split dev_queue
[cor.git] / mm / gup.c
blob7646bf993b25312e4b7273d51786327017dbb490
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
25 #include "internal.h"
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 /**
33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34 * @pages: array of pages to be maybe marked dirty, and definitely released.
35 * @npages: number of pages in the @pages array.
36 * @make_dirty: whether to mark the pages dirty
38 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39 * variants called on that page.
41 * For each page in the @pages array, make that page (or its head page, if a
42 * compound page) dirty, if @make_dirty is true, and if the page was previously
43 * listed as clean. In any case, releases all pages using put_user_page(),
44 * possibly via put_user_pages(), for the non-dirty case.
46 * Please see the put_user_page() documentation for details.
48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49 * required, then the caller should a) verify that this is really correct,
50 * because _lock() is usually required, and b) hand code it:
51 * set_page_dirty_lock(), put_user_page().
54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 bool make_dirty)
57 unsigned long index;
60 * TODO: this can be optimized for huge pages: if a series of pages is
61 * physically contiguous and part of the same compound page, then a
62 * single operation to the head page should suffice.
65 if (!make_dirty) {
66 put_user_pages(pages, npages);
67 return;
70 for (index = 0; index < npages; index++) {
71 struct page *page = compound_head(pages[index]);
73 * Checking PageDirty at this point may race with
74 * clear_page_dirty_for_io(), but that's OK. Two key
75 * cases:
77 * 1) This code sees the page as already dirty, so it
78 * skips the call to set_page_dirty(). That could happen
79 * because clear_page_dirty_for_io() called
80 * page_mkclean(), followed by set_page_dirty().
81 * However, now the page is going to get written back,
82 * which meets the original intention of setting it
83 * dirty, so all is well: clear_page_dirty_for_io() goes
84 * on to call TestClearPageDirty(), and write the page
85 * back.
87 * 2) This code sees the page as clean, so it calls
88 * set_page_dirty(). The page stays dirty, despite being
89 * written back, so it gets written back again in the
90 * next writeback cycle. This is harmless.
92 if (!PageDirty(page))
93 set_page_dirty_lock(page);
94 put_user_page(page);
97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
99 /**
100 * put_user_pages() - release an array of gup-pinned pages.
101 * @pages: array of pages to be marked dirty and released.
102 * @npages: number of pages in the @pages array.
104 * For each page in the @pages array, release the page using put_user_page().
106 * Please see the put_user_page() documentation for details.
108 void put_user_pages(struct page **pages, unsigned long npages)
110 unsigned long index;
113 * TODO: this can be optimized for huge pages: if a series of pages is
114 * physically contiguous and part of the same compound page, then a
115 * single operation to the head page should suffice.
117 for (index = 0; index < npages; index++)
118 put_user_page(pages[index]);
120 EXPORT_SYMBOL(put_user_pages);
122 #ifdef CONFIG_MMU
123 static struct page *no_page_table(struct vm_area_struct *vma,
124 unsigned int flags)
127 * When core dumping an enormous anonymous area that nobody
128 * has touched so far, we don't want to allocate unnecessary pages or
129 * page tables. Return error instead of NULL to skip handle_mm_fault,
130 * then get_dump_page() will return NULL to leave a hole in the dump.
131 * But we can only make this optimization where a hole would surely
132 * be zero-filled if handle_mm_fault() actually did handle it.
134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 return ERR_PTR(-EFAULT);
136 return NULL;
139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 pte_t *pte, unsigned int flags)
142 /* No page to get reference */
143 if (flags & FOLL_GET)
144 return -EFAULT;
146 if (flags & FOLL_TOUCH) {
147 pte_t entry = *pte;
149 if (flags & FOLL_WRITE)
150 entry = pte_mkdirty(entry);
151 entry = pte_mkyoung(entry);
153 if (!pte_same(*pte, entry)) {
154 set_pte_at(vma->vm_mm, address, pte, entry);
155 update_mmu_cache(vma, address, pte);
159 /* Proper page table entry exists, but no corresponding struct page */
160 return -EEXIST;
164 * FOLL_FORCE can write to even unwritable pte's, but only
165 * after we've gone through a COW cycle and they are dirty.
167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
169 return pte_write(pte) ||
170 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
173 static struct page *follow_page_pte(struct vm_area_struct *vma,
174 unsigned long address, pmd_t *pmd, unsigned int flags,
175 struct dev_pagemap **pgmap)
177 struct mm_struct *mm = vma->vm_mm;
178 struct page *page;
179 spinlock_t *ptl;
180 pte_t *ptep, pte;
182 retry:
183 if (unlikely(pmd_bad(*pmd)))
184 return no_page_table(vma, flags);
186 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
187 pte = *ptep;
188 if (!pte_present(pte)) {
189 swp_entry_t entry;
191 * KSM's break_ksm() relies upon recognizing a ksm page
192 * even while it is being migrated, so for that case we
193 * need migration_entry_wait().
195 if (likely(!(flags & FOLL_MIGRATION)))
196 goto no_page;
197 if (pte_none(pte))
198 goto no_page;
199 entry = pte_to_swp_entry(pte);
200 if (!is_migration_entry(entry))
201 goto no_page;
202 pte_unmap_unlock(ptep, ptl);
203 migration_entry_wait(mm, pmd, address);
204 goto retry;
206 if ((flags & FOLL_NUMA) && pte_protnone(pte))
207 goto no_page;
208 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
209 pte_unmap_unlock(ptep, ptl);
210 return NULL;
213 page = vm_normal_page(vma, address, pte);
214 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
216 * Only return device mapping pages in the FOLL_GET case since
217 * they are only valid while holding the pgmap reference.
219 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
220 if (*pgmap)
221 page = pte_page(pte);
222 else
223 goto no_page;
224 } else if (unlikely(!page)) {
225 if (flags & FOLL_DUMP) {
226 /* Avoid special (like zero) pages in core dumps */
227 page = ERR_PTR(-EFAULT);
228 goto out;
231 if (is_zero_pfn(pte_pfn(pte))) {
232 page = pte_page(pte);
233 } else {
234 int ret;
236 ret = follow_pfn_pte(vma, address, ptep, flags);
237 page = ERR_PTR(ret);
238 goto out;
242 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
243 int ret;
244 get_page(page);
245 pte_unmap_unlock(ptep, ptl);
246 lock_page(page);
247 ret = split_huge_page(page);
248 unlock_page(page);
249 put_page(page);
250 if (ret)
251 return ERR_PTR(ret);
252 goto retry;
255 if (flags & FOLL_GET) {
256 if (unlikely(!try_get_page(page))) {
257 page = ERR_PTR(-ENOMEM);
258 goto out;
261 if (flags & FOLL_TOUCH) {
262 if ((flags & FOLL_WRITE) &&
263 !pte_dirty(pte) && !PageDirty(page))
264 set_page_dirty(page);
266 * pte_mkyoung() would be more correct here, but atomic care
267 * is needed to avoid losing the dirty bit: it is easier to use
268 * mark_page_accessed().
270 mark_page_accessed(page);
272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
273 /* Do not mlock pte-mapped THP */
274 if (PageTransCompound(page))
275 goto out;
278 * The preliminary mapping check is mainly to avoid the
279 * pointless overhead of lock_page on the ZERO_PAGE
280 * which might bounce very badly if there is contention.
282 * If the page is already locked, we don't need to
283 * handle it now - vmscan will handle it later if and
284 * when it attempts to reclaim the page.
286 if (page->mapping && trylock_page(page)) {
287 lru_add_drain(); /* push cached pages to LRU */
289 * Because we lock page here, and migration is
290 * blocked by the pte's page reference, and we
291 * know the page is still mapped, we don't even
292 * need to check for file-cache page truncation.
294 mlock_vma_page(page);
295 unlock_page(page);
298 out:
299 pte_unmap_unlock(ptep, ptl);
300 return page;
301 no_page:
302 pte_unmap_unlock(ptep, ptl);
303 if (!pte_none(pte))
304 return NULL;
305 return no_page_table(vma, flags);
308 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
309 unsigned long address, pud_t *pudp,
310 unsigned int flags,
311 struct follow_page_context *ctx)
313 pmd_t *pmd, pmdval;
314 spinlock_t *ptl;
315 struct page *page;
316 struct mm_struct *mm = vma->vm_mm;
318 pmd = pmd_offset(pudp, address);
320 * The READ_ONCE() will stabilize the pmdval in a register or
321 * on the stack so that it will stop changing under the code.
323 pmdval = READ_ONCE(*pmd);
324 if (pmd_none(pmdval))
325 return no_page_table(vma, flags);
326 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
327 page = follow_huge_pmd(mm, address, pmd, flags);
328 if (page)
329 return page;
330 return no_page_table(vma, flags);
332 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
333 page = follow_huge_pd(vma, address,
334 __hugepd(pmd_val(pmdval)), flags,
335 PMD_SHIFT);
336 if (page)
337 return page;
338 return no_page_table(vma, flags);
340 retry:
341 if (!pmd_present(pmdval)) {
342 if (likely(!(flags & FOLL_MIGRATION)))
343 return no_page_table(vma, flags);
344 VM_BUG_ON(thp_migration_supported() &&
345 !is_pmd_migration_entry(pmdval));
346 if (is_pmd_migration_entry(pmdval))
347 pmd_migration_entry_wait(mm, pmd);
348 pmdval = READ_ONCE(*pmd);
350 * MADV_DONTNEED may convert the pmd to null because
351 * mmap_sem is held in read mode
353 if (pmd_none(pmdval))
354 return no_page_table(vma, flags);
355 goto retry;
357 if (pmd_devmap(pmdval)) {
358 ptl = pmd_lock(mm, pmd);
359 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
360 spin_unlock(ptl);
361 if (page)
362 return page;
364 if (likely(!pmd_trans_huge(pmdval)))
365 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
367 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
368 return no_page_table(vma, flags);
370 retry_locked:
371 ptl = pmd_lock(mm, pmd);
372 if (unlikely(pmd_none(*pmd))) {
373 spin_unlock(ptl);
374 return no_page_table(vma, flags);
376 if (unlikely(!pmd_present(*pmd))) {
377 spin_unlock(ptl);
378 if (likely(!(flags & FOLL_MIGRATION)))
379 return no_page_table(vma, flags);
380 pmd_migration_entry_wait(mm, pmd);
381 goto retry_locked;
383 if (unlikely(!pmd_trans_huge(*pmd))) {
384 spin_unlock(ptl);
385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
387 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
388 int ret;
389 page = pmd_page(*pmd);
390 if (is_huge_zero_page(page)) {
391 spin_unlock(ptl);
392 ret = 0;
393 split_huge_pmd(vma, pmd, address);
394 if (pmd_trans_unstable(pmd))
395 ret = -EBUSY;
396 } else if (flags & FOLL_SPLIT) {
397 if (unlikely(!try_get_page(page))) {
398 spin_unlock(ptl);
399 return ERR_PTR(-ENOMEM);
401 spin_unlock(ptl);
402 lock_page(page);
403 ret = split_huge_page(page);
404 unlock_page(page);
405 put_page(page);
406 if (pmd_none(*pmd))
407 return no_page_table(vma, flags);
408 } else { /* flags & FOLL_SPLIT_PMD */
409 spin_unlock(ptl);
410 split_huge_pmd(vma, pmd, address);
411 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
414 return ret ? ERR_PTR(ret) :
415 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
417 page = follow_trans_huge_pmd(vma, address, pmd, flags);
418 spin_unlock(ptl);
419 ctx->page_mask = HPAGE_PMD_NR - 1;
420 return page;
423 static struct page *follow_pud_mask(struct vm_area_struct *vma,
424 unsigned long address, p4d_t *p4dp,
425 unsigned int flags,
426 struct follow_page_context *ctx)
428 pud_t *pud;
429 spinlock_t *ptl;
430 struct page *page;
431 struct mm_struct *mm = vma->vm_mm;
433 pud = pud_offset(p4dp, address);
434 if (pud_none(*pud))
435 return no_page_table(vma, flags);
436 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
437 page = follow_huge_pud(mm, address, pud, flags);
438 if (page)
439 return page;
440 return no_page_table(vma, flags);
442 if (is_hugepd(__hugepd(pud_val(*pud)))) {
443 page = follow_huge_pd(vma, address,
444 __hugepd(pud_val(*pud)), flags,
445 PUD_SHIFT);
446 if (page)
447 return page;
448 return no_page_table(vma, flags);
450 if (pud_devmap(*pud)) {
451 ptl = pud_lock(mm, pud);
452 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
453 spin_unlock(ptl);
454 if (page)
455 return page;
457 if (unlikely(pud_bad(*pud)))
458 return no_page_table(vma, flags);
460 return follow_pmd_mask(vma, address, pud, flags, ctx);
463 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
464 unsigned long address, pgd_t *pgdp,
465 unsigned int flags,
466 struct follow_page_context *ctx)
468 p4d_t *p4d;
469 struct page *page;
471 p4d = p4d_offset(pgdp, address);
472 if (p4d_none(*p4d))
473 return no_page_table(vma, flags);
474 BUILD_BUG_ON(p4d_huge(*p4d));
475 if (unlikely(p4d_bad(*p4d)))
476 return no_page_table(vma, flags);
478 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
479 page = follow_huge_pd(vma, address,
480 __hugepd(p4d_val(*p4d)), flags,
481 P4D_SHIFT);
482 if (page)
483 return page;
484 return no_page_table(vma, flags);
486 return follow_pud_mask(vma, address, p4d, flags, ctx);
490 * follow_page_mask - look up a page descriptor from a user-virtual address
491 * @vma: vm_area_struct mapping @address
492 * @address: virtual address to look up
493 * @flags: flags modifying lookup behaviour
494 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
495 * pointer to output page_mask
497 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
499 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
500 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
502 * On output, the @ctx->page_mask is set according to the size of the page.
504 * Return: the mapped (struct page *), %NULL if no mapping exists, or
505 * an error pointer if there is a mapping to something not represented
506 * by a page descriptor (see also vm_normal_page()).
508 static struct page *follow_page_mask(struct vm_area_struct *vma,
509 unsigned long address, unsigned int flags,
510 struct follow_page_context *ctx)
512 pgd_t *pgd;
513 struct page *page;
514 struct mm_struct *mm = vma->vm_mm;
516 ctx->page_mask = 0;
518 /* make this handle hugepd */
519 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
520 if (!IS_ERR(page)) {
521 BUG_ON(flags & FOLL_GET);
522 return page;
525 pgd = pgd_offset(mm, address);
527 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
528 return no_page_table(vma, flags);
530 if (pgd_huge(*pgd)) {
531 page = follow_huge_pgd(mm, address, pgd, flags);
532 if (page)
533 return page;
534 return no_page_table(vma, flags);
536 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
537 page = follow_huge_pd(vma, address,
538 __hugepd(pgd_val(*pgd)), flags,
539 PGDIR_SHIFT);
540 if (page)
541 return page;
542 return no_page_table(vma, flags);
545 return follow_p4d_mask(vma, address, pgd, flags, ctx);
548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
549 unsigned int foll_flags)
551 struct follow_page_context ctx = { NULL };
552 struct page *page;
554 page = follow_page_mask(vma, address, foll_flags, &ctx);
555 if (ctx.pgmap)
556 put_dev_pagemap(ctx.pgmap);
557 return page;
560 static int get_gate_page(struct mm_struct *mm, unsigned long address,
561 unsigned int gup_flags, struct vm_area_struct **vma,
562 struct page **page)
564 pgd_t *pgd;
565 p4d_t *p4d;
566 pud_t *pud;
567 pmd_t *pmd;
568 pte_t *pte;
569 int ret = -EFAULT;
571 /* user gate pages are read-only */
572 if (gup_flags & FOLL_WRITE)
573 return -EFAULT;
574 if (address > TASK_SIZE)
575 pgd = pgd_offset_k(address);
576 else
577 pgd = pgd_offset_gate(mm, address);
578 if (pgd_none(*pgd))
579 return -EFAULT;
580 p4d = p4d_offset(pgd, address);
581 if (p4d_none(*p4d))
582 return -EFAULT;
583 pud = pud_offset(p4d, address);
584 if (pud_none(*pud))
585 return -EFAULT;
586 pmd = pmd_offset(pud, address);
587 if (!pmd_present(*pmd))
588 return -EFAULT;
589 VM_BUG_ON(pmd_trans_huge(*pmd));
590 pte = pte_offset_map(pmd, address);
591 if (pte_none(*pte))
592 goto unmap;
593 *vma = get_gate_vma(mm);
594 if (!page)
595 goto out;
596 *page = vm_normal_page(*vma, address, *pte);
597 if (!*page) {
598 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
599 goto unmap;
600 *page = pte_page(*pte);
602 if (unlikely(!try_get_page(*page))) {
603 ret = -ENOMEM;
604 goto unmap;
606 out:
607 ret = 0;
608 unmap:
609 pte_unmap(pte);
610 return ret;
614 * mmap_sem must be held on entry. If @nonblocking != NULL and
615 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
616 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
619 unsigned long address, unsigned int *flags, int *nonblocking)
621 unsigned int fault_flags = 0;
622 vm_fault_t ret;
624 /* mlock all present pages, but do not fault in new pages */
625 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
626 return -ENOENT;
627 if (*flags & FOLL_WRITE)
628 fault_flags |= FAULT_FLAG_WRITE;
629 if (*flags & FOLL_REMOTE)
630 fault_flags |= FAULT_FLAG_REMOTE;
631 if (nonblocking)
632 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
633 if (*flags & FOLL_NOWAIT)
634 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
635 if (*flags & FOLL_TRIED) {
636 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
637 fault_flags |= FAULT_FLAG_TRIED;
640 ret = handle_mm_fault(vma, address, fault_flags);
641 if (ret & VM_FAULT_ERROR) {
642 int err = vm_fault_to_errno(ret, *flags);
644 if (err)
645 return err;
646 BUG();
649 if (tsk) {
650 if (ret & VM_FAULT_MAJOR)
651 tsk->maj_flt++;
652 else
653 tsk->min_flt++;
656 if (ret & VM_FAULT_RETRY) {
657 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
658 *nonblocking = 0;
659 return -EBUSY;
663 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
664 * necessary, even if maybe_mkwrite decided not to set pte_write. We
665 * can thus safely do subsequent page lookups as if they were reads.
666 * But only do so when looping for pte_write is futile: in some cases
667 * userspace may also be wanting to write to the gotten user page,
668 * which a read fault here might prevent (a readonly page might get
669 * reCOWed by userspace write).
671 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
672 *flags |= FOLL_COW;
673 return 0;
676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
678 vm_flags_t vm_flags = vma->vm_flags;
679 int write = (gup_flags & FOLL_WRITE);
680 int foreign = (gup_flags & FOLL_REMOTE);
682 if (vm_flags & (VM_IO | VM_PFNMAP))
683 return -EFAULT;
685 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
686 return -EFAULT;
688 if (write) {
689 if (!(vm_flags & VM_WRITE)) {
690 if (!(gup_flags & FOLL_FORCE))
691 return -EFAULT;
693 * We used to let the write,force case do COW in a
694 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
695 * set a breakpoint in a read-only mapping of an
696 * executable, without corrupting the file (yet only
697 * when that file had been opened for writing!).
698 * Anon pages in shared mappings are surprising: now
699 * just reject it.
701 if (!is_cow_mapping(vm_flags))
702 return -EFAULT;
704 } else if (!(vm_flags & VM_READ)) {
705 if (!(gup_flags & FOLL_FORCE))
706 return -EFAULT;
708 * Is there actually any vma we can reach here which does not
709 * have VM_MAYREAD set?
711 if (!(vm_flags & VM_MAYREAD))
712 return -EFAULT;
715 * gups are always data accesses, not instruction
716 * fetches, so execute=false here
718 if (!arch_vma_access_permitted(vma, write, false, foreign))
719 return -EFAULT;
720 return 0;
724 * __get_user_pages() - pin user pages in memory
725 * @tsk: task_struct of target task
726 * @mm: mm_struct of target mm
727 * @start: starting user address
728 * @nr_pages: number of pages from start to pin
729 * @gup_flags: flags modifying pin behaviour
730 * @pages: array that receives pointers to the pages pinned.
731 * Should be at least nr_pages long. Or NULL, if caller
732 * only intends to ensure the pages are faulted in.
733 * @vmas: array of pointers to vmas corresponding to each page.
734 * Or NULL if the caller does not require them.
735 * @nonblocking: whether waiting for disk IO or mmap_sem contention
737 * Returns either number of pages pinned (which may be less than the
738 * number requested), or an error. Details about the return value:
740 * -- If nr_pages is 0, returns 0.
741 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
742 * -- If nr_pages is >0, and some pages were pinned, returns the number of
743 * pages pinned. Again, this may be less than nr_pages.
745 * The caller is responsible for releasing returned @pages, via put_page().
747 * @vmas are valid only as long as mmap_sem is held.
749 * Must be called with mmap_sem held. It may be released. See below.
751 * __get_user_pages walks a process's page tables and takes a reference to
752 * each struct page that each user address corresponds to at a given
753 * instant. That is, it takes the page that would be accessed if a user
754 * thread accesses the given user virtual address at that instant.
756 * This does not guarantee that the page exists in the user mappings when
757 * __get_user_pages returns, and there may even be a completely different
758 * page there in some cases (eg. if mmapped pagecache has been invalidated
759 * and subsequently re faulted). However it does guarantee that the page
760 * won't be freed completely. And mostly callers simply care that the page
761 * contains data that was valid *at some point in time*. Typically, an IO
762 * or similar operation cannot guarantee anything stronger anyway because
763 * locks can't be held over the syscall boundary.
765 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
766 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
767 * appropriate) must be called after the page is finished with, and
768 * before put_page is called.
770 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
771 * or mmap_sem contention, and if waiting is needed to pin all pages,
772 * *@nonblocking will be set to 0. Further, if @gup_flags does not
773 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
774 * this case.
776 * A caller using such a combination of @nonblocking and @gup_flags
777 * must therefore hold the mmap_sem for reading only, and recognize
778 * when it's been released. Otherwise, it must be held for either
779 * reading or writing and will not be released.
781 * In most cases, get_user_pages or get_user_pages_fast should be used
782 * instead of __get_user_pages. __get_user_pages should be used only if
783 * you need some special @gup_flags.
785 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
786 unsigned long start, unsigned long nr_pages,
787 unsigned int gup_flags, struct page **pages,
788 struct vm_area_struct **vmas, int *nonblocking)
790 long ret = 0, i = 0;
791 struct vm_area_struct *vma = NULL;
792 struct follow_page_context ctx = { NULL };
794 if (!nr_pages)
795 return 0;
797 start = untagged_addr(start);
799 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
802 * If FOLL_FORCE is set then do not force a full fault as the hinting
803 * fault information is unrelated to the reference behaviour of a task
804 * using the address space
806 if (!(gup_flags & FOLL_FORCE))
807 gup_flags |= FOLL_NUMA;
809 do {
810 struct page *page;
811 unsigned int foll_flags = gup_flags;
812 unsigned int page_increm;
814 /* first iteration or cross vma bound */
815 if (!vma || start >= vma->vm_end) {
816 vma = find_extend_vma(mm, start);
817 if (!vma && in_gate_area(mm, start)) {
818 ret = get_gate_page(mm, start & PAGE_MASK,
819 gup_flags, &vma,
820 pages ? &pages[i] : NULL);
821 if (ret)
822 goto out;
823 ctx.page_mask = 0;
824 goto next_page;
827 if (!vma || check_vma_flags(vma, gup_flags)) {
828 ret = -EFAULT;
829 goto out;
831 if (is_vm_hugetlb_page(vma)) {
832 i = follow_hugetlb_page(mm, vma, pages, vmas,
833 &start, &nr_pages, i,
834 gup_flags, nonblocking);
835 continue;
838 retry:
840 * If we have a pending SIGKILL, don't keep faulting pages and
841 * potentially allocating memory.
843 if (fatal_signal_pending(current)) {
844 ret = -ERESTARTSYS;
845 goto out;
847 cond_resched();
849 page = follow_page_mask(vma, start, foll_flags, &ctx);
850 if (!page) {
851 ret = faultin_page(tsk, vma, start, &foll_flags,
852 nonblocking);
853 switch (ret) {
854 case 0:
855 goto retry;
856 case -EBUSY:
857 ret = 0;
858 /* FALLTHRU */
859 case -EFAULT:
860 case -ENOMEM:
861 case -EHWPOISON:
862 goto out;
863 case -ENOENT:
864 goto next_page;
866 BUG();
867 } else if (PTR_ERR(page) == -EEXIST) {
869 * Proper page table entry exists, but no corresponding
870 * struct page.
872 goto next_page;
873 } else if (IS_ERR(page)) {
874 ret = PTR_ERR(page);
875 goto out;
877 if (pages) {
878 pages[i] = page;
879 flush_anon_page(vma, page, start);
880 flush_dcache_page(page);
881 ctx.page_mask = 0;
883 next_page:
884 if (vmas) {
885 vmas[i] = vma;
886 ctx.page_mask = 0;
888 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
889 if (page_increm > nr_pages)
890 page_increm = nr_pages;
891 i += page_increm;
892 start += page_increm * PAGE_SIZE;
893 nr_pages -= page_increm;
894 } while (nr_pages);
895 out:
896 if (ctx.pgmap)
897 put_dev_pagemap(ctx.pgmap);
898 return i ? i : ret;
901 static bool vma_permits_fault(struct vm_area_struct *vma,
902 unsigned int fault_flags)
904 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
905 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
906 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
908 if (!(vm_flags & vma->vm_flags))
909 return false;
912 * The architecture might have a hardware protection
913 * mechanism other than read/write that can deny access.
915 * gup always represents data access, not instruction
916 * fetches, so execute=false here:
918 if (!arch_vma_access_permitted(vma, write, false, foreign))
919 return false;
921 return true;
925 * fixup_user_fault() - manually resolve a user page fault
926 * @tsk: the task_struct to use for page fault accounting, or
927 * NULL if faults are not to be recorded.
928 * @mm: mm_struct of target mm
929 * @address: user address
930 * @fault_flags:flags to pass down to handle_mm_fault()
931 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
932 * does not allow retry
934 * This is meant to be called in the specific scenario where for locking reasons
935 * we try to access user memory in atomic context (within a pagefault_disable()
936 * section), this returns -EFAULT, and we want to resolve the user fault before
937 * trying again.
939 * Typically this is meant to be used by the futex code.
941 * The main difference with get_user_pages() is that this function will
942 * unconditionally call handle_mm_fault() which will in turn perform all the
943 * necessary SW fixup of the dirty and young bits in the PTE, while
944 * get_user_pages() only guarantees to update these in the struct page.
946 * This is important for some architectures where those bits also gate the
947 * access permission to the page because they are maintained in software. On
948 * such architectures, gup() will not be enough to make a subsequent access
949 * succeed.
951 * This function will not return with an unlocked mmap_sem. So it has not the
952 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
955 unsigned long address, unsigned int fault_flags,
956 bool *unlocked)
958 struct vm_area_struct *vma;
959 vm_fault_t ret, major = 0;
961 address = untagged_addr(address);
963 if (unlocked)
964 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
966 retry:
967 vma = find_extend_vma(mm, address);
968 if (!vma || address < vma->vm_start)
969 return -EFAULT;
971 if (!vma_permits_fault(vma, fault_flags))
972 return -EFAULT;
974 ret = handle_mm_fault(vma, address, fault_flags);
975 major |= ret & VM_FAULT_MAJOR;
976 if (ret & VM_FAULT_ERROR) {
977 int err = vm_fault_to_errno(ret, 0);
979 if (err)
980 return err;
981 BUG();
984 if (ret & VM_FAULT_RETRY) {
985 down_read(&mm->mmap_sem);
986 if (!(fault_flags & FAULT_FLAG_TRIED)) {
987 *unlocked = true;
988 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
989 fault_flags |= FAULT_FLAG_TRIED;
990 goto retry;
994 if (tsk) {
995 if (major)
996 tsk->maj_flt++;
997 else
998 tsk->min_flt++;
1000 return 0;
1002 EXPORT_SYMBOL_GPL(fixup_user_fault);
1004 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1005 struct mm_struct *mm,
1006 unsigned long start,
1007 unsigned long nr_pages,
1008 struct page **pages,
1009 struct vm_area_struct **vmas,
1010 int *locked,
1011 unsigned int flags)
1013 long ret, pages_done;
1014 bool lock_dropped;
1016 if (locked) {
1017 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1018 BUG_ON(vmas);
1019 /* check caller initialized locked */
1020 BUG_ON(*locked != 1);
1023 if (pages)
1024 flags |= FOLL_GET;
1026 pages_done = 0;
1027 lock_dropped = false;
1028 for (;;) {
1029 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1030 vmas, locked);
1031 if (!locked)
1032 /* VM_FAULT_RETRY couldn't trigger, bypass */
1033 return ret;
1035 /* VM_FAULT_RETRY cannot return errors */
1036 if (!*locked) {
1037 BUG_ON(ret < 0);
1038 BUG_ON(ret >= nr_pages);
1041 if (ret > 0) {
1042 nr_pages -= ret;
1043 pages_done += ret;
1044 if (!nr_pages)
1045 break;
1047 if (*locked) {
1049 * VM_FAULT_RETRY didn't trigger or it was a
1050 * FOLL_NOWAIT.
1052 if (!pages_done)
1053 pages_done = ret;
1054 break;
1057 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1058 * For the prefault case (!pages) we only update counts.
1060 if (likely(pages))
1061 pages += ret;
1062 start += ret << PAGE_SHIFT;
1065 * Repeat on the address that fired VM_FAULT_RETRY
1066 * without FAULT_FLAG_ALLOW_RETRY but with
1067 * FAULT_FLAG_TRIED.
1069 *locked = 1;
1070 lock_dropped = true;
1071 down_read(&mm->mmap_sem);
1072 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1073 pages, NULL, NULL);
1074 if (ret != 1) {
1075 BUG_ON(ret > 1);
1076 if (!pages_done)
1077 pages_done = ret;
1078 break;
1080 nr_pages--;
1081 pages_done++;
1082 if (!nr_pages)
1083 break;
1084 if (likely(pages))
1085 pages++;
1086 start += PAGE_SIZE;
1088 if (lock_dropped && *locked) {
1090 * We must let the caller know we temporarily dropped the lock
1091 * and so the critical section protected by it was lost.
1093 up_read(&mm->mmap_sem);
1094 *locked = 0;
1096 return pages_done;
1100 * get_user_pages_remote() - pin user pages in memory
1101 * @tsk: the task_struct to use for page fault accounting, or
1102 * NULL if faults are not to be recorded.
1103 * @mm: mm_struct of target mm
1104 * @start: starting user address
1105 * @nr_pages: number of pages from start to pin
1106 * @gup_flags: flags modifying lookup behaviour
1107 * @pages: array that receives pointers to the pages pinned.
1108 * Should be at least nr_pages long. Or NULL, if caller
1109 * only intends to ensure the pages are faulted in.
1110 * @vmas: array of pointers to vmas corresponding to each page.
1111 * Or NULL if the caller does not require them.
1112 * @locked: pointer to lock flag indicating whether lock is held and
1113 * subsequently whether VM_FAULT_RETRY functionality can be
1114 * utilised. Lock must initially be held.
1116 * Returns either number of pages pinned (which may be less than the
1117 * number requested), or an error. Details about the return value:
1119 * -- If nr_pages is 0, returns 0.
1120 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1121 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1122 * pages pinned. Again, this may be less than nr_pages.
1124 * The caller is responsible for releasing returned @pages, via put_page().
1126 * @vmas are valid only as long as mmap_sem is held.
1128 * Must be called with mmap_sem held for read or write.
1130 * get_user_pages walks a process's page tables and takes a reference to
1131 * each struct page that each user address corresponds to at a given
1132 * instant. That is, it takes the page that would be accessed if a user
1133 * thread accesses the given user virtual address at that instant.
1135 * This does not guarantee that the page exists in the user mappings when
1136 * get_user_pages returns, and there may even be a completely different
1137 * page there in some cases (eg. if mmapped pagecache has been invalidated
1138 * and subsequently re faulted). However it does guarantee that the page
1139 * won't be freed completely. And mostly callers simply care that the page
1140 * contains data that was valid *at some point in time*. Typically, an IO
1141 * or similar operation cannot guarantee anything stronger anyway because
1142 * locks can't be held over the syscall boundary.
1144 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1145 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1146 * be called after the page is finished with, and before put_page is called.
1148 * get_user_pages is typically used for fewer-copy IO operations, to get a
1149 * handle on the memory by some means other than accesses via the user virtual
1150 * addresses. The pages may be submitted for DMA to devices or accessed via
1151 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1152 * use the correct cache flushing APIs.
1154 * See also get_user_pages_fast, for performance critical applications.
1156 * get_user_pages should be phased out in favor of
1157 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1158 * should use get_user_pages because it cannot pass
1159 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1161 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1162 unsigned long start, unsigned long nr_pages,
1163 unsigned int gup_flags, struct page **pages,
1164 struct vm_area_struct **vmas, int *locked)
1167 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1168 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1169 * vmas. As there are no users of this flag in this call we simply
1170 * disallow this option for now.
1172 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1173 return -EINVAL;
1175 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1176 locked,
1177 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1179 EXPORT_SYMBOL(get_user_pages_remote);
1182 * populate_vma_page_range() - populate a range of pages in the vma.
1183 * @vma: target vma
1184 * @start: start address
1185 * @end: end address
1186 * @nonblocking:
1188 * This takes care of mlocking the pages too if VM_LOCKED is set.
1190 * return 0 on success, negative error code on error.
1192 * vma->vm_mm->mmap_sem must be held.
1194 * If @nonblocking is NULL, it may be held for read or write and will
1195 * be unperturbed.
1197 * If @nonblocking is non-NULL, it must held for read only and may be
1198 * released. If it's released, *@nonblocking will be set to 0.
1200 long populate_vma_page_range(struct vm_area_struct *vma,
1201 unsigned long start, unsigned long end, int *nonblocking)
1203 struct mm_struct *mm = vma->vm_mm;
1204 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1205 int gup_flags;
1207 VM_BUG_ON(start & ~PAGE_MASK);
1208 VM_BUG_ON(end & ~PAGE_MASK);
1209 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1210 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1211 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1213 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1214 if (vma->vm_flags & VM_LOCKONFAULT)
1215 gup_flags &= ~FOLL_POPULATE;
1217 * We want to touch writable mappings with a write fault in order
1218 * to break COW, except for shared mappings because these don't COW
1219 * and we would not want to dirty them for nothing.
1221 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1222 gup_flags |= FOLL_WRITE;
1225 * We want mlock to succeed for regions that have any permissions
1226 * other than PROT_NONE.
1228 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1229 gup_flags |= FOLL_FORCE;
1232 * We made sure addr is within a VMA, so the following will
1233 * not result in a stack expansion that recurses back here.
1235 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1236 NULL, NULL, nonblocking);
1240 * __mm_populate - populate and/or mlock pages within a range of address space.
1242 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1243 * flags. VMAs must be already marked with the desired vm_flags, and
1244 * mmap_sem must not be held.
1246 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1248 struct mm_struct *mm = current->mm;
1249 unsigned long end, nstart, nend;
1250 struct vm_area_struct *vma = NULL;
1251 int locked = 0;
1252 long ret = 0;
1254 end = start + len;
1256 for (nstart = start; nstart < end; nstart = nend) {
1258 * We want to fault in pages for [nstart; end) address range.
1259 * Find first corresponding VMA.
1261 if (!locked) {
1262 locked = 1;
1263 down_read(&mm->mmap_sem);
1264 vma = find_vma(mm, nstart);
1265 } else if (nstart >= vma->vm_end)
1266 vma = vma->vm_next;
1267 if (!vma || vma->vm_start >= end)
1268 break;
1270 * Set [nstart; nend) to intersection of desired address
1271 * range with the first VMA. Also, skip undesirable VMA types.
1273 nend = min(end, vma->vm_end);
1274 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1275 continue;
1276 if (nstart < vma->vm_start)
1277 nstart = vma->vm_start;
1279 * Now fault in a range of pages. populate_vma_page_range()
1280 * double checks the vma flags, so that it won't mlock pages
1281 * if the vma was already munlocked.
1283 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1284 if (ret < 0) {
1285 if (ignore_errors) {
1286 ret = 0;
1287 continue; /* continue at next VMA */
1289 break;
1291 nend = nstart + ret * PAGE_SIZE;
1292 ret = 0;
1294 if (locked)
1295 up_read(&mm->mmap_sem);
1296 return ret; /* 0 or negative error code */
1300 * get_dump_page() - pin user page in memory while writing it to core dump
1301 * @addr: user address
1303 * Returns struct page pointer of user page pinned for dump,
1304 * to be freed afterwards by put_page().
1306 * Returns NULL on any kind of failure - a hole must then be inserted into
1307 * the corefile, to preserve alignment with its headers; and also returns
1308 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1309 * allowing a hole to be left in the corefile to save diskspace.
1311 * Called without mmap_sem, but after all other threads have been killed.
1313 #ifdef CONFIG_ELF_CORE
1314 struct page *get_dump_page(unsigned long addr)
1316 struct vm_area_struct *vma;
1317 struct page *page;
1319 if (__get_user_pages(current, current->mm, addr, 1,
1320 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1321 NULL) < 1)
1322 return NULL;
1323 flush_cache_page(vma, addr, page_to_pfn(page));
1324 return page;
1326 #endif /* CONFIG_ELF_CORE */
1327 #else /* CONFIG_MMU */
1328 static long __get_user_pages_locked(struct task_struct *tsk,
1329 struct mm_struct *mm, unsigned long start,
1330 unsigned long nr_pages, struct page **pages,
1331 struct vm_area_struct **vmas, int *locked,
1332 unsigned int foll_flags)
1334 struct vm_area_struct *vma;
1335 unsigned long vm_flags;
1336 int i;
1338 /* calculate required read or write permissions.
1339 * If FOLL_FORCE is set, we only require the "MAY" flags.
1341 vm_flags = (foll_flags & FOLL_WRITE) ?
1342 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1343 vm_flags &= (foll_flags & FOLL_FORCE) ?
1344 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1346 for (i = 0; i < nr_pages; i++) {
1347 vma = find_vma(mm, start);
1348 if (!vma)
1349 goto finish_or_fault;
1351 /* protect what we can, including chardevs */
1352 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1353 !(vm_flags & vma->vm_flags))
1354 goto finish_or_fault;
1356 if (pages) {
1357 pages[i] = virt_to_page(start);
1358 if (pages[i])
1359 get_page(pages[i]);
1361 if (vmas)
1362 vmas[i] = vma;
1363 start = (start + PAGE_SIZE) & PAGE_MASK;
1366 return i;
1368 finish_or_fault:
1369 return i ? : -EFAULT;
1371 #endif /* !CONFIG_MMU */
1373 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1374 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1376 long i;
1377 struct vm_area_struct *vma_prev = NULL;
1379 for (i = 0; i < nr_pages; i++) {
1380 struct vm_area_struct *vma = vmas[i];
1382 if (vma == vma_prev)
1383 continue;
1385 vma_prev = vma;
1387 if (vma_is_fsdax(vma))
1388 return true;
1390 return false;
1393 #ifdef CONFIG_CMA
1394 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1397 * We want to make sure we allocate the new page from the same node
1398 * as the source page.
1400 int nid = page_to_nid(page);
1402 * Trying to allocate a page for migration. Ignore allocation
1403 * failure warnings. We don't force __GFP_THISNODE here because
1404 * this node here is the node where we have CMA reservation and
1405 * in some case these nodes will have really less non movable
1406 * allocation memory.
1408 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1410 if (PageHighMem(page))
1411 gfp_mask |= __GFP_HIGHMEM;
1413 #ifdef CONFIG_HUGETLB_PAGE
1414 if (PageHuge(page)) {
1415 struct hstate *h = page_hstate(page);
1417 * We don't want to dequeue from the pool because pool pages will
1418 * mostly be from the CMA region.
1420 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1422 #endif
1423 if (PageTransHuge(page)) {
1424 struct page *thp;
1426 * ignore allocation failure warnings
1428 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1431 * Remove the movable mask so that we don't allocate from
1432 * CMA area again.
1434 thp_gfpmask &= ~__GFP_MOVABLE;
1435 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1436 if (!thp)
1437 return NULL;
1438 prep_transhuge_page(thp);
1439 return thp;
1442 return __alloc_pages_node(nid, gfp_mask, 0);
1445 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1446 struct mm_struct *mm,
1447 unsigned long start,
1448 unsigned long nr_pages,
1449 struct page **pages,
1450 struct vm_area_struct **vmas,
1451 unsigned int gup_flags)
1453 unsigned long i;
1454 unsigned long step;
1455 bool drain_allow = true;
1456 bool migrate_allow = true;
1457 LIST_HEAD(cma_page_list);
1458 long ret = nr_pages;
1460 check_again:
1461 for (i = 0; i < nr_pages;) {
1463 struct page *head = compound_head(pages[i]);
1466 * gup may start from a tail page. Advance step by the left
1467 * part.
1469 step = compound_nr(head) - (pages[i] - head);
1471 * If we get a page from the CMA zone, since we are going to
1472 * be pinning these entries, we might as well move them out
1473 * of the CMA zone if possible.
1475 if (is_migrate_cma_page(head)) {
1476 if (PageHuge(head))
1477 isolate_huge_page(head, &cma_page_list);
1478 else {
1479 if (!PageLRU(head) && drain_allow) {
1480 lru_add_drain_all();
1481 drain_allow = false;
1484 if (!isolate_lru_page(head)) {
1485 list_add_tail(&head->lru, &cma_page_list);
1486 mod_node_page_state(page_pgdat(head),
1487 NR_ISOLATED_ANON +
1488 page_is_file_cache(head),
1489 hpage_nr_pages(head));
1494 i += step;
1497 if (!list_empty(&cma_page_list)) {
1499 * drop the above get_user_pages reference.
1501 for (i = 0; i < nr_pages; i++)
1502 put_page(pages[i]);
1504 if (migrate_pages(&cma_page_list, new_non_cma_page,
1505 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1507 * some of the pages failed migration. Do get_user_pages
1508 * without migration.
1510 migrate_allow = false;
1512 if (!list_empty(&cma_page_list))
1513 putback_movable_pages(&cma_page_list);
1516 * We did migrate all the pages, Try to get the page references
1517 * again migrating any new CMA pages which we failed to isolate
1518 * earlier.
1520 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1521 pages, vmas, NULL,
1522 gup_flags);
1524 if ((ret > 0) && migrate_allow) {
1525 nr_pages = ret;
1526 drain_allow = true;
1527 goto check_again;
1531 return ret;
1533 #else
1534 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1535 struct mm_struct *mm,
1536 unsigned long start,
1537 unsigned long nr_pages,
1538 struct page **pages,
1539 struct vm_area_struct **vmas,
1540 unsigned int gup_flags)
1542 return nr_pages;
1544 #endif /* CONFIG_CMA */
1547 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1548 * allows us to process the FOLL_LONGTERM flag.
1550 static long __gup_longterm_locked(struct task_struct *tsk,
1551 struct mm_struct *mm,
1552 unsigned long start,
1553 unsigned long nr_pages,
1554 struct page **pages,
1555 struct vm_area_struct **vmas,
1556 unsigned int gup_flags)
1558 struct vm_area_struct **vmas_tmp = vmas;
1559 unsigned long flags = 0;
1560 long rc, i;
1562 if (gup_flags & FOLL_LONGTERM) {
1563 if (!pages)
1564 return -EINVAL;
1566 if (!vmas_tmp) {
1567 vmas_tmp = kcalloc(nr_pages,
1568 sizeof(struct vm_area_struct *),
1569 GFP_KERNEL);
1570 if (!vmas_tmp)
1571 return -ENOMEM;
1573 flags = memalloc_nocma_save();
1576 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1577 vmas_tmp, NULL, gup_flags);
1579 if (gup_flags & FOLL_LONGTERM) {
1580 memalloc_nocma_restore(flags);
1581 if (rc < 0)
1582 goto out;
1584 if (check_dax_vmas(vmas_tmp, rc)) {
1585 for (i = 0; i < rc; i++)
1586 put_page(pages[i]);
1587 rc = -EOPNOTSUPP;
1588 goto out;
1591 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1592 vmas_tmp, gup_flags);
1595 out:
1596 if (vmas_tmp != vmas)
1597 kfree(vmas_tmp);
1598 return rc;
1600 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1601 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1602 struct mm_struct *mm,
1603 unsigned long start,
1604 unsigned long nr_pages,
1605 struct page **pages,
1606 struct vm_area_struct **vmas,
1607 unsigned int flags)
1609 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1610 NULL, flags);
1612 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1615 * This is the same as get_user_pages_remote(), just with a
1616 * less-flexible calling convention where we assume that the task
1617 * and mm being operated on are the current task's and don't allow
1618 * passing of a locked parameter. We also obviously don't pass
1619 * FOLL_REMOTE in here.
1621 long get_user_pages(unsigned long start, unsigned long nr_pages,
1622 unsigned int gup_flags, struct page **pages,
1623 struct vm_area_struct **vmas)
1625 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1626 pages, vmas, gup_flags | FOLL_TOUCH);
1628 EXPORT_SYMBOL(get_user_pages);
1631 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1632 * paths better by using either get_user_pages_locked() or
1633 * get_user_pages_unlocked().
1635 * get_user_pages_locked() is suitable to replace the form:
1637 * down_read(&mm->mmap_sem);
1638 * do_something()
1639 * get_user_pages(tsk, mm, ..., pages, NULL);
1640 * up_read(&mm->mmap_sem);
1642 * to:
1644 * int locked = 1;
1645 * down_read(&mm->mmap_sem);
1646 * do_something()
1647 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1648 * if (locked)
1649 * up_read(&mm->mmap_sem);
1651 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1652 unsigned int gup_flags, struct page **pages,
1653 int *locked)
1656 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1657 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1658 * vmas. As there are no users of this flag in this call we simply
1659 * disallow this option for now.
1661 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1662 return -EINVAL;
1664 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1665 pages, NULL, locked,
1666 gup_flags | FOLL_TOUCH);
1668 EXPORT_SYMBOL(get_user_pages_locked);
1671 * get_user_pages_unlocked() is suitable to replace the form:
1673 * down_read(&mm->mmap_sem);
1674 * get_user_pages(tsk, mm, ..., pages, NULL);
1675 * up_read(&mm->mmap_sem);
1677 * with:
1679 * get_user_pages_unlocked(tsk, mm, ..., pages);
1681 * It is functionally equivalent to get_user_pages_fast so
1682 * get_user_pages_fast should be used instead if specific gup_flags
1683 * (e.g. FOLL_FORCE) are not required.
1685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1686 struct page **pages, unsigned int gup_flags)
1688 struct mm_struct *mm = current->mm;
1689 int locked = 1;
1690 long ret;
1693 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1694 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1695 * vmas. As there are no users of this flag in this call we simply
1696 * disallow this option for now.
1698 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1699 return -EINVAL;
1701 down_read(&mm->mmap_sem);
1702 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1703 &locked, gup_flags | FOLL_TOUCH);
1704 if (locked)
1705 up_read(&mm->mmap_sem);
1706 return ret;
1708 EXPORT_SYMBOL(get_user_pages_unlocked);
1711 * Fast GUP
1713 * get_user_pages_fast attempts to pin user pages by walking the page
1714 * tables directly and avoids taking locks. Thus the walker needs to be
1715 * protected from page table pages being freed from under it, and should
1716 * block any THP splits.
1718 * One way to achieve this is to have the walker disable interrupts, and
1719 * rely on IPIs from the TLB flushing code blocking before the page table
1720 * pages are freed. This is unsuitable for architectures that do not need
1721 * to broadcast an IPI when invalidating TLBs.
1723 * Another way to achieve this is to batch up page table containing pages
1724 * belonging to more than one mm_user, then rcu_sched a callback to free those
1725 * pages. Disabling interrupts will allow the fast_gup walker to both block
1726 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1727 * (which is a relatively rare event). The code below adopts this strategy.
1729 * Before activating this code, please be aware that the following assumptions
1730 * are currently made:
1732 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1733 * free pages containing page tables or TLB flushing requires IPI broadcast.
1735 * *) ptes can be read atomically by the architecture.
1737 * *) access_ok is sufficient to validate userspace address ranges.
1739 * The last two assumptions can be relaxed by the addition of helper functions.
1741 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1743 #ifdef CONFIG_HAVE_FAST_GUP
1744 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1746 * WARNING: only to be used in the get_user_pages_fast() implementation.
1748 * With get_user_pages_fast(), we walk down the pagetables without taking any
1749 * locks. For this we would like to load the pointers atomically, but sometimes
1750 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1751 * we do have is the guarantee that a PTE will only either go from not present
1752 * to present, or present to not present or both -- it will not switch to a
1753 * completely different present page without a TLB flush in between; something
1754 * that we are blocking by holding interrupts off.
1756 * Setting ptes from not present to present goes:
1758 * ptep->pte_high = h;
1759 * smp_wmb();
1760 * ptep->pte_low = l;
1762 * And present to not present goes:
1764 * ptep->pte_low = 0;
1765 * smp_wmb();
1766 * ptep->pte_high = 0;
1768 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1769 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1770 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1771 * picked up a changed pte high. We might have gotten rubbish values from
1772 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1773 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1774 * operates on present ptes we're safe.
1776 static inline pte_t gup_get_pte(pte_t *ptep)
1778 pte_t pte;
1780 do {
1781 pte.pte_low = ptep->pte_low;
1782 smp_rmb();
1783 pte.pte_high = ptep->pte_high;
1784 smp_rmb();
1785 } while (unlikely(pte.pte_low != ptep->pte_low));
1787 return pte;
1789 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1791 * We require that the PTE can be read atomically.
1793 static inline pte_t gup_get_pte(pte_t *ptep)
1795 return READ_ONCE(*ptep);
1797 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1799 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1800 struct page **pages)
1802 while ((*nr) - nr_start) {
1803 struct page *page = pages[--(*nr)];
1805 ClearPageReferenced(page);
1806 put_page(page);
1811 * Return the compund head page with ref appropriately incremented,
1812 * or NULL if that failed.
1814 static inline struct page *try_get_compound_head(struct page *page, int refs)
1816 struct page *head = compound_head(page);
1817 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1818 return NULL;
1819 if (unlikely(!page_cache_add_speculative(head, refs)))
1820 return NULL;
1821 return head;
1824 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1825 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1826 unsigned int flags, struct page **pages, int *nr)
1828 struct dev_pagemap *pgmap = NULL;
1829 int nr_start = *nr, ret = 0;
1830 pte_t *ptep, *ptem;
1832 ptem = ptep = pte_offset_map(&pmd, addr);
1833 do {
1834 pte_t pte = gup_get_pte(ptep);
1835 struct page *head, *page;
1838 * Similar to the PMD case below, NUMA hinting must take slow
1839 * path using the pte_protnone check.
1841 if (pte_protnone(pte))
1842 goto pte_unmap;
1844 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1845 goto pte_unmap;
1847 if (pte_devmap(pte)) {
1848 if (unlikely(flags & FOLL_LONGTERM))
1849 goto pte_unmap;
1851 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1852 if (unlikely(!pgmap)) {
1853 undo_dev_pagemap(nr, nr_start, pages);
1854 goto pte_unmap;
1856 } else if (pte_special(pte))
1857 goto pte_unmap;
1859 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1860 page = pte_page(pte);
1862 head = try_get_compound_head(page, 1);
1863 if (!head)
1864 goto pte_unmap;
1866 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1867 put_page(head);
1868 goto pte_unmap;
1871 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1873 SetPageReferenced(page);
1874 pages[*nr] = page;
1875 (*nr)++;
1877 } while (ptep++, addr += PAGE_SIZE, addr != end);
1879 ret = 1;
1881 pte_unmap:
1882 if (pgmap)
1883 put_dev_pagemap(pgmap);
1884 pte_unmap(ptem);
1885 return ret;
1887 #else
1890 * If we can't determine whether or not a pte is special, then fail immediately
1891 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1892 * to be special.
1894 * For a futex to be placed on a THP tail page, get_futex_key requires a
1895 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1896 * useful to have gup_huge_pmd even if we can't operate on ptes.
1898 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1899 unsigned int flags, struct page **pages, int *nr)
1901 return 0;
1903 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1905 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1906 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1907 unsigned long end, struct page **pages, int *nr)
1909 int nr_start = *nr;
1910 struct dev_pagemap *pgmap = NULL;
1912 do {
1913 struct page *page = pfn_to_page(pfn);
1915 pgmap = get_dev_pagemap(pfn, pgmap);
1916 if (unlikely(!pgmap)) {
1917 undo_dev_pagemap(nr, nr_start, pages);
1918 return 0;
1920 SetPageReferenced(page);
1921 pages[*nr] = page;
1922 get_page(page);
1923 (*nr)++;
1924 pfn++;
1925 } while (addr += PAGE_SIZE, addr != end);
1927 if (pgmap)
1928 put_dev_pagemap(pgmap);
1929 return 1;
1932 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1933 unsigned long end, struct page **pages, int *nr)
1935 unsigned long fault_pfn;
1936 int nr_start = *nr;
1938 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1939 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1940 return 0;
1942 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1943 undo_dev_pagemap(nr, nr_start, pages);
1944 return 0;
1946 return 1;
1949 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1950 unsigned long end, struct page **pages, int *nr)
1952 unsigned long fault_pfn;
1953 int nr_start = *nr;
1955 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1956 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1957 return 0;
1959 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1960 undo_dev_pagemap(nr, nr_start, pages);
1961 return 0;
1963 return 1;
1965 #else
1966 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1967 unsigned long end, struct page **pages, int *nr)
1969 BUILD_BUG();
1970 return 0;
1973 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1974 unsigned long end, struct page **pages, int *nr)
1976 BUILD_BUG();
1977 return 0;
1979 #endif
1981 #ifdef CONFIG_ARCH_HAS_HUGEPD
1982 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1983 unsigned long sz)
1985 unsigned long __boundary = (addr + sz) & ~(sz-1);
1986 return (__boundary - 1 < end - 1) ? __boundary : end;
1989 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1990 unsigned long end, unsigned int flags,
1991 struct page **pages, int *nr)
1993 unsigned long pte_end;
1994 struct page *head, *page;
1995 pte_t pte;
1996 int refs;
1998 pte_end = (addr + sz) & ~(sz-1);
1999 if (pte_end < end)
2000 end = pte_end;
2002 pte = READ_ONCE(*ptep);
2004 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2005 return 0;
2007 /* hugepages are never "special" */
2008 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2010 refs = 0;
2011 head = pte_page(pte);
2013 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2014 do {
2015 VM_BUG_ON(compound_head(page) != head);
2016 pages[*nr] = page;
2017 (*nr)++;
2018 page++;
2019 refs++;
2020 } while (addr += PAGE_SIZE, addr != end);
2022 head = try_get_compound_head(head, refs);
2023 if (!head) {
2024 *nr -= refs;
2025 return 0;
2028 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2029 /* Could be optimized better */
2030 *nr -= refs;
2031 while (refs--)
2032 put_page(head);
2033 return 0;
2036 SetPageReferenced(head);
2037 return 1;
2040 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2041 unsigned int pdshift, unsigned long end, unsigned int flags,
2042 struct page **pages, int *nr)
2044 pte_t *ptep;
2045 unsigned long sz = 1UL << hugepd_shift(hugepd);
2046 unsigned long next;
2048 ptep = hugepte_offset(hugepd, addr, pdshift);
2049 do {
2050 next = hugepte_addr_end(addr, end, sz);
2051 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2052 return 0;
2053 } while (ptep++, addr = next, addr != end);
2055 return 1;
2057 #else
2058 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2059 unsigned int pdshift, unsigned long end, unsigned int flags,
2060 struct page **pages, int *nr)
2062 return 0;
2064 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2066 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2067 unsigned long end, unsigned int flags,
2068 struct page **pages, int *nr)
2070 struct page *head, *page;
2071 int refs;
2073 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2074 return 0;
2076 if (pmd_devmap(orig)) {
2077 if (unlikely(flags & FOLL_LONGTERM))
2078 return 0;
2079 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2082 refs = 0;
2083 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2084 do {
2085 pages[*nr] = page;
2086 (*nr)++;
2087 page++;
2088 refs++;
2089 } while (addr += PAGE_SIZE, addr != end);
2091 head = try_get_compound_head(pmd_page(orig), refs);
2092 if (!head) {
2093 *nr -= refs;
2094 return 0;
2097 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2098 *nr -= refs;
2099 while (refs--)
2100 put_page(head);
2101 return 0;
2104 SetPageReferenced(head);
2105 return 1;
2108 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2109 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2111 struct page *head, *page;
2112 int refs;
2114 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2115 return 0;
2117 if (pud_devmap(orig)) {
2118 if (unlikely(flags & FOLL_LONGTERM))
2119 return 0;
2120 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2123 refs = 0;
2124 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2125 do {
2126 pages[*nr] = page;
2127 (*nr)++;
2128 page++;
2129 refs++;
2130 } while (addr += PAGE_SIZE, addr != end);
2132 head = try_get_compound_head(pud_page(orig), refs);
2133 if (!head) {
2134 *nr -= refs;
2135 return 0;
2138 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2139 *nr -= refs;
2140 while (refs--)
2141 put_page(head);
2142 return 0;
2145 SetPageReferenced(head);
2146 return 1;
2149 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2150 unsigned long end, unsigned int flags,
2151 struct page **pages, int *nr)
2153 int refs;
2154 struct page *head, *page;
2156 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2157 return 0;
2159 BUILD_BUG_ON(pgd_devmap(orig));
2160 refs = 0;
2161 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2162 do {
2163 pages[*nr] = page;
2164 (*nr)++;
2165 page++;
2166 refs++;
2167 } while (addr += PAGE_SIZE, addr != end);
2169 head = try_get_compound_head(pgd_page(orig), refs);
2170 if (!head) {
2171 *nr -= refs;
2172 return 0;
2175 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2176 *nr -= refs;
2177 while (refs--)
2178 put_page(head);
2179 return 0;
2182 SetPageReferenced(head);
2183 return 1;
2186 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2187 unsigned int flags, struct page **pages, int *nr)
2189 unsigned long next;
2190 pmd_t *pmdp;
2192 pmdp = pmd_offset(&pud, addr);
2193 do {
2194 pmd_t pmd = READ_ONCE(*pmdp);
2196 next = pmd_addr_end(addr, end);
2197 if (!pmd_present(pmd))
2198 return 0;
2200 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2201 pmd_devmap(pmd))) {
2203 * NUMA hinting faults need to be handled in the GUP
2204 * slowpath for accounting purposes and so that they
2205 * can be serialised against THP migration.
2207 if (pmd_protnone(pmd))
2208 return 0;
2210 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2211 pages, nr))
2212 return 0;
2214 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2216 * architecture have different format for hugetlbfs
2217 * pmd format and THP pmd format
2219 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2220 PMD_SHIFT, next, flags, pages, nr))
2221 return 0;
2222 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2223 return 0;
2224 } while (pmdp++, addr = next, addr != end);
2226 return 1;
2229 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2230 unsigned int flags, struct page **pages, int *nr)
2232 unsigned long next;
2233 pud_t *pudp;
2235 pudp = pud_offset(&p4d, addr);
2236 do {
2237 pud_t pud = READ_ONCE(*pudp);
2239 next = pud_addr_end(addr, end);
2240 if (pud_none(pud))
2241 return 0;
2242 if (unlikely(pud_huge(pud))) {
2243 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2244 pages, nr))
2245 return 0;
2246 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2247 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2248 PUD_SHIFT, next, flags, pages, nr))
2249 return 0;
2250 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2251 return 0;
2252 } while (pudp++, addr = next, addr != end);
2254 return 1;
2257 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2258 unsigned int flags, struct page **pages, int *nr)
2260 unsigned long next;
2261 p4d_t *p4dp;
2263 p4dp = p4d_offset(&pgd, addr);
2264 do {
2265 p4d_t p4d = READ_ONCE(*p4dp);
2267 next = p4d_addr_end(addr, end);
2268 if (p4d_none(p4d))
2269 return 0;
2270 BUILD_BUG_ON(p4d_huge(p4d));
2271 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2272 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2273 P4D_SHIFT, next, flags, pages, nr))
2274 return 0;
2275 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2276 return 0;
2277 } while (p4dp++, addr = next, addr != end);
2279 return 1;
2282 static void gup_pgd_range(unsigned long addr, unsigned long end,
2283 unsigned int flags, struct page **pages, int *nr)
2285 unsigned long next;
2286 pgd_t *pgdp;
2288 pgdp = pgd_offset(current->mm, addr);
2289 do {
2290 pgd_t pgd = READ_ONCE(*pgdp);
2292 next = pgd_addr_end(addr, end);
2293 if (pgd_none(pgd))
2294 return;
2295 if (unlikely(pgd_huge(pgd))) {
2296 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2297 pages, nr))
2298 return;
2299 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2300 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2301 PGDIR_SHIFT, next, flags, pages, nr))
2302 return;
2303 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2304 return;
2305 } while (pgdp++, addr = next, addr != end);
2307 #else
2308 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2309 unsigned int flags, struct page **pages, int *nr)
2312 #endif /* CONFIG_HAVE_FAST_GUP */
2314 #ifndef gup_fast_permitted
2316 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2317 * we need to fall back to the slow version:
2319 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2321 return true;
2323 #endif
2326 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2327 * the regular GUP.
2328 * Note a difference with get_user_pages_fast: this always returns the
2329 * number of pages pinned, 0 if no pages were pinned.
2331 * If the architecture does not support this function, simply return with no
2332 * pages pinned.
2334 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2335 struct page **pages)
2337 unsigned long len, end;
2338 unsigned long flags;
2339 int nr = 0;
2341 start = untagged_addr(start) & PAGE_MASK;
2342 len = (unsigned long) nr_pages << PAGE_SHIFT;
2343 end = start + len;
2345 if (end <= start)
2346 return 0;
2347 if (unlikely(!access_ok((void __user *)start, len)))
2348 return 0;
2351 * Disable interrupts. We use the nested form as we can already have
2352 * interrupts disabled by get_futex_key.
2354 * With interrupts disabled, we block page table pages from being
2355 * freed from under us. See struct mmu_table_batch comments in
2356 * include/asm-generic/tlb.h for more details.
2358 * We do not adopt an rcu_read_lock(.) here as we also want to
2359 * block IPIs that come from THPs splitting.
2362 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2363 gup_fast_permitted(start, end)) {
2364 local_irq_save(flags);
2365 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2366 local_irq_restore(flags);
2369 return nr;
2371 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2373 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2374 unsigned int gup_flags, struct page **pages)
2376 int ret;
2379 * FIXME: FOLL_LONGTERM does not work with
2380 * get_user_pages_unlocked() (see comments in that function)
2382 if (gup_flags & FOLL_LONGTERM) {
2383 down_read(&current->mm->mmap_sem);
2384 ret = __gup_longterm_locked(current, current->mm,
2385 start, nr_pages,
2386 pages, NULL, gup_flags);
2387 up_read(&current->mm->mmap_sem);
2388 } else {
2389 ret = get_user_pages_unlocked(start, nr_pages,
2390 pages, gup_flags);
2393 return ret;
2397 * get_user_pages_fast() - pin user pages in memory
2398 * @start: starting user address
2399 * @nr_pages: number of pages from start to pin
2400 * @gup_flags: flags modifying pin behaviour
2401 * @pages: array that receives pointers to the pages pinned.
2402 * Should be at least nr_pages long.
2404 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2405 * If not successful, it will fall back to taking the lock and
2406 * calling get_user_pages().
2408 * Returns number of pages pinned. This may be fewer than the number
2409 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2410 * were pinned, returns -errno.
2412 int get_user_pages_fast(unsigned long start, int nr_pages,
2413 unsigned int gup_flags, struct page **pages)
2415 unsigned long addr, len, end;
2416 int nr = 0, ret = 0;
2418 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2419 return -EINVAL;
2421 start = untagged_addr(start) & PAGE_MASK;
2422 addr = start;
2423 len = (unsigned long) nr_pages << PAGE_SHIFT;
2424 end = start + len;
2426 if (end <= start)
2427 return 0;
2428 if (unlikely(!access_ok((void __user *)start, len)))
2429 return -EFAULT;
2431 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2432 gup_fast_permitted(start, end)) {
2433 local_irq_disable();
2434 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2435 local_irq_enable();
2436 ret = nr;
2439 if (nr < nr_pages) {
2440 /* Try to get the remaining pages with get_user_pages */
2441 start += nr << PAGE_SHIFT;
2442 pages += nr;
2444 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2445 gup_flags, pages);
2447 /* Have to be a bit careful with return values */
2448 if (nr > 0) {
2449 if (ret < 0)
2450 ret = nr;
2451 else
2452 ret += nr;
2456 return ret;
2458 EXPORT_SYMBOL_GPL(get_user_pages_fast);