split dev_queue
[cor.git] / drivers / powercap / intel_rapl_common.c
bloba67701ed93e8b065817dcdbe310772a2ce8587d1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
29 /* Local defines */
30 #define MSR_PLATFORM_POWER_LIMIT 0x0000065C
32 /* bitmasks for RAPL MSRs, used by primitive access functions */
33 #define ENERGY_STATUS_MASK 0xffffffff
35 #define POWER_LIMIT1_MASK 0x7FFF
36 #define POWER_LIMIT1_ENABLE BIT(15)
37 #define POWER_LIMIT1_CLAMP BIT(16)
39 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
40 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
41 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
42 #define POWER_HIGH_LOCK BIT_ULL(63)
43 #define POWER_LOW_LOCK BIT(31)
45 #define TIME_WINDOW1_MASK (0x7FULL<<17)
46 #define TIME_WINDOW2_MASK (0x7FULL<<49)
48 #define POWER_UNIT_OFFSET 0
49 #define POWER_UNIT_MASK 0x0F
51 #define ENERGY_UNIT_OFFSET 0x08
52 #define ENERGY_UNIT_MASK 0x1F00
54 #define TIME_UNIT_OFFSET 0x10
55 #define TIME_UNIT_MASK 0xF0000
57 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
58 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
59 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
60 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
62 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
63 #define PP_POLICY_MASK 0x1F
65 /* Non HW constants */
66 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
67 #define RAPL_PRIMITIVE_DUMMY BIT(2)
69 #define TIME_WINDOW_MAX_MSEC 40000
70 #define TIME_WINDOW_MIN_MSEC 250
71 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
72 enum unit_type {
73 ARBITRARY_UNIT, /* no translation */
74 POWER_UNIT,
75 ENERGY_UNIT,
76 TIME_UNIT,
79 /* per domain data, some are optional */
80 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
82 #define DOMAIN_STATE_INACTIVE BIT(0)
83 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
84 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
86 static const char pl1_name[] = "long_term";
87 static const char pl2_name[] = "short_term";
89 #define power_zone_to_rapl_domain(_zone) \
90 container_of(_zone, struct rapl_domain, power_zone)
92 struct rapl_defaults {
93 u8 floor_freq_reg_addr;
94 int (*check_unit)(struct rapl_package *rp, int cpu);
95 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
96 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
97 bool to_raw);
98 unsigned int dram_domain_energy_unit;
100 static struct rapl_defaults *rapl_defaults;
102 /* Sideband MBI registers */
103 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
104 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
106 #define PACKAGE_PLN_INT_SAVED BIT(0)
107 #define MAX_PRIM_NAME (32)
109 /* per domain data. used to describe individual knobs such that access function
110 * can be consolidated into one instead of many inline functions.
112 struct rapl_primitive_info {
113 const char *name;
114 u64 mask;
115 int shift;
116 enum rapl_domain_reg_id id;
117 enum unit_type unit;
118 u32 flag;
121 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
122 .name = #p, \
123 .mask = m, \
124 .shift = s, \
125 .id = i, \
126 .unit = u, \
127 .flag = f \
130 static void rapl_init_domains(struct rapl_package *rp);
131 static int rapl_read_data_raw(struct rapl_domain *rd,
132 enum rapl_primitives prim,
133 bool xlate, u64 *data);
134 static int rapl_write_data_raw(struct rapl_domain *rd,
135 enum rapl_primitives prim,
136 unsigned long long value);
137 static u64 rapl_unit_xlate(struct rapl_domain *rd,
138 enum unit_type type, u64 value, int to_raw);
139 static void package_power_limit_irq_save(struct rapl_package *rp);
141 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
143 static const char *const rapl_domain_names[] = {
144 "package",
145 "core",
146 "uncore",
147 "dram",
148 "psys",
151 static int get_energy_counter(struct powercap_zone *power_zone,
152 u64 *energy_raw)
154 struct rapl_domain *rd;
155 u64 energy_now;
157 /* prevent CPU hotplug, make sure the RAPL domain does not go
158 * away while reading the counter.
160 get_online_cpus();
161 rd = power_zone_to_rapl_domain(power_zone);
163 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
164 *energy_raw = energy_now;
165 put_online_cpus();
167 return 0;
169 put_online_cpus();
171 return -EIO;
174 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
176 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
178 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
179 return 0;
182 static int release_zone(struct powercap_zone *power_zone)
184 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
185 struct rapl_package *rp = rd->rp;
187 /* package zone is the last zone of a package, we can free
188 * memory here since all children has been unregistered.
190 if (rd->id == RAPL_DOMAIN_PACKAGE) {
191 kfree(rd);
192 rp->domains = NULL;
195 return 0;
199 static int find_nr_power_limit(struct rapl_domain *rd)
201 int i, nr_pl = 0;
203 for (i = 0; i < NR_POWER_LIMITS; i++) {
204 if (rd->rpl[i].name)
205 nr_pl++;
208 return nr_pl;
211 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
213 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
215 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
216 return -EACCES;
218 get_online_cpus();
219 rapl_write_data_raw(rd, PL1_ENABLE, mode);
220 if (rapl_defaults->set_floor_freq)
221 rapl_defaults->set_floor_freq(rd, mode);
222 put_online_cpus();
224 return 0;
227 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
229 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
230 u64 val;
232 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
233 *mode = false;
234 return 0;
236 get_online_cpus();
237 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
238 put_online_cpus();
239 return -EIO;
241 *mode = val;
242 put_online_cpus();
244 return 0;
247 /* per RAPL domain ops, in the order of rapl_domain_type */
248 static const struct powercap_zone_ops zone_ops[] = {
249 /* RAPL_DOMAIN_PACKAGE */
251 .get_energy_uj = get_energy_counter,
252 .get_max_energy_range_uj = get_max_energy_counter,
253 .release = release_zone,
254 .set_enable = set_domain_enable,
255 .get_enable = get_domain_enable,
257 /* RAPL_DOMAIN_PP0 */
259 .get_energy_uj = get_energy_counter,
260 .get_max_energy_range_uj = get_max_energy_counter,
261 .release = release_zone,
262 .set_enable = set_domain_enable,
263 .get_enable = get_domain_enable,
265 /* RAPL_DOMAIN_PP1 */
267 .get_energy_uj = get_energy_counter,
268 .get_max_energy_range_uj = get_max_energy_counter,
269 .release = release_zone,
270 .set_enable = set_domain_enable,
271 .get_enable = get_domain_enable,
273 /* RAPL_DOMAIN_DRAM */
275 .get_energy_uj = get_energy_counter,
276 .get_max_energy_range_uj = get_max_energy_counter,
277 .release = release_zone,
278 .set_enable = set_domain_enable,
279 .get_enable = get_domain_enable,
281 /* RAPL_DOMAIN_PLATFORM */
283 .get_energy_uj = get_energy_counter,
284 .get_max_energy_range_uj = get_max_energy_counter,
285 .release = release_zone,
286 .set_enable = set_domain_enable,
287 .get_enable = get_domain_enable,
292 * Constraint index used by powercap can be different than power limit (PL)
293 * index in that some PLs maybe missing due to non-existent MSRs. So we
294 * need to convert here by finding the valid PLs only (name populated).
296 static int contraint_to_pl(struct rapl_domain *rd, int cid)
298 int i, j;
300 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
301 if ((rd->rpl[i].name) && j++ == cid) {
302 pr_debug("%s: index %d\n", __func__, i);
303 return i;
306 pr_err("Cannot find matching power limit for constraint %d\n", cid);
308 return -EINVAL;
311 static int set_power_limit(struct powercap_zone *power_zone, int cid,
312 u64 power_limit)
314 struct rapl_domain *rd;
315 struct rapl_package *rp;
316 int ret = 0;
317 int id;
319 get_online_cpus();
320 rd = power_zone_to_rapl_domain(power_zone);
321 id = contraint_to_pl(rd, cid);
322 if (id < 0) {
323 ret = id;
324 goto set_exit;
327 rp = rd->rp;
329 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
330 dev_warn(&power_zone->dev,
331 "%s locked by BIOS, monitoring only\n", rd->name);
332 ret = -EACCES;
333 goto set_exit;
336 switch (rd->rpl[id].prim_id) {
337 case PL1_ENABLE:
338 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
339 break;
340 case PL2_ENABLE:
341 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
342 break;
343 default:
344 ret = -EINVAL;
346 if (!ret)
347 package_power_limit_irq_save(rp);
348 set_exit:
349 put_online_cpus();
350 return ret;
353 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
354 u64 *data)
356 struct rapl_domain *rd;
357 u64 val;
358 int prim;
359 int ret = 0;
360 int id;
362 get_online_cpus();
363 rd = power_zone_to_rapl_domain(power_zone);
364 id = contraint_to_pl(rd, cid);
365 if (id < 0) {
366 ret = id;
367 goto get_exit;
370 switch (rd->rpl[id].prim_id) {
371 case PL1_ENABLE:
372 prim = POWER_LIMIT1;
373 break;
374 case PL2_ENABLE:
375 prim = POWER_LIMIT2;
376 break;
377 default:
378 put_online_cpus();
379 return -EINVAL;
381 if (rapl_read_data_raw(rd, prim, true, &val))
382 ret = -EIO;
383 else
384 *data = val;
386 get_exit:
387 put_online_cpus();
389 return ret;
392 static int set_time_window(struct powercap_zone *power_zone, int cid,
393 u64 window)
395 struct rapl_domain *rd;
396 int ret = 0;
397 int id;
399 get_online_cpus();
400 rd = power_zone_to_rapl_domain(power_zone);
401 id = contraint_to_pl(rd, cid);
402 if (id < 0) {
403 ret = id;
404 goto set_time_exit;
407 switch (rd->rpl[id].prim_id) {
408 case PL1_ENABLE:
409 rapl_write_data_raw(rd, TIME_WINDOW1, window);
410 break;
411 case PL2_ENABLE:
412 rapl_write_data_raw(rd, TIME_WINDOW2, window);
413 break;
414 default:
415 ret = -EINVAL;
418 set_time_exit:
419 put_online_cpus();
420 return ret;
423 static int get_time_window(struct powercap_zone *power_zone, int cid,
424 u64 *data)
426 struct rapl_domain *rd;
427 u64 val;
428 int ret = 0;
429 int id;
431 get_online_cpus();
432 rd = power_zone_to_rapl_domain(power_zone);
433 id = contraint_to_pl(rd, cid);
434 if (id < 0) {
435 ret = id;
436 goto get_time_exit;
439 switch (rd->rpl[id].prim_id) {
440 case PL1_ENABLE:
441 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
442 break;
443 case PL2_ENABLE:
444 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
445 break;
446 default:
447 put_online_cpus();
448 return -EINVAL;
450 if (!ret)
451 *data = val;
453 get_time_exit:
454 put_online_cpus();
456 return ret;
459 static const char *get_constraint_name(struct powercap_zone *power_zone,
460 int cid)
462 struct rapl_domain *rd;
463 int id;
465 rd = power_zone_to_rapl_domain(power_zone);
466 id = contraint_to_pl(rd, cid);
467 if (id >= 0)
468 return rd->rpl[id].name;
470 return NULL;
473 static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
475 struct rapl_domain *rd;
476 u64 val;
477 int prim;
478 int ret = 0;
480 get_online_cpus();
481 rd = power_zone_to_rapl_domain(power_zone);
482 switch (rd->rpl[id].prim_id) {
483 case PL1_ENABLE:
484 prim = THERMAL_SPEC_POWER;
485 break;
486 case PL2_ENABLE:
487 prim = MAX_POWER;
488 break;
489 default:
490 put_online_cpus();
491 return -EINVAL;
493 if (rapl_read_data_raw(rd, prim, true, &val))
494 ret = -EIO;
495 else
496 *data = val;
498 put_online_cpus();
500 return ret;
503 static const struct powercap_zone_constraint_ops constraint_ops = {
504 .set_power_limit_uw = set_power_limit,
505 .get_power_limit_uw = get_current_power_limit,
506 .set_time_window_us = set_time_window,
507 .get_time_window_us = get_time_window,
508 .get_max_power_uw = get_max_power,
509 .get_name = get_constraint_name,
512 /* called after domain detection and package level data are set */
513 static void rapl_init_domains(struct rapl_package *rp)
515 enum rapl_domain_type i;
516 enum rapl_domain_reg_id j;
517 struct rapl_domain *rd = rp->domains;
519 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
520 unsigned int mask = rp->domain_map & (1 << i);
522 if (!mask)
523 continue;
525 rd->rp = rp;
526 rd->name = rapl_domain_names[i];
527 rd->id = i;
528 rd->rpl[0].prim_id = PL1_ENABLE;
529 rd->rpl[0].name = pl1_name;
530 /* some domain may support two power limits */
531 if (rp->priv->limits[i] == 2) {
532 rd->rpl[1].prim_id = PL2_ENABLE;
533 rd->rpl[1].name = pl2_name;
536 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
537 rd->regs[j] = rp->priv->regs[i][j];
539 if (i == RAPL_DOMAIN_DRAM) {
540 rd->domain_energy_unit =
541 rapl_defaults->dram_domain_energy_unit;
542 if (rd->domain_energy_unit)
543 pr_info("DRAM domain energy unit %dpj\n",
544 rd->domain_energy_unit);
546 rd++;
550 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
551 u64 value, int to_raw)
553 u64 units = 1;
554 struct rapl_package *rp = rd->rp;
555 u64 scale = 1;
557 switch (type) {
558 case POWER_UNIT:
559 units = rp->power_unit;
560 break;
561 case ENERGY_UNIT:
562 scale = ENERGY_UNIT_SCALE;
563 /* per domain unit takes precedence */
564 if (rd->domain_energy_unit)
565 units = rd->domain_energy_unit;
566 else
567 units = rp->energy_unit;
568 break;
569 case TIME_UNIT:
570 return rapl_defaults->compute_time_window(rp, value, to_raw);
571 case ARBITRARY_UNIT:
572 default:
573 return value;
576 if (to_raw)
577 return div64_u64(value, units) * scale;
579 value *= units;
581 return div64_u64(value, scale);
584 /* in the order of enum rapl_primitives */
585 static struct rapl_primitive_info rpi[] = {
586 /* name, mask, shift, msr index, unit divisor */
587 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
588 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
589 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
590 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
591 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
592 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
593 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
594 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
595 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
596 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
597 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
598 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
599 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
600 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
601 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
602 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
603 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
604 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
605 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
606 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
607 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
608 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
609 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
610 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
611 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
612 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
613 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
614 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
615 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
616 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
617 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
618 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
619 /* non-hardware */
620 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
621 RAPL_PRIMITIVE_DERIVED),
622 {NULL, 0, 0, 0},
625 /* Read primitive data based on its related struct rapl_primitive_info.
626 * if xlate flag is set, return translated data based on data units, i.e.
627 * time, energy, and power.
628 * RAPL MSRs are non-architectual and are laid out not consistently across
629 * domains. Here we use primitive info to allow writing consolidated access
630 * functions.
631 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
632 * is pre-assigned based on RAPL unit MSRs read at init time.
633 * 63-------------------------- 31--------------------------- 0
634 * | xxxxx (mask) |
635 * | |<- shift ----------------|
636 * 63-------------------------- 31--------------------------- 0
638 static int rapl_read_data_raw(struct rapl_domain *rd,
639 enum rapl_primitives prim, bool xlate, u64 *data)
641 u64 value;
642 struct rapl_primitive_info *rp = &rpi[prim];
643 struct reg_action ra;
644 int cpu;
646 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
647 return -EINVAL;
649 ra.reg = rd->regs[rp->id];
650 if (!ra.reg)
651 return -EINVAL;
653 cpu = rd->rp->lead_cpu;
655 /* domain with 2 limits has different bit */
656 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
657 rp->mask = POWER_HIGH_LOCK;
658 rp->shift = 63;
660 /* non-hardware data are collected by the polling thread */
661 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
662 *data = rd->rdd.primitives[prim];
663 return 0;
666 ra.mask = rp->mask;
668 if (rd->rp->priv->read_raw(cpu, &ra)) {
669 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
670 return -EIO;
673 value = ra.value >> rp->shift;
675 if (xlate)
676 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
677 else
678 *data = value;
680 return 0;
683 /* Similar use of primitive info in the read counterpart */
684 static int rapl_write_data_raw(struct rapl_domain *rd,
685 enum rapl_primitives prim,
686 unsigned long long value)
688 struct rapl_primitive_info *rp = &rpi[prim];
689 int cpu;
690 u64 bits;
691 struct reg_action ra;
692 int ret;
694 cpu = rd->rp->lead_cpu;
695 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
696 bits <<= rp->shift;
697 bits &= rp->mask;
699 memset(&ra, 0, sizeof(ra));
701 ra.reg = rd->regs[rp->id];
702 ra.mask = rp->mask;
703 ra.value = bits;
705 ret = rd->rp->priv->write_raw(cpu, &ra);
707 return ret;
711 * Raw RAPL data stored in MSRs are in certain scales. We need to
712 * convert them into standard units based on the units reported in
713 * the RAPL unit MSRs. This is specific to CPUs as the method to
714 * calculate units differ on different CPUs.
715 * We convert the units to below format based on CPUs.
716 * i.e.
717 * energy unit: picoJoules : Represented in picoJoules by default
718 * power unit : microWatts : Represented in milliWatts by default
719 * time unit : microseconds: Represented in seconds by default
721 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
723 struct reg_action ra;
724 u32 value;
726 ra.reg = rp->priv->reg_unit;
727 ra.mask = ~0;
728 if (rp->priv->read_raw(cpu, &ra)) {
729 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
730 rp->priv->reg_unit, cpu);
731 return -ENODEV;
734 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
735 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
737 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
738 rp->power_unit = 1000000 / (1 << value);
740 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
741 rp->time_unit = 1000000 / (1 << value);
743 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
744 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
746 return 0;
749 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
751 struct reg_action ra;
752 u32 value;
754 ra.reg = rp->priv->reg_unit;
755 ra.mask = ~0;
756 if (rp->priv->read_raw(cpu, &ra)) {
757 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
758 rp->priv->reg_unit, cpu);
759 return -ENODEV;
762 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
763 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
765 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
766 rp->power_unit = (1 << value) * 1000;
768 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
769 rp->time_unit = 1000000 / (1 << value);
771 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
772 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
774 return 0;
777 static void power_limit_irq_save_cpu(void *info)
779 u32 l, h = 0;
780 struct rapl_package *rp = (struct rapl_package *)info;
782 /* save the state of PLN irq mask bit before disabling it */
783 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
784 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
785 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
786 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
788 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
789 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
792 /* REVISIT:
793 * When package power limit is set artificially low by RAPL, LVT
794 * thermal interrupt for package power limit should be ignored
795 * since we are not really exceeding the real limit. The intention
796 * is to avoid excessive interrupts while we are trying to save power.
797 * A useful feature might be routing the package_power_limit interrupt
798 * to userspace via eventfd. once we have a usecase, this is simple
799 * to do by adding an atomic notifier.
802 static void package_power_limit_irq_save(struct rapl_package *rp)
804 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
805 return;
807 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
811 * Restore per package power limit interrupt enable state. Called from cpu
812 * hotplug code on package removal.
814 static void package_power_limit_irq_restore(struct rapl_package *rp)
816 u32 l, h;
818 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
819 return;
821 /* irq enable state not saved, nothing to restore */
822 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
823 return;
825 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
827 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
828 l |= PACKAGE_THERM_INT_PLN_ENABLE;
829 else
830 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
832 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
835 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
837 int nr_powerlimit = find_nr_power_limit(rd);
839 /* always enable clamp such that p-state can go below OS requested
840 * range. power capping priority over guranteed frequency.
842 rapl_write_data_raw(rd, PL1_CLAMP, mode);
844 /* some domains have pl2 */
845 if (nr_powerlimit > 1) {
846 rapl_write_data_raw(rd, PL2_ENABLE, mode);
847 rapl_write_data_raw(rd, PL2_CLAMP, mode);
851 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
853 static u32 power_ctrl_orig_val;
854 u32 mdata;
856 if (!rapl_defaults->floor_freq_reg_addr) {
857 pr_err("Invalid floor frequency config register\n");
858 return;
861 if (!power_ctrl_orig_val)
862 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
863 rapl_defaults->floor_freq_reg_addr,
864 &power_ctrl_orig_val);
865 mdata = power_ctrl_orig_val;
866 if (enable) {
867 mdata &= ~(0x7f << 8);
868 mdata |= 1 << 8;
870 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
871 rapl_defaults->floor_freq_reg_addr, mdata);
874 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
875 bool to_raw)
877 u64 f, y; /* fraction and exp. used for time unit */
880 * Special processing based on 2^Y*(1+F/4), refer
881 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
883 if (!to_raw) {
884 f = (value & 0x60) >> 5;
885 y = value & 0x1f;
886 value = (1 << y) * (4 + f) * rp->time_unit / 4;
887 } else {
888 do_div(value, rp->time_unit);
889 y = ilog2(value);
890 f = div64_u64(4 * (value - (1 << y)), 1 << y);
891 value = (y & 0x1f) | ((f & 0x3) << 5);
893 return value;
896 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
897 bool to_raw)
900 * Atom time unit encoding is straight forward val * time_unit,
901 * where time_unit is default to 1 sec. Never 0.
903 if (!to_raw)
904 return (value) ? value *= rp->time_unit : rp->time_unit;
906 value = div64_u64(value, rp->time_unit);
908 return value;
911 static const struct rapl_defaults rapl_defaults_core = {
912 .floor_freq_reg_addr = 0,
913 .check_unit = rapl_check_unit_core,
914 .set_floor_freq = set_floor_freq_default,
915 .compute_time_window = rapl_compute_time_window_core,
918 static const struct rapl_defaults rapl_defaults_hsw_server = {
919 .check_unit = rapl_check_unit_core,
920 .set_floor_freq = set_floor_freq_default,
921 .compute_time_window = rapl_compute_time_window_core,
922 .dram_domain_energy_unit = 15300,
925 static const struct rapl_defaults rapl_defaults_byt = {
926 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
927 .check_unit = rapl_check_unit_atom,
928 .set_floor_freq = set_floor_freq_atom,
929 .compute_time_window = rapl_compute_time_window_atom,
932 static const struct rapl_defaults rapl_defaults_tng = {
933 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
934 .check_unit = rapl_check_unit_atom,
935 .set_floor_freq = set_floor_freq_atom,
936 .compute_time_window = rapl_compute_time_window_atom,
939 static const struct rapl_defaults rapl_defaults_ann = {
940 .floor_freq_reg_addr = 0,
941 .check_unit = rapl_check_unit_atom,
942 .set_floor_freq = NULL,
943 .compute_time_window = rapl_compute_time_window_atom,
946 static const struct rapl_defaults rapl_defaults_cht = {
947 .floor_freq_reg_addr = 0,
948 .check_unit = rapl_check_unit_atom,
949 .set_floor_freq = NULL,
950 .compute_time_window = rapl_compute_time_window_atom,
953 static const struct x86_cpu_id rapl_ids[] __initconst = {
954 INTEL_CPU_FAM6(SANDYBRIDGE, rapl_defaults_core),
955 INTEL_CPU_FAM6(SANDYBRIDGE_X, rapl_defaults_core),
957 INTEL_CPU_FAM6(IVYBRIDGE, rapl_defaults_core),
958 INTEL_CPU_FAM6(IVYBRIDGE_X, rapl_defaults_core),
960 INTEL_CPU_FAM6(HASWELL, rapl_defaults_core),
961 INTEL_CPU_FAM6(HASWELL_L, rapl_defaults_core),
962 INTEL_CPU_FAM6(HASWELL_G, rapl_defaults_core),
963 INTEL_CPU_FAM6(HASWELL_X, rapl_defaults_hsw_server),
965 INTEL_CPU_FAM6(BROADWELL, rapl_defaults_core),
966 INTEL_CPU_FAM6(BROADWELL_G, rapl_defaults_core),
967 INTEL_CPU_FAM6(BROADWELL_D, rapl_defaults_core),
968 INTEL_CPU_FAM6(BROADWELL_X, rapl_defaults_hsw_server),
970 INTEL_CPU_FAM6(SKYLAKE, rapl_defaults_core),
971 INTEL_CPU_FAM6(SKYLAKE_L, rapl_defaults_core),
972 INTEL_CPU_FAM6(SKYLAKE_X, rapl_defaults_hsw_server),
973 INTEL_CPU_FAM6(KABYLAKE_L, rapl_defaults_core),
974 INTEL_CPU_FAM6(KABYLAKE, rapl_defaults_core),
975 INTEL_CPU_FAM6(CANNONLAKE_L, rapl_defaults_core),
976 INTEL_CPU_FAM6(ICELAKE_L, rapl_defaults_core),
977 INTEL_CPU_FAM6(ICELAKE, rapl_defaults_core),
978 INTEL_CPU_FAM6(ICELAKE_NNPI, rapl_defaults_core),
979 INTEL_CPU_FAM6(ICELAKE_X, rapl_defaults_hsw_server),
980 INTEL_CPU_FAM6(ICELAKE_D, rapl_defaults_hsw_server),
981 INTEL_CPU_FAM6(COMETLAKE_L, rapl_defaults_core),
982 INTEL_CPU_FAM6(COMETLAKE, rapl_defaults_core),
984 INTEL_CPU_FAM6(ATOM_SILVERMONT, rapl_defaults_byt),
985 INTEL_CPU_FAM6(ATOM_AIRMONT, rapl_defaults_cht),
986 INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, rapl_defaults_tng),
987 INTEL_CPU_FAM6(ATOM_AIRMONT_MID, rapl_defaults_ann),
988 INTEL_CPU_FAM6(ATOM_GOLDMONT, rapl_defaults_core),
989 INTEL_CPU_FAM6(ATOM_GOLDMONT_PLUS, rapl_defaults_core),
990 INTEL_CPU_FAM6(ATOM_GOLDMONT_D, rapl_defaults_core),
991 INTEL_CPU_FAM6(ATOM_TREMONT_D, rapl_defaults_core),
993 INTEL_CPU_FAM6(XEON_PHI_KNL, rapl_defaults_hsw_server),
994 INTEL_CPU_FAM6(XEON_PHI_KNM, rapl_defaults_hsw_server),
998 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1000 /* Read once for all raw primitive data for domains */
1001 static void rapl_update_domain_data(struct rapl_package *rp)
1003 int dmn, prim;
1004 u64 val;
1006 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1007 pr_debug("update %s domain %s data\n", rp->name,
1008 rp->domains[dmn].name);
1009 /* exclude non-raw primitives */
1010 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1011 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1012 rpi[prim].unit, &val))
1013 rp->domains[dmn].rdd.primitives[prim] = val;
1019 static int rapl_package_register_powercap(struct rapl_package *rp)
1021 struct rapl_domain *rd;
1022 struct powercap_zone *power_zone = NULL;
1023 int nr_pl, ret;
1025 /* Update the domain data of the new package */
1026 rapl_update_domain_data(rp);
1028 /* first we register package domain as the parent zone */
1029 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1030 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1031 nr_pl = find_nr_power_limit(rd);
1032 pr_debug("register package domain %s\n", rp->name);
1033 power_zone = powercap_register_zone(&rd->power_zone,
1034 rp->priv->control_type, rp->name,
1035 NULL, &zone_ops[rd->id], nr_pl,
1036 &constraint_ops);
1037 if (IS_ERR(power_zone)) {
1038 pr_debug("failed to register power zone %s\n",
1039 rp->name);
1040 return PTR_ERR(power_zone);
1042 /* track parent zone in per package/socket data */
1043 rp->power_zone = power_zone;
1044 /* done, only one package domain per socket */
1045 break;
1048 if (!power_zone) {
1049 pr_err("no package domain found, unknown topology!\n");
1050 return -ENODEV;
1052 /* now register domains as children of the socket/package */
1053 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1054 if (rd->id == RAPL_DOMAIN_PACKAGE)
1055 continue;
1056 /* number of power limits per domain varies */
1057 nr_pl = find_nr_power_limit(rd);
1058 power_zone = powercap_register_zone(&rd->power_zone,
1059 rp->priv->control_type,
1060 rd->name, rp->power_zone,
1061 &zone_ops[rd->id], nr_pl,
1062 &constraint_ops);
1064 if (IS_ERR(power_zone)) {
1065 pr_debug("failed to register power_zone, %s:%s\n",
1066 rp->name, rd->name);
1067 ret = PTR_ERR(power_zone);
1068 goto err_cleanup;
1071 return 0;
1073 err_cleanup:
1075 * Clean up previously initialized domains within the package if we
1076 * failed after the first domain setup.
1078 while (--rd >= rp->domains) {
1079 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1080 powercap_unregister_zone(rp->priv->control_type,
1081 &rd->power_zone);
1084 return ret;
1087 int rapl_add_platform_domain(struct rapl_if_priv *priv)
1089 struct rapl_domain *rd;
1090 struct powercap_zone *power_zone;
1091 struct reg_action ra;
1092 int ret;
1094 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1095 ra.mask = ~0;
1096 ret = priv->read_raw(0, &ra);
1097 if (ret || !ra.value)
1098 return -ENODEV;
1100 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1101 ra.mask = ~0;
1102 ret = priv->read_raw(0, &ra);
1103 if (ret || !ra.value)
1104 return -ENODEV;
1106 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1107 if (!rd)
1108 return -ENOMEM;
1110 rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1111 rd->id = RAPL_DOMAIN_PLATFORM;
1112 rd->regs[RAPL_DOMAIN_REG_LIMIT] =
1113 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1114 rd->regs[RAPL_DOMAIN_REG_STATUS] =
1115 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1116 rd->rpl[0].prim_id = PL1_ENABLE;
1117 rd->rpl[0].name = pl1_name;
1118 rd->rpl[1].prim_id = PL2_ENABLE;
1119 rd->rpl[1].name = pl2_name;
1120 rd->rp = rapl_find_package_domain(0, priv);
1122 power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
1123 "psys", NULL,
1124 &zone_ops[RAPL_DOMAIN_PLATFORM],
1125 2, &constraint_ops);
1127 if (IS_ERR(power_zone)) {
1128 kfree(rd);
1129 return PTR_ERR(power_zone);
1132 priv->platform_rapl_domain = rd;
1134 return 0;
1136 EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
1138 void rapl_remove_platform_domain(struct rapl_if_priv *priv)
1140 if (priv->platform_rapl_domain) {
1141 powercap_unregister_zone(priv->control_type,
1142 &priv->platform_rapl_domain->power_zone);
1143 kfree(priv->platform_rapl_domain);
1146 EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
1148 static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1150 struct reg_action ra;
1152 switch (domain) {
1153 case RAPL_DOMAIN_PACKAGE:
1154 case RAPL_DOMAIN_PP0:
1155 case RAPL_DOMAIN_PP1:
1156 case RAPL_DOMAIN_DRAM:
1157 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1158 break;
1159 case RAPL_DOMAIN_PLATFORM:
1160 /* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1161 return -EINVAL;
1162 default:
1163 pr_err("invalid domain id %d\n", domain);
1164 return -EINVAL;
1166 /* make sure domain counters are available and contains non-zero
1167 * values, otherwise skip it.
1170 ra.mask = ~0;
1171 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1172 return -ENODEV;
1174 return 0;
1178 * Check if power limits are available. Two cases when they are not available:
1179 * 1. Locked by BIOS, in this case we still provide read-only access so that
1180 * users can see what limit is set by the BIOS.
1181 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1182 * exist at all. In this case, we do not show the constraints in powercap.
1184 * Called after domains are detected and initialized.
1186 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1188 u64 val64;
1189 int i;
1191 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1192 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1193 if (val64) {
1194 pr_info("RAPL %s domain %s locked by BIOS\n",
1195 rd->rp->name, rd->name);
1196 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1199 /* check if power limit MSR exists, otherwise domain is monitoring only */
1200 for (i = 0; i < NR_POWER_LIMITS; i++) {
1201 int prim = rd->rpl[i].prim_id;
1203 if (rapl_read_data_raw(rd, prim, false, &val64))
1204 rd->rpl[i].name = NULL;
1208 /* Detect active and valid domains for the given CPU, caller must
1209 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1211 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1213 struct rapl_domain *rd;
1214 int i;
1216 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1217 /* use physical package id to read counters */
1218 if (!rapl_check_domain(cpu, i, rp)) {
1219 rp->domain_map |= 1 << i;
1220 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1223 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1224 if (!rp->nr_domains) {
1225 pr_debug("no valid rapl domains found in %s\n", rp->name);
1226 return -ENODEV;
1228 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1230 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1231 GFP_KERNEL);
1232 if (!rp->domains)
1233 return -ENOMEM;
1235 rapl_init_domains(rp);
1237 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1238 rapl_detect_powerlimit(rd);
1240 return 0;
1243 /* called from CPU hotplug notifier, hotplug lock held */
1244 void rapl_remove_package(struct rapl_package *rp)
1246 struct rapl_domain *rd, *rd_package = NULL;
1248 package_power_limit_irq_restore(rp);
1250 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1251 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1252 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1253 if (find_nr_power_limit(rd) > 1) {
1254 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1255 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1257 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1258 rd_package = rd;
1259 continue;
1261 pr_debug("remove package, undo power limit on %s: %s\n",
1262 rp->name, rd->name);
1263 powercap_unregister_zone(rp->priv->control_type,
1264 &rd->power_zone);
1266 /* do parent zone last */
1267 powercap_unregister_zone(rp->priv->control_type,
1268 &rd_package->power_zone);
1269 list_del(&rp->plist);
1270 kfree(rp);
1272 EXPORT_SYMBOL_GPL(rapl_remove_package);
1274 /* caller to ensure CPU hotplug lock is held */
1275 struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1277 int id = topology_logical_die_id(cpu);
1278 struct rapl_package *rp;
1280 list_for_each_entry(rp, &rapl_packages, plist) {
1281 if (rp->id == id
1282 && rp->priv->control_type == priv->control_type)
1283 return rp;
1286 return NULL;
1288 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1290 /* called from CPU hotplug notifier, hotplug lock held */
1291 struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1293 int id = topology_logical_die_id(cpu);
1294 struct rapl_package *rp;
1295 struct cpuinfo_x86 *c = &cpu_data(cpu);
1296 int ret;
1298 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1299 if (!rp)
1300 return ERR_PTR(-ENOMEM);
1302 /* add the new package to the list */
1303 rp->id = id;
1304 rp->lead_cpu = cpu;
1305 rp->priv = priv;
1307 if (topology_max_die_per_package() > 1)
1308 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1309 "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
1310 else
1311 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1312 c->phys_proc_id);
1314 /* check if the package contains valid domains */
1315 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1316 ret = -ENODEV;
1317 goto err_free_package;
1319 ret = rapl_package_register_powercap(rp);
1320 if (!ret) {
1321 INIT_LIST_HEAD(&rp->plist);
1322 list_add(&rp->plist, &rapl_packages);
1323 return rp;
1326 err_free_package:
1327 kfree(rp->domains);
1328 kfree(rp);
1329 return ERR_PTR(ret);
1331 EXPORT_SYMBOL_GPL(rapl_add_package);
1333 static void power_limit_state_save(void)
1335 struct rapl_package *rp;
1336 struct rapl_domain *rd;
1337 int nr_pl, ret, i;
1339 get_online_cpus();
1340 list_for_each_entry(rp, &rapl_packages, plist) {
1341 if (!rp->power_zone)
1342 continue;
1343 rd = power_zone_to_rapl_domain(rp->power_zone);
1344 nr_pl = find_nr_power_limit(rd);
1345 for (i = 0; i < nr_pl; i++) {
1346 switch (rd->rpl[i].prim_id) {
1347 case PL1_ENABLE:
1348 ret = rapl_read_data_raw(rd,
1349 POWER_LIMIT1, true,
1350 &rd->rpl[i].last_power_limit);
1351 if (ret)
1352 rd->rpl[i].last_power_limit = 0;
1353 break;
1354 case PL2_ENABLE:
1355 ret = rapl_read_data_raw(rd,
1356 POWER_LIMIT2, true,
1357 &rd->rpl[i].last_power_limit);
1358 if (ret)
1359 rd->rpl[i].last_power_limit = 0;
1360 break;
1364 put_online_cpus();
1367 static void power_limit_state_restore(void)
1369 struct rapl_package *rp;
1370 struct rapl_domain *rd;
1371 int nr_pl, i;
1373 get_online_cpus();
1374 list_for_each_entry(rp, &rapl_packages, plist) {
1375 if (!rp->power_zone)
1376 continue;
1377 rd = power_zone_to_rapl_domain(rp->power_zone);
1378 nr_pl = find_nr_power_limit(rd);
1379 for (i = 0; i < nr_pl; i++) {
1380 switch (rd->rpl[i].prim_id) {
1381 case PL1_ENABLE:
1382 if (rd->rpl[i].last_power_limit)
1383 rapl_write_data_raw(rd, POWER_LIMIT1,
1384 rd->rpl[i].last_power_limit);
1385 break;
1386 case PL2_ENABLE:
1387 if (rd->rpl[i].last_power_limit)
1388 rapl_write_data_raw(rd, POWER_LIMIT2,
1389 rd->rpl[i].last_power_limit);
1390 break;
1394 put_online_cpus();
1397 static int rapl_pm_callback(struct notifier_block *nb,
1398 unsigned long mode, void *_unused)
1400 switch (mode) {
1401 case PM_SUSPEND_PREPARE:
1402 power_limit_state_save();
1403 break;
1404 case PM_POST_SUSPEND:
1405 power_limit_state_restore();
1406 break;
1408 return NOTIFY_OK;
1411 static struct notifier_block rapl_pm_notifier = {
1412 .notifier_call = rapl_pm_callback,
1415 static struct platform_device *rapl_msr_platdev;
1417 static int __init rapl_init(void)
1419 const struct x86_cpu_id *id;
1420 int ret;
1422 id = x86_match_cpu(rapl_ids);
1423 if (!id) {
1424 pr_err("driver does not support CPU family %d model %d\n",
1425 boot_cpu_data.x86, boot_cpu_data.x86_model);
1427 return -ENODEV;
1430 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1432 ret = register_pm_notifier(&rapl_pm_notifier);
1433 if (ret)
1434 return ret;
1436 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1437 if (!rapl_msr_platdev) {
1438 ret = -ENOMEM;
1439 goto end;
1442 ret = platform_device_add(rapl_msr_platdev);
1443 if (ret)
1444 platform_device_put(rapl_msr_platdev);
1446 end:
1447 if (ret)
1448 unregister_pm_notifier(&rapl_pm_notifier);
1450 return ret;
1453 static void __exit rapl_exit(void)
1455 platform_device_unregister(rapl_msr_platdev);
1456 unregister_pm_notifier(&rapl_pm_notifier);
1459 fs_initcall(rapl_init);
1460 module_exit(rapl_exit);
1462 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1463 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1464 MODULE_LICENSE("GPL v2");