split dev_queue
[cor.git] / kernel / time / tick-sched.c
blob8b192e67aabc9d16d8a7b08c0356641b5462c783
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * No idle tick implementation for low and high resolution timers
9 * Started by: Thomas Gleixner and Ingo Molnar
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
29 #include <asm/irq_regs.h>
31 #include "tick-internal.h"
33 #include <trace/events/timer.h>
36 * Per-CPU nohz control structure
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 struct tick_sched *tick_get_tick_sched(int cpu)
42 return &per_cpu(tick_cpu_sched, cpu);
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
49 static ktime_t last_jiffies_update;
52 * Must be called with interrupts disabled !
54 static void tick_do_update_jiffies64(ktime_t now)
56 unsigned long ticks = 0;
57 ktime_t delta;
60 * Do a quick check without holding jiffies_lock:
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta < tick_period)
64 return;
66 /* Reevaluate with jiffies_lock held */
67 write_seqlock(&jiffies_lock);
69 delta = ktime_sub(now, last_jiffies_update);
70 if (delta >= tick_period) {
72 delta = ktime_sub(delta, tick_period);
73 last_jiffies_update = ktime_add(last_jiffies_update,
74 tick_period);
76 /* Slow path for long timeouts */
77 if (unlikely(delta >= tick_period)) {
78 s64 incr = ktime_to_ns(tick_period);
80 ticks = ktime_divns(delta, incr);
82 last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 incr * ticks);
85 do_timer(++ticks);
87 /* Keep the tick_next_period variable up to date */
88 tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 } else {
90 write_sequnlock(&jiffies_lock);
91 return;
93 write_sequnlock(&jiffies_lock);
94 update_wall_time();
98 * Initialize and return retrieve the jiffies update.
100 static ktime_t tick_init_jiffy_update(void)
102 ktime_t period;
104 write_seqlock(&jiffies_lock);
105 /* Did we start the jiffies update yet ? */
106 if (last_jiffies_update == 0)
107 last_jiffies_update = tick_next_period;
108 period = last_jiffies_update;
109 write_sequnlock(&jiffies_lock);
110 return period;
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
115 int cpu = smp_processor_id();
117 #ifdef CONFIG_NO_HZ_COMMON
119 * Check if the do_timer duty was dropped. We don't care about
120 * concurrency: This happens only when the CPU in charge went
121 * into a long sleep. If two CPUs happen to assign themselves to
122 * this duty, then the jiffies update is still serialized by
123 * jiffies_lock.
125 * If nohz_full is enabled, this should not happen because the
126 * tick_do_timer_cpu never relinquishes.
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129 #ifdef CONFIG_NO_HZ_FULL
130 WARN_ON(tick_nohz_full_running);
131 #endif
132 tick_do_timer_cpu = cpu;
134 #endif
136 /* Check, if the jiffies need an update */
137 if (tick_do_timer_cpu == cpu)
138 tick_do_update_jiffies64(now);
140 if (ts->inidle)
141 ts->got_idle_tick = 1;
144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
146 #ifdef CONFIG_NO_HZ_COMMON
148 * When we are idle and the tick is stopped, we have to touch
149 * the watchdog as we might not schedule for a really long
150 * time. This happens on complete idle SMP systems while
151 * waiting on the login prompt. We also increment the "start of
152 * idle" jiffy stamp so the idle accounting adjustment we do
153 * when we go busy again does not account too much ticks.
155 if (ts->tick_stopped) {
156 touch_softlockup_watchdog_sched();
157 if (is_idle_task(current))
158 ts->idle_jiffies++;
160 * In case the current tick fired too early past its expected
161 * expiration, make sure we don't bypass the next clock reprogramming
162 * to the same deadline.
164 ts->next_tick = 0;
166 #endif
167 update_process_times(user_mode(regs));
168 profile_tick(CPU_PROFILING);
170 #endif
172 #ifdef CONFIG_NO_HZ_FULL
173 cpumask_var_t tick_nohz_full_mask;
174 bool tick_nohz_full_running;
175 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
176 static atomic_t tick_dep_mask;
178 static bool check_tick_dependency(atomic_t *dep)
180 int val = atomic_read(dep);
182 if (val & TICK_DEP_MASK_POSIX_TIMER) {
183 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
184 return true;
187 if (val & TICK_DEP_MASK_PERF_EVENTS) {
188 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
189 return true;
192 if (val & TICK_DEP_MASK_SCHED) {
193 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
194 return true;
197 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
198 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
199 return true;
202 if (val & TICK_DEP_MASK_RCU) {
203 trace_tick_stop(0, TICK_DEP_MASK_RCU);
204 return true;
207 return false;
210 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
212 lockdep_assert_irqs_disabled();
214 if (unlikely(!cpu_online(cpu)))
215 return false;
217 if (check_tick_dependency(&tick_dep_mask))
218 return false;
220 if (check_tick_dependency(&ts->tick_dep_mask))
221 return false;
223 if (check_tick_dependency(&current->tick_dep_mask))
224 return false;
226 if (check_tick_dependency(&current->signal->tick_dep_mask))
227 return false;
229 return true;
232 static void nohz_full_kick_func(struct irq_work *work)
234 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
237 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
238 .func = nohz_full_kick_func,
242 * Kick this CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
244 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
245 * is NMI safe.
247 static void tick_nohz_full_kick(void)
249 if (!tick_nohz_full_cpu(smp_processor_id()))
250 return;
252 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
256 * Kick the CPU if it's full dynticks in order to force it to
257 * re-evaluate its dependency on the tick and restart it if necessary.
259 void tick_nohz_full_kick_cpu(int cpu)
261 if (!tick_nohz_full_cpu(cpu))
262 return;
264 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
268 * Kick all full dynticks CPUs in order to force these to re-evaluate
269 * their dependency on the tick and restart it if necessary.
271 static void tick_nohz_full_kick_all(void)
273 int cpu;
275 if (!tick_nohz_full_running)
276 return;
278 preempt_disable();
279 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
280 tick_nohz_full_kick_cpu(cpu);
281 preempt_enable();
284 static void tick_nohz_dep_set_all(atomic_t *dep,
285 enum tick_dep_bits bit)
287 int prev;
289 prev = atomic_fetch_or(BIT(bit), dep);
290 if (!prev)
291 tick_nohz_full_kick_all();
295 * Set a global tick dependency. Used by perf events that rely on freq and
296 * by unstable clock.
298 void tick_nohz_dep_set(enum tick_dep_bits bit)
300 tick_nohz_dep_set_all(&tick_dep_mask, bit);
303 void tick_nohz_dep_clear(enum tick_dep_bits bit)
305 atomic_andnot(BIT(bit), &tick_dep_mask);
309 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
310 * manage events throttling.
312 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
314 int prev;
315 struct tick_sched *ts;
317 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
319 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
320 if (!prev) {
321 preempt_disable();
322 /* Perf needs local kick that is NMI safe */
323 if (cpu == smp_processor_id()) {
324 tick_nohz_full_kick();
325 } else {
326 /* Remote irq work not NMI-safe */
327 if (!WARN_ON_ONCE(in_nmi()))
328 tick_nohz_full_kick_cpu(cpu);
330 preempt_enable();
333 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
335 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
337 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
339 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
341 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
344 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
345 * per task timers.
347 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
350 * We could optimize this with just kicking the target running the task
351 * if that noise matters for nohz full users.
353 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
355 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
357 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
359 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
361 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
364 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
365 * per process timers.
367 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
369 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
372 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
374 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
378 * Re-evaluate the need for the tick as we switch the current task.
379 * It might need the tick due to per task/process properties:
380 * perf events, posix CPU timers, ...
382 void __tick_nohz_task_switch(void)
384 unsigned long flags;
385 struct tick_sched *ts;
387 local_irq_save(flags);
389 if (!tick_nohz_full_cpu(smp_processor_id()))
390 goto out;
392 ts = this_cpu_ptr(&tick_cpu_sched);
394 if (ts->tick_stopped) {
395 if (atomic_read(&current->tick_dep_mask) ||
396 atomic_read(&current->signal->tick_dep_mask))
397 tick_nohz_full_kick();
399 out:
400 local_irq_restore(flags);
403 /* Get the boot-time nohz CPU list from the kernel parameters. */
404 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
406 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
407 cpumask_copy(tick_nohz_full_mask, cpumask);
408 tick_nohz_full_running = true;
410 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
412 static int tick_nohz_cpu_down(unsigned int cpu)
415 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
416 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
417 * CPUs. It must remain online when nohz full is enabled.
419 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
420 return -EBUSY;
421 return 0;
424 void __init tick_nohz_init(void)
426 int cpu, ret;
428 if (!tick_nohz_full_running)
429 return;
432 * Full dynticks uses irq work to drive the tick rescheduling on safe
433 * locking contexts. But then we need irq work to raise its own
434 * interrupts to avoid circular dependency on the tick
436 if (!arch_irq_work_has_interrupt()) {
437 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
438 cpumask_clear(tick_nohz_full_mask);
439 tick_nohz_full_running = false;
440 return;
443 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
444 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
445 cpu = smp_processor_id();
447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 pr_warn("NO_HZ: Clearing %d from nohz_full range "
449 "for timekeeping\n", cpu);
450 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
454 for_each_cpu(cpu, tick_nohz_full_mask)
455 context_tracking_cpu_set(cpu);
457 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
458 "kernel/nohz:predown", NULL,
459 tick_nohz_cpu_down);
460 WARN_ON(ret < 0);
461 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
462 cpumask_pr_args(tick_nohz_full_mask));
464 #endif
467 * NOHZ - aka dynamic tick functionality
469 #ifdef CONFIG_NO_HZ_COMMON
471 * NO HZ enabled ?
473 bool tick_nohz_enabled __read_mostly = true;
474 unsigned long tick_nohz_active __read_mostly;
476 * Enable / Disable tickless mode
478 static int __init setup_tick_nohz(char *str)
480 return (kstrtobool(str, &tick_nohz_enabled) == 0);
483 __setup("nohz=", setup_tick_nohz);
485 bool tick_nohz_tick_stopped(void)
487 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
489 return ts->tick_stopped;
492 bool tick_nohz_tick_stopped_cpu(int cpu)
494 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
496 return ts->tick_stopped;
500 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
502 * Called from interrupt entry when the CPU was idle
504 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
505 * must be updated. Otherwise an interrupt handler could use a stale jiffy
506 * value. We do this unconditionally on any CPU, as we don't know whether the
507 * CPU, which has the update task assigned is in a long sleep.
509 static void tick_nohz_update_jiffies(ktime_t now)
511 unsigned long flags;
513 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
515 local_irq_save(flags);
516 tick_do_update_jiffies64(now);
517 local_irq_restore(flags);
519 touch_softlockup_watchdog_sched();
523 * Updates the per-CPU time idle statistics counters
525 static void
526 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
528 ktime_t delta;
530 if (ts->idle_active) {
531 delta = ktime_sub(now, ts->idle_entrytime);
532 if (nr_iowait_cpu(cpu) > 0)
533 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
534 else
535 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
536 ts->idle_entrytime = now;
539 if (last_update_time)
540 *last_update_time = ktime_to_us(now);
544 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
546 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
547 ts->idle_active = 0;
549 sched_clock_idle_wakeup_event();
552 static void tick_nohz_start_idle(struct tick_sched *ts)
554 ts->idle_entrytime = ktime_get();
555 ts->idle_active = 1;
556 sched_clock_idle_sleep_event();
560 * get_cpu_idle_time_us - get the total idle time of a CPU
561 * @cpu: CPU number to query
562 * @last_update_time: variable to store update time in. Do not update
563 * counters if NULL.
565 * Return the cumulative idle time (since boot) for a given
566 * CPU, in microseconds.
568 * This time is measured via accounting rather than sampling,
569 * and is as accurate as ktime_get() is.
571 * This function returns -1 if NOHZ is not enabled.
573 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
575 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
576 ktime_t now, idle;
578 if (!tick_nohz_active)
579 return -1;
581 now = ktime_get();
582 if (last_update_time) {
583 update_ts_time_stats(cpu, ts, now, last_update_time);
584 idle = ts->idle_sleeptime;
585 } else {
586 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
587 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
589 idle = ktime_add(ts->idle_sleeptime, delta);
590 } else {
591 idle = ts->idle_sleeptime;
595 return ktime_to_us(idle);
598 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
601 * get_cpu_iowait_time_us - get the total iowait time of a CPU
602 * @cpu: CPU number to query
603 * @last_update_time: variable to store update time in. Do not update
604 * counters if NULL.
606 * Return the cumulative iowait time (since boot) for a given
607 * CPU, in microseconds.
609 * This time is measured via accounting rather than sampling,
610 * and is as accurate as ktime_get() is.
612 * This function returns -1 if NOHZ is not enabled.
614 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
616 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
617 ktime_t now, iowait;
619 if (!tick_nohz_active)
620 return -1;
622 now = ktime_get();
623 if (last_update_time) {
624 update_ts_time_stats(cpu, ts, now, last_update_time);
625 iowait = ts->iowait_sleeptime;
626 } else {
627 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
628 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
630 iowait = ktime_add(ts->iowait_sleeptime, delta);
631 } else {
632 iowait = ts->iowait_sleeptime;
636 return ktime_to_us(iowait);
638 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
640 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
642 hrtimer_cancel(&ts->sched_timer);
643 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
645 /* Forward the time to expire in the future */
646 hrtimer_forward(&ts->sched_timer, now, tick_period);
648 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
649 hrtimer_start_expires(&ts->sched_timer,
650 HRTIMER_MODE_ABS_PINNED_HARD);
651 } else {
652 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
656 * Reset to make sure next tick stop doesn't get fooled by past
657 * cached clock deadline.
659 ts->next_tick = 0;
662 static inline bool local_timer_softirq_pending(void)
664 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
667 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
669 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 unsigned long basejiff;
671 unsigned int seq;
673 /* Read jiffies and the time when jiffies were updated last */
674 do {
675 seq = read_seqbegin(&jiffies_lock);
676 basemono = last_jiffies_update;
677 basejiff = jiffies;
678 } while (read_seqretry(&jiffies_lock, seq));
679 ts->last_jiffies = basejiff;
680 ts->timer_expires_base = basemono;
683 * Keep the periodic tick, when RCU, architecture or irq_work
684 * requests it.
685 * Aside of that check whether the local timer softirq is
686 * pending. If so its a bad idea to call get_next_timer_interrupt()
687 * because there is an already expired timer, so it will request
688 * immeditate expiry, which rearms the hardware timer with a
689 * minimal delta which brings us back to this place
690 * immediately. Lather, rinse and repeat...
692 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
693 irq_work_needs_cpu() || local_timer_softirq_pending()) {
694 next_tick = basemono + TICK_NSEC;
695 } else {
697 * Get the next pending timer. If high resolution
698 * timers are enabled this only takes the timer wheel
699 * timers into account. If high resolution timers are
700 * disabled this also looks at the next expiring
701 * hrtimer.
703 next_tmr = get_next_timer_interrupt(basejiff, basemono);
704 ts->next_timer = next_tmr;
705 /* Take the next rcu event into account */
706 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
710 * If the tick is due in the next period, keep it ticking or
711 * force prod the timer.
713 delta = next_tick - basemono;
714 if (delta <= (u64)TICK_NSEC) {
716 * Tell the timer code that the base is not idle, i.e. undo
717 * the effect of get_next_timer_interrupt():
719 timer_clear_idle();
721 * We've not stopped the tick yet, and there's a timer in the
722 * next period, so no point in stopping it either, bail.
724 if (!ts->tick_stopped) {
725 ts->timer_expires = 0;
726 goto out;
731 * If this CPU is the one which had the do_timer() duty last, we limit
732 * the sleep time to the timekeeping max_deferment value.
733 * Otherwise we can sleep as long as we want.
735 delta = timekeeping_max_deferment();
736 if (cpu != tick_do_timer_cpu &&
737 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
738 delta = KTIME_MAX;
740 /* Calculate the next expiry time */
741 if (delta < (KTIME_MAX - basemono))
742 expires = basemono + delta;
743 else
744 expires = KTIME_MAX;
746 ts->timer_expires = min_t(u64, expires, next_tick);
748 out:
749 return ts->timer_expires;
752 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
754 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
755 u64 basemono = ts->timer_expires_base;
756 u64 expires = ts->timer_expires;
757 ktime_t tick = expires;
759 /* Make sure we won't be trying to stop it twice in a row. */
760 ts->timer_expires_base = 0;
763 * If this CPU is the one which updates jiffies, then give up
764 * the assignment and let it be taken by the CPU which runs
765 * the tick timer next, which might be this CPU as well. If we
766 * don't drop this here the jiffies might be stale and
767 * do_timer() never invoked. Keep track of the fact that it
768 * was the one which had the do_timer() duty last.
770 if (cpu == tick_do_timer_cpu) {
771 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
772 ts->do_timer_last = 1;
773 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
774 ts->do_timer_last = 0;
777 /* Skip reprogram of event if its not changed */
778 if (ts->tick_stopped && (expires == ts->next_tick)) {
779 /* Sanity check: make sure clockevent is actually programmed */
780 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
781 return;
783 WARN_ON_ONCE(1);
784 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
785 basemono, ts->next_tick, dev->next_event,
786 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
790 * nohz_stop_sched_tick can be called several times before
791 * the nohz_restart_sched_tick is called. This happens when
792 * interrupts arrive which do not cause a reschedule. In the
793 * first call we save the current tick time, so we can restart
794 * the scheduler tick in nohz_restart_sched_tick.
796 if (!ts->tick_stopped) {
797 calc_load_nohz_start();
798 quiet_vmstat();
800 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
801 ts->tick_stopped = 1;
802 trace_tick_stop(1, TICK_DEP_MASK_NONE);
805 ts->next_tick = tick;
808 * If the expiration time == KTIME_MAX, then we simply stop
809 * the tick timer.
811 if (unlikely(expires == KTIME_MAX)) {
812 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
813 hrtimer_cancel(&ts->sched_timer);
814 return;
817 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
818 hrtimer_start(&ts->sched_timer, tick,
819 HRTIMER_MODE_ABS_PINNED_HARD);
820 } else {
821 hrtimer_set_expires(&ts->sched_timer, tick);
822 tick_program_event(tick, 1);
826 static void tick_nohz_retain_tick(struct tick_sched *ts)
828 ts->timer_expires_base = 0;
831 #ifdef CONFIG_NO_HZ_FULL
832 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
834 if (tick_nohz_next_event(ts, cpu))
835 tick_nohz_stop_tick(ts, cpu);
836 else
837 tick_nohz_retain_tick(ts);
839 #endif /* CONFIG_NO_HZ_FULL */
841 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
843 /* Update jiffies first */
844 tick_do_update_jiffies64(now);
847 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
848 * the clock forward checks in the enqueue path:
850 timer_clear_idle();
852 calc_load_nohz_stop();
853 touch_softlockup_watchdog_sched();
855 * Cancel the scheduled timer and restore the tick
857 ts->tick_stopped = 0;
858 ts->idle_exittime = now;
860 tick_nohz_restart(ts, now);
863 static void tick_nohz_full_update_tick(struct tick_sched *ts)
865 #ifdef CONFIG_NO_HZ_FULL
866 int cpu = smp_processor_id();
868 if (!tick_nohz_full_cpu(cpu))
869 return;
871 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
872 return;
874 if (can_stop_full_tick(cpu, ts))
875 tick_nohz_stop_sched_tick(ts, cpu);
876 else if (ts->tick_stopped)
877 tick_nohz_restart_sched_tick(ts, ktime_get());
878 #endif
881 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
884 * If this CPU is offline and it is the one which updates
885 * jiffies, then give up the assignment and let it be taken by
886 * the CPU which runs the tick timer next. If we don't drop
887 * this here the jiffies might be stale and do_timer() never
888 * invoked.
890 if (unlikely(!cpu_online(cpu))) {
891 if (cpu == tick_do_timer_cpu)
892 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
894 * Make sure the CPU doesn't get fooled by obsolete tick
895 * deadline if it comes back online later.
897 ts->next_tick = 0;
898 return false;
901 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
902 return false;
904 if (need_resched())
905 return false;
907 if (unlikely(local_softirq_pending())) {
908 static int ratelimit;
910 if (ratelimit < 10 &&
911 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
912 pr_warn("NOHZ: local_softirq_pending %02x\n",
913 (unsigned int) local_softirq_pending());
914 ratelimit++;
916 return false;
919 if (tick_nohz_full_enabled()) {
921 * Keep the tick alive to guarantee timekeeping progression
922 * if there are full dynticks CPUs around
924 if (tick_do_timer_cpu == cpu)
925 return false;
927 * Boot safety: make sure the timekeeping duty has been
928 * assigned before entering dyntick-idle mode,
929 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
931 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
932 return false;
934 /* Should not happen for nohz-full */
935 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
936 return false;
939 return true;
942 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
944 ktime_t expires;
945 int cpu = smp_processor_id();
948 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
949 * tick timer expiration time is known already.
951 if (ts->timer_expires_base)
952 expires = ts->timer_expires;
953 else if (can_stop_idle_tick(cpu, ts))
954 expires = tick_nohz_next_event(ts, cpu);
955 else
956 return;
958 ts->idle_calls++;
960 if (expires > 0LL) {
961 int was_stopped = ts->tick_stopped;
963 tick_nohz_stop_tick(ts, cpu);
965 ts->idle_sleeps++;
966 ts->idle_expires = expires;
968 if (!was_stopped && ts->tick_stopped) {
969 ts->idle_jiffies = ts->last_jiffies;
970 nohz_balance_enter_idle(cpu);
972 } else {
973 tick_nohz_retain_tick(ts);
978 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
980 * When the next event is more than a tick into the future, stop the idle tick
982 void tick_nohz_idle_stop_tick(void)
984 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
987 void tick_nohz_idle_retain_tick(void)
989 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
991 * Undo the effect of get_next_timer_interrupt() called from
992 * tick_nohz_next_event().
994 timer_clear_idle();
998 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1000 * Called when we start the idle loop.
1002 void tick_nohz_idle_enter(void)
1004 struct tick_sched *ts;
1006 lockdep_assert_irqs_enabled();
1008 local_irq_disable();
1010 ts = this_cpu_ptr(&tick_cpu_sched);
1012 WARN_ON_ONCE(ts->timer_expires_base);
1014 ts->inidle = 1;
1015 tick_nohz_start_idle(ts);
1017 local_irq_enable();
1021 * tick_nohz_irq_exit - update next tick event from interrupt exit
1023 * When an interrupt fires while we are idle and it doesn't cause
1024 * a reschedule, it may still add, modify or delete a timer, enqueue
1025 * an RCU callback, etc...
1026 * So we need to re-calculate and reprogram the next tick event.
1028 void tick_nohz_irq_exit(void)
1030 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1032 if (ts->inidle)
1033 tick_nohz_start_idle(ts);
1034 else
1035 tick_nohz_full_update_tick(ts);
1039 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1041 bool tick_nohz_idle_got_tick(void)
1043 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1045 if (ts->got_idle_tick) {
1046 ts->got_idle_tick = 0;
1047 return true;
1049 return false;
1053 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1054 * or the tick, whatever that expires first. Note that, if the tick has been
1055 * stopped, it returns the next hrtimer.
1057 * Called from power state control code with interrupts disabled
1059 ktime_t tick_nohz_get_next_hrtimer(void)
1061 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1065 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1066 * @delta_next: duration until the next event if the tick cannot be stopped
1068 * Called from power state control code with interrupts disabled
1070 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1072 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1073 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1074 int cpu = smp_processor_id();
1076 * The idle entry time is expected to be a sufficient approximation of
1077 * the current time at this point.
1079 ktime_t now = ts->idle_entrytime;
1080 ktime_t next_event;
1082 WARN_ON_ONCE(!ts->inidle);
1084 *delta_next = ktime_sub(dev->next_event, now);
1086 if (!can_stop_idle_tick(cpu, ts))
1087 return *delta_next;
1089 next_event = tick_nohz_next_event(ts, cpu);
1090 if (!next_event)
1091 return *delta_next;
1094 * If the next highres timer to expire is earlier than next_event, the
1095 * idle governor needs to know that.
1097 next_event = min_t(u64, next_event,
1098 hrtimer_next_event_without(&ts->sched_timer));
1100 return ktime_sub(next_event, now);
1104 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1105 * for a particular CPU.
1107 * Called from the schedutil frequency scaling governor in scheduler context.
1109 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1111 struct tick_sched *ts = tick_get_tick_sched(cpu);
1113 return ts->idle_calls;
1117 * tick_nohz_get_idle_calls - return the current idle calls counter value
1119 * Called from the schedutil frequency scaling governor in scheduler context.
1121 unsigned long tick_nohz_get_idle_calls(void)
1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1125 return ts->idle_calls;
1128 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1130 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1131 unsigned long ticks;
1133 if (vtime_accounting_enabled_this_cpu())
1134 return;
1136 * We stopped the tick in idle. Update process times would miss the
1137 * time we slept as update_process_times does only a 1 tick
1138 * accounting. Enforce that this is accounted to idle !
1140 ticks = jiffies - ts->idle_jiffies;
1142 * We might be one off. Do not randomly account a huge number of ticks!
1144 if (ticks && ticks < LONG_MAX)
1145 account_idle_ticks(ticks);
1146 #endif
1149 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1151 tick_nohz_restart_sched_tick(ts, now);
1152 tick_nohz_account_idle_ticks(ts);
1155 void tick_nohz_idle_restart_tick(void)
1157 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1159 if (ts->tick_stopped)
1160 __tick_nohz_idle_restart_tick(ts, ktime_get());
1164 * tick_nohz_idle_exit - restart the idle tick from the idle task
1166 * Restart the idle tick when the CPU is woken up from idle
1167 * This also exit the RCU extended quiescent state. The CPU
1168 * can use RCU again after this function is called.
1170 void tick_nohz_idle_exit(void)
1172 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1173 bool idle_active, tick_stopped;
1174 ktime_t now;
1176 local_irq_disable();
1178 WARN_ON_ONCE(!ts->inidle);
1179 WARN_ON_ONCE(ts->timer_expires_base);
1181 ts->inidle = 0;
1182 idle_active = ts->idle_active;
1183 tick_stopped = ts->tick_stopped;
1185 if (idle_active || tick_stopped)
1186 now = ktime_get();
1188 if (idle_active)
1189 tick_nohz_stop_idle(ts, now);
1191 if (tick_stopped)
1192 __tick_nohz_idle_restart_tick(ts, now);
1194 local_irq_enable();
1198 * The nohz low res interrupt handler
1200 static void tick_nohz_handler(struct clock_event_device *dev)
1202 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1203 struct pt_regs *regs = get_irq_regs();
1204 ktime_t now = ktime_get();
1206 dev->next_event = KTIME_MAX;
1208 tick_sched_do_timer(ts, now);
1209 tick_sched_handle(ts, regs);
1211 /* No need to reprogram if we are running tickless */
1212 if (unlikely(ts->tick_stopped))
1213 return;
1215 hrtimer_forward(&ts->sched_timer, now, tick_period);
1216 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1219 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1221 if (!tick_nohz_enabled)
1222 return;
1223 ts->nohz_mode = mode;
1224 /* One update is enough */
1225 if (!test_and_set_bit(0, &tick_nohz_active))
1226 timers_update_nohz();
1230 * tick_nohz_switch_to_nohz - switch to nohz mode
1232 static void tick_nohz_switch_to_nohz(void)
1234 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235 ktime_t next;
1237 if (!tick_nohz_enabled)
1238 return;
1240 if (tick_switch_to_oneshot(tick_nohz_handler))
1241 return;
1244 * Recycle the hrtimer in ts, so we can share the
1245 * hrtimer_forward with the highres code.
1247 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1248 /* Get the next period */
1249 next = tick_init_jiffy_update();
1251 hrtimer_set_expires(&ts->sched_timer, next);
1252 hrtimer_forward_now(&ts->sched_timer, tick_period);
1253 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1254 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1257 static inline void tick_nohz_irq_enter(void)
1259 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1260 ktime_t now;
1262 if (!ts->idle_active && !ts->tick_stopped)
1263 return;
1264 now = ktime_get();
1265 if (ts->idle_active)
1266 tick_nohz_stop_idle(ts, now);
1267 if (ts->tick_stopped)
1268 tick_nohz_update_jiffies(now);
1271 #else
1273 static inline void tick_nohz_switch_to_nohz(void) { }
1274 static inline void tick_nohz_irq_enter(void) { }
1275 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1277 #endif /* CONFIG_NO_HZ_COMMON */
1280 * Called from irq_enter to notify about the possible interruption of idle()
1282 void tick_irq_enter(void)
1284 tick_check_oneshot_broadcast_this_cpu();
1285 tick_nohz_irq_enter();
1289 * High resolution timer specific code
1291 #ifdef CONFIG_HIGH_RES_TIMERS
1293 * We rearm the timer until we get disabled by the idle code.
1294 * Called with interrupts disabled.
1296 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1298 struct tick_sched *ts =
1299 container_of(timer, struct tick_sched, sched_timer);
1300 struct pt_regs *regs = get_irq_regs();
1301 ktime_t now = ktime_get();
1303 tick_sched_do_timer(ts, now);
1306 * Do not call, when we are not in irq context and have
1307 * no valid regs pointer
1309 if (regs)
1310 tick_sched_handle(ts, regs);
1311 else
1312 ts->next_tick = 0;
1314 /* No need to reprogram if we are in idle or full dynticks mode */
1315 if (unlikely(ts->tick_stopped))
1316 return HRTIMER_NORESTART;
1318 hrtimer_forward(timer, now, tick_period);
1320 return HRTIMER_RESTART;
1323 static int sched_skew_tick;
1325 static int __init skew_tick(char *str)
1327 get_option(&str, &sched_skew_tick);
1329 return 0;
1331 early_param("skew_tick", skew_tick);
1334 * tick_setup_sched_timer - setup the tick emulation timer
1336 void tick_setup_sched_timer(void)
1338 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1339 ktime_t now = ktime_get();
1342 * Emulate tick processing via per-CPU hrtimers:
1344 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1345 ts->sched_timer.function = tick_sched_timer;
1347 /* Get the next period (per-CPU) */
1348 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1350 /* Offset the tick to avert jiffies_lock contention. */
1351 if (sched_skew_tick) {
1352 u64 offset = ktime_to_ns(tick_period) >> 1;
1353 do_div(offset, num_possible_cpus());
1354 offset *= smp_processor_id();
1355 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1358 hrtimer_forward(&ts->sched_timer, now, tick_period);
1359 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1360 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1362 #endif /* HIGH_RES_TIMERS */
1364 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1365 void tick_cancel_sched_timer(int cpu)
1367 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1369 # ifdef CONFIG_HIGH_RES_TIMERS
1370 if (ts->sched_timer.base)
1371 hrtimer_cancel(&ts->sched_timer);
1372 # endif
1374 memset(ts, 0, sizeof(*ts));
1376 #endif
1379 * Async notification about clocksource changes
1381 void tick_clock_notify(void)
1383 int cpu;
1385 for_each_possible_cpu(cpu)
1386 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1390 * Async notification about clock event changes
1392 void tick_oneshot_notify(void)
1394 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1396 set_bit(0, &ts->check_clocks);
1400 * Check, if a change happened, which makes oneshot possible.
1402 * Called cyclic from the hrtimer softirq (driven by the timer
1403 * softirq) allow_nohz signals, that we can switch into low-res nohz
1404 * mode, because high resolution timers are disabled (either compile
1405 * or runtime). Called with interrupts disabled.
1407 int tick_check_oneshot_change(int allow_nohz)
1409 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1411 if (!test_and_clear_bit(0, &ts->check_clocks))
1412 return 0;
1414 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1415 return 0;
1417 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1418 return 0;
1420 if (!allow_nohz)
1421 return 1;
1423 tick_nohz_switch_to_nohz();
1424 return 0;