1 // SPDX-License-Identifier: GPL-2.0-only
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
27 static DEFINE_MUTEX(pid_caches_mutex
);
28 static struct kmem_cache
*pid_ns_cachep
;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache
*pid_cache
[MAX_PID_NS_LEVEL
];
33 * creates the kmem cache to allocate pids from.
34 * @level: pid namespace level
37 static struct kmem_cache
*create_pid_cachep(unsigned int level
)
39 /* Level 0 is init_pid_ns.pid_cachep */
40 struct kmem_cache
**pkc
= &pid_cache
[level
- 1];
41 struct kmem_cache
*kc
;
42 char name
[4 + 10 + 1];
49 snprintf(name
, sizeof(name
), "pid_%u", level
+ 1);
50 len
= sizeof(struct pid
) + level
* sizeof(struct upid
);
51 mutex_lock(&pid_caches_mutex
);
52 /* Name collision forces to do allocation under mutex. */
54 *pkc
= kmem_cache_create(name
, len
, 0, SLAB_HWCACHE_ALIGN
, 0);
55 mutex_unlock(&pid_caches_mutex
);
56 /* current can fail, but someone else can succeed. */
57 return READ_ONCE(*pkc
);
60 static void proc_cleanup_work(struct work_struct
*work
)
62 struct pid_namespace
*ns
= container_of(work
, struct pid_namespace
, proc_work
);
63 pid_ns_release_proc(ns
);
66 static struct ucounts
*inc_pid_namespaces(struct user_namespace
*ns
)
68 return inc_ucount(ns
, current_euid(), UCOUNT_PID_NAMESPACES
);
71 static void dec_pid_namespaces(struct ucounts
*ucounts
)
73 dec_ucount(ucounts
, UCOUNT_PID_NAMESPACES
);
76 static struct pid_namespace
*create_pid_namespace(struct user_namespace
*user_ns
,
77 struct pid_namespace
*parent_pid_ns
)
79 struct pid_namespace
*ns
;
80 unsigned int level
= parent_pid_ns
->level
+ 1;
81 struct ucounts
*ucounts
;
85 if (!in_userns(parent_pid_ns
->user_ns
, user_ns
))
89 if (level
> MAX_PID_NS_LEVEL
)
91 ucounts
= inc_pid_namespaces(user_ns
);
96 ns
= kmem_cache_zalloc(pid_ns_cachep
, GFP_KERNEL
);
102 ns
->pid_cachep
= create_pid_cachep(level
);
103 if (ns
->pid_cachep
== NULL
)
106 err
= ns_alloc_inum(&ns
->ns
);
109 ns
->ns
.ops
= &pidns_operations
;
111 kref_init(&ns
->kref
);
113 ns
->parent
= get_pid_ns(parent_pid_ns
);
114 ns
->user_ns
= get_user_ns(user_ns
);
115 ns
->ucounts
= ucounts
;
116 ns
->pid_allocated
= PIDNS_ADDING
;
117 INIT_WORK(&ns
->proc_work
, proc_cleanup_work
);
122 idr_destroy(&ns
->idr
);
123 kmem_cache_free(pid_ns_cachep
, ns
);
125 dec_pid_namespaces(ucounts
);
130 static void delayed_free_pidns(struct rcu_head
*p
)
132 struct pid_namespace
*ns
= container_of(p
, struct pid_namespace
, rcu
);
134 dec_pid_namespaces(ns
->ucounts
);
135 put_user_ns(ns
->user_ns
);
137 kmem_cache_free(pid_ns_cachep
, ns
);
140 static void destroy_pid_namespace(struct pid_namespace
*ns
)
142 ns_free_inum(&ns
->ns
);
144 idr_destroy(&ns
->idr
);
145 call_rcu(&ns
->rcu
, delayed_free_pidns
);
148 struct pid_namespace
*copy_pid_ns(unsigned long flags
,
149 struct user_namespace
*user_ns
, struct pid_namespace
*old_ns
)
151 if (!(flags
& CLONE_NEWPID
))
152 return get_pid_ns(old_ns
);
153 if (task_active_pid_ns(current
) != old_ns
)
154 return ERR_PTR(-EINVAL
);
155 return create_pid_namespace(user_ns
, old_ns
);
158 static void free_pid_ns(struct kref
*kref
)
160 struct pid_namespace
*ns
;
162 ns
= container_of(kref
, struct pid_namespace
, kref
);
163 destroy_pid_namespace(ns
);
166 void put_pid_ns(struct pid_namespace
*ns
)
168 struct pid_namespace
*parent
;
170 while (ns
!= &init_pid_ns
) {
172 if (!kref_put(&ns
->kref
, free_pid_ns
))
177 EXPORT_SYMBOL_GPL(put_pid_ns
);
179 void zap_pid_ns_processes(struct pid_namespace
*pid_ns
)
183 struct task_struct
*task
, *me
= current
;
184 int init_pids
= thread_group_leader(me
) ? 1 : 2;
187 /* Don't allow any more processes into the pid namespace */
188 disable_pid_allocation(pid_ns
);
191 * Ignore SIGCHLD causing any terminated children to autoreap.
192 * This speeds up the namespace shutdown, plus see the comment
195 spin_lock_irq(&me
->sighand
->siglock
);
196 me
->sighand
->action
[SIGCHLD
- 1].sa
.sa_handler
= SIG_IGN
;
197 spin_unlock_irq(&me
->sighand
->siglock
);
200 * The last thread in the cgroup-init thread group is terminating.
201 * Find remaining pid_ts in the namespace, signal and wait for them
204 * Note: This signals each threads in the namespace - even those that
205 * belong to the same thread group, To avoid this, we would have
206 * to walk the entire tasklist looking a processes in this
207 * namespace, but that could be unnecessarily expensive if the
208 * pid namespace has just a few processes. Or we need to
209 * maintain a tasklist for each pid namespace.
213 read_lock(&tasklist_lock
);
215 idr_for_each_entry_continue(&pid_ns
->idr
, pid
, nr
) {
216 task
= pid_task(pid
, PIDTYPE_PID
);
217 if (task
&& !__fatal_signal_pending(task
))
218 group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, task
, PIDTYPE_MAX
);
220 read_unlock(&tasklist_lock
);
224 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
225 * kernel_wait4() will also block until our children traced from the
226 * parent namespace are detached and become EXIT_DEAD.
229 clear_thread_flag(TIF_SIGPENDING
);
230 rc
= kernel_wait4(-1, NULL
, __WALL
, NULL
);
231 } while (rc
!= -ECHILD
);
234 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
235 * really care, we could reparent them to the global init. We could
236 * exit and reap ->child_reaper even if it is not the last thread in
237 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
238 * pid_ns can not go away until proc_kill_sb() drops the reference.
240 * But this ns can also have other tasks injected by setns()+fork().
241 * Again, ignoring the user visible semantics we do not really need
242 * to wait until they are all reaped, but they can be reparented to
243 * us and thus we need to ensure that pid->child_reaper stays valid
244 * until they all go away. See free_pid()->wake_up_process().
246 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
250 set_current_state(TASK_INTERRUPTIBLE
);
251 if (pid_ns
->pid_allocated
== init_pids
)
255 __set_current_state(TASK_RUNNING
);
258 current
->signal
->group_exit_code
= pid_ns
->reboot
;
260 acct_exit_ns(pid_ns
);
264 #ifdef CONFIG_CHECKPOINT_RESTORE
265 static int pid_ns_ctl_handler(struct ctl_table
*table
, int write
,
266 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
268 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
269 struct ctl_table tmp
= *table
;
272 if (write
&& !ns_capable(pid_ns
->user_ns
, CAP_SYS_ADMIN
))
276 * Writing directly to ns' last_pid field is OK, since this field
277 * is volatile in a living namespace anyway and a code writing to
278 * it should synchronize its usage with external means.
281 next
= idr_get_cursor(&pid_ns
->idr
) - 1;
284 ret
= proc_dointvec_minmax(&tmp
, write
, buffer
, lenp
, ppos
);
286 idr_set_cursor(&pid_ns
->idr
, next
+ 1);
292 static struct ctl_table pid_ns_ctl_table
[] = {
294 .procname
= "ns_last_pid",
295 .maxlen
= sizeof(int),
296 .mode
= 0666, /* permissions are checked in the handler */
297 .proc_handler
= pid_ns_ctl_handler
,
298 .extra1
= SYSCTL_ZERO
,
303 static struct ctl_path kern_path
[] = { { .procname
= "kernel", }, { } };
304 #endif /* CONFIG_CHECKPOINT_RESTORE */
306 int reboot_pid_ns(struct pid_namespace
*pid_ns
, int cmd
)
308 if (pid_ns
== &init_pid_ns
)
312 case LINUX_REBOOT_CMD_RESTART2
:
313 case LINUX_REBOOT_CMD_RESTART
:
314 pid_ns
->reboot
= SIGHUP
;
317 case LINUX_REBOOT_CMD_POWER_OFF
:
318 case LINUX_REBOOT_CMD_HALT
:
319 pid_ns
->reboot
= SIGINT
;
325 read_lock(&tasklist_lock
);
326 send_sig(SIGKILL
, pid_ns
->child_reaper
, 1);
327 read_unlock(&tasklist_lock
);
335 static inline struct pid_namespace
*to_pid_ns(struct ns_common
*ns
)
337 return container_of(ns
, struct pid_namespace
, ns
);
340 static struct ns_common
*pidns_get(struct task_struct
*task
)
342 struct pid_namespace
*ns
;
345 ns
= task_active_pid_ns(task
);
350 return ns
? &ns
->ns
: NULL
;
353 static struct ns_common
*pidns_for_children_get(struct task_struct
*task
)
355 struct pid_namespace
*ns
= NULL
;
359 ns
= task
->nsproxy
->pid_ns_for_children
;
365 read_lock(&tasklist_lock
);
366 if (!ns
->child_reaper
) {
370 read_unlock(&tasklist_lock
);
373 return ns
? &ns
->ns
: NULL
;
376 static void pidns_put(struct ns_common
*ns
)
378 put_pid_ns(to_pid_ns(ns
));
381 static int pidns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
383 struct pid_namespace
*active
= task_active_pid_ns(current
);
384 struct pid_namespace
*ancestor
, *new = to_pid_ns(ns
);
386 if (!ns_capable(new->user_ns
, CAP_SYS_ADMIN
) ||
387 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
391 * Only allow entering the current active pid namespace
392 * or a child of the current active pid namespace.
394 * This is required for fork to return a usable pid value and
395 * this maintains the property that processes and their
396 * children can not escape their current pid namespace.
398 if (new->level
< active
->level
)
402 while (ancestor
->level
> active
->level
)
403 ancestor
= ancestor
->parent
;
404 if (ancestor
!= active
)
407 put_pid_ns(nsproxy
->pid_ns_for_children
);
408 nsproxy
->pid_ns_for_children
= get_pid_ns(new);
412 static struct ns_common
*pidns_get_parent(struct ns_common
*ns
)
414 struct pid_namespace
*active
= task_active_pid_ns(current
);
415 struct pid_namespace
*pid_ns
, *p
;
417 /* See if the parent is in the current namespace */
418 pid_ns
= p
= to_pid_ns(ns
)->parent
;
421 return ERR_PTR(-EPERM
);
427 return &get_pid_ns(pid_ns
)->ns
;
430 static struct user_namespace
*pidns_owner(struct ns_common
*ns
)
432 return to_pid_ns(ns
)->user_ns
;
435 const struct proc_ns_operations pidns_operations
= {
437 .type
= CLONE_NEWPID
,
440 .install
= pidns_install
,
441 .owner
= pidns_owner
,
442 .get_parent
= pidns_get_parent
,
445 const struct proc_ns_operations pidns_for_children_operations
= {
446 .name
= "pid_for_children",
447 .real_ns_name
= "pid",
448 .type
= CLONE_NEWPID
,
449 .get
= pidns_for_children_get
,
451 .install
= pidns_install
,
452 .owner
= pidns_owner
,
453 .get_parent
= pidns_get_parent
,
456 static __init
int pid_namespaces_init(void)
458 pid_ns_cachep
= KMEM_CACHE(pid_namespace
, SLAB_PANIC
);
460 #ifdef CONFIG_CHECKPOINT_RESTORE
461 register_sysctl_paths(kern_path
, pid_ns_ctl_table
);
466 __initcall(pid_namespaces_init
);