1 // SPDX-License-Identifier: GPL-2.0-only
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frame.h>
42 #include <asm/sections.h>
44 #include <crypto/hash.h>
45 #include <crypto/sha.h>
46 #include "kexec_internal.h"
48 DEFINE_MUTEX(kexec_mutex
);
50 /* Per cpu memory for storing cpu states in case of system crash. */
51 note_buf_t __percpu
*crash_notes
;
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress
= false;
57 /* Location of the reserved area for the crash kernel */
58 struct resource crashk_res
= {
59 .name
= "Crash kernel",
62 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
63 .desc
= IORES_DESC_CRASH_KERNEL
65 struct resource crashk_low_res
= {
66 .name
= "Crash kernel",
69 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
70 .desc
= IORES_DESC_CRASH_KERNEL
73 int kexec_should_crash(struct task_struct
*p
)
76 * If crash_kexec_post_notifiers is enabled, don't run
77 * crash_kexec() here yet, which must be run after panic
78 * notifiers in panic().
80 if (crash_kexec_post_notifiers
)
83 * There are 4 panic() calls in do_exit() path, each of which
84 * corresponds to each of these 4 conditions.
86 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
91 int kexec_crash_loaded(void)
93 return !!kexec_crash_image
;
95 EXPORT_SYMBOL_GPL(kexec_crash_loaded
);
98 * When kexec transitions to the new kernel there is a one-to-one
99 * mapping between physical and virtual addresses. On processors
100 * where you can disable the MMU this is trivial, and easy. For
101 * others it is still a simple predictable page table to setup.
103 * In that environment kexec copies the new kernel to its final
104 * resting place. This means I can only support memory whose
105 * physical address can fit in an unsigned long. In particular
106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
107 * If the assembly stub has more restrictive requirements
108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
109 * defined more restrictively in <asm/kexec.h>.
111 * The code for the transition from the current kernel to the
112 * the new kernel is placed in the control_code_buffer, whose size
113 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
114 * page of memory is necessary, but some architectures require more.
115 * Because this memory must be identity mapped in the transition from
116 * virtual to physical addresses it must live in the range
117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120 * The assembly stub in the control code buffer is passed a linked list
121 * of descriptor pages detailing the source pages of the new kernel,
122 * and the destination addresses of those source pages. As this data
123 * structure is not used in the context of the current OS, it must
126 * The code has been made to work with highmem pages and will use a
127 * destination page in its final resting place (if it happens
128 * to allocate it). The end product of this is that most of the
129 * physical address space, and most of RAM can be used.
131 * Future directions include:
132 * - allocating a page table with the control code buffer identity
133 * mapped, to simplify machine_kexec and make kexec_on_panic more
138 * KIMAGE_NO_DEST is an impossible destination address..., for
139 * allocating pages whose destination address we do not care about.
141 #define KIMAGE_NO_DEST (-1UL)
142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144 static struct page
*kimage_alloc_page(struct kimage
*image
,
148 int sanity_check_segment_list(struct kimage
*image
)
151 unsigned long nr_segments
= image
->nr_segments
;
152 unsigned long total_pages
= 0;
153 unsigned long nr_pages
= totalram_pages();
156 * Verify we have good destination addresses. The caller is
157 * responsible for making certain we don't attempt to load
158 * the new image into invalid or reserved areas of RAM. This
159 * just verifies it is an address we can use.
161 * Since the kernel does everything in page size chunks ensure
162 * the destination addresses are page aligned. Too many
163 * special cases crop of when we don't do this. The most
164 * insidious is getting overlapping destination addresses
165 * simply because addresses are changed to page size
168 for (i
= 0; i
< nr_segments
; i
++) {
169 unsigned long mstart
, mend
;
171 mstart
= image
->segment
[i
].mem
;
172 mend
= mstart
+ image
->segment
[i
].memsz
;
174 return -EADDRNOTAVAIL
;
175 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
176 return -EADDRNOTAVAIL
;
177 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
178 return -EADDRNOTAVAIL
;
181 /* Verify our destination addresses do not overlap.
182 * If we alloed overlapping destination addresses
183 * through very weird things can happen with no
184 * easy explanation as one segment stops on another.
186 for (i
= 0; i
< nr_segments
; i
++) {
187 unsigned long mstart
, mend
;
190 mstart
= image
->segment
[i
].mem
;
191 mend
= mstart
+ image
->segment
[i
].memsz
;
192 for (j
= 0; j
< i
; j
++) {
193 unsigned long pstart
, pend
;
195 pstart
= image
->segment
[j
].mem
;
196 pend
= pstart
+ image
->segment
[j
].memsz
;
197 /* Do the segments overlap ? */
198 if ((mend
> pstart
) && (mstart
< pend
))
203 /* Ensure our buffer sizes are strictly less than
204 * our memory sizes. This should always be the case,
205 * and it is easier to check up front than to be surprised
208 for (i
= 0; i
< nr_segments
; i
++) {
209 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
214 * Verify that no more than half of memory will be consumed. If the
215 * request from userspace is too large, a large amount of time will be
216 * wasted allocating pages, which can cause a soft lockup.
218 for (i
= 0; i
< nr_segments
; i
++) {
219 if (PAGE_COUNT(image
->segment
[i
].memsz
) > nr_pages
/ 2)
222 total_pages
+= PAGE_COUNT(image
->segment
[i
].memsz
);
225 if (total_pages
> nr_pages
/ 2)
229 * Verify we have good destination addresses. Normally
230 * the caller is responsible for making certain we don't
231 * attempt to load the new image into invalid or reserved
232 * areas of RAM. But crash kernels are preloaded into a
233 * reserved area of ram. We must ensure the addresses
234 * are in the reserved area otherwise preloading the
235 * kernel could corrupt things.
238 if (image
->type
== KEXEC_TYPE_CRASH
) {
239 for (i
= 0; i
< nr_segments
; i
++) {
240 unsigned long mstart
, mend
;
242 mstart
= image
->segment
[i
].mem
;
243 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
244 /* Ensure we are within the crash kernel limits */
245 if ((mstart
< phys_to_boot_phys(crashk_res
.start
)) ||
246 (mend
> phys_to_boot_phys(crashk_res
.end
)))
247 return -EADDRNOTAVAIL
;
254 struct kimage
*do_kimage_alloc_init(void)
256 struct kimage
*image
;
258 /* Allocate a controlling structure */
259 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
264 image
->entry
= &image
->head
;
265 image
->last_entry
= &image
->head
;
266 image
->control_page
= ~0; /* By default this does not apply */
267 image
->type
= KEXEC_TYPE_DEFAULT
;
269 /* Initialize the list of control pages */
270 INIT_LIST_HEAD(&image
->control_pages
);
272 /* Initialize the list of destination pages */
273 INIT_LIST_HEAD(&image
->dest_pages
);
275 /* Initialize the list of unusable pages */
276 INIT_LIST_HEAD(&image
->unusable_pages
);
281 int kimage_is_destination_range(struct kimage
*image
,
287 for (i
= 0; i
< image
->nr_segments
; i
++) {
288 unsigned long mstart
, mend
;
290 mstart
= image
->segment
[i
].mem
;
291 mend
= mstart
+ image
->segment
[i
].memsz
;
292 if ((end
> mstart
) && (start
< mend
))
299 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
303 if (fatal_signal_pending(current
))
305 pages
= alloc_pages(gfp_mask
& ~__GFP_ZERO
, order
);
307 unsigned int count
, i
;
309 pages
->mapping
= NULL
;
310 set_page_private(pages
, order
);
312 for (i
= 0; i
< count
; i
++)
313 SetPageReserved(pages
+ i
);
315 arch_kexec_post_alloc_pages(page_address(pages
), count
,
318 if (gfp_mask
& __GFP_ZERO
)
319 for (i
= 0; i
< count
; i
++)
320 clear_highpage(pages
+ i
);
326 static void kimage_free_pages(struct page
*page
)
328 unsigned int order
, count
, i
;
330 order
= page_private(page
);
333 arch_kexec_pre_free_pages(page_address(page
), count
);
335 for (i
= 0; i
< count
; i
++)
336 ClearPageReserved(page
+ i
);
337 __free_pages(page
, order
);
340 void kimage_free_page_list(struct list_head
*list
)
342 struct page
*page
, *next
;
344 list_for_each_entry_safe(page
, next
, list
, lru
) {
345 list_del(&page
->lru
);
346 kimage_free_pages(page
);
350 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
353 /* Control pages are special, they are the intermediaries
354 * that are needed while we copy the rest of the pages
355 * to their final resting place. As such they must
356 * not conflict with either the destination addresses
357 * or memory the kernel is already using.
359 * The only case where we really need more than one of
360 * these are for architectures where we cannot disable
361 * the MMU and must instead generate an identity mapped
362 * page table for all of the memory.
364 * At worst this runs in O(N) of the image size.
366 struct list_head extra_pages
;
371 INIT_LIST_HEAD(&extra_pages
);
373 /* Loop while I can allocate a page and the page allocated
374 * is a destination page.
377 unsigned long pfn
, epfn
, addr
, eaddr
;
379 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
382 pfn
= page_to_boot_pfn(pages
);
384 addr
= pfn
<< PAGE_SHIFT
;
385 eaddr
= epfn
<< PAGE_SHIFT
;
386 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
387 kimage_is_destination_range(image
, addr
, eaddr
)) {
388 list_add(&pages
->lru
, &extra_pages
);
394 /* Remember the allocated page... */
395 list_add(&pages
->lru
, &image
->control_pages
);
397 /* Because the page is already in it's destination
398 * location we will never allocate another page at
399 * that address. Therefore kimage_alloc_pages
400 * will not return it (again) and we don't need
401 * to give it an entry in image->segment[].
404 /* Deal with the destination pages I have inadvertently allocated.
406 * Ideally I would convert multi-page allocations into single
407 * page allocations, and add everything to image->dest_pages.
409 * For now it is simpler to just free the pages.
411 kimage_free_page_list(&extra_pages
);
416 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
419 /* Control pages are special, they are the intermediaries
420 * that are needed while we copy the rest of the pages
421 * to their final resting place. As such they must
422 * not conflict with either the destination addresses
423 * or memory the kernel is already using.
425 * Control pages are also the only pags we must allocate
426 * when loading a crash kernel. All of the other pages
427 * are specified by the segments and we just memcpy
428 * into them directly.
430 * The only case where we really need more than one of
431 * these are for architectures where we cannot disable
432 * the MMU and must instead generate an identity mapped
433 * page table for all of the memory.
435 * Given the low demand this implements a very simple
436 * allocator that finds the first hole of the appropriate
437 * size in the reserved memory region, and allocates all
438 * of the memory up to and including the hole.
440 unsigned long hole_start
, hole_end
, size
;
444 size
= (1 << order
) << PAGE_SHIFT
;
445 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
446 hole_end
= hole_start
+ size
- 1;
447 while (hole_end
<= crashk_res
.end
) {
452 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
454 /* See if I overlap any of the segments */
455 for (i
= 0; i
< image
->nr_segments
; i
++) {
456 unsigned long mstart
, mend
;
458 mstart
= image
->segment
[i
].mem
;
459 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
460 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
461 /* Advance the hole to the end of the segment */
462 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
463 hole_end
= hole_start
+ size
- 1;
467 /* If I don't overlap any segments I have found my hole! */
468 if (i
== image
->nr_segments
) {
469 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
470 image
->control_page
= hole_end
;
475 /* Ensure that these pages are decrypted if SME is enabled. */
477 arch_kexec_post_alloc_pages(page_address(pages
), 1 << order
, 0);
483 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
486 struct page
*pages
= NULL
;
488 switch (image
->type
) {
489 case KEXEC_TYPE_DEFAULT
:
490 pages
= kimage_alloc_normal_control_pages(image
, order
);
492 case KEXEC_TYPE_CRASH
:
493 pages
= kimage_alloc_crash_control_pages(image
, order
);
500 int kimage_crash_copy_vmcoreinfo(struct kimage
*image
)
502 struct page
*vmcoreinfo_page
;
505 if (image
->type
!= KEXEC_TYPE_CRASH
)
509 * For kdump, allocate one vmcoreinfo safe copy from the
510 * crash memory. as we have arch_kexec_protect_crashkres()
511 * after kexec syscall, we naturally protect it from write
512 * (even read) access under kernel direct mapping. But on
513 * the other hand, we still need to operate it when crash
514 * happens to generate vmcoreinfo note, hereby we rely on
515 * vmap for this purpose.
517 vmcoreinfo_page
= kimage_alloc_control_pages(image
, 0);
518 if (!vmcoreinfo_page
) {
519 pr_warn("Could not allocate vmcoreinfo buffer\n");
522 safecopy
= vmap(&vmcoreinfo_page
, 1, VM_MAP
, PAGE_KERNEL
);
524 pr_warn("Could not vmap vmcoreinfo buffer\n");
528 image
->vmcoreinfo_data_copy
= safecopy
;
529 crash_update_vmcoreinfo_safecopy(safecopy
);
534 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
536 if (*image
->entry
!= 0)
539 if (image
->entry
== image
->last_entry
) {
540 kimage_entry_t
*ind_page
;
543 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
547 ind_page
= page_address(page
);
548 *image
->entry
= virt_to_boot_phys(ind_page
) | IND_INDIRECTION
;
549 image
->entry
= ind_page
;
550 image
->last_entry
= ind_page
+
551 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
553 *image
->entry
= entry
;
560 static int kimage_set_destination(struct kimage
*image
,
561 unsigned long destination
)
565 destination
&= PAGE_MASK
;
566 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
572 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
577 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
583 static void kimage_free_extra_pages(struct kimage
*image
)
585 /* Walk through and free any extra destination pages I may have */
586 kimage_free_page_list(&image
->dest_pages
);
588 /* Walk through and free any unusable pages I have cached */
589 kimage_free_page_list(&image
->unusable_pages
);
592 void kimage_terminate(struct kimage
*image
)
594 if (*image
->entry
!= 0)
597 *image
->entry
= IND_DONE
;
600 #define for_each_kimage_entry(image, ptr, entry) \
601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
602 ptr = (entry & IND_INDIRECTION) ? \
603 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
605 static void kimage_free_entry(kimage_entry_t entry
)
609 page
= boot_pfn_to_page(entry
>> PAGE_SHIFT
);
610 kimage_free_pages(page
);
613 void kimage_free(struct kimage
*image
)
615 kimage_entry_t
*ptr
, entry
;
616 kimage_entry_t ind
= 0;
621 if (image
->vmcoreinfo_data_copy
) {
622 crash_update_vmcoreinfo_safecopy(NULL
);
623 vunmap(image
->vmcoreinfo_data_copy
);
626 kimage_free_extra_pages(image
);
627 for_each_kimage_entry(image
, ptr
, entry
) {
628 if (entry
& IND_INDIRECTION
) {
629 /* Free the previous indirection page */
630 if (ind
& IND_INDIRECTION
)
631 kimage_free_entry(ind
);
632 /* Save this indirection page until we are
636 } else if (entry
& IND_SOURCE
)
637 kimage_free_entry(entry
);
639 /* Free the final indirection page */
640 if (ind
& IND_INDIRECTION
)
641 kimage_free_entry(ind
);
643 /* Handle any machine specific cleanup */
644 machine_kexec_cleanup(image
);
646 /* Free the kexec control pages... */
647 kimage_free_page_list(&image
->control_pages
);
650 * Free up any temporary buffers allocated. This might hit if
651 * error occurred much later after buffer allocation.
653 if (image
->file_mode
)
654 kimage_file_post_load_cleanup(image
);
659 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
662 kimage_entry_t
*ptr
, entry
;
663 unsigned long destination
= 0;
665 for_each_kimage_entry(image
, ptr
, entry
) {
666 if (entry
& IND_DESTINATION
)
667 destination
= entry
& PAGE_MASK
;
668 else if (entry
& IND_SOURCE
) {
669 if (page
== destination
)
671 destination
+= PAGE_SIZE
;
678 static struct page
*kimage_alloc_page(struct kimage
*image
,
680 unsigned long destination
)
683 * Here we implement safeguards to ensure that a source page
684 * is not copied to its destination page before the data on
685 * the destination page is no longer useful.
687 * To do this we maintain the invariant that a source page is
688 * either its own destination page, or it is not a
689 * destination page at all.
691 * That is slightly stronger than required, but the proof
692 * that no problems will not occur is trivial, and the
693 * implementation is simply to verify.
695 * When allocating all pages normally this algorithm will run
696 * in O(N) time, but in the worst case it will run in O(N^2)
697 * time. If the runtime is a problem the data structures can
704 * Walk through the list of destination pages, and see if I
707 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
708 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
709 if (addr
== destination
) {
710 list_del(&page
->lru
);
718 /* Allocate a page, if we run out of memory give up */
719 page
= kimage_alloc_pages(gfp_mask
, 0);
722 /* If the page cannot be used file it away */
723 if (page_to_boot_pfn(page
) >
724 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
725 list_add(&page
->lru
, &image
->unusable_pages
);
728 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
730 /* If it is the destination page we want use it */
731 if (addr
== destination
)
734 /* If the page is not a destination page use it */
735 if (!kimage_is_destination_range(image
, addr
,
740 * I know that the page is someones destination page.
741 * See if there is already a source page for this
742 * destination page. And if so swap the source pages.
744 old
= kimage_dst_used(image
, addr
);
747 unsigned long old_addr
;
748 struct page
*old_page
;
750 old_addr
= *old
& PAGE_MASK
;
751 old_page
= boot_pfn_to_page(old_addr
>> PAGE_SHIFT
);
752 copy_highpage(page
, old_page
);
753 *old
= addr
| (*old
& ~PAGE_MASK
);
755 /* The old page I have found cannot be a
756 * destination page, so return it if it's
757 * gfp_flags honor the ones passed in.
759 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
760 PageHighMem(old_page
)) {
761 kimage_free_pages(old_page
);
768 /* Place the page on the destination list, to be used later */
769 list_add(&page
->lru
, &image
->dest_pages
);
775 static int kimage_load_normal_segment(struct kimage
*image
,
776 struct kexec_segment
*segment
)
779 size_t ubytes
, mbytes
;
781 unsigned char __user
*buf
= NULL
;
782 unsigned char *kbuf
= NULL
;
785 if (image
->file_mode
)
786 kbuf
= segment
->kbuf
;
789 ubytes
= segment
->bufsz
;
790 mbytes
= segment
->memsz
;
791 maddr
= segment
->mem
;
793 result
= kimage_set_destination(image
, maddr
);
800 size_t uchunk
, mchunk
;
802 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
807 result
= kimage_add_page(image
, page_to_boot_pfn(page
)
813 /* Start with a clear page */
815 ptr
+= maddr
& ~PAGE_MASK
;
816 mchunk
= min_t(size_t, mbytes
,
817 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
818 uchunk
= min(ubytes
, mchunk
);
820 /* For file based kexec, source pages are in kernel memory */
821 if (image
->file_mode
)
822 memcpy(ptr
, kbuf
, uchunk
);
824 result
= copy_from_user(ptr
, buf
, uchunk
);
832 if (image
->file_mode
)
844 static int kimage_load_crash_segment(struct kimage
*image
,
845 struct kexec_segment
*segment
)
847 /* For crash dumps kernels we simply copy the data from
848 * user space to it's destination.
849 * We do things a page at a time for the sake of kmap.
852 size_t ubytes
, mbytes
;
854 unsigned char __user
*buf
= NULL
;
855 unsigned char *kbuf
= NULL
;
858 if (image
->file_mode
)
859 kbuf
= segment
->kbuf
;
862 ubytes
= segment
->bufsz
;
863 mbytes
= segment
->memsz
;
864 maddr
= segment
->mem
;
868 size_t uchunk
, mchunk
;
870 page
= boot_pfn_to_page(maddr
>> PAGE_SHIFT
);
875 arch_kexec_post_alloc_pages(page_address(page
), 1, 0);
877 ptr
+= maddr
& ~PAGE_MASK
;
878 mchunk
= min_t(size_t, mbytes
,
879 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
880 uchunk
= min(ubytes
, mchunk
);
881 if (mchunk
> uchunk
) {
882 /* Zero the trailing part of the page */
883 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
886 /* For file based kexec, source pages are in kernel memory */
887 if (image
->file_mode
)
888 memcpy(ptr
, kbuf
, uchunk
);
890 result
= copy_from_user(ptr
, buf
, uchunk
);
891 kexec_flush_icache_page(page
);
893 arch_kexec_pre_free_pages(page_address(page
), 1);
900 if (image
->file_mode
)
912 int kimage_load_segment(struct kimage
*image
,
913 struct kexec_segment
*segment
)
915 int result
= -ENOMEM
;
917 switch (image
->type
) {
918 case KEXEC_TYPE_DEFAULT
:
919 result
= kimage_load_normal_segment(image
, segment
);
921 case KEXEC_TYPE_CRASH
:
922 result
= kimage_load_crash_segment(image
, segment
);
929 struct kimage
*kexec_image
;
930 struct kimage
*kexec_crash_image
;
931 int kexec_load_disabled
;
934 * No panic_cpu check version of crash_kexec(). This function is called
935 * only when panic_cpu holds the current CPU number; this is the only CPU
936 * which processes crash_kexec routines.
938 void __noclone
__crash_kexec(struct pt_regs
*regs
)
940 /* Take the kexec_mutex here to prevent sys_kexec_load
941 * running on one cpu from replacing the crash kernel
942 * we are using after a panic on a different cpu.
944 * If the crash kernel was not located in a fixed area
945 * of memory the xchg(&kexec_crash_image) would be
946 * sufficient. But since I reuse the memory...
948 if (mutex_trylock(&kexec_mutex
)) {
949 if (kexec_crash_image
) {
950 struct pt_regs fixed_regs
;
952 crash_setup_regs(&fixed_regs
, regs
);
953 crash_save_vmcoreinfo();
954 machine_crash_shutdown(&fixed_regs
);
955 machine_kexec(kexec_crash_image
);
957 mutex_unlock(&kexec_mutex
);
960 STACK_FRAME_NON_STANDARD(__crash_kexec
);
962 void crash_kexec(struct pt_regs
*regs
)
964 int old_cpu
, this_cpu
;
967 * Only one CPU is allowed to execute the crash_kexec() code as with
968 * panic(). Otherwise parallel calls of panic() and crash_kexec()
969 * may stop each other. To exclude them, we use panic_cpu here too.
971 this_cpu
= raw_smp_processor_id();
972 old_cpu
= atomic_cmpxchg(&panic_cpu
, PANIC_CPU_INVALID
, this_cpu
);
973 if (old_cpu
== PANIC_CPU_INVALID
) {
974 /* This is the 1st CPU which comes here, so go ahead. */
975 printk_safe_flush_on_panic();
979 * Reset panic_cpu to allow another panic()/crash_kexec()
982 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
986 size_t crash_get_memory_size(void)
990 mutex_lock(&kexec_mutex
);
991 if (crashk_res
.end
!= crashk_res
.start
)
992 size
= resource_size(&crashk_res
);
993 mutex_unlock(&kexec_mutex
);
997 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1002 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
1003 free_reserved_page(boot_pfn_to_page(addr
>> PAGE_SHIFT
));
1006 int crash_shrink_memory(unsigned long new_size
)
1009 unsigned long start
, end
;
1010 unsigned long old_size
;
1011 struct resource
*ram_res
;
1013 mutex_lock(&kexec_mutex
);
1015 if (kexec_crash_image
) {
1019 start
= crashk_res
.start
;
1020 end
= crashk_res
.end
;
1021 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1022 if (new_size
>= old_size
) {
1023 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1027 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1033 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1034 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1036 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1038 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1039 release_resource(&crashk_res
);
1041 ram_res
->start
= end
;
1042 ram_res
->end
= crashk_res
.end
;
1043 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
1044 ram_res
->name
= "System RAM";
1046 crashk_res
.end
= end
- 1;
1048 insert_resource(&iomem_resource
, ram_res
);
1051 mutex_unlock(&kexec_mutex
);
1055 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1057 struct elf_prstatus prstatus
;
1060 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1063 /* Using ELF notes here is opportunistic.
1064 * I need a well defined structure format
1065 * for the data I pass, and I need tags
1066 * on the data to indicate what information I have
1067 * squirrelled away. ELF notes happen to provide
1068 * all of that, so there is no need to invent something new.
1070 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1073 memset(&prstatus
, 0, sizeof(prstatus
));
1074 prstatus
.pr_pid
= current
->pid
;
1075 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1076 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1077 &prstatus
, sizeof(prstatus
));
1081 static int __init
crash_notes_memory_init(void)
1083 /* Allocate memory for saving cpu registers. */
1087 * crash_notes could be allocated across 2 vmalloc pages when percpu
1088 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1089 * pages are also on 2 continuous physical pages. In this case the
1090 * 2nd part of crash_notes in 2nd page could be lost since only the
1091 * starting address and size of crash_notes are exported through sysfs.
1092 * Here round up the size of crash_notes to the nearest power of two
1093 * and pass it to __alloc_percpu as align value. This can make sure
1094 * crash_notes is allocated inside one physical page.
1096 size
= sizeof(note_buf_t
);
1097 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
1100 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1101 * definitely will be in 2 pages with that.
1103 BUILD_BUG_ON(size
> PAGE_SIZE
);
1105 crash_notes
= __alloc_percpu(size
, align
);
1107 pr_warn("Memory allocation for saving cpu register states failed\n");
1112 subsys_initcall(crash_notes_memory_init
);
1116 * Move into place and start executing a preloaded standalone
1117 * executable. If nothing was preloaded return an error.
1119 int kernel_kexec(void)
1123 if (!mutex_trylock(&kexec_mutex
))
1130 #ifdef CONFIG_KEXEC_JUMP
1131 if (kexec_image
->preserve_context
) {
1132 lock_system_sleep();
1133 pm_prepare_console();
1134 error
= freeze_processes();
1137 goto Restore_console
;
1140 error
= dpm_suspend_start(PMSG_FREEZE
);
1142 goto Resume_console
;
1143 /* At this point, dpm_suspend_start() has been called,
1144 * but *not* dpm_suspend_end(). We *must* call
1145 * dpm_suspend_end() now. Otherwise, drivers for
1146 * some devices (e.g. interrupt controllers) become
1147 * desynchronized with the actual state of the
1148 * hardware at resume time, and evil weirdness ensues.
1150 error
= dpm_suspend_end(PMSG_FREEZE
);
1152 goto Resume_devices
;
1153 error
= suspend_disable_secondary_cpus();
1156 local_irq_disable();
1157 error
= syscore_suspend();
1163 kexec_in_progress
= true;
1164 kernel_restart_prepare(NULL
);
1165 migrate_to_reboot_cpu();
1168 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1169 * no further code needs to use CPU hotplug (which is true in
1170 * the reboot case). However, the kexec path depends on using
1171 * CPU hotplug again; so re-enable it here.
1173 cpu_hotplug_enable();
1174 pr_emerg("Starting new kernel\n");
1178 machine_kexec(kexec_image
);
1180 #ifdef CONFIG_KEXEC_JUMP
1181 if (kexec_image
->preserve_context
) {
1186 suspend_enable_secondary_cpus();
1187 dpm_resume_start(PMSG_RESTORE
);
1189 dpm_resume_end(PMSG_RESTORE
);
1194 pm_restore_console();
1195 unlock_system_sleep();
1200 mutex_unlock(&kexec_mutex
);
1205 * Protection mechanism for crashkernel reserved memory after
1206 * the kdump kernel is loaded.
1208 * Provide an empty default implementation here -- architecture
1209 * code may override this
1211 void __weak
arch_kexec_protect_crashkres(void)
1214 void __weak
arch_kexec_unprotect_crashkres(void)