fault(vmf
);
3715 else if (!(vma
->vm_flags
& VM_SHARED
))
3716 ret
= do_cow_fault(vmf
);
3718 ret
= do_shared_fault(vmf
);
3720 /* preallocated pagetable is unused: free it */
3721 if (vmf
->prealloc_pte
) {
3722 pte_free(vm_mm
, vmf
->prealloc_pte
);
3723 vmf
->prealloc_pte
= NULL
;
3728 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3729 unsigned long addr
, int page_nid
,
3734 count_vm_numa_event(NUMA_HINT_FAULTS
);
3735 if (page_nid
== numa_node_id()) {
3736 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3737 *flags
|= TNF_FAULT_LOCAL
;
3740 return mpol_misplaced(page
, vma
, addr
);
3743 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3745 struct vm_area_struct
*vma
= vmf
->vma
;
3746 struct page
*page
= NULL
;
3747 int page_nid
= NUMA_NO_NODE
;
3750 bool migrated
= false;
3752 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3756 * The "pte" at this point cannot be used safely without
3757 * validation through pte_unmap_same(). It's of NUMA type but
3758 * the pfn may be screwed if the read is non atomic.
3760 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3761 spin_lock(vmf
->ptl
);
3762 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3763 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3768 * Make it present again, Depending on how arch implementes non
3769 * accessible ptes, some can allow access by kernel mode.
3771 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
3772 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
3773 pte
= pte_mkyoung(pte
);
3775 pte
= pte_mkwrite(pte
);
3776 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
3777 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3779 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3781 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3785 /* TODO: handle PTE-mapped THP */
3786 if (PageCompound(page
)) {
3787 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3792 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3793 * much anyway since they can be in shared cache state. This misses
3794 * the case where a mapping is writable but the process never writes
3795 * to it but pte_write gets cleared during protection updates and
3796 * pte_dirty has unpredictable behaviour between PTE scan updates,
3797 * background writeback, dirty balancing and application behaviour.
3799 if (!pte_write(pte
))
3800 flags
|= TNF_NO_GROUP
;
3803 * Flag if the page is shared between multiple address spaces. This
3804 * is later used when determining whether to group tasks together
3806 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3807 flags
|= TNF_SHARED
;
3809 last_cpupid
= page_cpupid_last(page
);
3810 page_nid
= page_to_nid(page
);
3811 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3813 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3814 if (target_nid
== NUMA_NO_NODE
) {
3819 /* Migrate to the requested node */
3820 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3822 page_nid
= target_nid
;
3823 flags
|= TNF_MIGRATED
;
3825 flags
|= TNF_MIGRATE_FAIL
;
3828 if (page_nid
!= NUMA_NO_NODE
)
3829 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3833 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3835 if (vma_is_anonymous(vmf
->vma
))
3836 return do_huge_pmd_anonymous_page(vmf
);
3837 if (vmf
->vma
->vm_ops
->huge_fault
)
3838 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3839 return VM_FAULT_FALLBACK
;
3842 /* `inline' is required to avoid gcc 4.1.2 build error */
3843 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3845 if (vma_is_anonymous(vmf
->vma
))
3846 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3847 if (vmf
->vma
->vm_ops
->huge_fault
)
3848 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3850 /* COW handled on pte level: split pmd */
3851 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3852 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3854 return VM_FAULT_FALLBACK
;
3857 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3859 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3862 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3865 /* No support for anonymous transparent PUD pages yet */
3866 if (vma_is_anonymous(vmf
->vma
))
3867 return VM_FAULT_FALLBACK
;
3868 if (vmf
->vma
->vm_ops
->huge_fault
)
3869 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3871 return VM_FAULT_FALLBACK
;
3874 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3877 /* No support for anonymous transparent PUD pages yet */
3878 if (vma_is_anonymous(vmf
->vma
))
3879 return VM_FAULT_FALLBACK
;
3880 if (vmf
->vma
->vm_ops
->huge_fault
)
3881 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3882 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3883 return VM_FAULT_FALLBACK
;
3887 * These routines also need to handle stuff like marking pages dirty
3888 * and/or accessed for architectures that don't do it in hardware (most
3889 * RISC architectures). The early dirtying is also good on the i386.
3891 * There is also a hook called "update_mmu_cache()" that architectures
3892 * with external mmu caches can use to update those (ie the Sparc or
3893 * PowerPC hashed page tables that act as extended TLBs).
3895 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3896 * concurrent faults).
3898 * The mmap_sem may have been released depending on flags and our return value.
3899 * See filemap_fault() and __lock_page_or_retry().
3901 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
3905 if (unlikely(pmd_none(*vmf
->pmd
))) {
3907 * Leave __pte_alloc() until later: because vm_ops->fault may
3908 * want to allocate huge page, and if we expose page table
3909 * for an instant, it will be difficult to retract from
3910 * concurrent faults and from rmap lookups.
3914 /* See comment in pte_alloc_one_map() */
3915 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3918 * A regular pmd is established and it can't morph into a huge
3919 * pmd from under us anymore at this point because we hold the
3920 * mmap_sem read mode and khugepaged takes it in write mode.
3921 * So now it's safe to run pte_offset_map().
3923 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3924 vmf
->orig_pte
= *vmf
->pte
;
3927 * some architectures can have larger ptes than wordsize,
3928 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3929 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3930 * accesses. The code below just needs a consistent view
3931 * for the ifs and we later double check anyway with the
3932 * ptl lock held. So here a barrier will do.
3935 if (pte_none(vmf
->orig_pte
)) {
3936 pte_unmap(vmf
->pte
);
3942 if (vma_is_anonymous(vmf
->vma
))
3943 return do_anonymous_page(vmf
);
3945 return do_fault(vmf
);
3948 if (!pte_present(vmf
->orig_pte
))
3949 return do_swap_page(vmf
);
3951 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3952 return do_numa_page(vmf
);
3954 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3955 spin_lock(vmf
->ptl
);
3956 entry
= vmf
->orig_pte
;
3957 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3959 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3960 if (!pte_write(entry
))
3961 return do_wp_page(vmf
);
3962 entry
= pte_mkdirty(entry
);
3964 entry
= pte_mkyoung(entry
);
3965 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3966 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3967 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3970 * This is needed only for protection faults but the arch code
3971 * is not yet telling us if this is a protection fault or not.
3972 * This still avoids useless tlb flushes for .text page faults
3975 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3976 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3979 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3984 * By the time we get here, we already hold the mm semaphore
3986 * The mmap_sem may have been released depending on flags and our
3987 * return value. See filemap_fault() and __lock_page_or_retry().
3989 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
3990 unsigned long address
, unsigned int flags
)
3992 struct vm_fault vmf
= {
3994 .address
= address
& PAGE_MASK
,
3996 .pgoff
= linear_page_index(vma
, address
),
3997 .gfp_mask
= __get_fault_gfp_mask(vma
),
3999 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4000 struct mm_struct
*mm
= vma
->vm_mm
;
4005 pgd
= pgd_offset(mm
, address
);
4006 p4d
= p4d_alloc(mm
, pgd
, address
);
4008 return VM_FAULT_OOM
;
4010 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4012 return VM_FAULT_OOM
;
4014 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4015 ret
= create_huge_pud(&vmf
);
4016 if (!(ret
& VM_FAULT_FALLBACK
))
4019 pud_t orig_pud
= *vmf
.pud
;
4022 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4024 /* NUMA case for anonymous PUDs would go here */
4026 if (dirty
&& !pud_write(orig_pud
)) {
4027 ret
= wp_huge_pud(&vmf
, orig_pud
);
4028 if (!(ret
& VM_FAULT_FALLBACK
))
4031 huge_pud_set_accessed(&vmf
, orig_pud
);
4037 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4039 return VM_FAULT_OOM
;
4041 /* Huge pud page fault raced with pmd_alloc? */
4042 if (pud_trans_unstable(vmf
.pud
))
4045 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4046 ret
= create_huge_pmd(&vmf
);
4047 if (!(ret
& VM_FAULT_FALLBACK
))
4050 pmd_t orig_pmd
= *vmf
.pmd
;
4053 if (unlikely(is_swap_pmd(orig_pmd
))) {
4054 VM_BUG_ON(thp_migration_supported() &&
4055 !is_pmd_migration_entry(orig_pmd
));
4056 if (is_pmd_migration_entry(orig_pmd
))
4057 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4060 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4061 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4062 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4064 if (dirty
&& !pmd_write(orig_pmd
)) {
4065 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4066 if (!(ret
& VM_FAULT_FALLBACK
))
4069 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4075 return handle_pte_fault(&vmf
);
4079 * By the time we get here, we already hold the mm semaphore
4081 * The mmap_sem may have been released depending on flags and our
4082 * return value. See filemap_fault() and __lock_page_or_retry().
4084 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4089 __set_current_state(TASK_RUNNING
);
4091 count_vm_event(PGFAULT
);
4092 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4094 /* do counter updates before entering really critical section. */
4095 check_sync_rss_stat(current
);
4097 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4098 flags
& FAULT_FLAG_INSTRUCTION
,
4099 flags
& FAULT_FLAG_REMOTE
))
4100 return VM_FAULT_SIGSEGV
;
4103 * Enable the memcg OOM handling for faults triggered in user
4104 * space. Kernel faults are handled more gracefully.
4106 if (flags
& FAULT_FLAG_USER
)
4107 mem_cgroup_enter_user_fault();
4109 if (unlikely(is_vm_hugetlb_page(vma
)))
4110 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4112 ret
= __handle_mm_fault(vma
, address
, flags
);
4114 if (flags
& FAULT_FLAG_USER
) {
4115 mem_cgroup_exit_user_fault();
4117 * The task may have entered a memcg OOM situation but
4118 * if the allocation error was handled gracefully (no
4119 * VM_FAULT_OOM), there is no need to kill anything.
4120 * Just clean up the OOM state peacefully.
4122 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4123 mem_cgroup_oom_synchronize(false);
4128 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4130 #ifndef __PAGETABLE_P4D_FOLDED
4132 * Allocate p4d page table.
4133 * We've already handled the fast-path in-line.
4135 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4137 p4d_t
*new = p4d_alloc_one(mm
, address
);
4141 smp_wmb(); /* See comment in __pte_alloc */
4143 spin_lock(&mm
->page_table_lock
);
4144 if (pgd_present(*pgd
)) /* Another has populated it */
4147 pgd_populate(mm
, pgd
, new);
4148 spin_unlock(&mm
->page_table_lock
);
4151 #endif /* __PAGETABLE_P4D_FOLDED */
4153 #ifndef __PAGETABLE_PUD_FOLDED
4155 * Allocate page upper directory.
4156 * We've already handled the fast-path in-line.
4158 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4160 pud_t
*new = pud_alloc_one(mm
, address
);
4164 smp_wmb(); /* See comment in __pte_alloc */
4166 spin_lock(&mm
->page_table_lock
);
4167 #ifndef __ARCH_HAS_5LEVEL_HACK
4168 if (!p4d_present(*p4d
)) {
4170 p4d_populate(mm
, p4d
, new);
4171 } else /* Another has populated it */
4174 if (!pgd_present(*p4d
)) {
4176 pgd_populate(mm
, p4d
, new);
4177 } else /* Another has populated it */
4179 #endif /* __ARCH_HAS_5LEVEL_HACK */
4180 spin_unlock(&mm
->page_table_lock
);
4183 #endif /* __PAGETABLE_PUD_FOLDED */
4185 #ifndef __PAGETABLE_PMD_FOLDED
4187 * Allocate page middle directory.
4188 * We've already handled the fast-path in-line.
4190 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4193 pmd_t
*new = pmd_alloc_one(mm
, address
);
4197 smp_wmb(); /* See comment in __pte_alloc */
4199 ptl
= pud_lock(mm
, pud
);
4200 if (!pud_present(*pud
)) {
4202 pud_populate(mm
, pud
, new);
4203 } else /* Another has populated it */
4208 #endif /* __PAGETABLE_PMD_FOLDED */
4210 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4211 struct mmu_notifier_range
*range
,
4212 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4220 pgd
= pgd_offset(mm
, address
);
4221 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4224 p4d
= p4d_offset(pgd
, address
);
4225 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4228 pud
= pud_offset(p4d
, address
);
4229 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4232 pmd
= pmd_offset(pud
, address
);
4233 VM_BUG_ON(pmd_trans_huge(*pmd
));
4235 if (pmd_huge(*pmd
)) {
4240 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4241 NULL
, mm
, address
& PMD_MASK
,
4242 (address
& PMD_MASK
) + PMD_SIZE
);
4243 mmu_notifier_invalidate_range_start(range
);
4245 *ptlp
= pmd_lock(mm
, pmd
);
4246 if (pmd_huge(*pmd
)) {
4252 mmu_notifier_invalidate_range_end(range
);
4255 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4259 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4260 address
& PAGE_MASK
,
4261 (address
& PAGE_MASK
) + PAGE_SIZE
);
4262 mmu_notifier_invalidate_range_start(range
);
4264 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4265 if (!pte_present(*ptep
))
4270 pte_unmap_unlock(ptep
, *ptlp
);
4272 mmu_notifier_invalidate_range_end(range
);
4277 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4278 pte_t
**ptepp
, spinlock_t
**ptlp
)
4282 /* (void) is needed to make gcc happy */
4283 (void) __cond_lock(*ptlp
,
4284 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4285 ptepp
, NULL
, ptlp
)));
4289 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4290 struct mmu_notifier_range
*range
,
4291 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4295 /* (void) is needed to make gcc happy */
4296 (void) __cond_lock(*ptlp
,
4297 !(res
= __follow_pte_pmd(mm
, address
, range
,
4298 ptepp
, pmdpp
, ptlp
)));
4301 EXPORT_SYMBOL(follow_pte_pmd
);
4304 * follow_pfn - look up PFN at a user virtual address
4305 * @vma: memory mapping
4306 * @address: user virtual address
4307 * @pfn: location to store found PFN
4309 * Only IO mappings and raw PFN mappings are allowed.
4311 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4313 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4320 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4323 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4326 *pfn
= pte_pfn(*ptep
);
4327 pte_unmap_unlock(ptep
, ptl
);
4330 EXPORT_SYMBOL(follow_pfn
);
4332 #ifdef CONFIG_HAVE_IOREMAP_PROT
4333 int follow_phys(struct vm_area_struct
*vma
,
4334 unsigned long address
, unsigned int flags
,
4335 unsigned long *prot
, resource_size_t
*phys
)
4341 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4344 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4348 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4351 *prot
= pgprot_val(pte_pgprot(pte
));
4352 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4356 pte_unmap_unlock(ptep
, ptl
);
4361 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4362 void *buf
, int len
, int write
)
4364 resource_size_t phys_addr
;
4365 unsigned long prot
= 0;
4366 void __iomem
*maddr
;
4367 int offset
= addr
& (PAGE_SIZE
-1);
4369 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4372 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4377 memcpy_toio(maddr
+ offset
, buf
, len
);
4379 memcpy_fromio(buf
, maddr
+ offset
, len
);
4384 EXPORT_SYMBOL_GPL(generic_access_phys
);
4388 * Access another process' address space as given in mm. If non-NULL, use the
4389 * given task for page fault accounting.
4391 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4392 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4394 struct vm_area_struct
*vma
;
4395 void *old_buf
= buf
;
4396 int write
= gup_flags
& FOLL_WRITE
;
4398 if (down_read_killable(&mm
->mmap_sem
))
4401 /* ignore errors, just check how much was successfully transferred */
4403 int bytes
, ret
, offset
;
4405 struct page
*page
= NULL
;
4407 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4408 gup_flags
, &page
, &vma
, NULL
);
4410 #ifndef CONFIG_HAVE_IOREMAP_PROT
4414 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4415 * we can access using slightly different code.
4417 vma
= find_vma(mm
, addr
);
4418 if (!vma
|| vma
->vm_start
> addr
)
4420 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4421 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4429 offset
= addr
& (PAGE_SIZE
-1);
4430 if (bytes
> PAGE_SIZE
-offset
)
4431 bytes
= PAGE_SIZE
-offset
;
4435 copy_to_user_page(vma
, page
, addr
,
4436 maddr
+ offset
, buf
, bytes
);
4437 set_page_dirty_lock(page
);
4439 copy_from_user_page(vma
, page
, addr
,
4440 buf
, maddr
+ offset
, bytes
);
4449 up_read(&mm
->mmap_sem
);
4451 return buf
- old_buf
;
4455 * access_remote_vm - access another process' address space
4456 * @mm: the mm_struct of the target address space
4457 * @addr: start address to access
4458 * @buf: source or destination buffer
4459 * @len: number of bytes to transfer
4460 * @gup_flags: flags modifying lookup behaviour
4462 * The caller must hold a reference on @mm.
4464 * Return: number of bytes copied from source to destination.
4466 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4467 void *buf
, int len
, unsigned int gup_flags
)
4469 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4473 * Access another process' address space.
4474 * Source/target buffer must be kernel space,
4475 * Do not walk the page table directly, use get_user_pages
4477 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4478 void *buf
, int len
, unsigned int gup_flags
)
4480 struct mm_struct
*mm
;
4483 mm
= get_task_mm(tsk
);
4487 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4493 EXPORT_SYMBOL_GPL(access_process_vm
);
4496 * Print the name of a VMA.
4498 void print_vma_addr(char *prefix
, unsigned long ip
)
4500 struct mm_struct
*mm
= current
->mm
;
4501 struct vm_area_struct
*vma
;
4504 * we might be running from an atomic context so we cannot sleep
4506 if (!down_read_trylock(&mm
->mmap_sem
))
4509 vma
= find_vma(mm
, ip
);
4510 if (vma
&& vma
->vm_file
) {
4511 struct file
*f
= vma
->vm_file
;
4512 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4516 p
= file_path(f
, buf
, PAGE_SIZE
);
4519 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4521 vma
->vm_end
- vma
->vm_start
);
4522 free_page((unsigned long)buf
);
4525 up_read(&mm
->mmap_sem
);
4528 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4529 void __might_fault(const char *file
, int line
)
4532 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4533 * holding the mmap_sem, this is safe because kernel memory doesn't
4534 * get paged out, therefore we'll never actually fault, and the
4535 * below annotations will generate false positives.
4537 if (uaccess_kernel())
4539 if (pagefault_disabled())
4541 __might_sleep(file
, line
, 0);
4542 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4544 might_lock_read(¤t
->mm
->mmap_sem
);
4547 EXPORT_SYMBOL(__might_fault
);
4550 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4552 * Process all subpages of the specified huge page with the specified
4553 * operation. The target subpage will be processed last to keep its
4556 static inline void process_huge_page(
4557 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4558 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4562 unsigned long addr
= addr_hint
&
4563 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4565 /* Process target subpage last to keep its cache lines hot */
4567 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4568 if (2 * n
<= pages_per_huge_page
) {
4569 /* If target subpage in first half of huge page */
4572 /* Process subpages at the end of huge page */
4573 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4575 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4578 /* If target subpage in second half of huge page */
4579 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4580 l
= pages_per_huge_page
- n
;
4581 /* Process subpages at the begin of huge page */
4582 for (i
= 0; i
< base
; i
++) {
4584 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4588 * Process remaining subpages in left-right-left-right pattern
4589 * towards the target subpage
4591 for (i
= 0; i
< l
; i
++) {
4592 int left_idx
= base
+ i
;
4593 int right_idx
= base
+ 2 * l
- 1 - i
;
4596 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4598 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4602 static void clear_gigantic_page(struct page
*page
,
4604 unsigned int pages_per_huge_page
)
4607 struct page
*p
= page
;
4610 for (i
= 0; i
< pages_per_huge_page
;
4611 i
++, p
= mem_map_next(p
, page
, i
)) {
4613 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4617 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4619 struct page
*page
= arg
;
4621 clear_user_highpage(page
+ idx
, addr
);
4624 void clear_huge_page(struct page
*page
,
4625 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4627 unsigned long addr
= addr_hint
&
4628 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4630 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4631 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4635 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4638 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4640 struct vm_area_struct
*vma
,
4641 unsigned int pages_per_huge_page
)
4644 struct page
*dst_base
= dst
;
4645 struct page
*src_base
= src
;
4647 for (i
= 0; i
< pages_per_huge_page
; ) {
4649 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4652 dst
= mem_map_next(dst
, dst_base
, i
);
4653 src
= mem_map_next(src
, src_base
, i
);
4657 struct copy_subpage_arg
{
4660 struct vm_area_struct
*vma
;
4663 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4665 struct copy_subpage_arg
*copy_arg
= arg
;
4667 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4668 addr
, copy_arg
->vma
);
4671 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4672 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4673 unsigned int pages_per_huge_page
)
4675 unsigned long addr
= addr_hint
&
4676 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4677 struct copy_subpage_arg arg
= {
4683 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4684 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4685 pages_per_huge_page
);
4689 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4692 long copy_huge_page_from_user(struct page
*dst_page
,
4693 const void __user
*usr_src
,
4694 unsigned int pages_per_huge_page
,
4695 bool allow_pagefault
)
4697 void *src
= (void *)usr_src
;
4699 unsigned long i
, rc
= 0;
4700 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4702 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4703 if (allow_pagefault
)
4704 page_kaddr
= kmap(dst_page
+ i
);
4706 page_kaddr
= kmap_atomic(dst_page
+ i
);
4707 rc
= copy_from_user(page_kaddr
,
4708 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4710 if (allow_pagefault
)
4711 kunmap(dst_page
+ i
);
4713 kunmap_atomic(page_kaddr
);
4715 ret_val
-= (PAGE_SIZE
- rc
);
4723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4725 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4727 static struct kmem_cache
*page_ptl_cachep
;
4729 void __init
ptlock_cache_init(void)
4731 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4735 bool ptlock_alloc(struct page
*page
)
4739 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4746 void ptlock_free(struct page
*page
)
4748 kmem_cache_free(page_ptl_cachep
, page
->ptl
);