split dev_queue
[cor.git] / include / net / tls.h
blobdf630f5fc723c08f186955aa258a394dfbf36fb9
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
62 #define TLS_RECORD_TYPE_DATA 0x17
64 #define TLS_AAD_SPACE_SIZE 13
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
76 #define TLS_AES_CCM_IV_B0_BYTE 2
78 #define __TLS_INC_STATS(net, field) \
79 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field) \
81 SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field) \
83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field) \
85 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
87 enum {
88 TLS_BASE,
89 TLS_SW,
90 TLS_HW,
91 TLS_HW_RECORD,
92 TLS_NUM_CONFIG,
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
99 struct tls_rec {
100 struct list_head list;
101 int tx_ready;
102 int tx_flags;
104 struct sk_msg msg_plaintext;
105 struct sk_msg msg_encrypted;
107 /* AAD | msg_plaintext.sg.data | sg_tag */
108 struct scatterlist sg_aead_in[2];
109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 struct scatterlist sg_aead_out[2];
112 char content_type;
113 struct scatterlist sg_content_type;
115 char aad_space[TLS_AAD_SPACE_SIZE];
116 u8 iv_data[MAX_IV_SIZE];
117 struct aead_request aead_req;
118 u8 aead_req_ctx[];
121 struct tls_msg {
122 struct strp_msg rxm;
123 u8 control;
126 struct tx_work {
127 struct delayed_work work;
128 struct sock *sk;
131 struct tls_sw_context_tx {
132 struct crypto_aead *aead_send;
133 struct crypto_wait async_wait;
134 struct tx_work tx_work;
135 struct tls_rec *open_rec;
136 struct list_head tx_list;
137 atomic_t encrypt_pending;
138 int async_notify;
139 u8 async_capable:1;
141 #define BIT_TX_SCHEDULED 0
142 #define BIT_TX_CLOSING 1
143 unsigned long tx_bitmask;
146 struct tls_sw_context_rx {
147 struct crypto_aead *aead_recv;
148 struct crypto_wait async_wait;
149 struct strparser strp;
150 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
151 void (*saved_data_ready)(struct sock *sk);
153 struct sk_buff *recv_pkt;
154 u8 control;
155 u8 async_capable:1;
156 u8 decrypted:1;
157 atomic_t decrypt_pending;
158 bool async_notify;
161 struct tls_record_info {
162 struct list_head list;
163 u32 end_seq;
164 int len;
165 int num_frags;
166 skb_frag_t frags[MAX_SKB_FRAGS];
169 struct tls_offload_context_tx {
170 struct crypto_aead *aead_send;
171 spinlock_t lock; /* protects records list */
172 struct list_head records_list;
173 struct tls_record_info *open_record;
174 struct tls_record_info *retransmit_hint;
175 u64 hint_record_sn;
176 u64 unacked_record_sn;
178 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
179 void (*sk_destruct)(struct sock *sk);
180 u8 driver_state[] __aligned(8);
181 /* The TLS layer reserves room for driver specific state
182 * Currently the belief is that there is not enough
183 * driver specific state to justify another layer of indirection
185 #define TLS_DRIVER_STATE_SIZE_TX 16
188 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
189 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
191 enum tls_context_flags {
192 TLS_RX_SYNC_RUNNING = 0,
193 /* Unlike RX where resync is driven entirely by the core in TX only
194 * the driver knows when things went out of sync, so we need the flag
195 * to be atomic.
197 TLS_TX_SYNC_SCHED = 1,
200 struct cipher_context {
201 char *iv;
202 char *rec_seq;
205 union tls_crypto_context {
206 struct tls_crypto_info info;
207 union {
208 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
209 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
213 struct tls_prot_info {
214 u16 version;
215 u16 cipher_type;
216 u16 prepend_size;
217 u16 tag_size;
218 u16 overhead_size;
219 u16 iv_size;
220 u16 salt_size;
221 u16 rec_seq_size;
222 u16 aad_size;
223 u16 tail_size;
226 struct tls_context {
227 /* read-only cache line */
228 struct tls_prot_info prot_info;
230 u8 tx_conf:3;
231 u8 rx_conf:3;
233 int (*push_pending_record)(struct sock *sk, int flags);
234 void (*sk_write_space)(struct sock *sk);
236 void *priv_ctx_tx;
237 void *priv_ctx_rx;
239 struct net_device *netdev;
241 /* rw cache line */
242 struct cipher_context tx;
243 struct cipher_context rx;
245 struct scatterlist *partially_sent_record;
246 u16 partially_sent_offset;
248 bool in_tcp_sendpages;
249 bool pending_open_record_frags;
251 struct mutex tx_lock; /* protects partially_sent_* fields and
252 * per-type TX fields
254 unsigned long flags;
256 /* cache cold stuff */
257 struct proto *sk_proto;
259 void (*sk_destruct)(struct sock *sk);
261 union tls_crypto_context crypto_send;
262 union tls_crypto_context crypto_recv;
264 struct list_head list;
265 refcount_t refcount;
266 struct rcu_head rcu;
269 enum tls_offload_ctx_dir {
270 TLS_OFFLOAD_CTX_DIR_RX,
271 TLS_OFFLOAD_CTX_DIR_TX,
274 struct tlsdev_ops {
275 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
276 enum tls_offload_ctx_dir direction,
277 struct tls_crypto_info *crypto_info,
278 u32 start_offload_tcp_sn);
279 void (*tls_dev_del)(struct net_device *netdev,
280 struct tls_context *ctx,
281 enum tls_offload_ctx_dir direction);
282 int (*tls_dev_resync)(struct net_device *netdev,
283 struct sock *sk, u32 seq, u8 *rcd_sn,
284 enum tls_offload_ctx_dir direction);
287 enum tls_offload_sync_type {
288 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
289 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
292 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
293 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
295 struct tls_offload_context_rx {
296 /* sw must be the first member of tls_offload_context_rx */
297 struct tls_sw_context_rx sw;
298 enum tls_offload_sync_type resync_type;
299 /* this member is set regardless of resync_type, to avoid branches */
300 u8 resync_nh_reset:1;
301 /* CORE_NEXT_HINT-only member, but use the hole here */
302 u8 resync_nh_do_now:1;
303 union {
304 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
305 struct {
306 atomic64_t resync_req;
308 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
309 struct {
310 u32 decrypted_failed;
311 u32 decrypted_tgt;
312 } resync_nh;
314 u8 driver_state[] __aligned(8);
315 /* The TLS layer reserves room for driver specific state
316 * Currently the belief is that there is not enough
317 * driver specific state to justify another layer of indirection
319 #define TLS_DRIVER_STATE_SIZE_RX 8
322 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
323 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
325 struct tls_context *tls_ctx_create(struct sock *sk);
326 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
327 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
329 int wait_on_pending_writer(struct sock *sk, long *timeo);
330 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
331 int __user *optlen);
332 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
333 unsigned int optlen);
335 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
336 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
337 void tls_sw_strparser_done(struct tls_context *tls_ctx);
338 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
339 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
340 int offset, size_t size, int flags);
341 int tls_sw_sendpage(struct sock *sk, struct page *page,
342 int offset, size_t size, int flags);
343 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
344 void tls_sw_release_resources_tx(struct sock *sk);
345 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
346 void tls_sw_free_resources_rx(struct sock *sk);
347 void tls_sw_release_resources_rx(struct sock *sk);
348 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
349 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
350 int nonblock, int flags, int *addr_len);
351 bool tls_sw_stream_read(const struct sock *sk);
352 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
353 struct pipe_inode_info *pipe,
354 size_t len, unsigned int flags);
356 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
357 int tls_device_sendpage(struct sock *sk, struct page *page,
358 int offset, size_t size, int flags);
359 int tls_tx_records(struct sock *sk, int flags);
361 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
362 u32 seq, u64 *p_record_sn);
364 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
366 return rec->len == 0;
369 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
371 return rec->end_seq - rec->len;
374 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
375 struct scatterlist *sg, u16 first_offset,
376 int flags);
377 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
378 int flags);
379 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
381 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
383 return (struct tls_msg *)strp_msg(skb);
386 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
388 return !!ctx->partially_sent_record;
391 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
393 return tls_ctx->pending_open_record_frags;
396 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
398 struct tls_rec *rec;
400 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
401 if (!rec)
402 return false;
404 return READ_ONCE(rec->tx_ready);
407 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
409 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
411 switch (config) {
412 case TLS_BASE:
413 return TLS_CONF_BASE;
414 case TLS_SW:
415 return TLS_CONF_SW;
416 case TLS_HW:
417 return TLS_CONF_HW;
418 case TLS_HW_RECORD:
419 return TLS_CONF_HW_RECORD;
421 return 0;
424 struct sk_buff *
425 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
426 struct sk_buff *skb);
428 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
430 #ifdef CONFIG_SOCK_VALIDATE_XMIT
431 return sk_fullsock(sk) &&
432 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
433 &tls_validate_xmit_skb);
434 #else
435 return false;
436 #endif
439 static inline void tls_err_abort(struct sock *sk, int err)
441 sk->sk_err = err;
442 sk->sk_error_report(sk);
445 static inline bool tls_bigint_increment(unsigned char *seq, int len)
447 int i;
449 for (i = len - 1; i >= 0; i--) {
450 ++seq[i];
451 if (seq[i] != 0)
452 break;
455 return (i == -1);
458 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
460 struct inet_connection_sock *icsk = inet_csk(sk);
462 /* Use RCU on icsk_ulp_data only for sock diag code,
463 * TLS data path doesn't need rcu_dereference().
465 return (__force void *)icsk->icsk_ulp_data;
468 static inline void tls_advance_record_sn(struct sock *sk,
469 struct tls_prot_info *prot,
470 struct cipher_context *ctx)
472 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
473 tls_err_abort(sk, EBADMSG);
475 if (prot->version != TLS_1_3_VERSION)
476 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
477 prot->iv_size);
480 static inline void tls_fill_prepend(struct tls_context *ctx,
481 char *buf,
482 size_t plaintext_len,
483 unsigned char record_type,
484 int version)
486 struct tls_prot_info *prot = &ctx->prot_info;
487 size_t pkt_len, iv_size = prot->iv_size;
489 pkt_len = plaintext_len + prot->tag_size;
490 if (version != TLS_1_3_VERSION) {
491 pkt_len += iv_size;
493 memcpy(buf + TLS_NONCE_OFFSET,
494 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
497 /* we cover nonce explicit here as well, so buf should be of
498 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
500 buf[0] = version == TLS_1_3_VERSION ?
501 TLS_RECORD_TYPE_DATA : record_type;
502 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
503 buf[1] = TLS_1_2_VERSION_MINOR;
504 buf[2] = TLS_1_2_VERSION_MAJOR;
505 /* we can use IV for nonce explicit according to spec */
506 buf[3] = pkt_len >> 8;
507 buf[4] = pkt_len & 0xFF;
510 static inline void tls_make_aad(char *buf,
511 size_t size,
512 char *record_sequence,
513 int record_sequence_size,
514 unsigned char record_type,
515 int version)
517 if (version != TLS_1_3_VERSION) {
518 memcpy(buf, record_sequence, record_sequence_size);
519 buf += 8;
520 } else {
521 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
524 buf[0] = version == TLS_1_3_VERSION ?
525 TLS_RECORD_TYPE_DATA : record_type;
526 buf[1] = TLS_1_2_VERSION_MAJOR;
527 buf[2] = TLS_1_2_VERSION_MINOR;
528 buf[3] = size >> 8;
529 buf[4] = size & 0xFF;
532 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
534 int i;
536 if (version == TLS_1_3_VERSION) {
537 for (i = 0; i < 8; i++)
538 iv[i + 4] ^= seq[i];
543 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
544 const struct tls_context *tls_ctx)
546 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
549 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
550 const struct tls_context *tls_ctx)
552 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
555 static inline struct tls_offload_context_tx *
556 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
558 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
561 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
563 struct tls_context *ctx = tls_get_ctx(sk);
565 if (!ctx)
566 return false;
567 return !!tls_sw_ctx_tx(ctx);
570 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
571 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
573 static inline struct tls_offload_context_rx *
574 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
576 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
579 #if IS_ENABLED(CONFIG_TLS_DEVICE)
580 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
581 enum tls_offload_ctx_dir direction)
583 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
584 return tls_offload_ctx_tx(tls_ctx)->driver_state;
585 else
586 return tls_offload_ctx_rx(tls_ctx)->driver_state;
589 static inline void *
590 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
592 return __tls_driver_ctx(tls_get_ctx(sk), direction);
594 #endif
596 /* The TLS context is valid until sk_destruct is called */
597 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
599 struct tls_context *tls_ctx = tls_get_ctx(sk);
600 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
602 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
605 static inline void
606 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
608 struct tls_context *tls_ctx = tls_get_ctx(sk);
610 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
613 /* Driver's seq tracking has to be disabled until resync succeeded */
614 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
616 struct tls_context *tls_ctx = tls_get_ctx(sk);
617 bool ret;
619 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
620 smp_mb__after_atomic();
621 return ret;
624 int __net_init tls_proc_init(struct net *net);
625 void __net_exit tls_proc_fini(struct net *net);
627 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
628 unsigned char *record_type);
629 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
630 struct scatterlist *sgout);
631 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
633 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
634 struct net_device *dev,
635 struct sk_buff *skb);
637 int tls_sw_fallback_init(struct sock *sk,
638 struct tls_offload_context_tx *offload_ctx,
639 struct tls_crypto_info *crypto_info);
641 #ifdef CONFIG_TLS_DEVICE
642 void tls_device_init(void);
643 void tls_device_cleanup(void);
644 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
645 void tls_device_free_resources_tx(struct sock *sk);
646 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
647 void tls_device_offload_cleanup_rx(struct sock *sk);
648 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
649 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
650 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
651 struct sk_buff *skb, struct strp_msg *rxm);
652 #else
653 static inline void tls_device_init(void) {}
654 static inline void tls_device_cleanup(void) {}
656 static inline int
657 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
659 return -EOPNOTSUPP;
662 static inline void tls_device_free_resources_tx(struct sock *sk) {}
664 static inline int
665 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
667 return -EOPNOTSUPP;
670 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
671 static inline void
672 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
674 static inline int
675 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
676 struct sk_buff *skb, struct strp_msg *rxm)
678 return 0;
680 #endif
681 #endif /* _TLS_OFFLOAD_H */