split dev_queue
[cor.git] / mm / page_ext.c
blob4ade843ff58846cc9f73d3cb54ce78849643ca71
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
13 * struct page extension
15 * This is the feature to manage memory for extended data per page.
17 * Until now, we must modify struct page itself to store extra data per page.
18 * This requires rebuilding the kernel and it is really time consuming process.
19 * And, sometimes, rebuild is impossible due to third party module dependency.
20 * At last, enlarging struct page could cause un-wanted system behaviour change.
22 * This feature is intended to overcome above mentioned problems. This feature
23 * allocates memory for extended data per page in certain place rather than
24 * the struct page itself. This memory can be accessed by the accessor
25 * functions provided by this code. During the boot process, it checks whether
26 * allocation of huge chunk of memory is needed or not. If not, it avoids
27 * allocating memory at all. With this advantage, we can include this feature
28 * into the kernel in default and can avoid rebuild and solve related problems.
30 * To help these things to work well, there are two callbacks for clients. One
31 * is the need callback which is mandatory if user wants to avoid useless
32 * memory allocation at boot-time. The other is optional, init callback, which
33 * is used to do proper initialization after memory is allocated.
35 * The need callback is used to decide whether extended memory allocation is
36 * needed or not. Sometimes users want to deactivate some features in this
37 * boot and extra memory would be unneccessary. In this case, to avoid
38 * allocating huge chunk of memory, each clients represent their need of
39 * extra memory through the need callback. If one of the need callbacks
40 * returns true, it means that someone needs extra memory so that
41 * page extension core should allocates memory for page extension. If
42 * none of need callbacks return true, memory isn't needed at all in this boot
43 * and page extension core can skip to allocate memory. As result,
44 * none of memory is wasted.
46 * When need callback returns true, page_ext checks if there is a request for
47 * extra memory through size in struct page_ext_operations. If it is non-zero,
48 * extra space is allocated for each page_ext entry and offset is returned to
49 * user through offset in struct page_ext_operations.
51 * The init callback is used to do proper initialization after page extension
52 * is completely initialized. In sparse memory system, extra memory is
53 * allocated some time later than memmap is allocated. In other words, lifetime
54 * of memory for page extension isn't same with memmap for struct page.
55 * Therefore, clients can't store extra data until page extension is
56 * initialized, even if pages are allocated and used freely. This could
57 * cause inadequate state of extra data per page, so, to prevent it, client
58 * can utilize this callback to initialize the state of it correctly.
61 static struct page_ext_operations *page_ext_ops[] = {
62 #ifdef CONFIG_PAGE_OWNER
63 &page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 &page_idle_ops,
67 #endif
70 unsigned long page_ext_size = sizeof(struct page_ext);
72 static unsigned long total_usage;
74 static bool __init invoke_need_callbacks(void)
76 int i;
77 int entries = ARRAY_SIZE(page_ext_ops);
78 bool need = false;
80 for (i = 0; i < entries; i++) {
81 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
82 page_ext_ops[i]->offset = page_ext_size;
83 page_ext_size += page_ext_ops[i]->size;
84 need = true;
88 return need;
91 static void __init invoke_init_callbacks(void)
93 int i;
94 int entries = ARRAY_SIZE(page_ext_ops);
96 for (i = 0; i < entries; i++) {
97 if (page_ext_ops[i]->init)
98 page_ext_ops[i]->init();
102 static inline struct page_ext *get_entry(void *base, unsigned long index)
104 return base + page_ext_size * index;
107 #if !defined(CONFIG_SPARSEMEM)
110 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
112 pgdat->node_page_ext = NULL;
115 struct page_ext *lookup_page_ext(const struct page *page)
117 unsigned long pfn = page_to_pfn(page);
118 unsigned long index;
119 struct page_ext *base;
121 base = NODE_DATA(page_to_nid(page))->node_page_ext;
123 * The sanity checks the page allocator does upon freeing a
124 * page can reach here before the page_ext arrays are
125 * allocated when feeding a range of pages to the allocator
126 * for the first time during bootup or memory hotplug.
128 if (unlikely(!base))
129 return NULL;
130 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
131 MAX_ORDER_NR_PAGES);
132 return get_entry(base, index);
135 static int __init alloc_node_page_ext(int nid)
137 struct page_ext *base;
138 unsigned long table_size;
139 unsigned long nr_pages;
141 nr_pages = NODE_DATA(nid)->node_spanned_pages;
142 if (!nr_pages)
143 return 0;
146 * Need extra space if node range is not aligned with
147 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
148 * checks buddy's status, range could be out of exact node range.
150 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
151 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
152 nr_pages += MAX_ORDER_NR_PAGES;
154 table_size = page_ext_size * nr_pages;
156 base = memblock_alloc_try_nid(
157 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
158 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
159 if (!base)
160 return -ENOMEM;
161 NODE_DATA(nid)->node_page_ext = base;
162 total_usage += table_size;
163 return 0;
166 void __init page_ext_init_flatmem(void)
169 int nid, fail;
171 if (!invoke_need_callbacks())
172 return;
174 for_each_online_node(nid) {
175 fail = alloc_node_page_ext(nid);
176 if (fail)
177 goto fail;
179 pr_info("allocated %ld bytes of page_ext\n", total_usage);
180 invoke_init_callbacks();
181 return;
183 fail:
184 pr_crit("allocation of page_ext failed.\n");
185 panic("Out of memory");
188 #else /* CONFIG_FLAT_NODE_MEM_MAP */
190 struct page_ext *lookup_page_ext(const struct page *page)
192 unsigned long pfn = page_to_pfn(page);
193 struct mem_section *section = __pfn_to_section(pfn);
195 * The sanity checks the page allocator does upon freeing a
196 * page can reach here before the page_ext arrays are
197 * allocated when feeding a range of pages to the allocator
198 * for the first time during bootup or memory hotplug.
200 if (!section->page_ext)
201 return NULL;
202 return get_entry(section->page_ext, pfn);
205 static void *__meminit alloc_page_ext(size_t size, int nid)
207 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
208 void *addr = NULL;
210 addr = alloc_pages_exact_nid(nid, size, flags);
211 if (addr) {
212 kmemleak_alloc(addr, size, 1, flags);
213 return addr;
216 addr = vzalloc_node(size, nid);
218 return addr;
221 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
223 struct mem_section *section;
224 struct page_ext *base;
225 unsigned long table_size;
227 section = __pfn_to_section(pfn);
229 if (section->page_ext)
230 return 0;
232 table_size = page_ext_size * PAGES_PER_SECTION;
233 base = alloc_page_ext(table_size, nid);
236 * The value stored in section->page_ext is (base - pfn)
237 * and it does not point to the memory block allocated above,
238 * causing kmemleak false positives.
240 kmemleak_not_leak(base);
242 if (!base) {
243 pr_err("page ext allocation failure\n");
244 return -ENOMEM;
248 * The passed "pfn" may not be aligned to SECTION. For the calculation
249 * we need to apply a mask.
251 pfn &= PAGE_SECTION_MASK;
252 section->page_ext = (void *)base - page_ext_size * pfn;
253 total_usage += table_size;
254 return 0;
256 #ifdef CONFIG_MEMORY_HOTPLUG
257 static void free_page_ext(void *addr)
259 if (is_vmalloc_addr(addr)) {
260 vfree(addr);
261 } else {
262 struct page *page = virt_to_page(addr);
263 size_t table_size;
265 table_size = page_ext_size * PAGES_PER_SECTION;
267 BUG_ON(PageReserved(page));
268 kmemleak_free(addr);
269 free_pages_exact(addr, table_size);
273 static void __free_page_ext(unsigned long pfn)
275 struct mem_section *ms;
276 struct page_ext *base;
278 ms = __pfn_to_section(pfn);
279 if (!ms || !ms->page_ext)
280 return;
281 base = get_entry(ms->page_ext, pfn);
282 free_page_ext(base);
283 ms->page_ext = NULL;
286 static int __meminit online_page_ext(unsigned long start_pfn,
287 unsigned long nr_pages,
288 int nid)
290 unsigned long start, end, pfn;
291 int fail = 0;
293 start = SECTION_ALIGN_DOWN(start_pfn);
294 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
296 if (nid == NUMA_NO_NODE) {
298 * In this case, "nid" already exists and contains valid memory.
299 * "start_pfn" passed to us is a pfn which is an arg for
300 * online__pages(), and start_pfn should exist.
302 nid = pfn_to_nid(start_pfn);
303 VM_BUG_ON(!node_state(nid, N_ONLINE));
306 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
307 if (!pfn_present(pfn))
308 continue;
309 fail = init_section_page_ext(pfn, nid);
311 if (!fail)
312 return 0;
314 /* rollback */
315 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
316 __free_page_ext(pfn);
318 return -ENOMEM;
321 static int __meminit offline_page_ext(unsigned long start_pfn,
322 unsigned long nr_pages, int nid)
324 unsigned long start, end, pfn;
326 start = SECTION_ALIGN_DOWN(start_pfn);
327 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
329 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
330 __free_page_ext(pfn);
331 return 0;
335 static int __meminit page_ext_callback(struct notifier_block *self,
336 unsigned long action, void *arg)
338 struct memory_notify *mn = arg;
339 int ret = 0;
341 switch (action) {
342 case MEM_GOING_ONLINE:
343 ret = online_page_ext(mn->start_pfn,
344 mn->nr_pages, mn->status_change_nid);
345 break;
346 case MEM_OFFLINE:
347 offline_page_ext(mn->start_pfn,
348 mn->nr_pages, mn->status_change_nid);
349 break;
350 case MEM_CANCEL_ONLINE:
351 offline_page_ext(mn->start_pfn,
352 mn->nr_pages, mn->status_change_nid);
353 break;
354 case MEM_GOING_OFFLINE:
355 break;
356 case MEM_ONLINE:
357 case MEM_CANCEL_OFFLINE:
358 break;
361 return notifier_from_errno(ret);
364 #endif
366 void __init page_ext_init(void)
368 unsigned long pfn;
369 int nid;
371 if (!invoke_need_callbacks())
372 return;
374 for_each_node_state(nid, N_MEMORY) {
375 unsigned long start_pfn, end_pfn;
377 start_pfn = node_start_pfn(nid);
378 end_pfn = node_end_pfn(nid);
380 * start_pfn and end_pfn may not be aligned to SECTION and the
381 * page->flags of out of node pages are not initialized. So we
382 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
384 for (pfn = start_pfn; pfn < end_pfn;
385 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
387 if (!pfn_valid(pfn))
388 continue;
390 * Nodes's pfns can be overlapping.
391 * We know some arch can have a nodes layout such as
392 * -------------pfn-------------->
393 * N0 | N1 | N2 | N0 | N1 | N2|....
395 if (pfn_to_nid(pfn) != nid)
396 continue;
397 if (init_section_page_ext(pfn, nid))
398 goto oom;
399 cond_resched();
402 hotplug_memory_notifier(page_ext_callback, 0);
403 pr_info("allocated %ld bytes of page_ext\n", total_usage);
404 invoke_init_callbacks();
405 return;
407 oom:
408 panic("Out of memory");
411 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
415 #endif