shrink cor_conn.source.sock
[cor.git] / fs / io_uring.c
blob405be10da73d4bb37b2fea9a3ca9f9247e01a5b4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/kthread.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/io_uring.h>
77 #include <uapi/linux/io_uring.h>
79 #include "internal.h"
80 #include "io-wq.h"
82 #define IORING_MAX_ENTRIES 32768
83 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
86 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
88 #define IORING_FILE_TABLE_SHIFT 9
89 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
90 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
91 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
93 struct io_uring {
94 u32 head ____cacheline_aligned_in_smp;
95 u32 tail ____cacheline_aligned_in_smp;
99 * This data is shared with the application through the mmap at offsets
100 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
102 * The offsets to the member fields are published through struct
103 * io_sqring_offsets when calling io_uring_setup.
105 struct io_rings {
107 * Head and tail offsets into the ring; the offsets need to be
108 * masked to get valid indices.
110 * The kernel controls head of the sq ring and the tail of the cq ring,
111 * and the application controls tail of the sq ring and the head of the
112 * cq ring.
114 struct io_uring sq, cq;
116 * Bitmasks to apply to head and tail offsets (constant, equals
117 * ring_entries - 1)
119 u32 sq_ring_mask, cq_ring_mask;
120 /* Ring sizes (constant, power of 2) */
121 u32 sq_ring_entries, cq_ring_entries;
123 * Number of invalid entries dropped by the kernel due to
124 * invalid index stored in array
126 * Written by the kernel, shouldn't be modified by the
127 * application (i.e. get number of "new events" by comparing to
128 * cached value).
130 * After a new SQ head value was read by the application this
131 * counter includes all submissions that were dropped reaching
132 * the new SQ head (and possibly more).
134 u32 sq_dropped;
136 * Runtime flags
138 * Written by the kernel, shouldn't be modified by the
139 * application.
141 * The application needs a full memory barrier before checking
142 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
144 u32 sq_flags;
146 * Number of completion events lost because the queue was full;
147 * this should be avoided by the application by making sure
148 * there are not more requests pending than there is space in
149 * the completion queue.
151 * Written by the kernel, shouldn't be modified by the
152 * application (i.e. get number of "new events" by comparing to
153 * cached value).
155 * As completion events come in out of order this counter is not
156 * ordered with any other data.
158 u32 cq_overflow;
160 * Ring buffer of completion events.
162 * The kernel writes completion events fresh every time they are
163 * produced, so the application is allowed to modify pending
164 * entries.
166 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
169 struct io_mapped_ubuf {
170 u64 ubuf;
171 size_t len;
172 struct bio_vec *bvec;
173 unsigned int nr_bvecs;
176 struct fixed_file_table {
177 struct file **files;
180 struct io_ring_ctx {
181 struct {
182 struct percpu_ref refs;
183 } ____cacheline_aligned_in_smp;
185 struct {
186 unsigned int flags;
187 bool compat;
188 bool account_mem;
189 bool cq_overflow_flushed;
190 bool drain_next;
193 * Ring buffer of indices into array of io_uring_sqe, which is
194 * mmapped by the application using the IORING_OFF_SQES offset.
196 * This indirection could e.g. be used to assign fixed
197 * io_uring_sqe entries to operations and only submit them to
198 * the queue when needed.
200 * The kernel modifies neither the indices array nor the entries
201 * array.
203 u32 *sq_array;
204 unsigned cached_sq_head;
205 unsigned sq_entries;
206 unsigned sq_mask;
207 unsigned sq_thread_idle;
208 unsigned cached_sq_dropped;
209 atomic_t cached_cq_overflow;
210 struct io_uring_sqe *sq_sqes;
212 struct list_head defer_list;
213 struct list_head timeout_list;
214 struct list_head cq_overflow_list;
216 wait_queue_head_t inflight_wait;
217 } ____cacheline_aligned_in_smp;
219 struct io_rings *rings;
221 /* IO offload */
222 struct io_wq *io_wq;
223 struct task_struct *sqo_thread; /* if using sq thread polling */
224 struct mm_struct *sqo_mm;
225 wait_queue_head_t sqo_wait;
228 * If used, fixed file set. Writers must ensure that ->refs is dead,
229 * readers must ensure that ->refs is alive as long as the file* is
230 * used. Only updated through io_uring_register(2).
232 struct fixed_file_table *file_table;
233 unsigned nr_user_files;
235 /* if used, fixed mapped user buffers */
236 unsigned nr_user_bufs;
237 struct io_mapped_ubuf *user_bufs;
239 struct user_struct *user;
241 const struct cred *creds;
243 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
244 struct completion *completions;
246 /* if all else fails... */
247 struct io_kiocb *fallback_req;
249 #if defined(CONFIG_UNIX)
250 struct socket *ring_sock;
251 #endif
253 struct {
254 unsigned cached_cq_tail;
255 unsigned cq_entries;
256 unsigned cq_mask;
257 atomic_t cq_timeouts;
258 struct wait_queue_head cq_wait;
259 struct fasync_struct *cq_fasync;
260 struct eventfd_ctx *cq_ev_fd;
261 } ____cacheline_aligned_in_smp;
263 struct {
264 struct mutex uring_lock;
265 wait_queue_head_t wait;
266 } ____cacheline_aligned_in_smp;
268 struct {
269 spinlock_t completion_lock;
270 bool poll_multi_file;
272 * ->poll_list is protected by the ctx->uring_lock for
273 * io_uring instances that don't use IORING_SETUP_SQPOLL.
274 * For SQPOLL, only the single threaded io_sq_thread() will
275 * manipulate the list, hence no extra locking is needed there.
277 struct list_head poll_list;
278 struct hlist_head *cancel_hash;
279 unsigned cancel_hash_bits;
281 spinlock_t inflight_lock;
282 struct list_head inflight_list;
283 } ____cacheline_aligned_in_smp;
287 * First field must be the file pointer in all the
288 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
290 struct io_poll_iocb {
291 struct file *file;
292 struct wait_queue_head *head;
293 __poll_t events;
294 bool done;
295 bool canceled;
296 struct wait_queue_entry *wait;
299 struct io_timeout_data {
300 struct io_kiocb *req;
301 struct hrtimer timer;
302 struct timespec64 ts;
303 enum hrtimer_mode mode;
304 u32 seq_offset;
307 struct io_async_connect {
308 struct sockaddr_storage address;
311 struct io_async_msghdr {
312 struct iovec fast_iov[UIO_FASTIOV];
313 struct iovec *iov;
314 struct sockaddr __user *uaddr;
315 struct msghdr msg;
318 struct io_async_rw {
319 struct iovec fast_iov[UIO_FASTIOV];
320 struct iovec *iov;
321 ssize_t nr_segs;
322 ssize_t size;
325 struct io_async_ctx {
326 struct io_uring_sqe sqe;
327 union {
328 struct io_async_rw rw;
329 struct io_async_msghdr msg;
330 struct io_async_connect connect;
331 struct io_timeout_data timeout;
336 * NOTE! Each of the iocb union members has the file pointer
337 * as the first entry in their struct definition. So you can
338 * access the file pointer through any of the sub-structs,
339 * or directly as just 'ki_filp' in this struct.
341 struct io_kiocb {
342 union {
343 struct file *file;
344 struct kiocb rw;
345 struct io_poll_iocb poll;
348 const struct io_uring_sqe *sqe;
349 struct io_async_ctx *io;
350 struct file *ring_file;
351 int ring_fd;
352 bool has_user;
353 bool in_async;
354 bool needs_fixed_file;
356 struct io_ring_ctx *ctx;
357 union {
358 struct list_head list;
359 struct hlist_node hash_node;
361 struct list_head link_list;
362 unsigned int flags;
363 refcount_t refs;
364 #define REQ_F_NOWAIT 1 /* must not punt to workers */
365 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
366 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
367 #define REQ_F_LINK_NEXT 8 /* already grabbed next link */
368 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
369 #define REQ_F_IO_DRAINED 32 /* drain done */
370 #define REQ_F_LINK 64 /* linked sqes */
371 #define REQ_F_LINK_TIMEOUT 128 /* has linked timeout */
372 #define REQ_F_FAIL_LINK 256 /* fail rest of links */
373 #define REQ_F_DRAIN_LINK 512 /* link should be fully drained */
374 #define REQ_F_TIMEOUT 1024 /* timeout request */
375 #define REQ_F_ISREG 2048 /* regular file */
376 #define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */
377 #define REQ_F_TIMEOUT_NOSEQ 8192 /* no timeout sequence */
378 #define REQ_F_INFLIGHT 16384 /* on inflight list */
379 #define REQ_F_COMP_LOCKED 32768 /* completion under lock */
380 u64 user_data;
381 u32 result;
382 u32 sequence;
384 struct list_head inflight_entry;
386 struct io_wq_work work;
389 #define IO_PLUG_THRESHOLD 2
390 #define IO_IOPOLL_BATCH 8
392 struct io_submit_state {
393 struct blk_plug plug;
396 * io_kiocb alloc cache
398 void *reqs[IO_IOPOLL_BATCH];
399 unsigned int free_reqs;
400 unsigned int cur_req;
403 * File reference cache
405 struct file *file;
406 unsigned int fd;
407 unsigned int has_refs;
408 unsigned int used_refs;
409 unsigned int ios_left;
412 static void io_wq_submit_work(struct io_wq_work **workptr);
413 static void io_cqring_fill_event(struct io_kiocb *req, long res);
414 static void __io_free_req(struct io_kiocb *req);
415 static void io_put_req(struct io_kiocb *req);
416 static void io_double_put_req(struct io_kiocb *req);
417 static void __io_double_put_req(struct io_kiocb *req);
418 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
419 static void io_queue_linked_timeout(struct io_kiocb *req);
421 static struct kmem_cache *req_cachep;
423 static const struct file_operations io_uring_fops;
425 struct sock *io_uring_get_socket(struct file *file)
427 #if defined(CONFIG_UNIX)
428 if (file->f_op == &io_uring_fops) {
429 struct io_ring_ctx *ctx = file->private_data;
431 return ctx->ring_sock->sk;
433 #endif
434 return NULL;
436 EXPORT_SYMBOL(io_uring_get_socket);
438 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
440 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
442 complete(&ctx->completions[0]);
445 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
447 struct io_ring_ctx *ctx;
448 int hash_bits;
450 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
451 if (!ctx)
452 return NULL;
454 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
455 if (!ctx->fallback_req)
456 goto err;
458 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
459 if (!ctx->completions)
460 goto err;
463 * Use 5 bits less than the max cq entries, that should give us around
464 * 32 entries per hash list if totally full and uniformly spread.
466 hash_bits = ilog2(p->cq_entries);
467 hash_bits -= 5;
468 if (hash_bits <= 0)
469 hash_bits = 1;
470 ctx->cancel_hash_bits = hash_bits;
471 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
472 GFP_KERNEL);
473 if (!ctx->cancel_hash)
474 goto err;
475 __hash_init(ctx->cancel_hash, 1U << hash_bits);
477 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
478 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
479 goto err;
481 ctx->flags = p->flags;
482 init_waitqueue_head(&ctx->cq_wait);
483 INIT_LIST_HEAD(&ctx->cq_overflow_list);
484 init_completion(&ctx->completions[0]);
485 init_completion(&ctx->completions[1]);
486 mutex_init(&ctx->uring_lock);
487 init_waitqueue_head(&ctx->wait);
488 spin_lock_init(&ctx->completion_lock);
489 INIT_LIST_HEAD(&ctx->poll_list);
490 INIT_LIST_HEAD(&ctx->defer_list);
491 INIT_LIST_HEAD(&ctx->timeout_list);
492 init_waitqueue_head(&ctx->inflight_wait);
493 spin_lock_init(&ctx->inflight_lock);
494 INIT_LIST_HEAD(&ctx->inflight_list);
495 return ctx;
496 err:
497 if (ctx->fallback_req)
498 kmem_cache_free(req_cachep, ctx->fallback_req);
499 kfree(ctx->completions);
500 kfree(ctx->cancel_hash);
501 kfree(ctx);
502 return NULL;
505 static inline bool __req_need_defer(struct io_kiocb *req)
507 struct io_ring_ctx *ctx = req->ctx;
509 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
510 + atomic_read(&ctx->cached_cq_overflow);
513 static inline bool req_need_defer(struct io_kiocb *req)
515 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) == REQ_F_IO_DRAIN)
516 return __req_need_defer(req);
518 return false;
521 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
523 struct io_kiocb *req;
525 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
526 if (req && !req_need_defer(req)) {
527 list_del_init(&req->list);
528 return req;
531 return NULL;
534 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
536 struct io_kiocb *req;
538 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
539 if (req) {
540 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
541 return NULL;
542 if (!__req_need_defer(req)) {
543 list_del_init(&req->list);
544 return req;
548 return NULL;
551 static void __io_commit_cqring(struct io_ring_ctx *ctx)
553 struct io_rings *rings = ctx->rings;
555 if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
556 /* order cqe stores with ring update */
557 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
559 if (wq_has_sleeper(&ctx->cq_wait)) {
560 wake_up_interruptible(&ctx->cq_wait);
561 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
566 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
568 u8 opcode = READ_ONCE(sqe->opcode);
570 return !(opcode == IORING_OP_READ_FIXED ||
571 opcode == IORING_OP_WRITE_FIXED);
574 static inline bool io_prep_async_work(struct io_kiocb *req,
575 struct io_kiocb **link)
577 bool do_hashed = false;
579 if (req->sqe) {
580 switch (req->sqe->opcode) {
581 case IORING_OP_WRITEV:
582 case IORING_OP_WRITE_FIXED:
583 do_hashed = true;
584 /* fall-through */
585 case IORING_OP_READV:
586 case IORING_OP_READ_FIXED:
587 case IORING_OP_SENDMSG:
588 case IORING_OP_RECVMSG:
589 case IORING_OP_ACCEPT:
590 case IORING_OP_POLL_ADD:
591 case IORING_OP_CONNECT:
593 * We know REQ_F_ISREG is not set on some of these
594 * opcodes, but this enables us to keep the check in
595 * just one place.
597 if (!(req->flags & REQ_F_ISREG))
598 req->work.flags |= IO_WQ_WORK_UNBOUND;
599 break;
601 if (io_sqe_needs_user(req->sqe))
602 req->work.flags |= IO_WQ_WORK_NEEDS_USER;
605 *link = io_prep_linked_timeout(req);
606 return do_hashed;
609 static inline void io_queue_async_work(struct io_kiocb *req)
611 struct io_ring_ctx *ctx = req->ctx;
612 struct io_kiocb *link;
613 bool do_hashed;
615 do_hashed = io_prep_async_work(req, &link);
617 trace_io_uring_queue_async_work(ctx, do_hashed, req, &req->work,
618 req->flags);
619 if (!do_hashed) {
620 io_wq_enqueue(ctx->io_wq, &req->work);
621 } else {
622 io_wq_enqueue_hashed(ctx->io_wq, &req->work,
623 file_inode(req->file));
626 if (link)
627 io_queue_linked_timeout(link);
630 static void io_kill_timeout(struct io_kiocb *req)
632 int ret;
634 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
635 if (ret != -1) {
636 atomic_inc(&req->ctx->cq_timeouts);
637 list_del_init(&req->list);
638 io_cqring_fill_event(req, 0);
639 io_put_req(req);
643 static void io_kill_timeouts(struct io_ring_ctx *ctx)
645 struct io_kiocb *req, *tmp;
647 spin_lock_irq(&ctx->completion_lock);
648 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
649 io_kill_timeout(req);
650 spin_unlock_irq(&ctx->completion_lock);
653 static void io_commit_cqring(struct io_ring_ctx *ctx)
655 struct io_kiocb *req;
657 while ((req = io_get_timeout_req(ctx)) != NULL)
658 io_kill_timeout(req);
660 __io_commit_cqring(ctx);
662 while ((req = io_get_deferred_req(ctx)) != NULL) {
663 req->flags |= REQ_F_IO_DRAINED;
664 io_queue_async_work(req);
668 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
670 struct io_rings *rings = ctx->rings;
671 unsigned tail;
673 tail = ctx->cached_cq_tail;
675 * writes to the cq entry need to come after reading head; the
676 * control dependency is enough as we're using WRITE_ONCE to
677 * fill the cq entry
679 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
680 return NULL;
682 ctx->cached_cq_tail++;
683 return &rings->cqes[tail & ctx->cq_mask];
686 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
688 if (waitqueue_active(&ctx->wait))
689 wake_up(&ctx->wait);
690 if (waitqueue_active(&ctx->sqo_wait))
691 wake_up(&ctx->sqo_wait);
692 if (ctx->cq_ev_fd)
693 eventfd_signal(ctx->cq_ev_fd, 1);
696 /* Returns true if there are no backlogged entries after the flush */
697 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
699 struct io_rings *rings = ctx->rings;
700 struct io_uring_cqe *cqe;
701 struct io_kiocb *req;
702 unsigned long flags;
703 LIST_HEAD(list);
705 if (!force) {
706 if (list_empty_careful(&ctx->cq_overflow_list))
707 return true;
708 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
709 rings->cq_ring_entries))
710 return false;
713 spin_lock_irqsave(&ctx->completion_lock, flags);
715 /* if force is set, the ring is going away. always drop after that */
716 if (force)
717 ctx->cq_overflow_flushed = true;
719 cqe = NULL;
720 while (!list_empty(&ctx->cq_overflow_list)) {
721 cqe = io_get_cqring(ctx);
722 if (!cqe && !force)
723 break;
725 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
726 list);
727 list_move(&req->list, &list);
728 if (cqe) {
729 WRITE_ONCE(cqe->user_data, req->user_data);
730 WRITE_ONCE(cqe->res, req->result);
731 WRITE_ONCE(cqe->flags, 0);
732 } else {
733 WRITE_ONCE(ctx->rings->cq_overflow,
734 atomic_inc_return(&ctx->cached_cq_overflow));
738 io_commit_cqring(ctx);
739 spin_unlock_irqrestore(&ctx->completion_lock, flags);
740 io_cqring_ev_posted(ctx);
742 while (!list_empty(&list)) {
743 req = list_first_entry(&list, struct io_kiocb, list);
744 list_del(&req->list);
745 io_put_req(req);
748 return cqe != NULL;
751 static void io_cqring_fill_event(struct io_kiocb *req, long res)
753 struct io_ring_ctx *ctx = req->ctx;
754 struct io_uring_cqe *cqe;
756 trace_io_uring_complete(ctx, req->user_data, res);
759 * If we can't get a cq entry, userspace overflowed the
760 * submission (by quite a lot). Increment the overflow count in
761 * the ring.
763 cqe = io_get_cqring(ctx);
764 if (likely(cqe)) {
765 WRITE_ONCE(cqe->user_data, req->user_data);
766 WRITE_ONCE(cqe->res, res);
767 WRITE_ONCE(cqe->flags, 0);
768 } else if (ctx->cq_overflow_flushed) {
769 WRITE_ONCE(ctx->rings->cq_overflow,
770 atomic_inc_return(&ctx->cached_cq_overflow));
771 } else {
772 refcount_inc(&req->refs);
773 req->result = res;
774 list_add_tail(&req->list, &ctx->cq_overflow_list);
778 static void io_cqring_add_event(struct io_kiocb *req, long res)
780 struct io_ring_ctx *ctx = req->ctx;
781 unsigned long flags;
783 spin_lock_irqsave(&ctx->completion_lock, flags);
784 io_cqring_fill_event(req, res);
785 io_commit_cqring(ctx);
786 spin_unlock_irqrestore(&ctx->completion_lock, flags);
788 io_cqring_ev_posted(ctx);
791 static inline bool io_is_fallback_req(struct io_kiocb *req)
793 return req == (struct io_kiocb *)
794 ((unsigned long) req->ctx->fallback_req & ~1UL);
797 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
799 struct io_kiocb *req;
801 req = ctx->fallback_req;
802 if (!test_and_set_bit_lock(0, (unsigned long *) ctx->fallback_req))
803 return req;
805 return NULL;
808 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
809 struct io_submit_state *state)
811 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
812 struct io_kiocb *req;
814 if (!percpu_ref_tryget(&ctx->refs))
815 return NULL;
817 if (!state) {
818 req = kmem_cache_alloc(req_cachep, gfp);
819 if (unlikely(!req))
820 goto fallback;
821 } else if (!state->free_reqs) {
822 size_t sz;
823 int ret;
825 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
826 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
829 * Bulk alloc is all-or-nothing. If we fail to get a batch,
830 * retry single alloc to be on the safe side.
832 if (unlikely(ret <= 0)) {
833 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
834 if (!state->reqs[0])
835 goto fallback;
836 ret = 1;
838 state->free_reqs = ret - 1;
839 state->cur_req = 1;
840 req = state->reqs[0];
841 } else {
842 req = state->reqs[state->cur_req];
843 state->free_reqs--;
844 state->cur_req++;
847 got_it:
848 req->io = NULL;
849 req->ring_file = NULL;
850 req->file = NULL;
851 req->ctx = ctx;
852 req->flags = 0;
853 /* one is dropped after submission, the other at completion */
854 refcount_set(&req->refs, 2);
855 req->result = 0;
856 INIT_IO_WORK(&req->work, io_wq_submit_work);
857 return req;
858 fallback:
859 req = io_get_fallback_req(ctx);
860 if (req)
861 goto got_it;
862 percpu_ref_put(&ctx->refs);
863 return NULL;
866 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
868 if (*nr) {
869 kmem_cache_free_bulk(req_cachep, *nr, reqs);
870 percpu_ref_put_many(&ctx->refs, *nr);
871 *nr = 0;
875 static void __io_free_req(struct io_kiocb *req)
877 struct io_ring_ctx *ctx = req->ctx;
879 if (req->io)
880 kfree(req->io);
881 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
882 fput(req->file);
883 if (req->flags & REQ_F_INFLIGHT) {
884 unsigned long flags;
886 spin_lock_irqsave(&ctx->inflight_lock, flags);
887 list_del(&req->inflight_entry);
888 if (waitqueue_active(&ctx->inflight_wait))
889 wake_up(&ctx->inflight_wait);
890 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
892 percpu_ref_put(&ctx->refs);
893 if (likely(!io_is_fallback_req(req)))
894 kmem_cache_free(req_cachep, req);
895 else
896 clear_bit_unlock(0, (unsigned long *) ctx->fallback_req);
899 static bool io_link_cancel_timeout(struct io_kiocb *req)
901 struct io_ring_ctx *ctx = req->ctx;
902 int ret;
904 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
905 if (ret != -1) {
906 io_cqring_fill_event(req, -ECANCELED);
907 io_commit_cqring(ctx);
908 req->flags &= ~REQ_F_LINK;
909 io_put_req(req);
910 return true;
913 return false;
916 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
918 struct io_ring_ctx *ctx = req->ctx;
919 bool wake_ev = false;
921 /* Already got next link */
922 if (req->flags & REQ_F_LINK_NEXT)
923 return;
926 * The list should never be empty when we are called here. But could
927 * potentially happen if the chain is messed up, check to be on the
928 * safe side.
930 while (!list_empty(&req->link_list)) {
931 struct io_kiocb *nxt = list_first_entry(&req->link_list,
932 struct io_kiocb, link_list);
934 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
935 (nxt->flags & REQ_F_TIMEOUT))) {
936 list_del_init(&nxt->link_list);
937 wake_ev |= io_link_cancel_timeout(nxt);
938 req->flags &= ~REQ_F_LINK_TIMEOUT;
939 continue;
942 list_del_init(&req->link_list);
943 if (!list_empty(&nxt->link_list))
944 nxt->flags |= REQ_F_LINK;
945 *nxtptr = nxt;
946 break;
949 req->flags |= REQ_F_LINK_NEXT;
950 if (wake_ev)
951 io_cqring_ev_posted(ctx);
955 * Called if REQ_F_LINK is set, and we fail the head request
957 static void io_fail_links(struct io_kiocb *req)
959 struct io_ring_ctx *ctx = req->ctx;
960 unsigned long flags;
962 spin_lock_irqsave(&ctx->completion_lock, flags);
964 while (!list_empty(&req->link_list)) {
965 struct io_kiocb *link = list_first_entry(&req->link_list,
966 struct io_kiocb, link_list);
968 list_del_init(&link->link_list);
969 trace_io_uring_fail_link(req, link);
971 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
972 link->sqe->opcode == IORING_OP_LINK_TIMEOUT) {
973 io_link_cancel_timeout(link);
974 } else {
975 io_cqring_fill_event(link, -ECANCELED);
976 __io_double_put_req(link);
978 req->flags &= ~REQ_F_LINK_TIMEOUT;
981 io_commit_cqring(ctx);
982 spin_unlock_irqrestore(&ctx->completion_lock, flags);
983 io_cqring_ev_posted(ctx);
986 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
988 if (likely(!(req->flags & REQ_F_LINK)))
989 return;
992 * If LINK is set, we have dependent requests in this chain. If we
993 * didn't fail this request, queue the first one up, moving any other
994 * dependencies to the next request. In case of failure, fail the rest
995 * of the chain.
997 if (req->flags & REQ_F_FAIL_LINK) {
998 io_fail_links(req);
999 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1000 REQ_F_LINK_TIMEOUT) {
1001 struct io_ring_ctx *ctx = req->ctx;
1002 unsigned long flags;
1005 * If this is a timeout link, we could be racing with the
1006 * timeout timer. Grab the completion lock for this case to
1007 * protect against that.
1009 spin_lock_irqsave(&ctx->completion_lock, flags);
1010 io_req_link_next(req, nxt);
1011 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1012 } else {
1013 io_req_link_next(req, nxt);
1017 static void io_free_req(struct io_kiocb *req)
1019 struct io_kiocb *nxt = NULL;
1021 io_req_find_next(req, &nxt);
1022 __io_free_req(req);
1024 if (nxt)
1025 io_queue_async_work(nxt);
1029 * Drop reference to request, return next in chain (if there is one) if this
1030 * was the last reference to this request.
1032 __attribute__((nonnull))
1033 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1035 io_req_find_next(req, nxtptr);
1037 if (refcount_dec_and_test(&req->refs))
1038 __io_free_req(req);
1041 static void io_put_req(struct io_kiocb *req)
1043 if (refcount_dec_and_test(&req->refs))
1044 io_free_req(req);
1048 * Must only be used if we don't need to care about links, usually from
1049 * within the completion handling itself.
1051 static void __io_double_put_req(struct io_kiocb *req)
1053 /* drop both submit and complete references */
1054 if (refcount_sub_and_test(2, &req->refs))
1055 __io_free_req(req);
1058 static void io_double_put_req(struct io_kiocb *req)
1060 /* drop both submit and complete references */
1061 if (refcount_sub_and_test(2, &req->refs))
1062 io_free_req(req);
1065 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1067 struct io_rings *rings = ctx->rings;
1070 * noflush == true is from the waitqueue handler, just ensure we wake
1071 * up the task, and the next invocation will flush the entries. We
1072 * cannot safely to it from here.
1074 if (noflush && !list_empty(&ctx->cq_overflow_list))
1075 return -1U;
1077 io_cqring_overflow_flush(ctx, false);
1079 /* See comment at the top of this file */
1080 smp_rmb();
1081 return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
1084 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1086 struct io_rings *rings = ctx->rings;
1088 /* make sure SQ entry isn't read before tail */
1089 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1093 * Find and free completed poll iocbs
1095 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1096 struct list_head *done)
1098 void *reqs[IO_IOPOLL_BATCH];
1099 struct io_kiocb *req;
1100 int to_free;
1102 to_free = 0;
1103 while (!list_empty(done)) {
1104 req = list_first_entry(done, struct io_kiocb, list);
1105 list_del(&req->list);
1107 io_cqring_fill_event(req, req->result);
1108 (*nr_events)++;
1110 if (refcount_dec_and_test(&req->refs)) {
1111 /* If we're not using fixed files, we have to pair the
1112 * completion part with the file put. Use regular
1113 * completions for those, only batch free for fixed
1114 * file and non-linked commands.
1116 if (((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
1117 REQ_F_FIXED_FILE) && !io_is_fallback_req(req) &&
1118 !req->io) {
1119 reqs[to_free++] = req;
1120 if (to_free == ARRAY_SIZE(reqs))
1121 io_free_req_many(ctx, reqs, &to_free);
1122 } else {
1123 io_free_req(req);
1128 io_commit_cqring(ctx);
1129 io_free_req_many(ctx, reqs, &to_free);
1132 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1133 long min)
1135 struct io_kiocb *req, *tmp;
1136 LIST_HEAD(done);
1137 bool spin;
1138 int ret;
1141 * Only spin for completions if we don't have multiple devices hanging
1142 * off our complete list, and we're under the requested amount.
1144 spin = !ctx->poll_multi_file && *nr_events < min;
1146 ret = 0;
1147 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1148 struct kiocb *kiocb = &req->rw;
1151 * Move completed entries to our local list. If we find a
1152 * request that requires polling, break out and complete
1153 * the done list first, if we have entries there.
1155 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1156 list_move_tail(&req->list, &done);
1157 continue;
1159 if (!list_empty(&done))
1160 break;
1162 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1163 if (ret < 0)
1164 break;
1166 if (ret && spin)
1167 spin = false;
1168 ret = 0;
1171 if (!list_empty(&done))
1172 io_iopoll_complete(ctx, nr_events, &done);
1174 return ret;
1178 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
1179 * non-spinning poll check - we'll still enter the driver poll loop, but only
1180 * as a non-spinning completion check.
1182 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1183 long min)
1185 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1186 int ret;
1188 ret = io_do_iopoll(ctx, nr_events, min);
1189 if (ret < 0)
1190 return ret;
1191 if (!min || *nr_events >= min)
1192 return 0;
1195 return 1;
1199 * We can't just wait for polled events to come to us, we have to actively
1200 * find and complete them.
1202 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1204 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1205 return;
1207 mutex_lock(&ctx->uring_lock);
1208 while (!list_empty(&ctx->poll_list)) {
1209 unsigned int nr_events = 0;
1211 io_iopoll_getevents(ctx, &nr_events, 1);
1214 * Ensure we allow local-to-the-cpu processing to take place,
1215 * in this case we need to ensure that we reap all events.
1217 cond_resched();
1219 mutex_unlock(&ctx->uring_lock);
1222 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1223 long min)
1225 int iters = 0, ret = 0;
1227 do {
1228 int tmin = 0;
1231 * Don't enter poll loop if we already have events pending.
1232 * If we do, we can potentially be spinning for commands that
1233 * already triggered a CQE (eg in error).
1235 if (io_cqring_events(ctx, false))
1236 break;
1239 * If a submit got punted to a workqueue, we can have the
1240 * application entering polling for a command before it gets
1241 * issued. That app will hold the uring_lock for the duration
1242 * of the poll right here, so we need to take a breather every
1243 * now and then to ensure that the issue has a chance to add
1244 * the poll to the issued list. Otherwise we can spin here
1245 * forever, while the workqueue is stuck trying to acquire the
1246 * very same mutex.
1248 if (!(++iters & 7)) {
1249 mutex_unlock(&ctx->uring_lock);
1250 mutex_lock(&ctx->uring_lock);
1253 if (*nr_events < min)
1254 tmin = min - *nr_events;
1256 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1257 if (ret <= 0)
1258 break;
1259 ret = 0;
1260 } while (min && !*nr_events && !need_resched());
1262 return ret;
1265 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1266 long min)
1268 int ret;
1271 * We disallow the app entering submit/complete with polling, but we
1272 * still need to lock the ring to prevent racing with polled issue
1273 * that got punted to a workqueue.
1275 mutex_lock(&ctx->uring_lock);
1276 ret = __io_iopoll_check(ctx, nr_events, min);
1277 mutex_unlock(&ctx->uring_lock);
1278 return ret;
1281 static void kiocb_end_write(struct io_kiocb *req)
1284 * Tell lockdep we inherited freeze protection from submission
1285 * thread.
1287 if (req->flags & REQ_F_ISREG) {
1288 struct inode *inode = file_inode(req->file);
1290 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1292 file_end_write(req->file);
1295 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1297 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1299 if (kiocb->ki_flags & IOCB_WRITE)
1300 kiocb_end_write(req);
1302 if ((req->flags & REQ_F_LINK) && res != req->result)
1303 req->flags |= REQ_F_FAIL_LINK;
1304 io_cqring_add_event(req, res);
1307 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1309 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1311 io_complete_rw_common(kiocb, res);
1312 io_put_req(req);
1315 static struct io_kiocb *__io_complete_rw(struct kiocb *kiocb, long res)
1317 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1318 struct io_kiocb *nxt = NULL;
1320 io_complete_rw_common(kiocb, res);
1321 io_put_req_find_next(req, &nxt);
1323 return nxt;
1326 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1328 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1330 if (kiocb->ki_flags & IOCB_WRITE)
1331 kiocb_end_write(req);
1333 if ((req->flags & REQ_F_LINK) && res != req->result)
1334 req->flags |= REQ_F_FAIL_LINK;
1335 req->result = res;
1336 if (res != -EAGAIN)
1337 req->flags |= REQ_F_IOPOLL_COMPLETED;
1341 * After the iocb has been issued, it's safe to be found on the poll list.
1342 * Adding the kiocb to the list AFTER submission ensures that we don't
1343 * find it from a io_iopoll_getevents() thread before the issuer is done
1344 * accessing the kiocb cookie.
1346 static void io_iopoll_req_issued(struct io_kiocb *req)
1348 struct io_ring_ctx *ctx = req->ctx;
1351 * Track whether we have multiple files in our lists. This will impact
1352 * how we do polling eventually, not spinning if we're on potentially
1353 * different devices.
1355 if (list_empty(&ctx->poll_list)) {
1356 ctx->poll_multi_file = false;
1357 } else if (!ctx->poll_multi_file) {
1358 struct io_kiocb *list_req;
1360 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1361 list);
1362 if (list_req->rw.ki_filp != req->rw.ki_filp)
1363 ctx->poll_multi_file = true;
1367 * For fast devices, IO may have already completed. If it has, add
1368 * it to the front so we find it first.
1370 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1371 list_add(&req->list, &ctx->poll_list);
1372 else
1373 list_add_tail(&req->list, &ctx->poll_list);
1376 static void io_file_put(struct io_submit_state *state)
1378 if (state->file) {
1379 int diff = state->has_refs - state->used_refs;
1381 if (diff)
1382 fput_many(state->file, diff);
1383 state->file = NULL;
1388 * Get as many references to a file as we have IOs left in this submission,
1389 * assuming most submissions are for one file, or at least that each file
1390 * has more than one submission.
1392 static struct file *io_file_get(struct io_submit_state *state, int fd)
1394 if (!state)
1395 return fget(fd);
1397 if (state->file) {
1398 if (state->fd == fd) {
1399 state->used_refs++;
1400 state->ios_left--;
1401 return state->file;
1403 io_file_put(state);
1405 state->file = fget_many(fd, state->ios_left);
1406 if (!state->file)
1407 return NULL;
1409 state->fd = fd;
1410 state->has_refs = state->ios_left;
1411 state->used_refs = 1;
1412 state->ios_left--;
1413 return state->file;
1417 * If we tracked the file through the SCM inflight mechanism, we could support
1418 * any file. For now, just ensure that anything potentially problematic is done
1419 * inline.
1421 static bool io_file_supports_async(struct file *file)
1423 umode_t mode = file_inode(file)->i_mode;
1425 if (S_ISBLK(mode) || S_ISCHR(mode))
1426 return true;
1427 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1428 return true;
1430 return false;
1433 static int io_prep_rw(struct io_kiocb *req, bool force_nonblock)
1435 const struct io_uring_sqe *sqe = req->sqe;
1436 struct io_ring_ctx *ctx = req->ctx;
1437 struct kiocb *kiocb = &req->rw;
1438 unsigned ioprio;
1439 int ret;
1441 if (!req->file)
1442 return -EBADF;
1444 if (S_ISREG(file_inode(req->file)->i_mode))
1445 req->flags |= REQ_F_ISREG;
1447 kiocb->ki_pos = READ_ONCE(sqe->off);
1448 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1449 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1451 ioprio = READ_ONCE(sqe->ioprio);
1452 if (ioprio) {
1453 ret = ioprio_check_cap(ioprio);
1454 if (ret)
1455 return ret;
1457 kiocb->ki_ioprio = ioprio;
1458 } else
1459 kiocb->ki_ioprio = get_current_ioprio();
1461 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1462 if (unlikely(ret))
1463 return ret;
1465 /* don't allow async punt if RWF_NOWAIT was requested */
1466 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1467 (req->file->f_flags & O_NONBLOCK))
1468 req->flags |= REQ_F_NOWAIT;
1470 if (force_nonblock)
1471 kiocb->ki_flags |= IOCB_NOWAIT;
1473 if (ctx->flags & IORING_SETUP_IOPOLL) {
1474 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1475 !kiocb->ki_filp->f_op->iopoll)
1476 return -EOPNOTSUPP;
1478 kiocb->ki_flags |= IOCB_HIPRI;
1479 kiocb->ki_complete = io_complete_rw_iopoll;
1480 req->result = 0;
1481 } else {
1482 if (kiocb->ki_flags & IOCB_HIPRI)
1483 return -EINVAL;
1484 kiocb->ki_complete = io_complete_rw;
1486 return 0;
1489 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1491 switch (ret) {
1492 case -EIOCBQUEUED:
1493 break;
1494 case -ERESTARTSYS:
1495 case -ERESTARTNOINTR:
1496 case -ERESTARTNOHAND:
1497 case -ERESTART_RESTARTBLOCK:
1499 * We can't just restart the syscall, since previously
1500 * submitted sqes may already be in progress. Just fail this
1501 * IO with EINTR.
1503 ret = -EINTR;
1504 /* fall through */
1505 default:
1506 kiocb->ki_complete(kiocb, ret, 0);
1510 static void kiocb_done(struct kiocb *kiocb, ssize_t ret, struct io_kiocb **nxt,
1511 bool in_async)
1513 if (in_async && ret >= 0 && kiocb->ki_complete == io_complete_rw)
1514 *nxt = __io_complete_rw(kiocb, ret);
1515 else
1516 io_rw_done(kiocb, ret);
1519 static ssize_t io_import_fixed(struct io_ring_ctx *ctx, int rw,
1520 const struct io_uring_sqe *sqe,
1521 struct iov_iter *iter)
1523 size_t len = READ_ONCE(sqe->len);
1524 struct io_mapped_ubuf *imu;
1525 unsigned index, buf_index;
1526 size_t offset;
1527 u64 buf_addr;
1529 /* attempt to use fixed buffers without having provided iovecs */
1530 if (unlikely(!ctx->user_bufs))
1531 return -EFAULT;
1533 buf_index = READ_ONCE(sqe->buf_index);
1534 if (unlikely(buf_index >= ctx->nr_user_bufs))
1535 return -EFAULT;
1537 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1538 imu = &ctx->user_bufs[index];
1539 buf_addr = READ_ONCE(sqe->addr);
1541 /* overflow */
1542 if (buf_addr + len < buf_addr)
1543 return -EFAULT;
1544 /* not inside the mapped region */
1545 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1546 return -EFAULT;
1549 * May not be a start of buffer, set size appropriately
1550 * and advance us to the beginning.
1552 offset = buf_addr - imu->ubuf;
1553 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1555 if (offset) {
1557 * Don't use iov_iter_advance() here, as it's really slow for
1558 * using the latter parts of a big fixed buffer - it iterates
1559 * over each segment manually. We can cheat a bit here, because
1560 * we know that:
1562 * 1) it's a BVEC iter, we set it up
1563 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1564 * first and last bvec
1566 * So just find our index, and adjust the iterator afterwards.
1567 * If the offset is within the first bvec (or the whole first
1568 * bvec, just use iov_iter_advance(). This makes it easier
1569 * since we can just skip the first segment, which may not
1570 * be PAGE_SIZE aligned.
1572 const struct bio_vec *bvec = imu->bvec;
1574 if (offset <= bvec->bv_len) {
1575 iov_iter_advance(iter, offset);
1576 } else {
1577 unsigned long seg_skip;
1579 /* skip first vec */
1580 offset -= bvec->bv_len;
1581 seg_skip = 1 + (offset >> PAGE_SHIFT);
1583 iter->bvec = bvec + seg_skip;
1584 iter->nr_segs -= seg_skip;
1585 iter->count -= bvec->bv_len + offset;
1586 iter->iov_offset = offset & ~PAGE_MASK;
1590 return len;
1593 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1594 struct iovec **iovec, struct iov_iter *iter)
1596 const struct io_uring_sqe *sqe = req->sqe;
1597 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1598 size_t sqe_len = READ_ONCE(sqe->len);
1599 u8 opcode;
1602 * We're reading ->opcode for the second time, but the first read
1603 * doesn't care whether it's _FIXED or not, so it doesn't matter
1604 * whether ->opcode changes concurrently. The first read does care
1605 * about whether it is a READ or a WRITE, so we don't trust this read
1606 * for that purpose and instead let the caller pass in the read/write
1607 * flag.
1609 opcode = READ_ONCE(sqe->opcode);
1610 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
1611 *iovec = NULL;
1612 return io_import_fixed(req->ctx, rw, sqe, iter);
1615 if (req->io) {
1616 struct io_async_rw *iorw = &req->io->rw;
1618 *iovec = iorw->iov;
1619 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
1620 if (iorw->iov == iorw->fast_iov)
1621 *iovec = NULL;
1622 return iorw->size;
1625 if (!req->has_user)
1626 return -EFAULT;
1628 #ifdef CONFIG_COMPAT
1629 if (req->ctx->compat)
1630 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1631 iovec, iter);
1632 #endif
1634 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1638 * For files that don't have ->read_iter() and ->write_iter(), handle them
1639 * by looping over ->read() or ->write() manually.
1641 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1642 struct iov_iter *iter)
1644 ssize_t ret = 0;
1647 * Don't support polled IO through this interface, and we can't
1648 * support non-blocking either. For the latter, this just causes
1649 * the kiocb to be handled from an async context.
1651 if (kiocb->ki_flags & IOCB_HIPRI)
1652 return -EOPNOTSUPP;
1653 if (kiocb->ki_flags & IOCB_NOWAIT)
1654 return -EAGAIN;
1656 while (iov_iter_count(iter)) {
1657 struct iovec iovec;
1658 ssize_t nr;
1660 if (!iov_iter_is_bvec(iter)) {
1661 iovec = iov_iter_iovec(iter);
1662 } else {
1663 /* fixed buffers import bvec */
1664 iovec.iov_base = kmap(iter->bvec->bv_page)
1665 + iter->iov_offset;
1666 iovec.iov_len = min(iter->count,
1667 iter->bvec->bv_len - iter->iov_offset);
1670 if (rw == READ) {
1671 nr = file->f_op->read(file, iovec.iov_base,
1672 iovec.iov_len, &kiocb->ki_pos);
1673 } else {
1674 nr = file->f_op->write(file, iovec.iov_base,
1675 iovec.iov_len, &kiocb->ki_pos);
1678 if (iov_iter_is_bvec(iter))
1679 kunmap(iter->bvec->bv_page);
1681 if (nr < 0) {
1682 if (!ret)
1683 ret = nr;
1684 break;
1686 ret += nr;
1687 if (nr != iovec.iov_len)
1688 break;
1689 iov_iter_advance(iter, nr);
1692 return ret;
1695 static void io_req_map_io(struct io_kiocb *req, ssize_t io_size,
1696 struct iovec *iovec, struct iovec *fast_iov,
1697 struct iov_iter *iter)
1699 req->io->rw.nr_segs = iter->nr_segs;
1700 req->io->rw.size = io_size;
1701 req->io->rw.iov = iovec;
1702 if (!req->io->rw.iov) {
1703 req->io->rw.iov = req->io->rw.fast_iov;
1704 memcpy(req->io->rw.iov, fast_iov,
1705 sizeof(struct iovec) * iter->nr_segs);
1709 static int io_setup_async_io(struct io_kiocb *req, ssize_t io_size,
1710 struct iovec *iovec, struct iovec *fast_iov,
1711 struct iov_iter *iter)
1713 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
1714 if (req->io) {
1715 io_req_map_io(req, io_size, iovec, fast_iov, iter);
1716 memcpy(&req->io->sqe, req->sqe, sizeof(req->io->sqe));
1717 req->sqe = &req->io->sqe;
1718 return 0;
1721 return -ENOMEM;
1724 static int io_read_prep(struct io_kiocb *req, struct iovec **iovec,
1725 struct iov_iter *iter, bool force_nonblock)
1727 ssize_t ret;
1729 ret = io_prep_rw(req, force_nonblock);
1730 if (ret)
1731 return ret;
1733 if (unlikely(!(req->file->f_mode & FMODE_READ)))
1734 return -EBADF;
1736 return io_import_iovec(READ, req, iovec, iter);
1739 static int io_read(struct io_kiocb *req, struct io_kiocb **nxt,
1740 bool force_nonblock)
1742 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1743 struct kiocb *kiocb = &req->rw;
1744 struct iov_iter iter;
1745 struct file *file;
1746 size_t iov_count;
1747 ssize_t io_size, ret;
1749 if (!req->io) {
1750 ret = io_read_prep(req, &iovec, &iter, force_nonblock);
1751 if (ret < 0)
1752 return ret;
1753 } else {
1754 ret = io_import_iovec(READ, req, &iovec, &iter);
1755 if (ret < 0)
1756 return ret;
1759 file = req->file;
1760 io_size = ret;
1761 if (req->flags & REQ_F_LINK)
1762 req->result = io_size;
1765 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1766 * we know to async punt it even if it was opened O_NONBLOCK
1768 if (force_nonblock && !io_file_supports_async(file)) {
1769 req->flags |= REQ_F_MUST_PUNT;
1770 goto copy_iov;
1773 iov_count = iov_iter_count(&iter);
1774 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1775 if (!ret) {
1776 ssize_t ret2;
1778 if (file->f_op->read_iter)
1779 ret2 = call_read_iter(file, kiocb, &iter);
1780 else
1781 ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1784 * In case of a short read, punt to async. This can happen
1785 * if we have data partially cached. Alternatively we can
1786 * return the short read, in which case the application will
1787 * need to issue another SQE and wait for it. That SQE will
1788 * need async punt anyway, so it's more efficient to do it
1789 * here.
1791 if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1792 (req->flags & REQ_F_ISREG) &&
1793 ret2 > 0 && ret2 < io_size)
1794 ret2 = -EAGAIN;
1795 /* Catch -EAGAIN return for forced non-blocking submission */
1796 if (!force_nonblock || ret2 != -EAGAIN) {
1797 kiocb_done(kiocb, ret2, nxt, req->in_async);
1798 } else {
1799 copy_iov:
1800 ret = io_setup_async_io(req, io_size, iovec,
1801 inline_vecs, &iter);
1802 if (ret)
1803 goto out_free;
1804 return -EAGAIN;
1807 out_free:
1808 kfree(iovec);
1809 return ret;
1812 static int io_write_prep(struct io_kiocb *req, struct iovec **iovec,
1813 struct iov_iter *iter, bool force_nonblock)
1815 ssize_t ret;
1817 ret = io_prep_rw(req, force_nonblock);
1818 if (ret)
1819 return ret;
1821 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
1822 return -EBADF;
1824 return io_import_iovec(WRITE, req, iovec, iter);
1827 static int io_write(struct io_kiocb *req, struct io_kiocb **nxt,
1828 bool force_nonblock)
1830 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1831 struct kiocb *kiocb = &req->rw;
1832 struct iov_iter iter;
1833 struct file *file;
1834 size_t iov_count;
1835 ssize_t ret, io_size;
1837 if (!req->io) {
1838 ret = io_write_prep(req, &iovec, &iter, force_nonblock);
1839 if (ret < 0)
1840 return ret;
1841 } else {
1842 ret = io_import_iovec(WRITE, req, &iovec, &iter);
1843 if (ret < 0)
1844 return ret;
1847 file = kiocb->ki_filp;
1848 io_size = ret;
1849 if (req->flags & REQ_F_LINK)
1850 req->result = io_size;
1853 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1854 * we know to async punt it even if it was opened O_NONBLOCK
1856 if (force_nonblock && !io_file_supports_async(req->file)) {
1857 req->flags |= REQ_F_MUST_PUNT;
1858 goto copy_iov;
1861 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT))
1862 goto copy_iov;
1864 iov_count = iov_iter_count(&iter);
1865 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1866 if (!ret) {
1867 ssize_t ret2;
1870 * Open-code file_start_write here to grab freeze protection,
1871 * which will be released by another thread in
1872 * io_complete_rw(). Fool lockdep by telling it the lock got
1873 * released so that it doesn't complain about the held lock when
1874 * we return to userspace.
1876 if (req->flags & REQ_F_ISREG) {
1877 __sb_start_write(file_inode(file)->i_sb,
1878 SB_FREEZE_WRITE, true);
1879 __sb_writers_release(file_inode(file)->i_sb,
1880 SB_FREEZE_WRITE);
1882 kiocb->ki_flags |= IOCB_WRITE;
1884 if (file->f_op->write_iter)
1885 ret2 = call_write_iter(file, kiocb, &iter);
1886 else
1887 ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1888 if (!force_nonblock || ret2 != -EAGAIN) {
1889 kiocb_done(kiocb, ret2, nxt, req->in_async);
1890 } else {
1891 copy_iov:
1892 ret = io_setup_async_io(req, io_size, iovec,
1893 inline_vecs, &iter);
1894 if (ret)
1895 goto out_free;
1896 return -EAGAIN;
1899 out_free:
1900 kfree(iovec);
1901 return ret;
1905 * IORING_OP_NOP just posts a completion event, nothing else.
1907 static int io_nop(struct io_kiocb *req)
1909 struct io_ring_ctx *ctx = req->ctx;
1911 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1912 return -EINVAL;
1914 io_cqring_add_event(req, 0);
1915 io_put_req(req);
1916 return 0;
1919 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1921 struct io_ring_ctx *ctx = req->ctx;
1923 if (!req->file)
1924 return -EBADF;
1926 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1927 return -EINVAL;
1928 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1929 return -EINVAL;
1931 return 0;
1934 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1935 struct io_kiocb **nxt, bool force_nonblock)
1937 loff_t sqe_off = READ_ONCE(sqe->off);
1938 loff_t sqe_len = READ_ONCE(sqe->len);
1939 loff_t end = sqe_off + sqe_len;
1940 unsigned fsync_flags;
1941 int ret;
1943 fsync_flags = READ_ONCE(sqe->fsync_flags);
1944 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1945 return -EINVAL;
1947 ret = io_prep_fsync(req, sqe);
1948 if (ret)
1949 return ret;
1951 /* fsync always requires a blocking context */
1952 if (force_nonblock)
1953 return -EAGAIN;
1955 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1956 end > 0 ? end : LLONG_MAX,
1957 fsync_flags & IORING_FSYNC_DATASYNC);
1959 if (ret < 0 && (req->flags & REQ_F_LINK))
1960 req->flags |= REQ_F_FAIL_LINK;
1961 io_cqring_add_event(req, ret);
1962 io_put_req_find_next(req, nxt);
1963 return 0;
1966 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1968 struct io_ring_ctx *ctx = req->ctx;
1969 int ret = 0;
1971 if (!req->file)
1972 return -EBADF;
1974 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1975 return -EINVAL;
1976 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1977 return -EINVAL;
1979 return ret;
1982 static int io_sync_file_range(struct io_kiocb *req,
1983 const struct io_uring_sqe *sqe,
1984 struct io_kiocb **nxt,
1985 bool force_nonblock)
1987 loff_t sqe_off;
1988 loff_t sqe_len;
1989 unsigned flags;
1990 int ret;
1992 ret = io_prep_sfr(req, sqe);
1993 if (ret)
1994 return ret;
1996 /* sync_file_range always requires a blocking context */
1997 if (force_nonblock)
1998 return -EAGAIN;
2000 sqe_off = READ_ONCE(sqe->off);
2001 sqe_len = READ_ONCE(sqe->len);
2002 flags = READ_ONCE(sqe->sync_range_flags);
2004 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
2006 if (ret < 0 && (req->flags & REQ_F_LINK))
2007 req->flags |= REQ_F_FAIL_LINK;
2008 io_cqring_add_event(req, ret);
2009 io_put_req_find_next(req, nxt);
2010 return 0;
2013 static int io_sendmsg_prep(struct io_kiocb *req, struct io_async_ctx *io)
2015 #if defined(CONFIG_NET)
2016 const struct io_uring_sqe *sqe = req->sqe;
2017 struct user_msghdr __user *msg;
2018 unsigned flags;
2020 flags = READ_ONCE(sqe->msg_flags);
2021 msg = (struct user_msghdr __user *)(unsigned long) READ_ONCE(sqe->addr);
2022 return sendmsg_copy_msghdr(&io->msg.msg, msg, flags, &io->msg.iov);
2023 #else
2024 return 0;
2025 #endif
2028 static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2029 struct io_kiocb **nxt, bool force_nonblock)
2031 #if defined(CONFIG_NET)
2032 struct socket *sock;
2033 int ret;
2035 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2036 return -EINVAL;
2038 sock = sock_from_file(req->file, &ret);
2039 if (sock) {
2040 struct io_async_ctx io, *copy;
2041 struct sockaddr_storage addr;
2042 struct msghdr *kmsg;
2043 unsigned flags;
2045 flags = READ_ONCE(sqe->msg_flags);
2046 if (flags & MSG_DONTWAIT)
2047 req->flags |= REQ_F_NOWAIT;
2048 else if (force_nonblock)
2049 flags |= MSG_DONTWAIT;
2051 if (req->io) {
2052 kmsg = &req->io->msg.msg;
2053 kmsg->msg_name = &addr;
2054 } else {
2055 kmsg = &io.msg.msg;
2056 kmsg->msg_name = &addr;
2057 io.msg.iov = io.msg.fast_iov;
2058 ret = io_sendmsg_prep(req, &io);
2059 if (ret)
2060 goto out;
2063 ret = __sys_sendmsg_sock(sock, kmsg, flags);
2064 if (force_nonblock && ret == -EAGAIN) {
2065 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
2066 if (!copy) {
2067 ret = -ENOMEM;
2068 goto out;
2070 memcpy(&copy->msg, &io.msg, sizeof(copy->msg));
2071 req->io = copy;
2072 memcpy(&req->io->sqe, req->sqe, sizeof(*req->sqe));
2073 req->sqe = &req->io->sqe;
2074 return ret;
2076 if (ret == -ERESTARTSYS)
2077 ret = -EINTR;
2080 out:
2081 io_cqring_add_event(req, ret);
2082 if (ret < 0 && (req->flags & REQ_F_LINK))
2083 req->flags |= REQ_F_FAIL_LINK;
2084 io_put_req_find_next(req, nxt);
2085 return 0;
2086 #else
2087 return -EOPNOTSUPP;
2088 #endif
2091 static int io_recvmsg_prep(struct io_kiocb *req, struct io_async_ctx *io)
2093 #if defined(CONFIG_NET)
2094 const struct io_uring_sqe *sqe = req->sqe;
2095 struct user_msghdr __user *msg;
2096 unsigned flags;
2098 flags = READ_ONCE(sqe->msg_flags);
2099 msg = (struct user_msghdr __user *)(unsigned long) READ_ONCE(sqe->addr);
2100 return recvmsg_copy_msghdr(&io->msg.msg, msg, flags, &io->msg.uaddr,
2101 &io->msg.iov);
2102 #else
2103 return 0;
2104 #endif
2107 static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2108 struct io_kiocb **nxt, bool force_nonblock)
2110 #if defined(CONFIG_NET)
2111 struct socket *sock;
2112 int ret;
2114 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2115 return -EINVAL;
2117 sock = sock_from_file(req->file, &ret);
2118 if (sock) {
2119 struct user_msghdr __user *msg;
2120 struct io_async_ctx io, *copy;
2121 struct sockaddr_storage addr;
2122 struct msghdr *kmsg;
2123 unsigned flags;
2125 flags = READ_ONCE(sqe->msg_flags);
2126 if (flags & MSG_DONTWAIT)
2127 req->flags |= REQ_F_NOWAIT;
2128 else if (force_nonblock)
2129 flags |= MSG_DONTWAIT;
2131 msg = (struct user_msghdr __user *) (unsigned long)
2132 READ_ONCE(sqe->addr);
2133 if (req->io) {
2134 kmsg = &req->io->msg.msg;
2135 kmsg->msg_name = &addr;
2136 } else {
2137 kmsg = &io.msg.msg;
2138 kmsg->msg_name = &addr;
2139 io.msg.iov = io.msg.fast_iov;
2140 ret = io_recvmsg_prep(req, &io);
2141 if (ret)
2142 goto out;
2145 ret = __sys_recvmsg_sock(sock, kmsg, msg, io.msg.uaddr, flags);
2146 if (force_nonblock && ret == -EAGAIN) {
2147 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
2148 if (!copy) {
2149 ret = -ENOMEM;
2150 goto out;
2152 memcpy(copy, &io, sizeof(*copy));
2153 req->io = copy;
2154 memcpy(&req->io->sqe, req->sqe, sizeof(*req->sqe));
2155 req->sqe = &req->io->sqe;
2156 return ret;
2158 if (ret == -ERESTARTSYS)
2159 ret = -EINTR;
2162 out:
2163 io_cqring_add_event(req, ret);
2164 if (ret < 0 && (req->flags & REQ_F_LINK))
2165 req->flags |= REQ_F_FAIL_LINK;
2166 io_put_req_find_next(req, nxt);
2167 return 0;
2168 #else
2169 return -EOPNOTSUPP;
2170 #endif
2173 static int io_accept(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2174 struct io_kiocb **nxt, bool force_nonblock)
2176 #if defined(CONFIG_NET)
2177 struct sockaddr __user *addr;
2178 int __user *addr_len;
2179 unsigned file_flags;
2180 int flags, ret;
2182 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
2183 return -EINVAL;
2184 if (sqe->ioprio || sqe->len || sqe->buf_index)
2185 return -EINVAL;
2187 addr = (struct sockaddr __user *) (unsigned long) READ_ONCE(sqe->addr);
2188 addr_len = (int __user *) (unsigned long) READ_ONCE(sqe->addr2);
2189 flags = READ_ONCE(sqe->accept_flags);
2190 file_flags = force_nonblock ? O_NONBLOCK : 0;
2192 ret = __sys_accept4_file(req->file, file_flags, addr, addr_len, flags);
2193 if (ret == -EAGAIN && force_nonblock) {
2194 req->work.flags |= IO_WQ_WORK_NEEDS_FILES;
2195 return -EAGAIN;
2197 if (ret == -ERESTARTSYS)
2198 ret = -EINTR;
2199 if (ret < 0 && (req->flags & REQ_F_LINK))
2200 req->flags |= REQ_F_FAIL_LINK;
2201 io_cqring_add_event(req, ret);
2202 io_put_req_find_next(req, nxt);
2203 return 0;
2204 #else
2205 return -EOPNOTSUPP;
2206 #endif
2209 static int io_connect_prep(struct io_kiocb *req, struct io_async_ctx *io)
2211 #if defined(CONFIG_NET)
2212 const struct io_uring_sqe *sqe = req->sqe;
2213 struct sockaddr __user *addr;
2214 int addr_len;
2216 addr = (struct sockaddr __user *) (unsigned long) READ_ONCE(sqe->addr);
2217 addr_len = READ_ONCE(sqe->addr2);
2218 return move_addr_to_kernel(addr, addr_len, &io->connect.address);
2219 #else
2220 return 0;
2221 #endif
2224 static int io_connect(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2225 struct io_kiocb **nxt, bool force_nonblock)
2227 #if defined(CONFIG_NET)
2228 struct io_async_ctx __io, *io;
2229 unsigned file_flags;
2230 int addr_len, ret;
2232 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
2233 return -EINVAL;
2234 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
2235 return -EINVAL;
2237 addr_len = READ_ONCE(sqe->addr2);
2238 file_flags = force_nonblock ? O_NONBLOCK : 0;
2240 if (req->io) {
2241 io = req->io;
2242 } else {
2243 ret = io_connect_prep(req, &__io);
2244 if (ret)
2245 goto out;
2246 io = &__io;
2249 ret = __sys_connect_file(req->file, &io->connect.address, addr_len,
2250 file_flags);
2251 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
2252 io = kmalloc(sizeof(*io), GFP_KERNEL);
2253 if (!io) {
2254 ret = -ENOMEM;
2255 goto out;
2257 memcpy(&io->connect, &__io.connect, sizeof(io->connect));
2258 req->io = io;
2259 memcpy(&io->sqe, req->sqe, sizeof(*req->sqe));
2260 req->sqe = &io->sqe;
2261 return -EAGAIN;
2263 if (ret == -ERESTARTSYS)
2264 ret = -EINTR;
2265 out:
2266 if (ret < 0 && (req->flags & REQ_F_LINK))
2267 req->flags |= REQ_F_FAIL_LINK;
2268 io_cqring_add_event(req, ret);
2269 io_put_req_find_next(req, nxt);
2270 return 0;
2271 #else
2272 return -EOPNOTSUPP;
2273 #endif
2276 static void io_poll_remove_one(struct io_kiocb *req)
2278 struct io_poll_iocb *poll = &req->poll;
2280 spin_lock(&poll->head->lock);
2281 WRITE_ONCE(poll->canceled, true);
2282 if (!list_empty(&poll->wait->entry)) {
2283 list_del_init(&poll->wait->entry);
2284 io_queue_async_work(req);
2286 spin_unlock(&poll->head->lock);
2287 hash_del(&req->hash_node);
2290 static void io_poll_remove_all(struct io_ring_ctx *ctx)
2292 struct hlist_node *tmp;
2293 struct io_kiocb *req;
2294 int i;
2296 spin_lock_irq(&ctx->completion_lock);
2297 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
2298 struct hlist_head *list;
2300 list = &ctx->cancel_hash[i];
2301 hlist_for_each_entry_safe(req, tmp, list, hash_node)
2302 io_poll_remove_one(req);
2304 spin_unlock_irq(&ctx->completion_lock);
2307 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
2309 struct hlist_head *list;
2310 struct io_kiocb *req;
2312 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
2313 hlist_for_each_entry(req, list, hash_node) {
2314 if (sqe_addr == req->user_data) {
2315 io_poll_remove_one(req);
2316 return 0;
2320 return -ENOENT;
2324 * Find a running poll command that matches one specified in sqe->addr,
2325 * and remove it if found.
2327 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2329 struct io_ring_ctx *ctx = req->ctx;
2330 int ret;
2332 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2333 return -EINVAL;
2334 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
2335 sqe->poll_events)
2336 return -EINVAL;
2338 spin_lock_irq(&ctx->completion_lock);
2339 ret = io_poll_cancel(ctx, READ_ONCE(sqe->addr));
2340 spin_unlock_irq(&ctx->completion_lock);
2342 io_cqring_add_event(req, ret);
2343 if (ret < 0 && (req->flags & REQ_F_LINK))
2344 req->flags |= REQ_F_FAIL_LINK;
2345 io_put_req(req);
2346 return 0;
2349 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
2351 struct io_ring_ctx *ctx = req->ctx;
2353 req->poll.done = true;
2354 kfree(req->poll.wait);
2355 if (error)
2356 io_cqring_fill_event(req, error);
2357 else
2358 io_cqring_fill_event(req, mangle_poll(mask));
2359 io_commit_cqring(ctx);
2362 static void io_poll_complete_work(struct io_wq_work **workptr)
2364 struct io_wq_work *work = *workptr;
2365 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2366 struct io_poll_iocb *poll = &req->poll;
2367 struct poll_table_struct pt = { ._key = poll->events };
2368 struct io_ring_ctx *ctx = req->ctx;
2369 struct io_kiocb *nxt = NULL;
2370 __poll_t mask = 0;
2371 int ret = 0;
2373 if (work->flags & IO_WQ_WORK_CANCEL) {
2374 WRITE_ONCE(poll->canceled, true);
2375 ret = -ECANCELED;
2376 } else if (READ_ONCE(poll->canceled)) {
2377 ret = -ECANCELED;
2380 if (ret != -ECANCELED)
2381 mask = vfs_poll(poll->file, &pt) & poll->events;
2384 * Note that ->ki_cancel callers also delete iocb from active_reqs after
2385 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
2386 * synchronize with them. In the cancellation case the list_del_init
2387 * itself is not actually needed, but harmless so we keep it in to
2388 * avoid further branches in the fast path.
2390 spin_lock_irq(&ctx->completion_lock);
2391 if (!mask && ret != -ECANCELED) {
2392 add_wait_queue(poll->head, poll->wait);
2393 spin_unlock_irq(&ctx->completion_lock);
2394 return;
2396 hash_del(&req->hash_node);
2397 io_poll_complete(req, mask, ret);
2398 spin_unlock_irq(&ctx->completion_lock);
2400 io_cqring_ev_posted(ctx);
2402 if (ret < 0 && req->flags & REQ_F_LINK)
2403 req->flags |= REQ_F_FAIL_LINK;
2404 io_put_req_find_next(req, &nxt);
2405 if (nxt)
2406 *workptr = &nxt->work;
2409 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
2410 void *key)
2412 struct io_poll_iocb *poll = wait->private;
2413 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
2414 struct io_ring_ctx *ctx = req->ctx;
2415 __poll_t mask = key_to_poll(key);
2416 unsigned long flags;
2418 /* for instances that support it check for an event match first: */
2419 if (mask && !(mask & poll->events))
2420 return 0;
2422 list_del_init(&poll->wait->entry);
2425 * Run completion inline if we can. We're using trylock here because
2426 * we are violating the completion_lock -> poll wq lock ordering.
2427 * If we have a link timeout we're going to need the completion_lock
2428 * for finalizing the request, mark us as having grabbed that already.
2430 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
2431 hash_del(&req->hash_node);
2432 io_poll_complete(req, mask, 0);
2433 req->flags |= REQ_F_COMP_LOCKED;
2434 io_put_req(req);
2435 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2437 io_cqring_ev_posted(ctx);
2438 } else {
2439 io_queue_async_work(req);
2442 return 1;
2445 struct io_poll_table {
2446 struct poll_table_struct pt;
2447 struct io_kiocb *req;
2448 int error;
2451 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
2452 struct poll_table_struct *p)
2454 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
2456 if (unlikely(pt->req->poll.head)) {
2457 pt->error = -EINVAL;
2458 return;
2461 pt->error = 0;
2462 pt->req->poll.head = head;
2463 add_wait_queue(head, pt->req->poll.wait);
2466 static void io_poll_req_insert(struct io_kiocb *req)
2468 struct io_ring_ctx *ctx = req->ctx;
2469 struct hlist_head *list;
2471 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
2472 hlist_add_head(&req->hash_node, list);
2475 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2476 struct io_kiocb **nxt)
2478 struct io_poll_iocb *poll = &req->poll;
2479 struct io_ring_ctx *ctx = req->ctx;
2480 struct io_poll_table ipt;
2481 bool cancel = false;
2482 __poll_t mask;
2483 u16 events;
2485 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2486 return -EINVAL;
2487 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
2488 return -EINVAL;
2489 if (!poll->file)
2490 return -EBADF;
2492 poll->wait = kmalloc(sizeof(*poll->wait), GFP_KERNEL);
2493 if (!poll->wait)
2494 return -ENOMEM;
2496 req->io = NULL;
2497 INIT_IO_WORK(&req->work, io_poll_complete_work);
2498 events = READ_ONCE(sqe->poll_events);
2499 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
2500 INIT_HLIST_NODE(&req->hash_node);
2502 poll->head = NULL;
2503 poll->done = false;
2504 poll->canceled = false;
2506 ipt.pt._qproc = io_poll_queue_proc;
2507 ipt.pt._key = poll->events;
2508 ipt.req = req;
2509 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
2511 /* initialized the list so that we can do list_empty checks */
2512 INIT_LIST_HEAD(&poll->wait->entry);
2513 init_waitqueue_func_entry(poll->wait, io_poll_wake);
2514 poll->wait->private = poll;
2516 INIT_LIST_HEAD(&req->list);
2518 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
2520 spin_lock_irq(&ctx->completion_lock);
2521 if (likely(poll->head)) {
2522 spin_lock(&poll->head->lock);
2523 if (unlikely(list_empty(&poll->wait->entry))) {
2524 if (ipt.error)
2525 cancel = true;
2526 ipt.error = 0;
2527 mask = 0;
2529 if (mask || ipt.error)
2530 list_del_init(&poll->wait->entry);
2531 else if (cancel)
2532 WRITE_ONCE(poll->canceled, true);
2533 else if (!poll->done) /* actually waiting for an event */
2534 io_poll_req_insert(req);
2535 spin_unlock(&poll->head->lock);
2537 if (mask) { /* no async, we'd stolen it */
2538 ipt.error = 0;
2539 io_poll_complete(req, mask, 0);
2541 spin_unlock_irq(&ctx->completion_lock);
2543 if (mask) {
2544 io_cqring_ev_posted(ctx);
2545 io_put_req_find_next(req, nxt);
2547 return ipt.error;
2550 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
2552 struct io_timeout_data *data = container_of(timer,
2553 struct io_timeout_data, timer);
2554 struct io_kiocb *req = data->req;
2555 struct io_ring_ctx *ctx = req->ctx;
2556 unsigned long flags;
2558 atomic_inc(&ctx->cq_timeouts);
2560 spin_lock_irqsave(&ctx->completion_lock, flags);
2562 * We could be racing with timeout deletion. If the list is empty,
2563 * then timeout lookup already found it and will be handling it.
2565 if (!list_empty(&req->list)) {
2566 struct io_kiocb *prev;
2569 * Adjust the reqs sequence before the current one because it
2570 * will consume a slot in the cq_ring and the the cq_tail
2571 * pointer will be increased, otherwise other timeout reqs may
2572 * return in advance without waiting for enough wait_nr.
2574 prev = req;
2575 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
2576 prev->sequence++;
2577 list_del_init(&req->list);
2580 io_cqring_fill_event(req, -ETIME);
2581 io_commit_cqring(ctx);
2582 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2584 io_cqring_ev_posted(ctx);
2585 if (req->flags & REQ_F_LINK)
2586 req->flags |= REQ_F_FAIL_LINK;
2587 io_put_req(req);
2588 return HRTIMER_NORESTART;
2591 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
2593 struct io_kiocb *req;
2594 int ret = -ENOENT;
2596 list_for_each_entry(req, &ctx->timeout_list, list) {
2597 if (user_data == req->user_data) {
2598 list_del_init(&req->list);
2599 ret = 0;
2600 break;
2604 if (ret == -ENOENT)
2605 return ret;
2607 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
2608 if (ret == -1)
2609 return -EALREADY;
2611 if (req->flags & REQ_F_LINK)
2612 req->flags |= REQ_F_FAIL_LINK;
2613 io_cqring_fill_event(req, -ECANCELED);
2614 io_put_req(req);
2615 return 0;
2619 * Remove or update an existing timeout command
2621 static int io_timeout_remove(struct io_kiocb *req,
2622 const struct io_uring_sqe *sqe)
2624 struct io_ring_ctx *ctx = req->ctx;
2625 unsigned flags;
2626 int ret;
2628 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2629 return -EINVAL;
2630 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
2631 return -EINVAL;
2632 flags = READ_ONCE(sqe->timeout_flags);
2633 if (flags)
2634 return -EINVAL;
2636 spin_lock_irq(&ctx->completion_lock);
2637 ret = io_timeout_cancel(ctx, READ_ONCE(sqe->addr));
2639 io_cqring_fill_event(req, ret);
2640 io_commit_cqring(ctx);
2641 spin_unlock_irq(&ctx->completion_lock);
2642 io_cqring_ev_posted(ctx);
2643 if (ret < 0 && req->flags & REQ_F_LINK)
2644 req->flags |= REQ_F_FAIL_LINK;
2645 io_put_req(req);
2646 return 0;
2649 static int io_timeout_prep(struct io_kiocb *req, struct io_async_ctx *io,
2650 bool is_timeout_link)
2652 const struct io_uring_sqe *sqe = req->sqe;
2653 struct io_timeout_data *data;
2654 unsigned flags;
2656 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2657 return -EINVAL;
2658 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
2659 return -EINVAL;
2660 if (sqe->off && is_timeout_link)
2661 return -EINVAL;
2662 flags = READ_ONCE(sqe->timeout_flags);
2663 if (flags & ~IORING_TIMEOUT_ABS)
2664 return -EINVAL;
2666 data = &io->timeout;
2667 data->req = req;
2668 req->flags |= REQ_F_TIMEOUT;
2670 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
2671 return -EFAULT;
2673 if (flags & IORING_TIMEOUT_ABS)
2674 data->mode = HRTIMER_MODE_ABS;
2675 else
2676 data->mode = HRTIMER_MODE_REL;
2678 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
2679 req->io = io;
2680 return 0;
2683 static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2685 unsigned count;
2686 struct io_ring_ctx *ctx = req->ctx;
2687 struct io_timeout_data *data;
2688 struct io_async_ctx *io;
2689 struct list_head *entry;
2690 unsigned span = 0;
2692 io = req->io;
2693 if (!io) {
2694 int ret;
2696 io = kmalloc(sizeof(*io), GFP_KERNEL);
2697 if (!io)
2698 return -ENOMEM;
2699 ret = io_timeout_prep(req, io, false);
2700 if (ret) {
2701 kfree(io);
2702 return ret;
2705 data = &req->io->timeout;
2708 * sqe->off holds how many events that need to occur for this
2709 * timeout event to be satisfied. If it isn't set, then this is
2710 * a pure timeout request, sequence isn't used.
2712 count = READ_ONCE(sqe->off);
2713 if (!count) {
2714 req->flags |= REQ_F_TIMEOUT_NOSEQ;
2715 spin_lock_irq(&ctx->completion_lock);
2716 entry = ctx->timeout_list.prev;
2717 goto add;
2720 req->sequence = ctx->cached_sq_head + count - 1;
2721 data->seq_offset = count;
2724 * Insertion sort, ensuring the first entry in the list is always
2725 * the one we need first.
2727 spin_lock_irq(&ctx->completion_lock);
2728 list_for_each_prev(entry, &ctx->timeout_list) {
2729 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
2730 unsigned nxt_sq_head;
2731 long long tmp, tmp_nxt;
2732 u32 nxt_offset = nxt->io->timeout.seq_offset;
2734 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
2735 continue;
2738 * Since cached_sq_head + count - 1 can overflow, use type long
2739 * long to store it.
2741 tmp = (long long)ctx->cached_sq_head + count - 1;
2742 nxt_sq_head = nxt->sequence - nxt_offset + 1;
2743 tmp_nxt = (long long)nxt_sq_head + nxt_offset - 1;
2746 * cached_sq_head may overflow, and it will never overflow twice
2747 * once there is some timeout req still be valid.
2749 if (ctx->cached_sq_head < nxt_sq_head)
2750 tmp += UINT_MAX;
2752 if (tmp > tmp_nxt)
2753 break;
2756 * Sequence of reqs after the insert one and itself should
2757 * be adjusted because each timeout req consumes a slot.
2759 span++;
2760 nxt->sequence++;
2762 req->sequence -= span;
2763 add:
2764 list_add(&req->list, entry);
2765 data->timer.function = io_timeout_fn;
2766 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
2767 spin_unlock_irq(&ctx->completion_lock);
2768 return 0;
2771 static bool io_cancel_cb(struct io_wq_work *work, void *data)
2773 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2775 return req->user_data == (unsigned long) data;
2778 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
2780 enum io_wq_cancel cancel_ret;
2781 int ret = 0;
2783 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
2784 switch (cancel_ret) {
2785 case IO_WQ_CANCEL_OK:
2786 ret = 0;
2787 break;
2788 case IO_WQ_CANCEL_RUNNING:
2789 ret = -EALREADY;
2790 break;
2791 case IO_WQ_CANCEL_NOTFOUND:
2792 ret = -ENOENT;
2793 break;
2796 return ret;
2799 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
2800 struct io_kiocb *req, __u64 sqe_addr,
2801 struct io_kiocb **nxt, int success_ret)
2803 unsigned long flags;
2804 int ret;
2806 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
2807 if (ret != -ENOENT) {
2808 spin_lock_irqsave(&ctx->completion_lock, flags);
2809 goto done;
2812 spin_lock_irqsave(&ctx->completion_lock, flags);
2813 ret = io_timeout_cancel(ctx, sqe_addr);
2814 if (ret != -ENOENT)
2815 goto done;
2816 ret = io_poll_cancel(ctx, sqe_addr);
2817 done:
2818 if (!ret)
2819 ret = success_ret;
2820 io_cqring_fill_event(req, ret);
2821 io_commit_cqring(ctx);
2822 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2823 io_cqring_ev_posted(ctx);
2825 if (ret < 0 && (req->flags & REQ_F_LINK))
2826 req->flags |= REQ_F_FAIL_LINK;
2827 io_put_req_find_next(req, nxt);
2830 static int io_async_cancel(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2831 struct io_kiocb **nxt)
2833 struct io_ring_ctx *ctx = req->ctx;
2835 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2836 return -EINVAL;
2837 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
2838 sqe->cancel_flags)
2839 return -EINVAL;
2841 io_async_find_and_cancel(ctx, req, READ_ONCE(sqe->addr), nxt, 0);
2842 return 0;
2845 static int io_req_defer_prep(struct io_kiocb *req, struct io_async_ctx *io)
2847 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2848 struct iov_iter iter;
2849 ssize_t ret;
2851 memcpy(&io->sqe, req->sqe, sizeof(io->sqe));
2852 req->sqe = &io->sqe;
2854 switch (io->sqe.opcode) {
2855 case IORING_OP_READV:
2856 case IORING_OP_READ_FIXED:
2857 ret = io_read_prep(req, &iovec, &iter, true);
2858 break;
2859 case IORING_OP_WRITEV:
2860 case IORING_OP_WRITE_FIXED:
2861 ret = io_write_prep(req, &iovec, &iter, true);
2862 break;
2863 case IORING_OP_SENDMSG:
2864 ret = io_sendmsg_prep(req, io);
2865 break;
2866 case IORING_OP_RECVMSG:
2867 ret = io_recvmsg_prep(req, io);
2868 break;
2869 case IORING_OP_CONNECT:
2870 ret = io_connect_prep(req, io);
2871 break;
2872 case IORING_OP_TIMEOUT:
2873 return io_timeout_prep(req, io, false);
2874 case IORING_OP_LINK_TIMEOUT:
2875 return io_timeout_prep(req, io, true);
2876 default:
2877 req->io = io;
2878 return 0;
2881 if (ret < 0)
2882 return ret;
2884 req->io = io;
2885 io_req_map_io(req, ret, iovec, inline_vecs, &iter);
2886 return 0;
2889 static int io_req_defer(struct io_kiocb *req)
2891 struct io_ring_ctx *ctx = req->ctx;
2892 struct io_async_ctx *io;
2893 int ret;
2895 /* Still need defer if there is pending req in defer list. */
2896 if (!req_need_defer(req) && list_empty(&ctx->defer_list))
2897 return 0;
2899 io = kmalloc(sizeof(*io), GFP_KERNEL);
2900 if (!io)
2901 return -EAGAIN;
2903 ret = io_req_defer_prep(req, io);
2904 if (ret < 0) {
2905 kfree(io);
2906 return ret;
2909 spin_lock_irq(&ctx->completion_lock);
2910 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
2911 spin_unlock_irq(&ctx->completion_lock);
2912 return 0;
2915 trace_io_uring_defer(ctx, req, req->user_data);
2916 list_add_tail(&req->list, &ctx->defer_list);
2917 spin_unlock_irq(&ctx->completion_lock);
2918 return -EIOCBQUEUED;
2921 __attribute__((nonnull))
2922 static int io_issue_sqe(struct io_kiocb *req, struct io_kiocb **nxt,
2923 bool force_nonblock)
2925 int ret, opcode;
2926 struct io_ring_ctx *ctx = req->ctx;
2928 opcode = READ_ONCE(req->sqe->opcode);
2929 switch (opcode) {
2930 case IORING_OP_NOP:
2931 ret = io_nop(req);
2932 break;
2933 case IORING_OP_READV:
2934 if (unlikely(req->sqe->buf_index))
2935 return -EINVAL;
2936 ret = io_read(req, nxt, force_nonblock);
2937 break;
2938 case IORING_OP_WRITEV:
2939 if (unlikely(req->sqe->buf_index))
2940 return -EINVAL;
2941 ret = io_write(req, nxt, force_nonblock);
2942 break;
2943 case IORING_OP_READ_FIXED:
2944 ret = io_read(req, nxt, force_nonblock);
2945 break;
2946 case IORING_OP_WRITE_FIXED:
2947 ret = io_write(req, nxt, force_nonblock);
2948 break;
2949 case IORING_OP_FSYNC:
2950 ret = io_fsync(req, req->sqe, nxt, force_nonblock);
2951 break;
2952 case IORING_OP_POLL_ADD:
2953 ret = io_poll_add(req, req->sqe, nxt);
2954 break;
2955 case IORING_OP_POLL_REMOVE:
2956 ret = io_poll_remove(req, req->sqe);
2957 break;
2958 case IORING_OP_SYNC_FILE_RANGE:
2959 ret = io_sync_file_range(req, req->sqe, nxt, force_nonblock);
2960 break;
2961 case IORING_OP_SENDMSG:
2962 ret = io_sendmsg(req, req->sqe, nxt, force_nonblock);
2963 break;
2964 case IORING_OP_RECVMSG:
2965 ret = io_recvmsg(req, req->sqe, nxt, force_nonblock);
2966 break;
2967 case IORING_OP_TIMEOUT:
2968 ret = io_timeout(req, req->sqe);
2969 break;
2970 case IORING_OP_TIMEOUT_REMOVE:
2971 ret = io_timeout_remove(req, req->sqe);
2972 break;
2973 case IORING_OP_ACCEPT:
2974 ret = io_accept(req, req->sqe, nxt, force_nonblock);
2975 break;
2976 case IORING_OP_CONNECT:
2977 ret = io_connect(req, req->sqe, nxt, force_nonblock);
2978 break;
2979 case IORING_OP_ASYNC_CANCEL:
2980 ret = io_async_cancel(req, req->sqe, nxt);
2981 break;
2982 default:
2983 ret = -EINVAL;
2984 break;
2987 if (ret)
2988 return ret;
2990 if (ctx->flags & IORING_SETUP_IOPOLL) {
2991 if (req->result == -EAGAIN)
2992 return -EAGAIN;
2994 /* workqueue context doesn't hold uring_lock, grab it now */
2995 if (req->in_async)
2996 mutex_lock(&ctx->uring_lock);
2997 io_iopoll_req_issued(req);
2998 if (req->in_async)
2999 mutex_unlock(&ctx->uring_lock);
3002 return 0;
3005 static void io_link_work_cb(struct io_wq_work **workptr)
3007 struct io_wq_work *work = *workptr;
3008 struct io_kiocb *link = work->data;
3010 io_queue_linked_timeout(link);
3011 work->func = io_wq_submit_work;
3014 static void io_wq_submit_work(struct io_wq_work **workptr)
3016 struct io_wq_work *work = *workptr;
3017 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3018 struct io_kiocb *nxt = NULL;
3019 int ret = 0;
3021 /* Ensure we clear previously set non-block flag */
3022 req->rw.ki_flags &= ~IOCB_NOWAIT;
3024 if (work->flags & IO_WQ_WORK_CANCEL)
3025 ret = -ECANCELED;
3027 if (!ret) {
3028 req->has_user = (work->flags & IO_WQ_WORK_HAS_MM) != 0;
3029 req->in_async = true;
3030 do {
3031 ret = io_issue_sqe(req, &nxt, false);
3033 * We can get EAGAIN for polled IO even though we're
3034 * forcing a sync submission from here, since we can't
3035 * wait for request slots on the block side.
3037 if (ret != -EAGAIN)
3038 break;
3039 cond_resched();
3040 } while (1);
3043 /* drop submission reference */
3044 io_put_req(req);
3046 if (ret) {
3047 if (req->flags & REQ_F_LINK)
3048 req->flags |= REQ_F_FAIL_LINK;
3049 io_cqring_add_event(req, ret);
3050 io_put_req(req);
3053 /* if a dependent link is ready, pass it back */
3054 if (!ret && nxt) {
3055 struct io_kiocb *link;
3057 io_prep_async_work(nxt, &link);
3058 *workptr = &nxt->work;
3059 if (link) {
3060 nxt->work.flags |= IO_WQ_WORK_CB;
3061 nxt->work.func = io_link_work_cb;
3062 nxt->work.data = link;
3067 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
3069 int op = READ_ONCE(sqe->opcode);
3071 switch (op) {
3072 case IORING_OP_NOP:
3073 case IORING_OP_POLL_REMOVE:
3074 case IORING_OP_TIMEOUT:
3075 case IORING_OP_TIMEOUT_REMOVE:
3076 case IORING_OP_ASYNC_CANCEL:
3077 case IORING_OP_LINK_TIMEOUT:
3078 return false;
3079 default:
3080 return true;
3084 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
3085 int index)
3087 struct fixed_file_table *table;
3089 table = &ctx->file_table[index >> IORING_FILE_TABLE_SHIFT];
3090 return table->files[index & IORING_FILE_TABLE_MASK];
3093 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req)
3095 struct io_ring_ctx *ctx = req->ctx;
3096 unsigned flags;
3097 int fd;
3099 flags = READ_ONCE(req->sqe->flags);
3100 fd = READ_ONCE(req->sqe->fd);
3102 if (flags & IOSQE_IO_DRAIN)
3103 req->flags |= REQ_F_IO_DRAIN;
3105 if (!io_op_needs_file(req->sqe))
3106 return 0;
3108 if (flags & IOSQE_FIXED_FILE) {
3109 if (unlikely(!ctx->file_table ||
3110 (unsigned) fd >= ctx->nr_user_files))
3111 return -EBADF;
3112 fd = array_index_nospec(fd, ctx->nr_user_files);
3113 req->file = io_file_from_index(ctx, fd);
3114 if (!req->file)
3115 return -EBADF;
3116 req->flags |= REQ_F_FIXED_FILE;
3117 } else {
3118 if (req->needs_fixed_file)
3119 return -EBADF;
3120 trace_io_uring_file_get(ctx, fd);
3121 req->file = io_file_get(state, fd);
3122 if (unlikely(!req->file))
3123 return -EBADF;
3126 return 0;
3129 static int io_grab_files(struct io_kiocb *req)
3131 int ret = -EBADF;
3132 struct io_ring_ctx *ctx = req->ctx;
3134 rcu_read_lock();
3135 spin_lock_irq(&ctx->inflight_lock);
3137 * We use the f_ops->flush() handler to ensure that we can flush
3138 * out work accessing these files if the fd is closed. Check if
3139 * the fd has changed since we started down this path, and disallow
3140 * this operation if it has.
3142 if (fcheck(req->ring_fd) == req->ring_file) {
3143 list_add(&req->inflight_entry, &ctx->inflight_list);
3144 req->flags |= REQ_F_INFLIGHT;
3145 req->work.files = current->files;
3146 ret = 0;
3148 spin_unlock_irq(&ctx->inflight_lock);
3149 rcu_read_unlock();
3151 return ret;
3154 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
3156 struct io_timeout_data *data = container_of(timer,
3157 struct io_timeout_data, timer);
3158 struct io_kiocb *req = data->req;
3159 struct io_ring_ctx *ctx = req->ctx;
3160 struct io_kiocb *prev = NULL;
3161 unsigned long flags;
3163 spin_lock_irqsave(&ctx->completion_lock, flags);
3166 * We don't expect the list to be empty, that will only happen if we
3167 * race with the completion of the linked work.
3169 if (!list_empty(&req->link_list)) {
3170 prev = list_entry(req->link_list.prev, struct io_kiocb,
3171 link_list);
3172 if (refcount_inc_not_zero(&prev->refs)) {
3173 list_del_init(&req->link_list);
3174 prev->flags &= ~REQ_F_LINK_TIMEOUT;
3175 } else
3176 prev = NULL;
3179 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3181 if (prev) {
3182 if (prev->flags & REQ_F_LINK)
3183 prev->flags |= REQ_F_FAIL_LINK;
3184 io_async_find_and_cancel(ctx, req, prev->user_data, NULL,
3185 -ETIME);
3186 io_put_req(prev);
3187 } else {
3188 io_cqring_add_event(req, -ETIME);
3189 io_put_req(req);
3191 return HRTIMER_NORESTART;
3194 static void io_queue_linked_timeout(struct io_kiocb *req)
3196 struct io_ring_ctx *ctx = req->ctx;
3199 * If the list is now empty, then our linked request finished before
3200 * we got a chance to setup the timer
3202 spin_lock_irq(&ctx->completion_lock);
3203 if (!list_empty(&req->link_list)) {
3204 struct io_timeout_data *data = &req->io->timeout;
3206 data->timer.function = io_link_timeout_fn;
3207 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
3208 data->mode);
3210 spin_unlock_irq(&ctx->completion_lock);
3212 /* drop submission reference */
3213 io_put_req(req);
3216 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
3218 struct io_kiocb *nxt;
3220 if (!(req->flags & REQ_F_LINK))
3221 return NULL;
3223 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
3224 link_list);
3225 if (!nxt || nxt->sqe->opcode != IORING_OP_LINK_TIMEOUT)
3226 return NULL;
3228 req->flags |= REQ_F_LINK_TIMEOUT;
3229 return nxt;
3232 static void __io_queue_sqe(struct io_kiocb *req)
3234 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
3235 struct io_kiocb *nxt = NULL;
3236 int ret;
3238 ret = io_issue_sqe(req, &nxt, true);
3239 if (nxt)
3240 io_queue_async_work(nxt);
3243 * We async punt it if the file wasn't marked NOWAIT, or if the file
3244 * doesn't support non-blocking read/write attempts
3246 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
3247 (req->flags & REQ_F_MUST_PUNT))) {
3248 if (req->work.flags & IO_WQ_WORK_NEEDS_FILES) {
3249 ret = io_grab_files(req);
3250 if (ret)
3251 goto err;
3255 * Queued up for async execution, worker will release
3256 * submit reference when the iocb is actually submitted.
3258 io_queue_async_work(req);
3259 return;
3262 err:
3263 /* drop submission reference */
3264 io_put_req(req);
3266 if (linked_timeout) {
3267 if (!ret)
3268 io_queue_linked_timeout(linked_timeout);
3269 else
3270 io_put_req(linked_timeout);
3273 /* and drop final reference, if we failed */
3274 if (ret) {
3275 io_cqring_add_event(req, ret);
3276 if (req->flags & REQ_F_LINK)
3277 req->flags |= REQ_F_FAIL_LINK;
3278 io_put_req(req);
3282 static void io_queue_sqe(struct io_kiocb *req)
3284 int ret;
3286 if (unlikely(req->ctx->drain_next)) {
3287 req->flags |= REQ_F_IO_DRAIN;
3288 req->ctx->drain_next = false;
3290 req->ctx->drain_next = (req->flags & REQ_F_DRAIN_LINK);
3292 ret = io_req_defer(req);
3293 if (ret) {
3294 if (ret != -EIOCBQUEUED) {
3295 io_cqring_add_event(req, ret);
3296 if (req->flags & REQ_F_LINK)
3297 req->flags |= REQ_F_FAIL_LINK;
3298 io_double_put_req(req);
3300 } else
3301 __io_queue_sqe(req);
3304 static inline void io_queue_link_head(struct io_kiocb *req)
3306 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
3307 io_cqring_add_event(req, -ECANCELED);
3308 io_double_put_req(req);
3309 } else
3310 io_queue_sqe(req);
3314 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
3316 static bool io_submit_sqe(struct io_kiocb *req, struct io_submit_state *state,
3317 struct io_kiocb **link)
3319 struct io_ring_ctx *ctx = req->ctx;
3320 int ret;
3322 req->user_data = req->sqe->user_data;
3324 /* enforce forwards compatibility on users */
3325 if (unlikely(req->sqe->flags & ~SQE_VALID_FLAGS)) {
3326 ret = -EINVAL;
3327 goto err_req;
3330 ret = io_req_set_file(state, req);
3331 if (unlikely(ret)) {
3332 err_req:
3333 io_cqring_add_event(req, ret);
3334 io_double_put_req(req);
3335 return false;
3339 * If we already have a head request, queue this one for async
3340 * submittal once the head completes. If we don't have a head but
3341 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
3342 * submitted sync once the chain is complete. If none of those
3343 * conditions are true (normal request), then just queue it.
3345 if (*link) {
3346 struct io_kiocb *prev = *link;
3347 struct io_async_ctx *io;
3349 if (req->sqe->flags & IOSQE_IO_DRAIN)
3350 (*link)->flags |= REQ_F_DRAIN_LINK | REQ_F_IO_DRAIN;
3352 io = kmalloc(sizeof(*io), GFP_KERNEL);
3353 if (!io) {
3354 ret = -EAGAIN;
3355 goto err_req;
3358 ret = io_req_defer_prep(req, io);
3359 if (ret) {
3360 kfree(io);
3361 prev->flags |= REQ_F_FAIL_LINK;
3362 goto err_req;
3364 trace_io_uring_link(ctx, req, prev);
3365 list_add_tail(&req->link_list, &prev->link_list);
3366 } else if (req->sqe->flags & IOSQE_IO_LINK) {
3367 req->flags |= REQ_F_LINK;
3369 INIT_LIST_HEAD(&req->link_list);
3370 *link = req;
3371 } else {
3372 io_queue_sqe(req);
3375 return true;
3379 * Batched submission is done, ensure local IO is flushed out.
3381 static void io_submit_state_end(struct io_submit_state *state)
3383 blk_finish_plug(&state->plug);
3384 io_file_put(state);
3385 if (state->free_reqs)
3386 kmem_cache_free_bulk(req_cachep, state->free_reqs,
3387 &state->reqs[state->cur_req]);
3391 * Start submission side cache.
3393 static void io_submit_state_start(struct io_submit_state *state,
3394 unsigned int max_ios)
3396 blk_start_plug(&state->plug);
3397 state->free_reqs = 0;
3398 state->file = NULL;
3399 state->ios_left = max_ios;
3402 static void io_commit_sqring(struct io_ring_ctx *ctx)
3404 struct io_rings *rings = ctx->rings;
3406 if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
3408 * Ensure any loads from the SQEs are done at this point,
3409 * since once we write the new head, the application could
3410 * write new data to them.
3412 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
3417 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
3418 * that is mapped by userspace. This means that care needs to be taken to
3419 * ensure that reads are stable, as we cannot rely on userspace always
3420 * being a good citizen. If members of the sqe are validated and then later
3421 * used, it's important that those reads are done through READ_ONCE() to
3422 * prevent a re-load down the line.
3424 static bool io_get_sqring(struct io_ring_ctx *ctx, struct io_kiocb *req)
3426 struct io_rings *rings = ctx->rings;
3427 u32 *sq_array = ctx->sq_array;
3428 unsigned head;
3431 * The cached sq head (or cq tail) serves two purposes:
3433 * 1) allows us to batch the cost of updating the user visible
3434 * head updates.
3435 * 2) allows the kernel side to track the head on its own, even
3436 * though the application is the one updating it.
3438 head = ctx->cached_sq_head;
3439 /* make sure SQ entry isn't read before tail */
3440 if (unlikely(head == smp_load_acquire(&rings->sq.tail)))
3441 return false;
3443 head = READ_ONCE(sq_array[head & ctx->sq_mask]);
3444 if (likely(head < ctx->sq_entries)) {
3446 * All io need record the previous position, if LINK vs DARIN,
3447 * it can be used to mark the position of the first IO in the
3448 * link list.
3450 req->sequence = ctx->cached_sq_head;
3451 req->sqe = &ctx->sq_sqes[head];
3452 ctx->cached_sq_head++;
3453 return true;
3456 /* drop invalid entries */
3457 ctx->cached_sq_head++;
3458 ctx->cached_sq_dropped++;
3459 WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
3460 return false;
3463 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
3464 struct file *ring_file, int ring_fd,
3465 struct mm_struct **mm, bool async)
3467 struct io_submit_state state, *statep = NULL;
3468 struct io_kiocb *link = NULL;
3469 int i, submitted = 0;
3470 bool mm_fault = false;
3472 /* if we have a backlog and couldn't flush it all, return BUSY */
3473 if (!list_empty(&ctx->cq_overflow_list) &&
3474 !io_cqring_overflow_flush(ctx, false))
3475 return -EBUSY;
3477 if (nr > IO_PLUG_THRESHOLD) {
3478 io_submit_state_start(&state, nr);
3479 statep = &state;
3482 for (i = 0; i < nr; i++) {
3483 struct io_kiocb *req;
3484 unsigned int sqe_flags;
3486 req = io_get_req(ctx, statep);
3487 if (unlikely(!req)) {
3488 if (!submitted)
3489 submitted = -EAGAIN;
3490 break;
3492 if (!io_get_sqring(ctx, req)) {
3493 __io_free_req(req);
3494 break;
3497 if (io_sqe_needs_user(req->sqe) && !*mm) {
3498 mm_fault = mm_fault || !mmget_not_zero(ctx->sqo_mm);
3499 if (!mm_fault) {
3500 use_mm(ctx->sqo_mm);
3501 *mm = ctx->sqo_mm;
3505 submitted++;
3506 sqe_flags = req->sqe->flags;
3508 req->ring_file = ring_file;
3509 req->ring_fd = ring_fd;
3510 req->has_user = *mm != NULL;
3511 req->in_async = async;
3512 req->needs_fixed_file = async;
3513 trace_io_uring_submit_sqe(ctx, req->sqe->user_data,
3514 true, async);
3515 if (!io_submit_sqe(req, statep, &link))
3516 break;
3518 * If previous wasn't linked and we have a linked command,
3519 * that's the end of the chain. Submit the previous link.
3521 if (!(sqe_flags & IOSQE_IO_LINK) && link) {
3522 io_queue_link_head(link);
3523 link = NULL;
3527 if (link)
3528 io_queue_link_head(link);
3529 if (statep)
3530 io_submit_state_end(&state);
3532 /* Commit SQ ring head once we've consumed and submitted all SQEs */
3533 io_commit_sqring(ctx);
3535 return submitted;
3538 static int io_sq_thread(void *data)
3540 struct io_ring_ctx *ctx = data;
3541 struct mm_struct *cur_mm = NULL;
3542 const struct cred *old_cred;
3543 mm_segment_t old_fs;
3544 DEFINE_WAIT(wait);
3545 unsigned inflight;
3546 unsigned long timeout;
3547 int ret;
3549 complete(&ctx->completions[1]);
3551 old_fs = get_fs();
3552 set_fs(USER_DS);
3553 old_cred = override_creds(ctx->creds);
3555 ret = timeout = inflight = 0;
3556 while (!kthread_should_park()) {
3557 unsigned int to_submit;
3559 if (inflight) {
3560 unsigned nr_events = 0;
3562 if (ctx->flags & IORING_SETUP_IOPOLL) {
3564 * inflight is the count of the maximum possible
3565 * entries we submitted, but it can be smaller
3566 * if we dropped some of them. If we don't have
3567 * poll entries available, then we know that we
3568 * have nothing left to poll for. Reset the
3569 * inflight count to zero in that case.
3571 mutex_lock(&ctx->uring_lock);
3572 if (!list_empty(&ctx->poll_list))
3573 __io_iopoll_check(ctx, &nr_events, 0);
3574 else
3575 inflight = 0;
3576 mutex_unlock(&ctx->uring_lock);
3577 } else {
3579 * Normal IO, just pretend everything completed.
3580 * We don't have to poll completions for that.
3582 nr_events = inflight;
3585 inflight -= nr_events;
3586 if (!inflight)
3587 timeout = jiffies + ctx->sq_thread_idle;
3590 to_submit = io_sqring_entries(ctx);
3593 * If submit got -EBUSY, flag us as needing the application
3594 * to enter the kernel to reap and flush events.
3596 if (!to_submit || ret == -EBUSY) {
3598 * We're polling. If we're within the defined idle
3599 * period, then let us spin without work before going
3600 * to sleep. The exception is if we got EBUSY doing
3601 * more IO, we should wait for the application to
3602 * reap events and wake us up.
3604 if (inflight ||
3605 (!time_after(jiffies, timeout) && ret != -EBUSY)) {
3606 cond_resched();
3607 continue;
3611 * Drop cur_mm before scheduling, we can't hold it for
3612 * long periods (or over schedule()). Do this before
3613 * adding ourselves to the waitqueue, as the unuse/drop
3614 * may sleep.
3616 if (cur_mm) {
3617 unuse_mm(cur_mm);
3618 mmput(cur_mm);
3619 cur_mm = NULL;
3622 prepare_to_wait(&ctx->sqo_wait, &wait,
3623 TASK_INTERRUPTIBLE);
3625 /* Tell userspace we may need a wakeup call */
3626 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
3627 /* make sure to read SQ tail after writing flags */
3628 smp_mb();
3630 to_submit = io_sqring_entries(ctx);
3631 if (!to_submit || ret == -EBUSY) {
3632 if (kthread_should_park()) {
3633 finish_wait(&ctx->sqo_wait, &wait);
3634 break;
3636 if (signal_pending(current))
3637 flush_signals(current);
3638 schedule();
3639 finish_wait(&ctx->sqo_wait, &wait);
3641 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
3642 continue;
3644 finish_wait(&ctx->sqo_wait, &wait);
3646 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
3649 to_submit = min(to_submit, ctx->sq_entries);
3650 ret = io_submit_sqes(ctx, to_submit, NULL, -1, &cur_mm, true);
3651 if (ret > 0)
3652 inflight += ret;
3655 set_fs(old_fs);
3656 if (cur_mm) {
3657 unuse_mm(cur_mm);
3658 mmput(cur_mm);
3660 revert_creds(old_cred);
3662 kthread_parkme();
3664 return 0;
3667 struct io_wait_queue {
3668 struct wait_queue_entry wq;
3669 struct io_ring_ctx *ctx;
3670 unsigned to_wait;
3671 unsigned nr_timeouts;
3674 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
3676 struct io_ring_ctx *ctx = iowq->ctx;
3679 * Wake up if we have enough events, or if a timeout occured since we
3680 * started waiting. For timeouts, we always want to return to userspace,
3681 * regardless of event count.
3683 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
3684 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
3687 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
3688 int wake_flags, void *key)
3690 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
3691 wq);
3693 /* use noflush == true, as we can't safely rely on locking context */
3694 if (!io_should_wake(iowq, true))
3695 return -1;
3697 return autoremove_wake_function(curr, mode, wake_flags, key);
3701 * Wait until events become available, if we don't already have some. The
3702 * application must reap them itself, as they reside on the shared cq ring.
3704 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
3705 const sigset_t __user *sig, size_t sigsz)
3707 struct io_wait_queue iowq = {
3708 .wq = {
3709 .private = current,
3710 .func = io_wake_function,
3711 .entry = LIST_HEAD_INIT(iowq.wq.entry),
3713 .ctx = ctx,
3714 .to_wait = min_events,
3716 struct io_rings *rings = ctx->rings;
3717 int ret = 0;
3719 if (io_cqring_events(ctx, false) >= min_events)
3720 return 0;
3722 if (sig) {
3723 #ifdef CONFIG_COMPAT
3724 if (in_compat_syscall())
3725 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
3726 sigsz);
3727 else
3728 #endif
3729 ret = set_user_sigmask(sig, sigsz);
3731 if (ret)
3732 return ret;
3735 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
3736 trace_io_uring_cqring_wait(ctx, min_events);
3737 do {
3738 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
3739 TASK_INTERRUPTIBLE);
3740 if (io_should_wake(&iowq, false))
3741 break;
3742 schedule();
3743 if (signal_pending(current)) {
3744 ret = -EINTR;
3745 break;
3747 } while (1);
3748 finish_wait(&ctx->wait, &iowq.wq);
3750 restore_saved_sigmask_unless(ret == -EINTR);
3752 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
3755 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
3757 #if defined(CONFIG_UNIX)
3758 if (ctx->ring_sock) {
3759 struct sock *sock = ctx->ring_sock->sk;
3760 struct sk_buff *skb;
3762 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
3763 kfree_skb(skb);
3765 #else
3766 int i;
3768 for (i = 0; i < ctx->nr_user_files; i++) {
3769 struct file *file;
3771 file = io_file_from_index(ctx, i);
3772 if (file)
3773 fput(file);
3775 #endif
3778 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
3780 unsigned nr_tables, i;
3782 if (!ctx->file_table)
3783 return -ENXIO;
3785 __io_sqe_files_unregister(ctx);
3786 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
3787 for (i = 0; i < nr_tables; i++)
3788 kfree(ctx->file_table[i].files);
3789 kfree(ctx->file_table);
3790 ctx->file_table = NULL;
3791 ctx->nr_user_files = 0;
3792 return 0;
3795 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
3797 if (ctx->sqo_thread) {
3798 wait_for_completion(&ctx->completions[1]);
3800 * The park is a bit of a work-around, without it we get
3801 * warning spews on shutdown with SQPOLL set and affinity
3802 * set to a single CPU.
3804 kthread_park(ctx->sqo_thread);
3805 kthread_stop(ctx->sqo_thread);
3806 ctx->sqo_thread = NULL;
3810 static void io_finish_async(struct io_ring_ctx *ctx)
3812 io_sq_thread_stop(ctx);
3814 if (ctx->io_wq) {
3815 io_wq_destroy(ctx->io_wq);
3816 ctx->io_wq = NULL;
3820 #if defined(CONFIG_UNIX)
3821 static void io_destruct_skb(struct sk_buff *skb)
3823 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
3825 if (ctx->io_wq)
3826 io_wq_flush(ctx->io_wq);
3828 unix_destruct_scm(skb);
3832 * Ensure the UNIX gc is aware of our file set, so we are certain that
3833 * the io_uring can be safely unregistered on process exit, even if we have
3834 * loops in the file referencing.
3836 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3838 struct sock *sk = ctx->ring_sock->sk;
3839 struct scm_fp_list *fpl;
3840 struct sk_buff *skb;
3841 int i, nr_files;
3843 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3844 unsigned long inflight = ctx->user->unix_inflight + nr;
3846 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3847 return -EMFILE;
3850 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3851 if (!fpl)
3852 return -ENOMEM;
3854 skb = alloc_skb(0, GFP_KERNEL);
3855 if (!skb) {
3856 kfree(fpl);
3857 return -ENOMEM;
3860 skb->sk = sk;
3862 nr_files = 0;
3863 fpl->user = get_uid(ctx->user);
3864 for (i = 0; i < nr; i++) {
3865 struct file *file = io_file_from_index(ctx, i + offset);
3867 if (!file)
3868 continue;
3869 fpl->fp[nr_files] = get_file(file);
3870 unix_inflight(fpl->user, fpl->fp[nr_files]);
3871 nr_files++;
3874 if (nr_files) {
3875 fpl->max = SCM_MAX_FD;
3876 fpl->count = nr_files;
3877 UNIXCB(skb).fp = fpl;
3878 skb->destructor = io_destruct_skb;
3879 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3880 skb_queue_head(&sk->sk_receive_queue, skb);
3882 for (i = 0; i < nr_files; i++)
3883 fput(fpl->fp[i]);
3884 } else {
3885 kfree_skb(skb);
3886 kfree(fpl);
3889 return 0;
3893 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3894 * causes regular reference counting to break down. We rely on the UNIX
3895 * garbage collection to take care of this problem for us.
3897 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3899 unsigned left, total;
3900 int ret = 0;
3902 total = 0;
3903 left = ctx->nr_user_files;
3904 while (left) {
3905 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3907 ret = __io_sqe_files_scm(ctx, this_files, total);
3908 if (ret)
3909 break;
3910 left -= this_files;
3911 total += this_files;
3914 if (!ret)
3915 return 0;
3917 while (total < ctx->nr_user_files) {
3918 struct file *file = io_file_from_index(ctx, total);
3920 if (file)
3921 fput(file);
3922 total++;
3925 return ret;
3927 #else
3928 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3930 return 0;
3932 #endif
3934 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
3935 unsigned nr_files)
3937 int i;
3939 for (i = 0; i < nr_tables; i++) {
3940 struct fixed_file_table *table = &ctx->file_table[i];
3941 unsigned this_files;
3943 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
3944 table->files = kcalloc(this_files, sizeof(struct file *),
3945 GFP_KERNEL);
3946 if (!table->files)
3947 break;
3948 nr_files -= this_files;
3951 if (i == nr_tables)
3952 return 0;
3954 for (i = 0; i < nr_tables; i++) {
3955 struct fixed_file_table *table = &ctx->file_table[i];
3956 kfree(table->files);
3958 return 1;
3961 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3962 unsigned nr_args)
3964 __s32 __user *fds = (__s32 __user *) arg;
3965 unsigned nr_tables;
3966 int fd, ret = 0;
3967 unsigned i;
3969 if (ctx->file_table)
3970 return -EBUSY;
3971 if (!nr_args)
3972 return -EINVAL;
3973 if (nr_args > IORING_MAX_FIXED_FILES)
3974 return -EMFILE;
3976 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
3977 ctx->file_table = kcalloc(nr_tables, sizeof(struct fixed_file_table),
3978 GFP_KERNEL);
3979 if (!ctx->file_table)
3980 return -ENOMEM;
3982 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
3983 kfree(ctx->file_table);
3984 ctx->file_table = NULL;
3985 return -ENOMEM;
3988 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
3989 struct fixed_file_table *table;
3990 unsigned index;
3992 ret = -EFAULT;
3993 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3994 break;
3995 /* allow sparse sets */
3996 if (fd == -1) {
3997 ret = 0;
3998 continue;
4001 table = &ctx->file_table[i >> IORING_FILE_TABLE_SHIFT];
4002 index = i & IORING_FILE_TABLE_MASK;
4003 table->files[index] = fget(fd);
4005 ret = -EBADF;
4006 if (!table->files[index])
4007 break;
4009 * Don't allow io_uring instances to be registered. If UNIX
4010 * isn't enabled, then this causes a reference cycle and this
4011 * instance can never get freed. If UNIX is enabled we'll
4012 * handle it just fine, but there's still no point in allowing
4013 * a ring fd as it doesn't support regular read/write anyway.
4015 if (table->files[index]->f_op == &io_uring_fops) {
4016 fput(table->files[index]);
4017 break;
4019 ret = 0;
4022 if (ret) {
4023 for (i = 0; i < ctx->nr_user_files; i++) {
4024 struct file *file;
4026 file = io_file_from_index(ctx, i);
4027 if (file)
4028 fput(file);
4030 for (i = 0; i < nr_tables; i++)
4031 kfree(ctx->file_table[i].files);
4033 kfree(ctx->file_table);
4034 ctx->file_table = NULL;
4035 ctx->nr_user_files = 0;
4036 return ret;
4039 ret = io_sqe_files_scm(ctx);
4040 if (ret)
4041 io_sqe_files_unregister(ctx);
4043 return ret;
4046 static void io_sqe_file_unregister(struct io_ring_ctx *ctx, int index)
4048 #if defined(CONFIG_UNIX)
4049 struct file *file = io_file_from_index(ctx, index);
4050 struct sock *sock = ctx->ring_sock->sk;
4051 struct sk_buff_head list, *head = &sock->sk_receive_queue;
4052 struct sk_buff *skb;
4053 int i;
4055 __skb_queue_head_init(&list);
4058 * Find the skb that holds this file in its SCM_RIGHTS. When found,
4059 * remove this entry and rearrange the file array.
4061 skb = skb_dequeue(head);
4062 while (skb) {
4063 struct scm_fp_list *fp;
4065 fp = UNIXCB(skb).fp;
4066 for (i = 0; i < fp->count; i++) {
4067 int left;
4069 if (fp->fp[i] != file)
4070 continue;
4072 unix_notinflight(fp->user, fp->fp[i]);
4073 left = fp->count - 1 - i;
4074 if (left) {
4075 memmove(&fp->fp[i], &fp->fp[i + 1],
4076 left * sizeof(struct file *));
4078 fp->count--;
4079 if (!fp->count) {
4080 kfree_skb(skb);
4081 skb = NULL;
4082 } else {
4083 __skb_queue_tail(&list, skb);
4085 fput(file);
4086 file = NULL;
4087 break;
4090 if (!file)
4091 break;
4093 __skb_queue_tail(&list, skb);
4095 skb = skb_dequeue(head);
4098 if (skb_peek(&list)) {
4099 spin_lock_irq(&head->lock);
4100 while ((skb = __skb_dequeue(&list)) != NULL)
4101 __skb_queue_tail(head, skb);
4102 spin_unlock_irq(&head->lock);
4104 #else
4105 fput(io_file_from_index(ctx, index));
4106 #endif
4109 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
4110 int index)
4112 #if defined(CONFIG_UNIX)
4113 struct sock *sock = ctx->ring_sock->sk;
4114 struct sk_buff_head *head = &sock->sk_receive_queue;
4115 struct sk_buff *skb;
4118 * See if we can merge this file into an existing skb SCM_RIGHTS
4119 * file set. If there's no room, fall back to allocating a new skb
4120 * and filling it in.
4122 spin_lock_irq(&head->lock);
4123 skb = skb_peek(head);
4124 if (skb) {
4125 struct scm_fp_list *fpl = UNIXCB(skb).fp;
4127 if (fpl->count < SCM_MAX_FD) {
4128 __skb_unlink(skb, head);
4129 spin_unlock_irq(&head->lock);
4130 fpl->fp[fpl->count] = get_file(file);
4131 unix_inflight(fpl->user, fpl->fp[fpl->count]);
4132 fpl->count++;
4133 spin_lock_irq(&head->lock);
4134 __skb_queue_head(head, skb);
4135 } else {
4136 skb = NULL;
4139 spin_unlock_irq(&head->lock);
4141 if (skb) {
4142 fput(file);
4143 return 0;
4146 return __io_sqe_files_scm(ctx, 1, index);
4147 #else
4148 return 0;
4149 #endif
4152 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
4153 unsigned nr_args)
4155 struct io_uring_files_update up;
4156 __s32 __user *fds;
4157 int fd, i, err;
4158 __u32 done;
4160 if (!ctx->file_table)
4161 return -ENXIO;
4162 if (!nr_args)
4163 return -EINVAL;
4164 if (copy_from_user(&up, arg, sizeof(up)))
4165 return -EFAULT;
4166 if (check_add_overflow(up.offset, nr_args, &done))
4167 return -EOVERFLOW;
4168 if (done > ctx->nr_user_files)
4169 return -EINVAL;
4171 done = 0;
4172 fds = (__s32 __user *) up.fds;
4173 while (nr_args) {
4174 struct fixed_file_table *table;
4175 unsigned index;
4177 err = 0;
4178 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
4179 err = -EFAULT;
4180 break;
4182 i = array_index_nospec(up.offset, ctx->nr_user_files);
4183 table = &ctx->file_table[i >> IORING_FILE_TABLE_SHIFT];
4184 index = i & IORING_FILE_TABLE_MASK;
4185 if (table->files[index]) {
4186 io_sqe_file_unregister(ctx, i);
4187 table->files[index] = NULL;
4189 if (fd != -1) {
4190 struct file *file;
4192 file = fget(fd);
4193 if (!file) {
4194 err = -EBADF;
4195 break;
4198 * Don't allow io_uring instances to be registered. If
4199 * UNIX isn't enabled, then this causes a reference
4200 * cycle and this instance can never get freed. If UNIX
4201 * is enabled we'll handle it just fine, but there's
4202 * still no point in allowing a ring fd as it doesn't
4203 * support regular read/write anyway.
4205 if (file->f_op == &io_uring_fops) {
4206 fput(file);
4207 err = -EBADF;
4208 break;
4210 table->files[index] = file;
4211 err = io_sqe_file_register(ctx, file, i);
4212 if (err)
4213 break;
4215 nr_args--;
4216 done++;
4217 up.offset++;
4220 return done ? done : err;
4223 static void io_put_work(struct io_wq_work *work)
4225 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4227 io_put_req(req);
4230 static void io_get_work(struct io_wq_work *work)
4232 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4234 refcount_inc(&req->refs);
4237 static int io_sq_offload_start(struct io_ring_ctx *ctx,
4238 struct io_uring_params *p)
4240 struct io_wq_data data;
4241 unsigned concurrency;
4242 int ret;
4244 init_waitqueue_head(&ctx->sqo_wait);
4245 mmgrab(current->mm);
4246 ctx->sqo_mm = current->mm;
4248 if (ctx->flags & IORING_SETUP_SQPOLL) {
4249 ret = -EPERM;
4250 if (!capable(CAP_SYS_ADMIN))
4251 goto err;
4253 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
4254 if (!ctx->sq_thread_idle)
4255 ctx->sq_thread_idle = HZ;
4257 if (p->flags & IORING_SETUP_SQ_AFF) {
4258 int cpu = p->sq_thread_cpu;
4260 ret = -EINVAL;
4261 if (cpu >= nr_cpu_ids)
4262 goto err;
4263 if (!cpu_online(cpu))
4264 goto err;
4266 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
4267 ctx, cpu,
4268 "io_uring-sq");
4269 } else {
4270 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
4271 "io_uring-sq");
4273 if (IS_ERR(ctx->sqo_thread)) {
4274 ret = PTR_ERR(ctx->sqo_thread);
4275 ctx->sqo_thread = NULL;
4276 goto err;
4278 wake_up_process(ctx->sqo_thread);
4279 } else if (p->flags & IORING_SETUP_SQ_AFF) {
4280 /* Can't have SQ_AFF without SQPOLL */
4281 ret = -EINVAL;
4282 goto err;
4285 data.mm = ctx->sqo_mm;
4286 data.user = ctx->user;
4287 data.creds = ctx->creds;
4288 data.get_work = io_get_work;
4289 data.put_work = io_put_work;
4291 /* Do QD, or 4 * CPUS, whatever is smallest */
4292 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
4293 ctx->io_wq = io_wq_create(concurrency, &data);
4294 if (IS_ERR(ctx->io_wq)) {
4295 ret = PTR_ERR(ctx->io_wq);
4296 ctx->io_wq = NULL;
4297 goto err;
4300 return 0;
4301 err:
4302 io_finish_async(ctx);
4303 mmdrop(ctx->sqo_mm);
4304 ctx->sqo_mm = NULL;
4305 return ret;
4308 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
4310 atomic_long_sub(nr_pages, &user->locked_vm);
4313 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
4315 unsigned long page_limit, cur_pages, new_pages;
4317 /* Don't allow more pages than we can safely lock */
4318 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
4320 do {
4321 cur_pages = atomic_long_read(&user->locked_vm);
4322 new_pages = cur_pages + nr_pages;
4323 if (new_pages > page_limit)
4324 return -ENOMEM;
4325 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
4326 new_pages) != cur_pages);
4328 return 0;
4331 static void io_mem_free(void *ptr)
4333 struct page *page;
4335 if (!ptr)
4336 return;
4338 page = virt_to_head_page(ptr);
4339 if (put_page_testzero(page))
4340 free_compound_page(page);
4343 static void *io_mem_alloc(size_t size)
4345 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
4346 __GFP_NORETRY;
4348 return (void *) __get_free_pages(gfp_flags, get_order(size));
4351 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
4352 size_t *sq_offset)
4354 struct io_rings *rings;
4355 size_t off, sq_array_size;
4357 off = struct_size(rings, cqes, cq_entries);
4358 if (off == SIZE_MAX)
4359 return SIZE_MAX;
4361 #ifdef CONFIG_SMP
4362 off = ALIGN(off, SMP_CACHE_BYTES);
4363 if (off == 0)
4364 return SIZE_MAX;
4365 #endif
4367 sq_array_size = array_size(sizeof(u32), sq_entries);
4368 if (sq_array_size == SIZE_MAX)
4369 return SIZE_MAX;
4371 if (check_add_overflow(off, sq_array_size, &off))
4372 return SIZE_MAX;
4374 if (sq_offset)
4375 *sq_offset = off;
4377 return off;
4380 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
4382 size_t pages;
4384 pages = (size_t)1 << get_order(
4385 rings_size(sq_entries, cq_entries, NULL));
4386 pages += (size_t)1 << get_order(
4387 array_size(sizeof(struct io_uring_sqe), sq_entries));
4389 return pages;
4392 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
4394 int i, j;
4396 if (!ctx->user_bufs)
4397 return -ENXIO;
4399 for (i = 0; i < ctx->nr_user_bufs; i++) {
4400 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
4402 for (j = 0; j < imu->nr_bvecs; j++)
4403 put_user_page(imu->bvec[j].bv_page);
4405 if (ctx->account_mem)
4406 io_unaccount_mem(ctx->user, imu->nr_bvecs);
4407 kvfree(imu->bvec);
4408 imu->nr_bvecs = 0;
4411 kfree(ctx->user_bufs);
4412 ctx->user_bufs = NULL;
4413 ctx->nr_user_bufs = 0;
4414 return 0;
4417 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
4418 void __user *arg, unsigned index)
4420 struct iovec __user *src;
4422 #ifdef CONFIG_COMPAT
4423 if (ctx->compat) {
4424 struct compat_iovec __user *ciovs;
4425 struct compat_iovec ciov;
4427 ciovs = (struct compat_iovec __user *) arg;
4428 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
4429 return -EFAULT;
4431 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
4432 dst->iov_len = ciov.iov_len;
4433 return 0;
4435 #endif
4436 src = (struct iovec __user *) arg;
4437 if (copy_from_user(dst, &src[index], sizeof(*dst)))
4438 return -EFAULT;
4439 return 0;
4442 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
4443 unsigned nr_args)
4445 struct vm_area_struct **vmas = NULL;
4446 struct page **pages = NULL;
4447 int i, j, got_pages = 0;
4448 int ret = -EINVAL;
4450 if (ctx->user_bufs)
4451 return -EBUSY;
4452 if (!nr_args || nr_args > UIO_MAXIOV)
4453 return -EINVAL;
4455 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
4456 GFP_KERNEL);
4457 if (!ctx->user_bufs)
4458 return -ENOMEM;
4460 for (i = 0; i < nr_args; i++) {
4461 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
4462 unsigned long off, start, end, ubuf;
4463 int pret, nr_pages;
4464 struct iovec iov;
4465 size_t size;
4467 ret = io_copy_iov(ctx, &iov, arg, i);
4468 if (ret)
4469 goto err;
4472 * Don't impose further limits on the size and buffer
4473 * constraints here, we'll -EINVAL later when IO is
4474 * submitted if they are wrong.
4476 ret = -EFAULT;
4477 if (!iov.iov_base || !iov.iov_len)
4478 goto err;
4480 /* arbitrary limit, but we need something */
4481 if (iov.iov_len > SZ_1G)
4482 goto err;
4484 ubuf = (unsigned long) iov.iov_base;
4485 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
4486 start = ubuf >> PAGE_SHIFT;
4487 nr_pages = end - start;
4489 if (ctx->account_mem) {
4490 ret = io_account_mem(ctx->user, nr_pages);
4491 if (ret)
4492 goto err;
4495 ret = 0;
4496 if (!pages || nr_pages > got_pages) {
4497 kfree(vmas);
4498 kfree(pages);
4499 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
4500 GFP_KERNEL);
4501 vmas = kvmalloc_array(nr_pages,
4502 sizeof(struct vm_area_struct *),
4503 GFP_KERNEL);
4504 if (!pages || !vmas) {
4505 ret = -ENOMEM;
4506 if (ctx->account_mem)
4507 io_unaccount_mem(ctx->user, nr_pages);
4508 goto err;
4510 got_pages = nr_pages;
4513 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
4514 GFP_KERNEL);
4515 ret = -ENOMEM;
4516 if (!imu->bvec) {
4517 if (ctx->account_mem)
4518 io_unaccount_mem(ctx->user, nr_pages);
4519 goto err;
4522 ret = 0;
4523 down_read(&current->mm->mmap_sem);
4524 pret = get_user_pages(ubuf, nr_pages,
4525 FOLL_WRITE | FOLL_LONGTERM,
4526 pages, vmas);
4527 if (pret == nr_pages) {
4528 /* don't support file backed memory */
4529 for (j = 0; j < nr_pages; j++) {
4530 struct vm_area_struct *vma = vmas[j];
4532 if (vma->vm_file &&
4533 !is_file_hugepages(vma->vm_file)) {
4534 ret = -EOPNOTSUPP;
4535 break;
4538 } else {
4539 ret = pret < 0 ? pret : -EFAULT;
4541 up_read(&current->mm->mmap_sem);
4542 if (ret) {
4544 * if we did partial map, or found file backed vmas,
4545 * release any pages we did get
4547 if (pret > 0)
4548 put_user_pages(pages, pret);
4549 if (ctx->account_mem)
4550 io_unaccount_mem(ctx->user, nr_pages);
4551 kvfree(imu->bvec);
4552 goto err;
4555 off = ubuf & ~PAGE_MASK;
4556 size = iov.iov_len;
4557 for (j = 0; j < nr_pages; j++) {
4558 size_t vec_len;
4560 vec_len = min_t(size_t, size, PAGE_SIZE - off);
4561 imu->bvec[j].bv_page = pages[j];
4562 imu->bvec[j].bv_len = vec_len;
4563 imu->bvec[j].bv_offset = off;
4564 off = 0;
4565 size -= vec_len;
4567 /* store original address for later verification */
4568 imu->ubuf = ubuf;
4569 imu->len = iov.iov_len;
4570 imu->nr_bvecs = nr_pages;
4572 ctx->nr_user_bufs++;
4574 kvfree(pages);
4575 kvfree(vmas);
4576 return 0;
4577 err:
4578 kvfree(pages);
4579 kvfree(vmas);
4580 io_sqe_buffer_unregister(ctx);
4581 return ret;
4584 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
4586 __s32 __user *fds = arg;
4587 int fd;
4589 if (ctx->cq_ev_fd)
4590 return -EBUSY;
4592 if (copy_from_user(&fd, fds, sizeof(*fds)))
4593 return -EFAULT;
4595 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
4596 if (IS_ERR(ctx->cq_ev_fd)) {
4597 int ret = PTR_ERR(ctx->cq_ev_fd);
4598 ctx->cq_ev_fd = NULL;
4599 return ret;
4602 return 0;
4605 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
4607 if (ctx->cq_ev_fd) {
4608 eventfd_ctx_put(ctx->cq_ev_fd);
4609 ctx->cq_ev_fd = NULL;
4610 return 0;
4613 return -ENXIO;
4616 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
4618 io_finish_async(ctx);
4619 if (ctx->sqo_mm)
4620 mmdrop(ctx->sqo_mm);
4622 io_iopoll_reap_events(ctx);
4623 io_sqe_buffer_unregister(ctx);
4624 io_sqe_files_unregister(ctx);
4625 io_eventfd_unregister(ctx);
4627 #if defined(CONFIG_UNIX)
4628 if (ctx->ring_sock) {
4629 ctx->ring_sock->file = NULL; /* so that iput() is called */
4630 sock_release(ctx->ring_sock);
4632 #endif
4634 io_mem_free(ctx->rings);
4635 io_mem_free(ctx->sq_sqes);
4637 percpu_ref_exit(&ctx->refs);
4638 if (ctx->account_mem)
4639 io_unaccount_mem(ctx->user,
4640 ring_pages(ctx->sq_entries, ctx->cq_entries));
4641 free_uid(ctx->user);
4642 put_cred(ctx->creds);
4643 kfree(ctx->completions);
4644 kfree(ctx->cancel_hash);
4645 kmem_cache_free(req_cachep, ctx->fallback_req);
4646 kfree(ctx);
4649 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
4651 struct io_ring_ctx *ctx = file->private_data;
4652 __poll_t mask = 0;
4654 poll_wait(file, &ctx->cq_wait, wait);
4656 * synchronizes with barrier from wq_has_sleeper call in
4657 * io_commit_cqring
4659 smp_rmb();
4660 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
4661 ctx->rings->sq_ring_entries)
4662 mask |= EPOLLOUT | EPOLLWRNORM;
4663 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
4664 mask |= EPOLLIN | EPOLLRDNORM;
4666 return mask;
4669 static int io_uring_fasync(int fd, struct file *file, int on)
4671 struct io_ring_ctx *ctx = file->private_data;
4673 return fasync_helper(fd, file, on, &ctx->cq_fasync);
4676 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
4678 mutex_lock(&ctx->uring_lock);
4679 percpu_ref_kill(&ctx->refs);
4680 mutex_unlock(&ctx->uring_lock);
4682 io_kill_timeouts(ctx);
4683 io_poll_remove_all(ctx);
4685 if (ctx->io_wq)
4686 io_wq_cancel_all(ctx->io_wq);
4688 io_iopoll_reap_events(ctx);
4689 /* if we failed setting up the ctx, we might not have any rings */
4690 if (ctx->rings)
4691 io_cqring_overflow_flush(ctx, true);
4692 wait_for_completion(&ctx->completions[0]);
4693 io_ring_ctx_free(ctx);
4696 static int io_uring_release(struct inode *inode, struct file *file)
4698 struct io_ring_ctx *ctx = file->private_data;
4700 file->private_data = NULL;
4701 io_ring_ctx_wait_and_kill(ctx);
4702 return 0;
4705 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
4706 struct files_struct *files)
4708 struct io_kiocb *req;
4709 DEFINE_WAIT(wait);
4711 while (!list_empty_careful(&ctx->inflight_list)) {
4712 struct io_kiocb *cancel_req = NULL;
4714 spin_lock_irq(&ctx->inflight_lock);
4715 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
4716 if (req->work.files != files)
4717 continue;
4718 /* req is being completed, ignore */
4719 if (!refcount_inc_not_zero(&req->refs))
4720 continue;
4721 cancel_req = req;
4722 break;
4724 if (cancel_req)
4725 prepare_to_wait(&ctx->inflight_wait, &wait,
4726 TASK_UNINTERRUPTIBLE);
4727 spin_unlock_irq(&ctx->inflight_lock);
4729 /* We need to keep going until we don't find a matching req */
4730 if (!cancel_req)
4731 break;
4733 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
4734 io_put_req(cancel_req);
4735 schedule();
4737 finish_wait(&ctx->inflight_wait, &wait);
4740 static int io_uring_flush(struct file *file, void *data)
4742 struct io_ring_ctx *ctx = file->private_data;
4744 io_uring_cancel_files(ctx, data);
4745 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
4746 io_cqring_overflow_flush(ctx, true);
4747 io_wq_cancel_all(ctx->io_wq);
4749 return 0;
4752 static void *io_uring_validate_mmap_request(struct file *file,
4753 loff_t pgoff, size_t sz)
4755 struct io_ring_ctx *ctx = file->private_data;
4756 loff_t offset = pgoff << PAGE_SHIFT;
4757 struct page *page;
4758 void *ptr;
4760 switch (offset) {
4761 case IORING_OFF_SQ_RING:
4762 case IORING_OFF_CQ_RING:
4763 ptr = ctx->rings;
4764 break;
4765 case IORING_OFF_SQES:
4766 ptr = ctx->sq_sqes;
4767 break;
4768 default:
4769 return ERR_PTR(-EINVAL);
4772 page = virt_to_head_page(ptr);
4773 if (sz > page_size(page))
4774 return ERR_PTR(-EINVAL);
4776 return ptr;
4779 #ifdef CONFIG_MMU
4781 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
4783 size_t sz = vma->vm_end - vma->vm_start;
4784 unsigned long pfn;
4785 void *ptr;
4787 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
4788 if (IS_ERR(ptr))
4789 return PTR_ERR(ptr);
4791 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
4792 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
4795 #else /* !CONFIG_MMU */
4797 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
4799 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
4802 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
4804 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
4807 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
4808 unsigned long addr, unsigned long len,
4809 unsigned long pgoff, unsigned long flags)
4811 void *ptr;
4813 ptr = io_uring_validate_mmap_request(file, pgoff, len);
4814 if (IS_ERR(ptr))
4815 return PTR_ERR(ptr);
4817 return (unsigned long) ptr;
4820 #endif /* !CONFIG_MMU */
4822 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
4823 u32, min_complete, u32, flags, const sigset_t __user *, sig,
4824 size_t, sigsz)
4826 struct io_ring_ctx *ctx;
4827 long ret = -EBADF;
4828 int submitted = 0;
4829 struct fd f;
4831 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
4832 return -EINVAL;
4834 f = fdget(fd);
4835 if (!f.file)
4836 return -EBADF;
4838 ret = -EOPNOTSUPP;
4839 if (f.file->f_op != &io_uring_fops)
4840 goto out_fput;
4842 ret = -ENXIO;
4843 ctx = f.file->private_data;
4844 if (!percpu_ref_tryget(&ctx->refs))
4845 goto out_fput;
4848 * For SQ polling, the thread will do all submissions and completions.
4849 * Just return the requested submit count, and wake the thread if
4850 * we were asked to.
4852 ret = 0;
4853 if (ctx->flags & IORING_SETUP_SQPOLL) {
4854 if (!list_empty_careful(&ctx->cq_overflow_list))
4855 io_cqring_overflow_flush(ctx, false);
4856 if (flags & IORING_ENTER_SQ_WAKEUP)
4857 wake_up(&ctx->sqo_wait);
4858 submitted = to_submit;
4859 } else if (to_submit) {
4860 struct mm_struct *cur_mm;
4862 to_submit = min(to_submit, ctx->sq_entries);
4863 mutex_lock(&ctx->uring_lock);
4864 /* already have mm, so io_submit_sqes() won't try to grab it */
4865 cur_mm = ctx->sqo_mm;
4866 submitted = io_submit_sqes(ctx, to_submit, f.file, fd,
4867 &cur_mm, false);
4868 mutex_unlock(&ctx->uring_lock);
4870 if (flags & IORING_ENTER_GETEVENTS) {
4871 unsigned nr_events = 0;
4873 min_complete = min(min_complete, ctx->cq_entries);
4875 if (ctx->flags & IORING_SETUP_IOPOLL) {
4876 ret = io_iopoll_check(ctx, &nr_events, min_complete);
4877 } else {
4878 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
4882 percpu_ref_put(&ctx->refs);
4883 out_fput:
4884 fdput(f);
4885 return submitted ? submitted : ret;
4888 static const struct file_operations io_uring_fops = {
4889 .release = io_uring_release,
4890 .flush = io_uring_flush,
4891 .mmap = io_uring_mmap,
4892 #ifndef CONFIG_MMU
4893 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
4894 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
4895 #endif
4896 .poll = io_uring_poll,
4897 .fasync = io_uring_fasync,
4900 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
4901 struct io_uring_params *p)
4903 struct io_rings *rings;
4904 size_t size, sq_array_offset;
4906 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
4907 if (size == SIZE_MAX)
4908 return -EOVERFLOW;
4910 rings = io_mem_alloc(size);
4911 if (!rings)
4912 return -ENOMEM;
4914 ctx->rings = rings;
4915 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
4916 rings->sq_ring_mask = p->sq_entries - 1;
4917 rings->cq_ring_mask = p->cq_entries - 1;
4918 rings->sq_ring_entries = p->sq_entries;
4919 rings->cq_ring_entries = p->cq_entries;
4920 ctx->sq_mask = rings->sq_ring_mask;
4921 ctx->cq_mask = rings->cq_ring_mask;
4922 ctx->sq_entries = rings->sq_ring_entries;
4923 ctx->cq_entries = rings->cq_ring_entries;
4925 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
4926 if (size == SIZE_MAX) {
4927 io_mem_free(ctx->rings);
4928 ctx->rings = NULL;
4929 return -EOVERFLOW;
4932 ctx->sq_sqes = io_mem_alloc(size);
4933 if (!ctx->sq_sqes) {
4934 io_mem_free(ctx->rings);
4935 ctx->rings = NULL;
4936 return -ENOMEM;
4939 return 0;
4943 * Allocate an anonymous fd, this is what constitutes the application
4944 * visible backing of an io_uring instance. The application mmaps this
4945 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
4946 * we have to tie this fd to a socket for file garbage collection purposes.
4948 static int io_uring_get_fd(struct io_ring_ctx *ctx)
4950 struct file *file;
4951 int ret;
4953 #if defined(CONFIG_UNIX)
4954 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
4955 &ctx->ring_sock);
4956 if (ret)
4957 return ret;
4958 #endif
4960 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
4961 if (ret < 0)
4962 goto err;
4964 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
4965 O_RDWR | O_CLOEXEC);
4966 if (IS_ERR(file)) {
4967 put_unused_fd(ret);
4968 ret = PTR_ERR(file);
4969 goto err;
4972 #if defined(CONFIG_UNIX)
4973 ctx->ring_sock->file = file;
4974 ctx->ring_sock->sk->sk_user_data = ctx;
4975 #endif
4976 fd_install(ret, file);
4977 return ret;
4978 err:
4979 #if defined(CONFIG_UNIX)
4980 sock_release(ctx->ring_sock);
4981 ctx->ring_sock = NULL;
4982 #endif
4983 return ret;
4986 static int io_uring_create(unsigned entries, struct io_uring_params *p)
4988 struct user_struct *user = NULL;
4989 struct io_ring_ctx *ctx;
4990 bool account_mem;
4991 int ret;
4993 if (!entries || entries > IORING_MAX_ENTRIES)
4994 return -EINVAL;
4997 * Use twice as many entries for the CQ ring. It's possible for the
4998 * application to drive a higher depth than the size of the SQ ring,
4999 * since the sqes are only used at submission time. This allows for
5000 * some flexibility in overcommitting a bit. If the application has
5001 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
5002 * of CQ ring entries manually.
5004 p->sq_entries = roundup_pow_of_two(entries);
5005 if (p->flags & IORING_SETUP_CQSIZE) {
5007 * If IORING_SETUP_CQSIZE is set, we do the same roundup
5008 * to a power-of-two, if it isn't already. We do NOT impose
5009 * any cq vs sq ring sizing.
5011 if (p->cq_entries < p->sq_entries || p->cq_entries > IORING_MAX_CQ_ENTRIES)
5012 return -EINVAL;
5013 p->cq_entries = roundup_pow_of_two(p->cq_entries);
5014 } else {
5015 p->cq_entries = 2 * p->sq_entries;
5018 user = get_uid(current_user());
5019 account_mem = !capable(CAP_IPC_LOCK);
5021 if (account_mem) {
5022 ret = io_account_mem(user,
5023 ring_pages(p->sq_entries, p->cq_entries));
5024 if (ret) {
5025 free_uid(user);
5026 return ret;
5030 ctx = io_ring_ctx_alloc(p);
5031 if (!ctx) {
5032 if (account_mem)
5033 io_unaccount_mem(user, ring_pages(p->sq_entries,
5034 p->cq_entries));
5035 free_uid(user);
5036 return -ENOMEM;
5038 ctx->compat = in_compat_syscall();
5039 ctx->account_mem = account_mem;
5040 ctx->user = user;
5041 ctx->creds = get_current_cred();
5043 ret = io_allocate_scq_urings(ctx, p);
5044 if (ret)
5045 goto err;
5047 ret = io_sq_offload_start(ctx, p);
5048 if (ret)
5049 goto err;
5051 memset(&p->sq_off, 0, sizeof(p->sq_off));
5052 p->sq_off.head = offsetof(struct io_rings, sq.head);
5053 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
5054 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
5055 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
5056 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
5057 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
5058 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
5060 memset(&p->cq_off, 0, sizeof(p->cq_off));
5061 p->cq_off.head = offsetof(struct io_rings, cq.head);
5062 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
5063 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
5064 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
5065 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
5066 p->cq_off.cqes = offsetof(struct io_rings, cqes);
5069 * Install ring fd as the very last thing, so we don't risk someone
5070 * having closed it before we finish setup
5072 ret = io_uring_get_fd(ctx);
5073 if (ret < 0)
5074 goto err;
5076 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
5077 IORING_FEAT_SUBMIT_STABLE;
5078 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
5079 return ret;
5080 err:
5081 io_ring_ctx_wait_and_kill(ctx);
5082 return ret;
5086 * Sets up an aio uring context, and returns the fd. Applications asks for a
5087 * ring size, we return the actual sq/cq ring sizes (among other things) in the
5088 * params structure passed in.
5090 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
5092 struct io_uring_params p;
5093 long ret;
5094 int i;
5096 if (copy_from_user(&p, params, sizeof(p)))
5097 return -EFAULT;
5098 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
5099 if (p.resv[i])
5100 return -EINVAL;
5103 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
5104 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE))
5105 return -EINVAL;
5107 ret = io_uring_create(entries, &p);
5108 if (ret < 0)
5109 return ret;
5111 if (copy_to_user(params, &p, sizeof(p)))
5112 return -EFAULT;
5114 return ret;
5117 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
5118 struct io_uring_params __user *, params)
5120 return io_uring_setup(entries, params);
5123 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
5124 void __user *arg, unsigned nr_args)
5125 __releases(ctx->uring_lock)
5126 __acquires(ctx->uring_lock)
5128 int ret;
5131 * We're inside the ring mutex, if the ref is already dying, then
5132 * someone else killed the ctx or is already going through
5133 * io_uring_register().
5135 if (percpu_ref_is_dying(&ctx->refs))
5136 return -ENXIO;
5138 percpu_ref_kill(&ctx->refs);
5141 * Drop uring mutex before waiting for references to exit. If another
5142 * thread is currently inside io_uring_enter() it might need to grab
5143 * the uring_lock to make progress. If we hold it here across the drain
5144 * wait, then we can deadlock. It's safe to drop the mutex here, since
5145 * no new references will come in after we've killed the percpu ref.
5147 mutex_unlock(&ctx->uring_lock);
5148 wait_for_completion(&ctx->completions[0]);
5149 mutex_lock(&ctx->uring_lock);
5151 switch (opcode) {
5152 case IORING_REGISTER_BUFFERS:
5153 ret = io_sqe_buffer_register(ctx, arg, nr_args);
5154 break;
5155 case IORING_UNREGISTER_BUFFERS:
5156 ret = -EINVAL;
5157 if (arg || nr_args)
5158 break;
5159 ret = io_sqe_buffer_unregister(ctx);
5160 break;
5161 case IORING_REGISTER_FILES:
5162 ret = io_sqe_files_register(ctx, arg, nr_args);
5163 break;
5164 case IORING_UNREGISTER_FILES:
5165 ret = -EINVAL;
5166 if (arg || nr_args)
5167 break;
5168 ret = io_sqe_files_unregister(ctx);
5169 break;
5170 case IORING_REGISTER_FILES_UPDATE:
5171 ret = io_sqe_files_update(ctx, arg, nr_args);
5172 break;
5173 case IORING_REGISTER_EVENTFD:
5174 ret = -EINVAL;
5175 if (nr_args != 1)
5176 break;
5177 ret = io_eventfd_register(ctx, arg);
5178 break;
5179 case IORING_UNREGISTER_EVENTFD:
5180 ret = -EINVAL;
5181 if (arg || nr_args)
5182 break;
5183 ret = io_eventfd_unregister(ctx);
5184 break;
5185 default:
5186 ret = -EINVAL;
5187 break;
5190 /* bring the ctx back to life */
5191 reinit_completion(&ctx->completions[0]);
5192 percpu_ref_reinit(&ctx->refs);
5193 return ret;
5196 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
5197 void __user *, arg, unsigned int, nr_args)
5199 struct io_ring_ctx *ctx;
5200 long ret = -EBADF;
5201 struct fd f;
5203 f = fdget(fd);
5204 if (!f.file)
5205 return -EBADF;
5207 ret = -EOPNOTSUPP;
5208 if (f.file->f_op != &io_uring_fops)
5209 goto out_fput;
5211 ctx = f.file->private_data;
5213 mutex_lock(&ctx->uring_lock);
5214 ret = __io_uring_register(ctx, opcode, arg, nr_args);
5215 mutex_unlock(&ctx->uring_lock);
5216 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
5217 ctx->cq_ev_fd != NULL, ret);
5218 out_fput:
5219 fdput(f);
5220 return ret;
5223 static int __init io_uring_init(void)
5225 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
5226 return 0;
5228 __initcall(io_uring_init);