split dev_queue
[cor.git] / kernel / sched / cpufreq_schedutil.c
blob322ca8860f548cf8c0fa700e1a2755127659d2ce
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include "sched.h"
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
18 struct sugov_tunables {
19 struct gov_attr_set attr_set;
20 unsigned int rate_limit_us;
23 struct sugov_policy {
24 struct cpufreq_policy *policy;
26 struct sugov_tunables *tunables;
27 struct list_head tunables_hook;
29 raw_spinlock_t update_lock; /* For shared policies */
30 u64 last_freq_update_time;
31 s64 freq_update_delay_ns;
32 unsigned int next_freq;
33 unsigned int cached_raw_freq;
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work;
37 struct kthread_work work;
38 struct mutex work_lock;
39 struct kthread_worker worker;
40 struct task_struct *thread;
41 bool work_in_progress;
43 bool limits_changed;
44 bool need_freq_update;
47 struct sugov_cpu {
48 struct update_util_data update_util;
49 struct sugov_policy *sg_policy;
50 unsigned int cpu;
52 bool iowait_boost_pending;
53 unsigned int iowait_boost;
54 u64 last_update;
56 unsigned long bw_dl;
57 unsigned long max;
59 /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 unsigned long saved_idle_calls;
62 #endif
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67 /************************ Governor internals ***********************/
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 s64 delta_ns;
74 * Since cpufreq_update_util() is called with rq->lock held for
75 * the @target_cpu, our per-CPU data is fully serialized.
77 * However, drivers cannot in general deal with cross-CPU
78 * requests, so while get_next_freq() will work, our
79 * sugov_update_commit() call may not for the fast switching platforms.
81 * Hence stop here for remote requests if they aren't supported
82 * by the hardware, as calculating the frequency is pointless if
83 * we cannot in fact act on it.
85 * For the slow switching platforms, the kthread is always scheduled on
86 * the right set of CPUs and any CPU can find the next frequency and
87 * schedule the kthread.
89 if (sg_policy->policy->fast_switch_enabled &&
90 !cpufreq_this_cpu_can_update(sg_policy->policy))
91 return false;
93 if (unlikely(sg_policy->limits_changed)) {
94 sg_policy->limits_changed = false;
95 sg_policy->need_freq_update = true;
96 return true;
99 delta_ns = time - sg_policy->last_freq_update_time;
101 return delta_ns >= sg_policy->freq_update_delay_ns;
104 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
105 unsigned int next_freq)
107 if (sg_policy->next_freq == next_freq)
108 return false;
110 sg_policy->next_freq = next_freq;
111 sg_policy->last_freq_update_time = time;
113 return true;
116 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
117 unsigned int next_freq)
119 struct cpufreq_policy *policy = sg_policy->policy;
120 int cpu;
122 if (!sugov_update_next_freq(sg_policy, time, next_freq))
123 return;
125 next_freq = cpufreq_driver_fast_switch(policy, next_freq);
126 if (!next_freq)
127 return;
129 policy->cur = next_freq;
131 if (trace_cpu_frequency_enabled()) {
132 for_each_cpu(cpu, policy->cpus)
133 trace_cpu_frequency(next_freq, cpu);
137 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
138 unsigned int next_freq)
140 if (!sugov_update_next_freq(sg_policy, time, next_freq))
141 return;
143 if (!sg_policy->work_in_progress) {
144 sg_policy->work_in_progress = true;
145 irq_work_queue(&sg_policy->irq_work);
150 * get_next_freq - Compute a new frequency for a given cpufreq policy.
151 * @sg_policy: schedutil policy object to compute the new frequency for.
152 * @util: Current CPU utilization.
153 * @max: CPU capacity.
155 * If the utilization is frequency-invariant, choose the new frequency to be
156 * proportional to it, that is
158 * next_freq = C * max_freq * util / max
160 * Otherwise, approximate the would-be frequency-invariant utilization by
161 * util_raw * (curr_freq / max_freq) which leads to
163 * next_freq = C * curr_freq * util_raw / max
165 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
167 * The lowest driver-supported frequency which is equal or greater than the raw
168 * next_freq (as calculated above) is returned, subject to policy min/max and
169 * cpufreq driver limitations.
171 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
172 unsigned long util, unsigned long max)
174 struct cpufreq_policy *policy = sg_policy->policy;
175 unsigned int freq = arch_scale_freq_invariant() ?
176 policy->cpuinfo.max_freq : policy->cur;
178 freq = map_util_freq(util, freq, max);
180 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
181 return sg_policy->next_freq;
183 sg_policy->need_freq_update = false;
184 sg_policy->cached_raw_freq = freq;
185 return cpufreq_driver_resolve_freq(policy, freq);
189 * This function computes an effective utilization for the given CPU, to be
190 * used for frequency selection given the linear relation: f = u * f_max.
192 * The scheduler tracks the following metrics:
194 * cpu_util_{cfs,rt,dl,irq}()
195 * cpu_bw_dl()
197 * Where the cfs,rt and dl util numbers are tracked with the same metric and
198 * synchronized windows and are thus directly comparable.
200 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
201 * which excludes things like IRQ and steal-time. These latter are then accrued
202 * in the irq utilization.
204 * The DL bandwidth number otoh is not a measured metric but a value computed
205 * based on the task model parameters and gives the minimal utilization
206 * required to meet deadlines.
208 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
209 unsigned long max, enum schedutil_type type,
210 struct task_struct *p)
212 unsigned long dl_util, util, irq;
213 struct rq *rq = cpu_rq(cpu);
215 if (!IS_BUILTIN(CONFIG_UCLAMP_TASK) &&
216 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
217 return max;
221 * Early check to see if IRQ/steal time saturates the CPU, can be
222 * because of inaccuracies in how we track these -- see
223 * update_irq_load_avg().
225 irq = cpu_util_irq(rq);
226 if (unlikely(irq >= max))
227 return max;
230 * Because the time spend on RT/DL tasks is visible as 'lost' time to
231 * CFS tasks and we use the same metric to track the effective
232 * utilization (PELT windows are synchronized) we can directly add them
233 * to obtain the CPU's actual utilization.
235 * CFS and RT utilization can be boosted or capped, depending on
236 * utilization clamp constraints requested by currently RUNNABLE
237 * tasks.
238 * When there are no CFS RUNNABLE tasks, clamps are released and
239 * frequency will be gracefully reduced with the utilization decay.
241 util = util_cfs + cpu_util_rt(rq);
242 if (type == FREQUENCY_UTIL)
243 util = uclamp_util_with(rq, util, p);
245 dl_util = cpu_util_dl(rq);
248 * For frequency selection we do not make cpu_util_dl() a permanent part
249 * of this sum because we want to use cpu_bw_dl() later on, but we need
250 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
251 * that we select f_max when there is no idle time.
253 * NOTE: numerical errors or stop class might cause us to not quite hit
254 * saturation when we should -- something for later.
256 if (util + dl_util >= max)
257 return max;
260 * OTOH, for energy computation we need the estimated running time, so
261 * include util_dl and ignore dl_bw.
263 if (type == ENERGY_UTIL)
264 util += dl_util;
267 * There is still idle time; further improve the number by using the
268 * irq metric. Because IRQ/steal time is hidden from the task clock we
269 * need to scale the task numbers:
271 * max - irq
272 * U' = irq + --------- * U
273 * max
275 util = scale_irq_capacity(util, irq, max);
276 util += irq;
279 * Bandwidth required by DEADLINE must always be granted while, for
280 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
281 * to gracefully reduce the frequency when no tasks show up for longer
282 * periods of time.
284 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
285 * bw_dl as requested freq. However, cpufreq is not yet ready for such
286 * an interface. So, we only do the latter for now.
288 if (type == FREQUENCY_UTIL)
289 util += cpu_bw_dl(rq);
291 return min(max, util);
294 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
296 struct rq *rq = cpu_rq(sg_cpu->cpu);
297 unsigned long util = cpu_util_cfs(rq);
298 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
300 sg_cpu->max = max;
301 sg_cpu->bw_dl = cpu_bw_dl(rq);
303 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
307 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
308 * @sg_cpu: the sugov data for the CPU to boost
309 * @time: the update time from the caller
310 * @set_iowait_boost: true if an IO boost has been requested
312 * The IO wait boost of a task is disabled after a tick since the last update
313 * of a CPU. If a new IO wait boost is requested after more then a tick, then
314 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
315 * efficiency by ignoring sporadic wakeups from IO.
317 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
318 bool set_iowait_boost)
320 s64 delta_ns = time - sg_cpu->last_update;
322 /* Reset boost only if a tick has elapsed since last request */
323 if (delta_ns <= TICK_NSEC)
324 return false;
326 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
327 sg_cpu->iowait_boost_pending = set_iowait_boost;
329 return true;
333 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
334 * @sg_cpu: the sugov data for the CPU to boost
335 * @time: the update time from the caller
336 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
338 * Each time a task wakes up after an IO operation, the CPU utilization can be
339 * boosted to a certain utilization which doubles at each "frequent and
340 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
341 * of the maximum OPP.
343 * To keep doubling, an IO boost has to be requested at least once per tick,
344 * otherwise we restart from the utilization of the minimum OPP.
346 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
347 unsigned int flags)
349 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
351 /* Reset boost if the CPU appears to have been idle enough */
352 if (sg_cpu->iowait_boost &&
353 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
354 return;
356 /* Boost only tasks waking up after IO */
357 if (!set_iowait_boost)
358 return;
360 /* Ensure boost doubles only one time at each request */
361 if (sg_cpu->iowait_boost_pending)
362 return;
363 sg_cpu->iowait_boost_pending = true;
365 /* Double the boost at each request */
366 if (sg_cpu->iowait_boost) {
367 sg_cpu->iowait_boost =
368 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
369 return;
372 /* First wakeup after IO: start with minimum boost */
373 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
377 * sugov_iowait_apply() - Apply the IO boost to a CPU.
378 * @sg_cpu: the sugov data for the cpu to boost
379 * @time: the update time from the caller
380 * @util: the utilization to (eventually) boost
381 * @max: the maximum value the utilization can be boosted to
383 * A CPU running a task which woken up after an IO operation can have its
384 * utilization boosted to speed up the completion of those IO operations.
385 * The IO boost value is increased each time a task wakes up from IO, in
386 * sugov_iowait_apply(), and it's instead decreased by this function,
387 * each time an increase has not been requested (!iowait_boost_pending).
389 * A CPU which also appears to have been idle for at least one tick has also
390 * its IO boost utilization reset.
392 * This mechanism is designed to boost high frequently IO waiting tasks, while
393 * being more conservative on tasks which does sporadic IO operations.
395 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
396 unsigned long util, unsigned long max)
398 unsigned long boost;
400 /* No boost currently required */
401 if (!sg_cpu->iowait_boost)
402 return util;
404 /* Reset boost if the CPU appears to have been idle enough */
405 if (sugov_iowait_reset(sg_cpu, time, false))
406 return util;
408 if (!sg_cpu->iowait_boost_pending) {
410 * No boost pending; reduce the boost value.
412 sg_cpu->iowait_boost >>= 1;
413 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
414 sg_cpu->iowait_boost = 0;
415 return util;
419 sg_cpu->iowait_boost_pending = false;
422 * @util is already in capacity scale; convert iowait_boost
423 * into the same scale so we can compare.
425 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
426 return max(boost, util);
429 #ifdef CONFIG_NO_HZ_COMMON
430 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
432 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
433 bool ret = idle_calls == sg_cpu->saved_idle_calls;
435 sg_cpu->saved_idle_calls = idle_calls;
436 return ret;
438 #else
439 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
440 #endif /* CONFIG_NO_HZ_COMMON */
443 * Make sugov_should_update_freq() ignore the rate limit when DL
444 * has increased the utilization.
446 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
448 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
449 sg_policy->limits_changed = true;
452 static void sugov_update_single(struct update_util_data *hook, u64 time,
453 unsigned int flags)
455 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
456 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
457 unsigned long util, max;
458 unsigned int next_f;
459 bool busy;
461 sugov_iowait_boost(sg_cpu, time, flags);
462 sg_cpu->last_update = time;
464 ignore_dl_rate_limit(sg_cpu, sg_policy);
466 if (!sugov_should_update_freq(sg_policy, time))
467 return;
469 /* Limits may have changed, don't skip frequency update */
470 busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
472 util = sugov_get_util(sg_cpu);
473 max = sg_cpu->max;
474 util = sugov_iowait_apply(sg_cpu, time, util, max);
475 next_f = get_next_freq(sg_policy, util, max);
477 * Do not reduce the frequency if the CPU has not been idle
478 * recently, as the reduction is likely to be premature then.
480 if (busy && next_f < sg_policy->next_freq) {
481 next_f = sg_policy->next_freq;
483 /* Reset cached freq as next_freq has changed */
484 sg_policy->cached_raw_freq = 0;
488 * This code runs under rq->lock for the target CPU, so it won't run
489 * concurrently on two different CPUs for the same target and it is not
490 * necessary to acquire the lock in the fast switch case.
492 if (sg_policy->policy->fast_switch_enabled) {
493 sugov_fast_switch(sg_policy, time, next_f);
494 } else {
495 raw_spin_lock(&sg_policy->update_lock);
496 sugov_deferred_update(sg_policy, time, next_f);
497 raw_spin_unlock(&sg_policy->update_lock);
501 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
503 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
504 struct cpufreq_policy *policy = sg_policy->policy;
505 unsigned long util = 0, max = 1;
506 unsigned int j;
508 for_each_cpu(j, policy->cpus) {
509 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
510 unsigned long j_util, j_max;
512 j_util = sugov_get_util(j_sg_cpu);
513 j_max = j_sg_cpu->max;
514 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
516 if (j_util * max > j_max * util) {
517 util = j_util;
518 max = j_max;
522 return get_next_freq(sg_policy, util, max);
525 static void
526 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
528 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
529 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
530 unsigned int next_f;
532 raw_spin_lock(&sg_policy->update_lock);
534 sugov_iowait_boost(sg_cpu, time, flags);
535 sg_cpu->last_update = time;
537 ignore_dl_rate_limit(sg_cpu, sg_policy);
539 if (sugov_should_update_freq(sg_policy, time)) {
540 next_f = sugov_next_freq_shared(sg_cpu, time);
542 if (sg_policy->policy->fast_switch_enabled)
543 sugov_fast_switch(sg_policy, time, next_f);
544 else
545 sugov_deferred_update(sg_policy, time, next_f);
548 raw_spin_unlock(&sg_policy->update_lock);
551 static void sugov_work(struct kthread_work *work)
553 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
554 unsigned int freq;
555 unsigned long flags;
558 * Hold sg_policy->update_lock shortly to handle the case where:
559 * incase sg_policy->next_freq is read here, and then updated by
560 * sugov_deferred_update() just before work_in_progress is set to false
561 * here, we may miss queueing the new update.
563 * Note: If a work was queued after the update_lock is released,
564 * sugov_work() will just be called again by kthread_work code; and the
565 * request will be proceed before the sugov thread sleeps.
567 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
568 freq = sg_policy->next_freq;
569 sg_policy->work_in_progress = false;
570 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
572 mutex_lock(&sg_policy->work_lock);
573 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
574 mutex_unlock(&sg_policy->work_lock);
577 static void sugov_irq_work(struct irq_work *irq_work)
579 struct sugov_policy *sg_policy;
581 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
583 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
586 /************************** sysfs interface ************************/
588 static struct sugov_tunables *global_tunables;
589 static DEFINE_MUTEX(global_tunables_lock);
591 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
593 return container_of(attr_set, struct sugov_tunables, attr_set);
596 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
598 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
600 return sprintf(buf, "%u\n", tunables->rate_limit_us);
603 static ssize_t
604 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
606 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
607 struct sugov_policy *sg_policy;
608 unsigned int rate_limit_us;
610 if (kstrtouint(buf, 10, &rate_limit_us))
611 return -EINVAL;
613 tunables->rate_limit_us = rate_limit_us;
615 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
616 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
618 return count;
621 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
623 static struct attribute *sugov_attrs[] = {
624 &rate_limit_us.attr,
625 NULL
627 ATTRIBUTE_GROUPS(sugov);
629 static struct kobj_type sugov_tunables_ktype = {
630 .default_groups = sugov_groups,
631 .sysfs_ops = &governor_sysfs_ops,
634 /********************** cpufreq governor interface *********************/
636 struct cpufreq_governor schedutil_gov;
638 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
640 struct sugov_policy *sg_policy;
642 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
643 if (!sg_policy)
644 return NULL;
646 sg_policy->policy = policy;
647 raw_spin_lock_init(&sg_policy->update_lock);
648 return sg_policy;
651 static void sugov_policy_free(struct sugov_policy *sg_policy)
653 kfree(sg_policy);
656 static int sugov_kthread_create(struct sugov_policy *sg_policy)
658 struct task_struct *thread;
659 struct sched_attr attr = {
660 .size = sizeof(struct sched_attr),
661 .sched_policy = SCHED_DEADLINE,
662 .sched_flags = SCHED_FLAG_SUGOV,
663 .sched_nice = 0,
664 .sched_priority = 0,
666 * Fake (unused) bandwidth; workaround to "fix"
667 * priority inheritance.
669 .sched_runtime = 1000000,
670 .sched_deadline = 10000000,
671 .sched_period = 10000000,
673 struct cpufreq_policy *policy = sg_policy->policy;
674 int ret;
676 /* kthread only required for slow path */
677 if (policy->fast_switch_enabled)
678 return 0;
680 kthread_init_work(&sg_policy->work, sugov_work);
681 kthread_init_worker(&sg_policy->worker);
682 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
683 "sugov:%d",
684 cpumask_first(policy->related_cpus));
685 if (IS_ERR(thread)) {
686 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
687 return PTR_ERR(thread);
690 ret = sched_setattr_nocheck(thread, &attr);
691 if (ret) {
692 kthread_stop(thread);
693 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
694 return ret;
697 sg_policy->thread = thread;
698 kthread_bind_mask(thread, policy->related_cpus);
699 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
700 mutex_init(&sg_policy->work_lock);
702 wake_up_process(thread);
704 return 0;
707 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
709 /* kthread only required for slow path */
710 if (sg_policy->policy->fast_switch_enabled)
711 return;
713 kthread_flush_worker(&sg_policy->worker);
714 kthread_stop(sg_policy->thread);
715 mutex_destroy(&sg_policy->work_lock);
718 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
720 struct sugov_tunables *tunables;
722 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
723 if (tunables) {
724 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
725 if (!have_governor_per_policy())
726 global_tunables = tunables;
728 return tunables;
731 static void sugov_tunables_free(struct sugov_tunables *tunables)
733 if (!have_governor_per_policy())
734 global_tunables = NULL;
736 kfree(tunables);
739 static int sugov_init(struct cpufreq_policy *policy)
741 struct sugov_policy *sg_policy;
742 struct sugov_tunables *tunables;
743 int ret = 0;
745 /* State should be equivalent to EXIT */
746 if (policy->governor_data)
747 return -EBUSY;
749 cpufreq_enable_fast_switch(policy);
751 sg_policy = sugov_policy_alloc(policy);
752 if (!sg_policy) {
753 ret = -ENOMEM;
754 goto disable_fast_switch;
757 ret = sugov_kthread_create(sg_policy);
758 if (ret)
759 goto free_sg_policy;
761 mutex_lock(&global_tunables_lock);
763 if (global_tunables) {
764 if (WARN_ON(have_governor_per_policy())) {
765 ret = -EINVAL;
766 goto stop_kthread;
768 policy->governor_data = sg_policy;
769 sg_policy->tunables = global_tunables;
771 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
772 goto out;
775 tunables = sugov_tunables_alloc(sg_policy);
776 if (!tunables) {
777 ret = -ENOMEM;
778 goto stop_kthread;
781 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
783 policy->governor_data = sg_policy;
784 sg_policy->tunables = tunables;
786 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
787 get_governor_parent_kobj(policy), "%s",
788 schedutil_gov.name);
789 if (ret)
790 goto fail;
792 out:
793 mutex_unlock(&global_tunables_lock);
794 return 0;
796 fail:
797 kobject_put(&tunables->attr_set.kobj);
798 policy->governor_data = NULL;
799 sugov_tunables_free(tunables);
801 stop_kthread:
802 sugov_kthread_stop(sg_policy);
803 mutex_unlock(&global_tunables_lock);
805 free_sg_policy:
806 sugov_policy_free(sg_policy);
808 disable_fast_switch:
809 cpufreq_disable_fast_switch(policy);
811 pr_err("initialization failed (error %d)\n", ret);
812 return ret;
815 static void sugov_exit(struct cpufreq_policy *policy)
817 struct sugov_policy *sg_policy = policy->governor_data;
818 struct sugov_tunables *tunables = sg_policy->tunables;
819 unsigned int count;
821 mutex_lock(&global_tunables_lock);
823 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
824 policy->governor_data = NULL;
825 if (!count)
826 sugov_tunables_free(tunables);
828 mutex_unlock(&global_tunables_lock);
830 sugov_kthread_stop(sg_policy);
831 sugov_policy_free(sg_policy);
832 cpufreq_disable_fast_switch(policy);
835 static int sugov_start(struct cpufreq_policy *policy)
837 struct sugov_policy *sg_policy = policy->governor_data;
838 unsigned int cpu;
840 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
841 sg_policy->last_freq_update_time = 0;
842 sg_policy->next_freq = 0;
843 sg_policy->work_in_progress = false;
844 sg_policy->limits_changed = false;
845 sg_policy->need_freq_update = false;
846 sg_policy->cached_raw_freq = 0;
848 for_each_cpu(cpu, policy->cpus) {
849 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
851 memset(sg_cpu, 0, sizeof(*sg_cpu));
852 sg_cpu->cpu = cpu;
853 sg_cpu->sg_policy = sg_policy;
856 for_each_cpu(cpu, policy->cpus) {
857 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
859 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
860 policy_is_shared(policy) ?
861 sugov_update_shared :
862 sugov_update_single);
864 return 0;
867 static void sugov_stop(struct cpufreq_policy *policy)
869 struct sugov_policy *sg_policy = policy->governor_data;
870 unsigned int cpu;
872 for_each_cpu(cpu, policy->cpus)
873 cpufreq_remove_update_util_hook(cpu);
875 synchronize_rcu();
877 if (!policy->fast_switch_enabled) {
878 irq_work_sync(&sg_policy->irq_work);
879 kthread_cancel_work_sync(&sg_policy->work);
883 static void sugov_limits(struct cpufreq_policy *policy)
885 struct sugov_policy *sg_policy = policy->governor_data;
887 if (!policy->fast_switch_enabled) {
888 mutex_lock(&sg_policy->work_lock);
889 cpufreq_policy_apply_limits(policy);
890 mutex_unlock(&sg_policy->work_lock);
893 sg_policy->limits_changed = true;
896 struct cpufreq_governor schedutil_gov = {
897 .name = "schedutil",
898 .owner = THIS_MODULE,
899 .dynamic_switching = true,
900 .init = sugov_init,
901 .exit = sugov_exit,
902 .start = sugov_start,
903 .stop = sugov_stop,
904 .limits = sugov_limits,
907 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
908 struct cpufreq_governor *cpufreq_default_governor(void)
910 return &schedutil_gov;
912 #endif
914 static int __init sugov_register(void)
916 return cpufreq_register_governor(&schedutil_gov);
918 core_initcall(sugov_register);
920 #ifdef CONFIG_ENERGY_MODEL
921 extern bool sched_energy_update;
922 extern struct mutex sched_energy_mutex;
924 static void rebuild_sd_workfn(struct work_struct *work)
926 mutex_lock(&sched_energy_mutex);
927 sched_energy_update = true;
928 rebuild_sched_domains();
929 sched_energy_update = false;
930 mutex_unlock(&sched_energy_mutex);
932 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
935 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
936 * on governor changes to make sure the scheduler knows about it.
938 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
939 struct cpufreq_governor *old_gov)
941 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
943 * When called from the cpufreq_register_driver() path, the
944 * cpu_hotplug_lock is already held, so use a work item to
945 * avoid nested locking in rebuild_sched_domains().
947 schedule_work(&rebuild_sd_work);
951 #endif