split dev_queue
[cor.git] / lib / bitmap.c
blob4250519d7d1c53e459f49823aa1b518c331fe4cc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
19 #include <asm/page.h>
21 #include "kstrtox.h"
23 /**
24 * DOC: bitmap introduction
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
46 int __bitmap_equal(const unsigned long *bitmap1,
47 const unsigned long *bitmap2, unsigned int bits)
49 unsigned int k, lim = bits/BITS_PER_LONG;
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
58 return 1;
60 EXPORT_SYMBOL(__bitmap_equal);
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 const unsigned long *bitmap2,
64 const unsigned long *bitmap3,
65 unsigned int bits)
67 unsigned int k, lim = bits / BITS_PER_LONG;
68 unsigned long tmp;
70 for (k = 0; k < lim; ++k) {
71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 return false;
75 if (!(bits % BITS_PER_LONG))
76 return true;
78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
84 unsigned int k, lim = BITS_TO_LONGS(bits);
85 for (k = 0; k < lim; ++k)
86 dst[k] = ~src[k];
88 EXPORT_SYMBOL(__bitmap_complement);
90 /**
91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
95 * @nbits : bitmap size, in bits
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 unsigned shift, unsigned nbits)
104 unsigned k, lim = BITS_TO_LONGS(nbits);
105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 for (k = 0; off + k < lim; ++k) {
108 unsigned long upper, lower;
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
114 if (!rem || off + k + 1 >= lim)
115 upper = 0;
116 else {
117 upper = src[off + k + 1];
118 if (off + k + 1 == lim - 1)
119 upper &= mask;
120 upper <<= (BITS_PER_LONG - rem);
122 lower = src[off + k];
123 if (off + k == lim - 1)
124 lower &= mask;
125 lower >>= rem;
126 dst[k] = lower | upper;
128 if (off)
129 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
131 EXPORT_SYMBOL(__bitmap_shift_right);
135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
139 * @nbits : bitmap size, in bits
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits)
149 int k;
150 unsigned int lim = BITS_TO_LONGS(nbits);
151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 for (k = lim - off - 1; k >= 0; --k) {
153 unsigned long upper, lower;
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
159 if (rem && k > 0)
160 lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 else
162 lower = 0;
163 upper = src[k] << rem;
164 dst[k + off] = lower | upper;
166 if (off)
167 memset(dst, 0, off*sizeof(unsigned long));
169 EXPORT_SYMBOL(__bitmap_shift_left);
171 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
172 const unsigned long *bitmap2, unsigned int bits)
174 unsigned int k;
175 unsigned int lim = bits/BITS_PER_LONG;
176 unsigned long result = 0;
178 for (k = 0; k < lim; k++)
179 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
180 if (bits % BITS_PER_LONG)
181 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
182 BITMAP_LAST_WORD_MASK(bits));
183 return result != 0;
185 EXPORT_SYMBOL(__bitmap_and);
187 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
188 const unsigned long *bitmap2, unsigned int bits)
190 unsigned int k;
191 unsigned int nr = BITS_TO_LONGS(bits);
193 for (k = 0; k < nr; k++)
194 dst[k] = bitmap1[k] | bitmap2[k];
196 EXPORT_SYMBOL(__bitmap_or);
198 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
199 const unsigned long *bitmap2, unsigned int bits)
201 unsigned int k;
202 unsigned int nr = BITS_TO_LONGS(bits);
204 for (k = 0; k < nr; k++)
205 dst[k] = bitmap1[k] ^ bitmap2[k];
207 EXPORT_SYMBOL(__bitmap_xor);
209 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
210 const unsigned long *bitmap2, unsigned int bits)
212 unsigned int k;
213 unsigned int lim = bits/BITS_PER_LONG;
214 unsigned long result = 0;
216 for (k = 0; k < lim; k++)
217 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
218 if (bits % BITS_PER_LONG)
219 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
220 BITMAP_LAST_WORD_MASK(bits));
221 return result != 0;
223 EXPORT_SYMBOL(__bitmap_andnot);
225 void __bitmap_replace(unsigned long *dst,
226 const unsigned long *old, const unsigned long *new,
227 const unsigned long *mask, unsigned int nbits)
229 unsigned int k;
230 unsigned int nr = BITS_TO_LONGS(nbits);
232 for (k = 0; k < nr; k++)
233 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
235 EXPORT_SYMBOL(__bitmap_replace);
237 int __bitmap_intersects(const unsigned long *bitmap1,
238 const unsigned long *bitmap2, unsigned int bits)
240 unsigned int k, lim = bits/BITS_PER_LONG;
241 for (k = 0; k < lim; ++k)
242 if (bitmap1[k] & bitmap2[k])
243 return 1;
245 if (bits % BITS_PER_LONG)
246 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
247 return 1;
248 return 0;
250 EXPORT_SYMBOL(__bitmap_intersects);
252 int __bitmap_subset(const unsigned long *bitmap1,
253 const unsigned long *bitmap2, unsigned int bits)
255 unsigned int k, lim = bits/BITS_PER_LONG;
256 for (k = 0; k < lim; ++k)
257 if (bitmap1[k] & ~bitmap2[k])
258 return 0;
260 if (bits % BITS_PER_LONG)
261 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
262 return 0;
263 return 1;
265 EXPORT_SYMBOL(__bitmap_subset);
267 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
269 unsigned int k, lim = bits/BITS_PER_LONG;
270 int w = 0;
272 for (k = 0; k < lim; k++)
273 w += hweight_long(bitmap[k]);
275 if (bits % BITS_PER_LONG)
276 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
278 return w;
280 EXPORT_SYMBOL(__bitmap_weight);
282 void __bitmap_set(unsigned long *map, unsigned int start, int len)
284 unsigned long *p = map + BIT_WORD(start);
285 const unsigned int size = start + len;
286 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
287 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
289 while (len - bits_to_set >= 0) {
290 *p |= mask_to_set;
291 len -= bits_to_set;
292 bits_to_set = BITS_PER_LONG;
293 mask_to_set = ~0UL;
294 p++;
296 if (len) {
297 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
298 *p |= mask_to_set;
301 EXPORT_SYMBOL(__bitmap_set);
303 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
305 unsigned long *p = map + BIT_WORD(start);
306 const unsigned int size = start + len;
307 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
308 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
310 while (len - bits_to_clear >= 0) {
311 *p &= ~mask_to_clear;
312 len -= bits_to_clear;
313 bits_to_clear = BITS_PER_LONG;
314 mask_to_clear = ~0UL;
315 p++;
317 if (len) {
318 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
319 *p &= ~mask_to_clear;
322 EXPORT_SYMBOL(__bitmap_clear);
325 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
326 * @map: The address to base the search on
327 * @size: The bitmap size in bits
328 * @start: The bitnumber to start searching at
329 * @nr: The number of zeroed bits we're looking for
330 * @align_mask: Alignment mask for zero area
331 * @align_offset: Alignment offset for zero area.
333 * The @align_mask should be one less than a power of 2; the effect is that
334 * the bit offset of all zero areas this function finds plus @align_offset
335 * is multiple of that power of 2.
337 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
338 unsigned long size,
339 unsigned long start,
340 unsigned int nr,
341 unsigned long align_mask,
342 unsigned long align_offset)
344 unsigned long index, end, i;
345 again:
346 index = find_next_zero_bit(map, size, start);
348 /* Align allocation */
349 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
351 end = index + nr;
352 if (end > size)
353 return end;
354 i = find_next_bit(map, end, index);
355 if (i < end) {
356 start = i + 1;
357 goto again;
359 return index;
361 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
364 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
365 * second version by Paul Jackson, third by Joe Korty.
368 #define CHUNKSZ 32
369 #define nbits_to_hold_value(val) fls(val)
370 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
373 * __bitmap_parse - convert an ASCII hex string into a bitmap.
374 * @buf: pointer to buffer containing string.
375 * @buflen: buffer size in bytes. If string is smaller than this
376 * then it must be terminated with a \0.
377 * @is_user: location of buffer, 0 indicates kernel space
378 * @maskp: pointer to bitmap array that will contain result.
379 * @nmaskbits: size of bitmap, in bits.
381 * Commas group hex digits into chunks. Each chunk defines exactly 32
382 * bits of the resultant bitmask. No chunk may specify a value larger
383 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
384 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
385 * characters and for grouping errors such as "1,,5", ",44", "," and "".
386 * Leading and trailing whitespace accepted, but not embedded whitespace.
388 int __bitmap_parse(const char *buf, unsigned int buflen,
389 int is_user, unsigned long *maskp,
390 int nmaskbits)
392 int c, old_c, totaldigits, ndigits, nchunks, nbits;
393 u32 chunk;
394 const char __user __force *ubuf = (const char __user __force *)buf;
396 bitmap_zero(maskp, nmaskbits);
398 nchunks = nbits = totaldigits = c = 0;
399 do {
400 chunk = 0;
401 ndigits = totaldigits;
403 /* Get the next chunk of the bitmap */
404 while (buflen) {
405 old_c = c;
406 if (is_user) {
407 if (__get_user(c, ubuf++))
408 return -EFAULT;
410 else
411 c = *buf++;
412 buflen--;
413 if (isspace(c))
414 continue;
417 * If the last character was a space and the current
418 * character isn't '\0', we've got embedded whitespace.
419 * This is a no-no, so throw an error.
421 if (totaldigits && c && isspace(old_c))
422 return -EINVAL;
424 /* A '\0' or a ',' signal the end of the chunk */
425 if (c == '\0' || c == ',')
426 break;
428 if (!isxdigit(c))
429 return -EINVAL;
432 * Make sure there are at least 4 free bits in 'chunk'.
433 * If not, this hexdigit will overflow 'chunk', so
434 * throw an error.
436 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
437 return -EOVERFLOW;
439 chunk = (chunk << 4) | hex_to_bin(c);
440 totaldigits++;
442 if (ndigits == totaldigits)
443 return -EINVAL;
444 if (nchunks == 0 && chunk == 0)
445 continue;
447 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
448 *maskp |= chunk;
449 nchunks++;
450 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
451 if (nbits > nmaskbits)
452 return -EOVERFLOW;
453 } while (buflen && c == ',');
455 return 0;
457 EXPORT_SYMBOL(__bitmap_parse);
460 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
462 * @ubuf: pointer to user buffer containing string.
463 * @ulen: buffer size in bytes. If string is smaller than this
464 * then it must be terminated with a \0.
465 * @maskp: pointer to bitmap array that will contain result.
466 * @nmaskbits: size of bitmap, in bits.
468 * Wrapper for __bitmap_parse(), providing it with user buffer.
470 * We cannot have this as an inline function in bitmap.h because it needs
471 * linux/uaccess.h to get the access_ok() declaration and this causes
472 * cyclic dependencies.
474 int bitmap_parse_user(const char __user *ubuf,
475 unsigned int ulen, unsigned long *maskp,
476 int nmaskbits)
478 if (!access_ok(ubuf, ulen))
479 return -EFAULT;
480 return __bitmap_parse((const char __force *)ubuf,
481 ulen, 1, maskp, nmaskbits);
484 EXPORT_SYMBOL(bitmap_parse_user);
487 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
488 * @list: indicates whether the bitmap must be list
489 * @buf: page aligned buffer into which string is placed
490 * @maskp: pointer to bitmap to convert
491 * @nmaskbits: size of bitmap, in bits
493 * Output format is a comma-separated list of decimal numbers and
494 * ranges if list is specified or hex digits grouped into comma-separated
495 * sets of 8 digits/set. Returns the number of characters written to buf.
497 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
498 * area and that sufficient storage remains at @buf to accommodate the
499 * bitmap_print_to_pagebuf() output. Returns the number of characters
500 * actually printed to @buf, excluding terminating '\0'.
502 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
503 int nmaskbits)
505 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
507 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
508 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
510 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
513 * Region 9-38:4/10 describes the following bitmap structure:
514 * 0 9 12 18 38
515 * .........****......****......****......
516 * ^ ^ ^ ^
517 * start off group_len end
519 struct region {
520 unsigned int start;
521 unsigned int off;
522 unsigned int group_len;
523 unsigned int end;
526 static int bitmap_set_region(const struct region *r,
527 unsigned long *bitmap, int nbits)
529 unsigned int start;
531 if (r->end >= nbits)
532 return -ERANGE;
534 for (start = r->start; start <= r->end; start += r->group_len)
535 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
537 return 0;
540 static int bitmap_check_region(const struct region *r)
542 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
543 return -EINVAL;
545 return 0;
548 static const char *bitmap_getnum(const char *str, unsigned int *num)
550 unsigned long long n;
551 unsigned int len;
553 len = _parse_integer(str, 10, &n);
554 if (!len)
555 return ERR_PTR(-EINVAL);
556 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
557 return ERR_PTR(-EOVERFLOW);
559 *num = n;
560 return str + len;
563 static inline bool end_of_str(char c)
565 return c == '\0' || c == '\n';
568 static inline bool __end_of_region(char c)
570 return isspace(c) || c == ',';
573 static inline bool end_of_region(char c)
575 return __end_of_region(c) || end_of_str(c);
579 * The format allows commas and whitespases at the beginning
580 * of the region.
582 static const char *bitmap_find_region(const char *str)
584 while (__end_of_region(*str))
585 str++;
587 return end_of_str(*str) ? NULL : str;
590 static const char *bitmap_parse_region(const char *str, struct region *r)
592 str = bitmap_getnum(str, &r->start);
593 if (IS_ERR(str))
594 return str;
596 if (end_of_region(*str))
597 goto no_end;
599 if (*str != '-')
600 return ERR_PTR(-EINVAL);
602 str = bitmap_getnum(str + 1, &r->end);
603 if (IS_ERR(str))
604 return str;
606 if (end_of_region(*str))
607 goto no_pattern;
609 if (*str != ':')
610 return ERR_PTR(-EINVAL);
612 str = bitmap_getnum(str + 1, &r->off);
613 if (IS_ERR(str))
614 return str;
616 if (*str != '/')
617 return ERR_PTR(-EINVAL);
619 return bitmap_getnum(str + 1, &r->group_len);
621 no_end:
622 r->end = r->start;
623 no_pattern:
624 r->off = r->end + 1;
625 r->group_len = r->end + 1;
627 return end_of_str(*str) ? NULL : str;
631 * bitmap_parselist - convert list format ASCII string to bitmap
632 * @buf: read user string from this buffer; must be terminated
633 * with a \0 or \n.
634 * @maskp: write resulting mask here
635 * @nmaskbits: number of bits in mask to be written
637 * Input format is a comma-separated list of decimal numbers and
638 * ranges. Consecutively set bits are shown as two hyphen-separated
639 * decimal numbers, the smallest and largest bit numbers set in
640 * the range.
641 * Optionally each range can be postfixed to denote that only parts of it
642 * should be set. The range will divided to groups of specific size.
643 * From each group will be used only defined amount of bits.
644 * Syntax: range:used_size/group_size
645 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
647 * Returns: 0 on success, -errno on invalid input strings. Error values:
649 * - ``-EINVAL``: wrong region format
650 * - ``-EINVAL``: invalid character in string
651 * - ``-ERANGE``: bit number specified too large for mask
652 * - ``-EOVERFLOW``: integer overflow in the input parameters
654 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
656 struct region r;
657 long ret;
659 bitmap_zero(maskp, nmaskbits);
661 while (buf) {
662 buf = bitmap_find_region(buf);
663 if (buf == NULL)
664 return 0;
666 buf = bitmap_parse_region(buf, &r);
667 if (IS_ERR(buf))
668 return PTR_ERR(buf);
670 ret = bitmap_check_region(&r);
671 if (ret)
672 return ret;
674 ret = bitmap_set_region(&r, maskp, nmaskbits);
675 if (ret)
676 return ret;
679 return 0;
681 EXPORT_SYMBOL(bitmap_parselist);
685 * bitmap_parselist_user()
687 * @ubuf: pointer to user buffer containing string.
688 * @ulen: buffer size in bytes. If string is smaller than this
689 * then it must be terminated with a \0.
690 * @maskp: pointer to bitmap array that will contain result.
691 * @nmaskbits: size of bitmap, in bits.
693 * Wrapper for bitmap_parselist(), providing it with user buffer.
695 int bitmap_parselist_user(const char __user *ubuf,
696 unsigned int ulen, unsigned long *maskp,
697 int nmaskbits)
699 char *buf;
700 int ret;
702 buf = memdup_user_nul(ubuf, ulen);
703 if (IS_ERR(buf))
704 return PTR_ERR(buf);
706 ret = bitmap_parselist(buf, maskp, nmaskbits);
708 kfree(buf);
709 return ret;
711 EXPORT_SYMBOL(bitmap_parselist_user);
714 #ifdef CONFIG_NUMA
716 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
717 * @buf: pointer to a bitmap
718 * @pos: a bit position in @buf (0 <= @pos < @nbits)
719 * @nbits: number of valid bit positions in @buf
721 * Map the bit at position @pos in @buf (of length @nbits) to the
722 * ordinal of which set bit it is. If it is not set or if @pos
723 * is not a valid bit position, map to -1.
725 * If for example, just bits 4 through 7 are set in @buf, then @pos
726 * values 4 through 7 will get mapped to 0 through 3, respectively,
727 * and other @pos values will get mapped to -1. When @pos value 7
728 * gets mapped to (returns) @ord value 3 in this example, that means
729 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
731 * The bit positions 0 through @bits are valid positions in @buf.
733 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
735 if (pos >= nbits || !test_bit(pos, buf))
736 return -1;
738 return __bitmap_weight(buf, pos);
742 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
743 * @buf: pointer to bitmap
744 * @ord: ordinal bit position (n-th set bit, n >= 0)
745 * @nbits: number of valid bit positions in @buf
747 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
748 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
749 * >= weight(buf), returns @nbits.
751 * If for example, just bits 4 through 7 are set in @buf, then @ord
752 * values 0 through 3 will get mapped to 4 through 7, respectively,
753 * and all other @ord values returns @nbits. When @ord value 3
754 * gets mapped to (returns) @pos value 7 in this example, that means
755 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
757 * The bit positions 0 through @nbits-1 are valid positions in @buf.
759 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
761 unsigned int pos;
763 for (pos = find_first_bit(buf, nbits);
764 pos < nbits && ord;
765 pos = find_next_bit(buf, nbits, pos + 1))
766 ord--;
768 return pos;
772 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
773 * @dst: remapped result
774 * @src: subset to be remapped
775 * @old: defines domain of map
776 * @new: defines range of map
777 * @nbits: number of bits in each of these bitmaps
779 * Let @old and @new define a mapping of bit positions, such that
780 * whatever position is held by the n-th set bit in @old is mapped
781 * to the n-th set bit in @new. In the more general case, allowing
782 * for the possibility that the weight 'w' of @new is less than the
783 * weight of @old, map the position of the n-th set bit in @old to
784 * the position of the m-th set bit in @new, where m == n % w.
786 * If either of the @old and @new bitmaps are empty, or if @src and
787 * @dst point to the same location, then this routine copies @src
788 * to @dst.
790 * The positions of unset bits in @old are mapped to themselves
791 * (the identify map).
793 * Apply the above specified mapping to @src, placing the result in
794 * @dst, clearing any bits previously set in @dst.
796 * For example, lets say that @old has bits 4 through 7 set, and
797 * @new has bits 12 through 15 set. This defines the mapping of bit
798 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
799 * bit positions unchanged. So if say @src comes into this routine
800 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
801 * 13 and 15 set.
803 void bitmap_remap(unsigned long *dst, const unsigned long *src,
804 const unsigned long *old, const unsigned long *new,
805 unsigned int nbits)
807 unsigned int oldbit, w;
809 if (dst == src) /* following doesn't handle inplace remaps */
810 return;
811 bitmap_zero(dst, nbits);
813 w = bitmap_weight(new, nbits);
814 for_each_set_bit(oldbit, src, nbits) {
815 int n = bitmap_pos_to_ord(old, oldbit, nbits);
817 if (n < 0 || w == 0)
818 set_bit(oldbit, dst); /* identity map */
819 else
820 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
825 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
826 * @oldbit: bit position to be mapped
827 * @old: defines domain of map
828 * @new: defines range of map
829 * @bits: number of bits in each of these bitmaps
831 * Let @old and @new define a mapping of bit positions, such that
832 * whatever position is held by the n-th set bit in @old is mapped
833 * to the n-th set bit in @new. In the more general case, allowing
834 * for the possibility that the weight 'w' of @new is less than the
835 * weight of @old, map the position of the n-th set bit in @old to
836 * the position of the m-th set bit in @new, where m == n % w.
838 * The positions of unset bits in @old are mapped to themselves
839 * (the identify map).
841 * Apply the above specified mapping to bit position @oldbit, returning
842 * the new bit position.
844 * For example, lets say that @old has bits 4 through 7 set, and
845 * @new has bits 12 through 15 set. This defines the mapping of bit
846 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
847 * bit positions unchanged. So if say @oldbit is 5, then this routine
848 * returns 13.
850 int bitmap_bitremap(int oldbit, const unsigned long *old,
851 const unsigned long *new, int bits)
853 int w = bitmap_weight(new, bits);
854 int n = bitmap_pos_to_ord(old, oldbit, bits);
855 if (n < 0 || w == 0)
856 return oldbit;
857 else
858 return bitmap_ord_to_pos(new, n % w, bits);
862 * bitmap_onto - translate one bitmap relative to another
863 * @dst: resulting translated bitmap
864 * @orig: original untranslated bitmap
865 * @relmap: bitmap relative to which translated
866 * @bits: number of bits in each of these bitmaps
868 * Set the n-th bit of @dst iff there exists some m such that the
869 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
870 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
871 * (If you understood the previous sentence the first time your
872 * read it, you're overqualified for your current job.)
874 * In other words, @orig is mapped onto (surjectively) @dst,
875 * using the map { <n, m> | the n-th bit of @relmap is the
876 * m-th set bit of @relmap }.
878 * Any set bits in @orig above bit number W, where W is the
879 * weight of (number of set bits in) @relmap are mapped nowhere.
880 * In particular, if for all bits m set in @orig, m >= W, then
881 * @dst will end up empty. In situations where the possibility
882 * of such an empty result is not desired, one way to avoid it is
883 * to use the bitmap_fold() operator, below, to first fold the
884 * @orig bitmap over itself so that all its set bits x are in the
885 * range 0 <= x < W. The bitmap_fold() operator does this by
886 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
888 * Example [1] for bitmap_onto():
889 * Let's say @relmap has bits 30-39 set, and @orig has bits
890 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
891 * @dst will have bits 31, 33, 35, 37 and 39 set.
893 * When bit 0 is set in @orig, it means turn on the bit in
894 * @dst corresponding to whatever is the first bit (if any)
895 * that is turned on in @relmap. Since bit 0 was off in the
896 * above example, we leave off that bit (bit 30) in @dst.
898 * When bit 1 is set in @orig (as in the above example), it
899 * means turn on the bit in @dst corresponding to whatever
900 * is the second bit that is turned on in @relmap. The second
901 * bit in @relmap that was turned on in the above example was
902 * bit 31, so we turned on bit 31 in @dst.
904 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
905 * because they were the 4th, 6th, 8th and 10th set bits
906 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
907 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
909 * When bit 11 is set in @orig, it means turn on the bit in
910 * @dst corresponding to whatever is the twelfth bit that is
911 * turned on in @relmap. In the above example, there were
912 * only ten bits turned on in @relmap (30..39), so that bit
913 * 11 was set in @orig had no affect on @dst.
915 * Example [2] for bitmap_fold() + bitmap_onto():
916 * Let's say @relmap has these ten bits set::
918 * 40 41 42 43 45 48 53 61 74 95
920 * (for the curious, that's 40 plus the first ten terms of the
921 * Fibonacci sequence.)
923 * Further lets say we use the following code, invoking
924 * bitmap_fold() then bitmap_onto, as suggested above to
925 * avoid the possibility of an empty @dst result::
927 * unsigned long *tmp; // a temporary bitmap's bits
929 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
930 * bitmap_onto(dst, tmp, relmap, bits);
932 * Then this table shows what various values of @dst would be, for
933 * various @orig's. I list the zero-based positions of each set bit.
934 * The tmp column shows the intermediate result, as computed by
935 * using bitmap_fold() to fold the @orig bitmap modulo ten
936 * (the weight of @relmap):
938 * =============== ============== =================
939 * @orig tmp @dst
940 * 0 0 40
941 * 1 1 41
942 * 9 9 95
943 * 10 0 40 [#f1]_
944 * 1 3 5 7 1 3 5 7 41 43 48 61
945 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
946 * 0 9 18 27 0 9 8 7 40 61 74 95
947 * 0 10 20 30 0 40
948 * 0 11 22 33 0 1 2 3 40 41 42 43
949 * 0 12 24 36 0 2 4 6 40 42 45 53
950 * 78 102 211 1 2 8 41 42 74 [#f1]_
951 * =============== ============== =================
953 * .. [#f1]
955 * For these marked lines, if we hadn't first done bitmap_fold()
956 * into tmp, then the @dst result would have been empty.
958 * If either of @orig or @relmap is empty (no set bits), then @dst
959 * will be returned empty.
961 * If (as explained above) the only set bits in @orig are in positions
962 * m where m >= W, (where W is the weight of @relmap) then @dst will
963 * once again be returned empty.
965 * All bits in @dst not set by the above rule are cleared.
967 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
968 const unsigned long *relmap, unsigned int bits)
970 unsigned int n, m; /* same meaning as in above comment */
972 if (dst == orig) /* following doesn't handle inplace mappings */
973 return;
974 bitmap_zero(dst, bits);
977 * The following code is a more efficient, but less
978 * obvious, equivalent to the loop:
979 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
980 * n = bitmap_ord_to_pos(orig, m, bits);
981 * if (test_bit(m, orig))
982 * set_bit(n, dst);
986 m = 0;
987 for_each_set_bit(n, relmap, bits) {
988 /* m == bitmap_pos_to_ord(relmap, n, bits) */
989 if (test_bit(m, orig))
990 set_bit(n, dst);
991 m++;
996 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
997 * @dst: resulting smaller bitmap
998 * @orig: original larger bitmap
999 * @sz: specified size
1000 * @nbits: number of bits in each of these bitmaps
1002 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1003 * Clear all other bits in @dst. See further the comment and
1004 * Example [2] for bitmap_onto() for why and how to use this.
1006 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1007 unsigned int sz, unsigned int nbits)
1009 unsigned int oldbit;
1011 if (dst == orig) /* following doesn't handle inplace mappings */
1012 return;
1013 bitmap_zero(dst, nbits);
1015 for_each_set_bit(oldbit, orig, nbits)
1016 set_bit(oldbit % sz, dst);
1018 #endif /* CONFIG_NUMA */
1021 * Common code for bitmap_*_region() routines.
1022 * bitmap: array of unsigned longs corresponding to the bitmap
1023 * pos: the beginning of the region
1024 * order: region size (log base 2 of number of bits)
1025 * reg_op: operation(s) to perform on that region of bitmap
1027 * Can set, verify and/or release a region of bits in a bitmap,
1028 * depending on which combination of REG_OP_* flag bits is set.
1030 * A region of a bitmap is a sequence of bits in the bitmap, of
1031 * some size '1 << order' (a power of two), aligned to that same
1032 * '1 << order' power of two.
1034 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1035 * Returns 0 in all other cases and reg_ops.
1038 enum {
1039 REG_OP_ISFREE, /* true if region is all zero bits */
1040 REG_OP_ALLOC, /* set all bits in region */
1041 REG_OP_RELEASE, /* clear all bits in region */
1044 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1046 int nbits_reg; /* number of bits in region */
1047 int index; /* index first long of region in bitmap */
1048 int offset; /* bit offset region in bitmap[index] */
1049 int nlongs_reg; /* num longs spanned by region in bitmap */
1050 int nbitsinlong; /* num bits of region in each spanned long */
1051 unsigned long mask; /* bitmask for one long of region */
1052 int i; /* scans bitmap by longs */
1053 int ret = 0; /* return value */
1056 * Either nlongs_reg == 1 (for small orders that fit in one long)
1057 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1059 nbits_reg = 1 << order;
1060 index = pos / BITS_PER_LONG;
1061 offset = pos - (index * BITS_PER_LONG);
1062 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1063 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1066 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1067 * overflows if nbitsinlong == BITS_PER_LONG.
1069 mask = (1UL << (nbitsinlong - 1));
1070 mask += mask - 1;
1071 mask <<= offset;
1073 switch (reg_op) {
1074 case REG_OP_ISFREE:
1075 for (i = 0; i < nlongs_reg; i++) {
1076 if (bitmap[index + i] & mask)
1077 goto done;
1079 ret = 1; /* all bits in region free (zero) */
1080 break;
1082 case REG_OP_ALLOC:
1083 for (i = 0; i < nlongs_reg; i++)
1084 bitmap[index + i] |= mask;
1085 break;
1087 case REG_OP_RELEASE:
1088 for (i = 0; i < nlongs_reg; i++)
1089 bitmap[index + i] &= ~mask;
1090 break;
1092 done:
1093 return ret;
1097 * bitmap_find_free_region - find a contiguous aligned mem region
1098 * @bitmap: array of unsigned longs corresponding to the bitmap
1099 * @bits: number of bits in the bitmap
1100 * @order: region size (log base 2 of number of bits) to find
1102 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1103 * allocate them (set them to one). Only consider regions of length
1104 * a power (@order) of two, aligned to that power of two, which
1105 * makes the search algorithm much faster.
1107 * Return the bit offset in bitmap of the allocated region,
1108 * or -errno on failure.
1110 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1112 unsigned int pos, end; /* scans bitmap by regions of size order */
1114 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1115 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1116 continue;
1117 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1118 return pos;
1120 return -ENOMEM;
1122 EXPORT_SYMBOL(bitmap_find_free_region);
1125 * bitmap_release_region - release allocated bitmap region
1126 * @bitmap: array of unsigned longs corresponding to the bitmap
1127 * @pos: beginning of bit region to release
1128 * @order: region size (log base 2 of number of bits) to release
1130 * This is the complement to __bitmap_find_free_region() and releases
1131 * the found region (by clearing it in the bitmap).
1133 * No return value.
1135 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1137 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1139 EXPORT_SYMBOL(bitmap_release_region);
1142 * bitmap_allocate_region - allocate bitmap region
1143 * @bitmap: array of unsigned longs corresponding to the bitmap
1144 * @pos: beginning of bit region to allocate
1145 * @order: region size (log base 2 of number of bits) to allocate
1147 * Allocate (set bits in) a specified region of a bitmap.
1149 * Return 0 on success, or %-EBUSY if specified region wasn't
1150 * free (not all bits were zero).
1152 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1154 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1155 return -EBUSY;
1156 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1158 EXPORT_SYMBOL(bitmap_allocate_region);
1161 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1162 * @dst: destination buffer
1163 * @src: bitmap to copy
1164 * @nbits: number of bits in the bitmap
1166 * Require nbits % BITS_PER_LONG == 0.
1168 #ifdef __BIG_ENDIAN
1169 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1171 unsigned int i;
1173 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1174 if (BITS_PER_LONG == 64)
1175 dst[i] = cpu_to_le64(src[i]);
1176 else
1177 dst[i] = cpu_to_le32(src[i]);
1180 EXPORT_SYMBOL(bitmap_copy_le);
1181 #endif
1183 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1185 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1186 flags);
1188 EXPORT_SYMBOL(bitmap_alloc);
1190 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1192 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1194 EXPORT_SYMBOL(bitmap_zalloc);
1196 void bitmap_free(const unsigned long *bitmap)
1198 kfree(bitmap);
1200 EXPORT_SYMBOL(bitmap_free);
1202 #if BITS_PER_LONG == 64
1204 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1205 * @bitmap: array of unsigned longs, the destination bitmap
1206 * @buf: array of u32 (in host byte order), the source bitmap
1207 * @nbits: number of bits in @bitmap
1209 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1211 unsigned int i, halfwords;
1213 halfwords = DIV_ROUND_UP(nbits, 32);
1214 for (i = 0; i < halfwords; i++) {
1215 bitmap[i/2] = (unsigned long) buf[i];
1216 if (++i < halfwords)
1217 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1220 /* Clear tail bits in last word beyond nbits. */
1221 if (nbits % BITS_PER_LONG)
1222 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1224 EXPORT_SYMBOL(bitmap_from_arr32);
1227 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1228 * @buf: array of u32 (in host byte order), the dest bitmap
1229 * @bitmap: array of unsigned longs, the source bitmap
1230 * @nbits: number of bits in @bitmap
1232 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1234 unsigned int i, halfwords;
1236 halfwords = DIV_ROUND_UP(nbits, 32);
1237 for (i = 0; i < halfwords; i++) {
1238 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1239 if (++i < halfwords)
1240 buf[i] = (u32) (bitmap[i/2] >> 32);
1243 /* Clear tail bits in last element of array beyond nbits. */
1244 if (nbits % BITS_PER_LONG)
1245 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1247 EXPORT_SYMBOL(bitmap_to_arr32);
1249 #endif