split dev_queue
[cor.git] / block / blk-core.c
bloba1e228752083f411f114cd990fa4cad546e3ca45
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 DEFINE_IDA(blk_queue_ida);
64 * For queue allocation
66 struct kmem_cache *blk_requestq_cachep;
69 * Controlling structure to kblockd
71 static struct workqueue_struct *kblockd_workqueue;
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 set_bit(flag, &q->queue_flags);
82 EXPORT_SYMBOL(blk_queue_flag_set);
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 clear_bit(flag, &q->queue_flags);
93 EXPORT_SYMBOL(blk_queue_flag_clear);
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 return test_and_set_bit(flag, &q->queue_flags);
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 void blk_rq_init(struct request_queue *q, struct request *rq)
111 memset(rq, 0, sizeof(*rq));
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
124 EXPORT_SYMBOL(blk_rq_init);
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(ZONE_OPEN),
136 REQ_OP_NAME(ZONE_CLOSE),
137 REQ_OP_NAME(ZONE_FINISH),
138 REQ_OP_NAME(WRITE_SAME),
139 REQ_OP_NAME(WRITE_ZEROES),
140 REQ_OP_NAME(SCSI_IN),
141 REQ_OP_NAME(SCSI_OUT),
142 REQ_OP_NAME(DRV_IN),
143 REQ_OP_NAME(DRV_OUT),
145 #undef REQ_OP_NAME
148 * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 * @op: REQ_OP_XXX.
151 * Description: Centralize block layer function to convert REQ_OP_XXX into
152 * string format. Useful in the debugging and tracing bio or request. For
153 * invalid REQ_OP_XXX it returns string "UNKNOWN".
155 inline const char *blk_op_str(unsigned int op)
157 const char *op_str = "UNKNOWN";
159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 op_str = blk_op_name[op];
162 return op_str;
164 EXPORT_SYMBOL_GPL(blk_op_str);
166 static const struct {
167 int errno;
168 const char *name;
169 } blk_errors[] = {
170 [BLK_STS_OK] = { 0, "" },
171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
183 /* device mapper special case, should not leak out: */
184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
186 /* everything else not covered above: */
187 [BLK_STS_IOERR] = { -EIO, "I/O" },
190 blk_status_t errno_to_blk_status(int errno)
192 int i;
194 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 if (blk_errors[i].errno == errno)
196 return (__force blk_status_t)i;
199 return BLK_STS_IOERR;
201 EXPORT_SYMBOL_GPL(errno_to_blk_status);
203 int blk_status_to_errno(blk_status_t status)
205 int idx = (__force int)status;
207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 return -EIO;
209 return blk_errors[idx].errno;
211 EXPORT_SYMBOL_GPL(blk_status_to_errno);
213 static void print_req_error(struct request *req, blk_status_t status,
214 const char *caller)
216 int idx = (__force int)status;
218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 return;
221 printk_ratelimited(KERN_ERR
222 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 "phys_seg %u prio class %u\n",
224 caller, blk_errors[idx].name,
225 req->rq_disk ? req->rq_disk->disk_name : "?",
226 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 req->cmd_flags & ~REQ_OP_MASK,
228 req->nr_phys_segments,
229 IOPRIO_PRIO_CLASS(req->ioprio));
232 static void req_bio_endio(struct request *rq, struct bio *bio,
233 unsigned int nbytes, blk_status_t error)
235 if (error)
236 bio->bi_status = error;
238 if (unlikely(rq->rq_flags & RQF_QUIET))
239 bio_set_flag(bio, BIO_QUIET);
241 bio_advance(bio, nbytes);
243 /* don't actually finish bio if it's part of flush sequence */
244 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 bio_endio(bio);
248 void blk_dump_rq_flags(struct request *rq, char *msg)
250 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 (unsigned long long) rq->cmd_flags);
254 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
255 (unsigned long long)blk_rq_pos(rq),
256 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
258 rq->bio, rq->biotail, blk_rq_bytes(rq));
260 EXPORT_SYMBOL(blk_dump_rq_flags);
263 * blk_sync_queue - cancel any pending callbacks on a queue
264 * @q: the queue
266 * Description:
267 * The block layer may perform asynchronous callback activity
268 * on a queue, such as calling the unplug function after a timeout.
269 * A block device may call blk_sync_queue to ensure that any
270 * such activity is cancelled, thus allowing it to release resources
271 * that the callbacks might use. The caller must already have made sure
272 * that its ->make_request_fn will not re-add plugging prior to calling
273 * this function.
275 * This function does not cancel any asynchronous activity arising
276 * out of elevator or throttling code. That would require elevator_exit()
277 * and blkcg_exit_queue() to be called with queue lock initialized.
280 void blk_sync_queue(struct request_queue *q)
282 del_timer_sync(&q->timeout);
283 cancel_work_sync(&q->timeout_work);
285 EXPORT_SYMBOL(blk_sync_queue);
288 * blk_set_pm_only - increment pm_only counter
289 * @q: request queue pointer
291 void blk_set_pm_only(struct request_queue *q)
293 atomic_inc(&q->pm_only);
295 EXPORT_SYMBOL_GPL(blk_set_pm_only);
297 void blk_clear_pm_only(struct request_queue *q)
299 int pm_only;
301 pm_only = atomic_dec_return(&q->pm_only);
302 WARN_ON_ONCE(pm_only < 0);
303 if (pm_only == 0)
304 wake_up_all(&q->mq_freeze_wq);
306 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
308 void blk_put_queue(struct request_queue *q)
310 kobject_put(&q->kobj);
312 EXPORT_SYMBOL(blk_put_queue);
314 void blk_set_queue_dying(struct request_queue *q)
316 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
319 * When queue DYING flag is set, we need to block new req
320 * entering queue, so we call blk_freeze_queue_start() to
321 * prevent I/O from crossing blk_queue_enter().
323 blk_freeze_queue_start(q);
325 if (queue_is_mq(q))
326 blk_mq_wake_waiters(q);
328 /* Make blk_queue_enter() reexamine the DYING flag. */
329 wake_up_all(&q->mq_freeze_wq);
331 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
334 * blk_cleanup_queue - shutdown a request queue
335 * @q: request queue to shutdown
337 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338 * put it. All future requests will be failed immediately with -ENODEV.
340 void blk_cleanup_queue(struct request_queue *q)
342 WARN_ON_ONCE(blk_queue_registered(q));
344 /* mark @q DYING, no new request or merges will be allowed afterwards */
345 blk_set_queue_dying(q);
347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
352 * Drain all requests queued before DYING marking. Set DEAD flag to
353 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
354 * after draining finished.
356 blk_freeze_queue(q);
358 rq_qos_exit(q);
360 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
365 /* @q won't process any more request, flush async actions */
366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 blk_sync_queue(q);
369 if (queue_is_mq(q))
370 blk_mq_exit_queue(q);
373 * In theory, request pool of sched_tags belongs to request queue.
374 * However, the current implementation requires tag_set for freeing
375 * requests, so free the pool now.
377 * Queue has become frozen, there can't be any in-queue requests, so
378 * it is safe to free requests now.
380 mutex_lock(&q->sysfs_lock);
381 if (q->elevator)
382 blk_mq_sched_free_requests(q);
383 mutex_unlock(&q->sysfs_lock);
385 percpu_ref_exit(&q->q_usage_counter);
387 /* @q is and will stay empty, shutdown and put */
388 blk_put_queue(q);
390 EXPORT_SYMBOL(blk_cleanup_queue);
392 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
394 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
396 EXPORT_SYMBOL(blk_alloc_queue);
399 * blk_queue_enter() - try to increase q->q_usage_counter
400 * @q: request queue pointer
401 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
403 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
405 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
407 while (true) {
408 bool success = false;
410 rcu_read_lock();
411 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
413 * The code that increments the pm_only counter is
414 * responsible for ensuring that that counter is
415 * globally visible before the queue is unfrozen.
417 if (pm || !blk_queue_pm_only(q)) {
418 success = true;
419 } else {
420 percpu_ref_put(&q->q_usage_counter);
423 rcu_read_unlock();
425 if (success)
426 return 0;
428 if (flags & BLK_MQ_REQ_NOWAIT)
429 return -EBUSY;
432 * read pair of barrier in blk_freeze_queue_start(),
433 * we need to order reading __PERCPU_REF_DEAD flag of
434 * .q_usage_counter and reading .mq_freeze_depth or
435 * queue dying flag, otherwise the following wait may
436 * never return if the two reads are reordered.
438 smp_rmb();
440 wait_event(q->mq_freeze_wq,
441 (!q->mq_freeze_depth &&
442 (pm || (blk_pm_request_resume(q),
443 !blk_queue_pm_only(q)))) ||
444 blk_queue_dying(q));
445 if (blk_queue_dying(q))
446 return -ENODEV;
450 void blk_queue_exit(struct request_queue *q)
452 percpu_ref_put(&q->q_usage_counter);
455 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
457 struct request_queue *q =
458 container_of(ref, struct request_queue, q_usage_counter);
460 wake_up_all(&q->mq_freeze_wq);
463 static void blk_rq_timed_out_timer(struct timer_list *t)
465 struct request_queue *q = from_timer(q, t, timeout);
467 kblockd_schedule_work(&q->timeout_work);
470 static void blk_timeout_work(struct work_struct *work)
475 * blk_alloc_queue_node - allocate a request queue
476 * @gfp_mask: memory allocation flags
477 * @node_id: NUMA node to allocate memory from
479 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 struct request_queue *q;
482 int ret;
484 q = kmem_cache_alloc_node(blk_requestq_cachep,
485 gfp_mask | __GFP_ZERO, node_id);
486 if (!q)
487 return NULL;
489 q->last_merge = NULL;
491 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
492 if (q->id < 0)
493 goto fail_q;
495 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
496 if (ret)
497 goto fail_id;
499 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
500 if (!q->backing_dev_info)
501 goto fail_split;
503 q->stats = blk_alloc_queue_stats();
504 if (!q->stats)
505 goto fail_stats;
507 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
508 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
509 q->backing_dev_info->name = "block";
510 q->node = node_id;
512 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
513 laptop_mode_timer_fn, 0);
514 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
515 INIT_WORK(&q->timeout_work, blk_timeout_work);
516 INIT_LIST_HEAD(&q->icq_list);
517 #ifdef CONFIG_BLK_CGROUP
518 INIT_LIST_HEAD(&q->blkg_list);
519 #endif
521 kobject_init(&q->kobj, &blk_queue_ktype);
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 mutex_init(&q->blk_trace_mutex);
525 #endif
526 mutex_init(&q->sysfs_lock);
527 mutex_init(&q->sysfs_dir_lock);
528 spin_lock_init(&q->queue_lock);
530 init_waitqueue_head(&q->mq_freeze_wq);
531 mutex_init(&q->mq_freeze_lock);
534 * Init percpu_ref in atomic mode so that it's faster to shutdown.
535 * See blk_register_queue() for details.
537 if (percpu_ref_init(&q->q_usage_counter,
538 blk_queue_usage_counter_release,
539 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
540 goto fail_bdi;
542 if (blkcg_init_queue(q))
543 goto fail_ref;
545 return q;
547 fail_ref:
548 percpu_ref_exit(&q->q_usage_counter);
549 fail_bdi:
550 blk_free_queue_stats(q->stats);
551 fail_stats:
552 bdi_put(q->backing_dev_info);
553 fail_split:
554 bioset_exit(&q->bio_split);
555 fail_id:
556 ida_simple_remove(&blk_queue_ida, q->id);
557 fail_q:
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
561 EXPORT_SYMBOL(blk_alloc_queue_node);
563 bool blk_get_queue(struct request_queue *q)
565 if (likely(!blk_queue_dying(q))) {
566 __blk_get_queue(q);
567 return true;
570 return false;
572 EXPORT_SYMBOL(blk_get_queue);
575 * blk_get_request - allocate a request
576 * @q: request queue to allocate a request for
577 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
578 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
580 struct request *blk_get_request(struct request_queue *q, unsigned int op,
581 blk_mq_req_flags_t flags)
583 struct request *req;
585 WARN_ON_ONCE(op & REQ_NOWAIT);
586 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
588 req = blk_mq_alloc_request(q, op, flags);
589 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
590 q->mq_ops->initialize_rq_fn(req);
592 return req;
594 EXPORT_SYMBOL(blk_get_request);
596 void blk_put_request(struct request *req)
598 blk_mq_free_request(req);
600 EXPORT_SYMBOL(blk_put_request);
602 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
603 unsigned int nr_segs)
605 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
607 if (!ll_back_merge_fn(req, bio, nr_segs))
608 return false;
610 trace_block_bio_backmerge(req->q, req, bio);
611 rq_qos_merge(req->q, req, bio);
613 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
614 blk_rq_set_mixed_merge(req);
616 req->biotail->bi_next = bio;
617 req->biotail = bio;
618 req->__data_len += bio->bi_iter.bi_size;
620 blk_account_io_start(req, false);
621 return true;
624 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
625 unsigned int nr_segs)
627 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
629 if (!ll_front_merge_fn(req, bio, nr_segs))
630 return false;
632 trace_block_bio_frontmerge(req->q, req, bio);
633 rq_qos_merge(req->q, req, bio);
635 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
636 blk_rq_set_mixed_merge(req);
638 bio->bi_next = req->bio;
639 req->bio = bio;
641 req->__sector = bio->bi_iter.bi_sector;
642 req->__data_len += bio->bi_iter.bi_size;
644 blk_account_io_start(req, false);
645 return true;
648 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
649 struct bio *bio)
651 unsigned short segments = blk_rq_nr_discard_segments(req);
653 if (segments >= queue_max_discard_segments(q))
654 goto no_merge;
655 if (blk_rq_sectors(req) + bio_sectors(bio) >
656 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
657 goto no_merge;
659 rq_qos_merge(q, req, bio);
661 req->biotail->bi_next = bio;
662 req->biotail = bio;
663 req->__data_len += bio->bi_iter.bi_size;
664 req->nr_phys_segments = segments + 1;
666 blk_account_io_start(req, false);
667 return true;
668 no_merge:
669 req_set_nomerge(q, req);
670 return false;
674 * blk_attempt_plug_merge - try to merge with %current's plugged list
675 * @q: request_queue new bio is being queued at
676 * @bio: new bio being queued
677 * @nr_segs: number of segments in @bio
678 * @same_queue_rq: pointer to &struct request that gets filled in when
679 * another request associated with @q is found on the plug list
680 * (optional, may be %NULL)
682 * Determine whether @bio being queued on @q can be merged with a request
683 * on %current's plugged list. Returns %true if merge was successful,
684 * otherwise %false.
686 * Plugging coalesces IOs from the same issuer for the same purpose without
687 * going through @q->queue_lock. As such it's more of an issuing mechanism
688 * than scheduling, and the request, while may have elvpriv data, is not
689 * added on the elevator at this point. In addition, we don't have
690 * reliable access to the elevator outside queue lock. Only check basic
691 * merging parameters without querying the elevator.
693 * Caller must ensure !blk_queue_nomerges(q) beforehand.
695 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
696 unsigned int nr_segs, struct request **same_queue_rq)
698 struct blk_plug *plug;
699 struct request *rq;
700 struct list_head *plug_list;
702 plug = blk_mq_plug(q, bio);
703 if (!plug)
704 return false;
706 plug_list = &plug->mq_list;
708 list_for_each_entry_reverse(rq, plug_list, queuelist) {
709 bool merged = false;
711 if (rq->q == q && same_queue_rq) {
713 * Only blk-mq multiple hardware queues case checks the
714 * rq in the same queue, there should be only one such
715 * rq in a queue
717 *same_queue_rq = rq;
720 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
721 continue;
723 switch (blk_try_merge(rq, bio)) {
724 case ELEVATOR_BACK_MERGE:
725 merged = bio_attempt_back_merge(rq, bio, nr_segs);
726 break;
727 case ELEVATOR_FRONT_MERGE:
728 merged = bio_attempt_front_merge(rq, bio, nr_segs);
729 break;
730 case ELEVATOR_DISCARD_MERGE:
731 merged = bio_attempt_discard_merge(q, rq, bio);
732 break;
733 default:
734 break;
737 if (merged)
738 return true;
741 return false;
744 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
746 char b[BDEVNAME_SIZE];
748 printk(KERN_INFO "attempt to access beyond end of device\n");
749 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
750 bio_devname(bio, b), bio->bi_opf,
751 (unsigned long long)bio_end_sector(bio),
752 (long long)maxsector);
755 #ifdef CONFIG_FAIL_MAKE_REQUEST
757 static DECLARE_FAULT_ATTR(fail_make_request);
759 static int __init setup_fail_make_request(char *str)
761 return setup_fault_attr(&fail_make_request, str);
763 __setup("fail_make_request=", setup_fail_make_request);
765 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
767 return part->make_it_fail && should_fail(&fail_make_request, bytes);
770 static int __init fail_make_request_debugfs(void)
772 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
773 NULL, &fail_make_request);
775 return PTR_ERR_OR_ZERO(dir);
778 late_initcall(fail_make_request_debugfs);
780 #else /* CONFIG_FAIL_MAKE_REQUEST */
782 static inline bool should_fail_request(struct hd_struct *part,
783 unsigned int bytes)
785 return false;
788 #endif /* CONFIG_FAIL_MAKE_REQUEST */
790 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
792 const int op = bio_op(bio);
794 if (part->policy && op_is_write(op)) {
795 char b[BDEVNAME_SIZE];
797 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
798 return false;
800 WARN_ONCE(1,
801 "generic_make_request: Trying to write "
802 "to read-only block-device %s (partno %d)\n",
803 bio_devname(bio, b), part->partno);
804 /* Older lvm-tools actually trigger this */
805 return false;
808 return false;
811 static noinline int should_fail_bio(struct bio *bio)
813 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
814 return -EIO;
815 return 0;
817 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
820 * Check whether this bio extends beyond the end of the device or partition.
821 * This may well happen - the kernel calls bread() without checking the size of
822 * the device, e.g., when mounting a file system.
824 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
826 unsigned int nr_sectors = bio_sectors(bio);
828 if (nr_sectors && maxsector &&
829 (nr_sectors > maxsector ||
830 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
831 handle_bad_sector(bio, maxsector);
832 return -EIO;
834 return 0;
838 * Remap block n of partition p to block n+start(p) of the disk.
840 static inline int blk_partition_remap(struct bio *bio)
842 struct hd_struct *p;
843 int ret = -EIO;
845 rcu_read_lock();
846 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
847 if (unlikely(!p))
848 goto out;
849 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
850 goto out;
851 if (unlikely(bio_check_ro(bio, p)))
852 goto out;
854 if (bio_sectors(bio)) {
855 if (bio_check_eod(bio, part_nr_sects_read(p)))
856 goto out;
857 bio->bi_iter.bi_sector += p->start_sect;
858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 bio->bi_iter.bi_sector - p->start_sect);
861 bio->bi_partno = 0;
862 ret = 0;
863 out:
864 rcu_read_unlock();
865 return ret;
868 static noinline_for_stack bool
869 generic_make_request_checks(struct bio *bio)
871 struct request_queue *q;
872 int nr_sectors = bio_sectors(bio);
873 blk_status_t status = BLK_STS_IOERR;
874 char b[BDEVNAME_SIZE];
876 might_sleep();
878 q = bio->bi_disk->queue;
879 if (unlikely(!q)) {
880 printk(KERN_ERR
881 "generic_make_request: Trying to access "
882 "nonexistent block-device %s (%Lu)\n",
883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
884 goto end_io;
888 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
889 * if queue is not a request based queue.
891 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
892 goto not_supported;
894 if (should_fail_bio(bio))
895 goto end_io;
897 if (bio->bi_partno) {
898 if (unlikely(blk_partition_remap(bio)))
899 goto end_io;
900 } else {
901 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
902 goto end_io;
903 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
904 goto end_io;
908 * Filter flush bio's early so that make_request based
909 * drivers without flush support don't have to worry
910 * about them.
912 if (op_is_flush(bio->bi_opf) &&
913 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
914 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
915 if (!nr_sectors) {
916 status = BLK_STS_OK;
917 goto end_io;
921 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
922 bio->bi_opf &= ~REQ_HIPRI;
924 switch (bio_op(bio)) {
925 case REQ_OP_DISCARD:
926 if (!blk_queue_discard(q))
927 goto not_supported;
928 break;
929 case REQ_OP_SECURE_ERASE:
930 if (!blk_queue_secure_erase(q))
931 goto not_supported;
932 break;
933 case REQ_OP_WRITE_SAME:
934 if (!q->limits.max_write_same_sectors)
935 goto not_supported;
936 break;
937 case REQ_OP_ZONE_RESET:
938 case REQ_OP_ZONE_OPEN:
939 case REQ_OP_ZONE_CLOSE:
940 case REQ_OP_ZONE_FINISH:
941 if (!blk_queue_is_zoned(q))
942 goto not_supported;
943 break;
944 case REQ_OP_ZONE_RESET_ALL:
945 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
946 goto not_supported;
947 break;
948 case REQ_OP_WRITE_ZEROES:
949 if (!q->limits.max_write_zeroes_sectors)
950 goto not_supported;
951 break;
952 default:
953 break;
957 * Various block parts want %current->io_context and lazy ioc
958 * allocation ends up trading a lot of pain for a small amount of
959 * memory. Just allocate it upfront. This may fail and block
960 * layer knows how to live with it.
962 create_io_context(GFP_ATOMIC, q->node);
964 if (!blkcg_bio_issue_check(q, bio))
965 return false;
967 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
968 trace_block_bio_queue(q, bio);
969 /* Now that enqueuing has been traced, we need to trace
970 * completion as well.
972 bio_set_flag(bio, BIO_TRACE_COMPLETION);
974 return true;
976 not_supported:
977 status = BLK_STS_NOTSUPP;
978 end_io:
979 bio->bi_status = status;
980 bio_endio(bio);
981 return false;
985 * generic_make_request - hand a buffer to its device driver for I/O
986 * @bio: The bio describing the location in memory and on the device.
988 * generic_make_request() is used to make I/O requests of block
989 * devices. It is passed a &struct bio, which describes the I/O that needs
990 * to be done.
992 * generic_make_request() does not return any status. The
993 * success/failure status of the request, along with notification of
994 * completion, is delivered asynchronously through the bio->bi_end_io
995 * function described (one day) else where.
997 * The caller of generic_make_request must make sure that bi_io_vec
998 * are set to describe the memory buffer, and that bi_dev and bi_sector are
999 * set to describe the device address, and the
1000 * bi_end_io and optionally bi_private are set to describe how
1001 * completion notification should be signaled.
1003 * generic_make_request and the drivers it calls may use bi_next if this
1004 * bio happens to be merged with someone else, and may resubmit the bio to
1005 * a lower device by calling into generic_make_request recursively, which
1006 * means the bio should NOT be touched after the call to ->make_request_fn.
1008 blk_qc_t generic_make_request(struct bio *bio)
1011 * bio_list_on_stack[0] contains bios submitted by the current
1012 * make_request_fn.
1013 * bio_list_on_stack[1] contains bios that were submitted before
1014 * the current make_request_fn, but that haven't been processed
1015 * yet.
1017 struct bio_list bio_list_on_stack[2];
1018 blk_qc_t ret = BLK_QC_T_NONE;
1020 if (!generic_make_request_checks(bio))
1021 goto out;
1024 * We only want one ->make_request_fn to be active at a time, else
1025 * stack usage with stacked devices could be a problem. So use
1026 * current->bio_list to keep a list of requests submited by a
1027 * make_request_fn function. current->bio_list is also used as a
1028 * flag to say if generic_make_request is currently active in this
1029 * task or not. If it is NULL, then no make_request is active. If
1030 * it is non-NULL, then a make_request is active, and new requests
1031 * should be added at the tail
1033 if (current->bio_list) {
1034 bio_list_add(&current->bio_list[0], bio);
1035 goto out;
1038 /* following loop may be a bit non-obvious, and so deserves some
1039 * explanation.
1040 * Before entering the loop, bio->bi_next is NULL (as all callers
1041 * ensure that) so we have a list with a single bio.
1042 * We pretend that we have just taken it off a longer list, so
1043 * we assign bio_list to a pointer to the bio_list_on_stack,
1044 * thus initialising the bio_list of new bios to be
1045 * added. ->make_request() may indeed add some more bios
1046 * through a recursive call to generic_make_request. If it
1047 * did, we find a non-NULL value in bio_list and re-enter the loop
1048 * from the top. In this case we really did just take the bio
1049 * of the top of the list (no pretending) and so remove it from
1050 * bio_list, and call into ->make_request() again.
1052 BUG_ON(bio->bi_next);
1053 bio_list_init(&bio_list_on_stack[0]);
1054 current->bio_list = bio_list_on_stack;
1055 do {
1056 struct request_queue *q = bio->bi_disk->queue;
1057 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1058 BLK_MQ_REQ_NOWAIT : 0;
1060 if (likely(blk_queue_enter(q, flags) == 0)) {
1061 struct bio_list lower, same;
1063 /* Create a fresh bio_list for all subordinate requests */
1064 bio_list_on_stack[1] = bio_list_on_stack[0];
1065 bio_list_init(&bio_list_on_stack[0]);
1066 ret = q->make_request_fn(q, bio);
1068 blk_queue_exit(q);
1070 /* sort new bios into those for a lower level
1071 * and those for the same level
1073 bio_list_init(&lower);
1074 bio_list_init(&same);
1075 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1076 if (q == bio->bi_disk->queue)
1077 bio_list_add(&same, bio);
1078 else
1079 bio_list_add(&lower, bio);
1080 /* now assemble so we handle the lowest level first */
1081 bio_list_merge(&bio_list_on_stack[0], &lower);
1082 bio_list_merge(&bio_list_on_stack[0], &same);
1083 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1084 } else {
1085 if (unlikely(!blk_queue_dying(q) &&
1086 (bio->bi_opf & REQ_NOWAIT)))
1087 bio_wouldblock_error(bio);
1088 else
1089 bio_io_error(bio);
1091 bio = bio_list_pop(&bio_list_on_stack[0]);
1092 } while (bio);
1093 current->bio_list = NULL; /* deactivate */
1095 out:
1096 return ret;
1098 EXPORT_SYMBOL(generic_make_request);
1101 * direct_make_request - hand a buffer directly to its device driver for I/O
1102 * @bio: The bio describing the location in memory and on the device.
1104 * This function behaves like generic_make_request(), but does not protect
1105 * against recursion. Must only be used if the called driver is known
1106 * to not call generic_make_request (or direct_make_request) again from
1107 * its make_request function. (Calling direct_make_request again from
1108 * a workqueue is perfectly fine as that doesn't recurse).
1110 blk_qc_t direct_make_request(struct bio *bio)
1112 struct request_queue *q = bio->bi_disk->queue;
1113 bool nowait = bio->bi_opf & REQ_NOWAIT;
1114 blk_qc_t ret;
1116 if (!generic_make_request_checks(bio))
1117 return BLK_QC_T_NONE;
1119 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1120 if (nowait && !blk_queue_dying(q))
1121 bio->bi_status = BLK_STS_AGAIN;
1122 else
1123 bio->bi_status = BLK_STS_IOERR;
1124 bio_endio(bio);
1125 return BLK_QC_T_NONE;
1128 ret = q->make_request_fn(q, bio);
1129 blk_queue_exit(q);
1130 return ret;
1132 EXPORT_SYMBOL_GPL(direct_make_request);
1135 * submit_bio - submit a bio to the block device layer for I/O
1136 * @bio: The &struct bio which describes the I/O
1138 * submit_bio() is very similar in purpose to generic_make_request(), and
1139 * uses that function to do most of the work. Both are fairly rough
1140 * interfaces; @bio must be presetup and ready for I/O.
1143 blk_qc_t submit_bio(struct bio *bio)
1145 bool workingset_read = false;
1146 unsigned long pflags;
1147 blk_qc_t ret;
1149 if (blkcg_punt_bio_submit(bio))
1150 return BLK_QC_T_NONE;
1153 * If it's a regular read/write or a barrier with data attached,
1154 * go through the normal accounting stuff before submission.
1156 if (bio_has_data(bio)) {
1157 unsigned int count;
1159 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1160 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1161 else
1162 count = bio_sectors(bio);
1164 if (op_is_write(bio_op(bio))) {
1165 count_vm_events(PGPGOUT, count);
1166 } else {
1167 if (bio_flagged(bio, BIO_WORKINGSET))
1168 workingset_read = true;
1169 task_io_account_read(bio->bi_iter.bi_size);
1170 count_vm_events(PGPGIN, count);
1173 if (unlikely(block_dump)) {
1174 char b[BDEVNAME_SIZE];
1175 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1176 current->comm, task_pid_nr(current),
1177 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1178 (unsigned long long)bio->bi_iter.bi_sector,
1179 bio_devname(bio, b), count);
1184 * If we're reading data that is part of the userspace
1185 * workingset, count submission time as memory stall. When the
1186 * device is congested, or the submitting cgroup IO-throttled,
1187 * submission can be a significant part of overall IO time.
1189 if (workingset_read)
1190 psi_memstall_enter(&pflags);
1192 ret = generic_make_request(bio);
1194 if (workingset_read)
1195 psi_memstall_leave(&pflags);
1197 return ret;
1199 EXPORT_SYMBOL(submit_bio);
1202 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1203 * for new the queue limits
1204 * @q: the queue
1205 * @rq: the request being checked
1207 * Description:
1208 * @rq may have been made based on weaker limitations of upper-level queues
1209 * in request stacking drivers, and it may violate the limitation of @q.
1210 * Since the block layer and the underlying device driver trust @rq
1211 * after it is inserted to @q, it should be checked against @q before
1212 * the insertion using this generic function.
1214 * Request stacking drivers like request-based dm may change the queue
1215 * limits when retrying requests on other queues. Those requests need
1216 * to be checked against the new queue limits again during dispatch.
1218 static int blk_cloned_rq_check_limits(struct request_queue *q,
1219 struct request *rq)
1221 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1222 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1223 __func__, blk_rq_sectors(rq),
1224 blk_queue_get_max_sectors(q, req_op(rq)));
1225 return -EIO;
1229 * queue's settings related to segment counting like q->bounce_pfn
1230 * may differ from that of other stacking queues.
1231 * Recalculate it to check the request correctly on this queue's
1232 * limitation.
1234 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1235 if (rq->nr_phys_segments > queue_max_segments(q)) {
1236 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1237 __func__, rq->nr_phys_segments, queue_max_segments(q));
1238 return -EIO;
1241 return 0;
1245 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1246 * @q: the queue to submit the request
1247 * @rq: the request being queued
1249 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1251 if (blk_cloned_rq_check_limits(q, rq))
1252 return BLK_STS_IOERR;
1254 if (rq->rq_disk &&
1255 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1256 return BLK_STS_IOERR;
1258 if (blk_queue_io_stat(q))
1259 blk_account_io_start(rq, true);
1262 * Since we have a scheduler attached on the top device,
1263 * bypass a potential scheduler on the bottom device for
1264 * insert.
1266 return blk_mq_request_issue_directly(rq, true);
1268 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1271 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1272 * @rq: request to examine
1274 * Description:
1275 * A request could be merge of IOs which require different failure
1276 * handling. This function determines the number of bytes which
1277 * can be failed from the beginning of the request without
1278 * crossing into area which need to be retried further.
1280 * Return:
1281 * The number of bytes to fail.
1283 unsigned int blk_rq_err_bytes(const struct request *rq)
1285 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1286 unsigned int bytes = 0;
1287 struct bio *bio;
1289 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1290 return blk_rq_bytes(rq);
1293 * Currently the only 'mixing' which can happen is between
1294 * different fastfail types. We can safely fail portions
1295 * which have all the failfast bits that the first one has -
1296 * the ones which are at least as eager to fail as the first
1297 * one.
1299 for (bio = rq->bio; bio; bio = bio->bi_next) {
1300 if ((bio->bi_opf & ff) != ff)
1301 break;
1302 bytes += bio->bi_iter.bi_size;
1305 /* this could lead to infinite loop */
1306 BUG_ON(blk_rq_bytes(rq) && !bytes);
1307 return bytes;
1309 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1311 void blk_account_io_completion(struct request *req, unsigned int bytes)
1313 if (blk_do_io_stat(req)) {
1314 const int sgrp = op_stat_group(req_op(req));
1315 struct hd_struct *part;
1317 part_stat_lock();
1318 part = req->part;
1319 part_stat_add(part, sectors[sgrp], bytes >> 9);
1320 part_stat_unlock();
1324 void blk_account_io_done(struct request *req, u64 now)
1327 * Account IO completion. flush_rq isn't accounted as a
1328 * normal IO on queueing nor completion. Accounting the
1329 * containing request is enough.
1331 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1332 const int sgrp = op_stat_group(req_op(req));
1333 struct hd_struct *part;
1335 part_stat_lock();
1336 part = req->part;
1338 update_io_ticks(part, jiffies);
1339 part_stat_inc(part, ios[sgrp]);
1340 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1341 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1342 part_dec_in_flight(req->q, part, rq_data_dir(req));
1344 hd_struct_put(part);
1345 part_stat_unlock();
1349 void blk_account_io_start(struct request *rq, bool new_io)
1351 struct hd_struct *part;
1352 int rw = rq_data_dir(rq);
1354 if (!blk_do_io_stat(rq))
1355 return;
1357 part_stat_lock();
1359 if (!new_io) {
1360 part = rq->part;
1361 part_stat_inc(part, merges[rw]);
1362 } else {
1363 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1364 if (!hd_struct_try_get(part)) {
1366 * The partition is already being removed,
1367 * the request will be accounted on the disk only
1369 * We take a reference on disk->part0 although that
1370 * partition will never be deleted, so we can treat
1371 * it as any other partition.
1373 part = &rq->rq_disk->part0;
1374 hd_struct_get(part);
1376 part_inc_in_flight(rq->q, part, rw);
1377 rq->part = part;
1380 update_io_ticks(part, jiffies);
1382 part_stat_unlock();
1386 * Steal bios from a request and add them to a bio list.
1387 * The request must not have been partially completed before.
1389 void blk_steal_bios(struct bio_list *list, struct request *rq)
1391 if (rq->bio) {
1392 if (list->tail)
1393 list->tail->bi_next = rq->bio;
1394 else
1395 list->head = rq->bio;
1396 list->tail = rq->biotail;
1398 rq->bio = NULL;
1399 rq->biotail = NULL;
1402 rq->__data_len = 0;
1404 EXPORT_SYMBOL_GPL(blk_steal_bios);
1407 * blk_update_request - Special helper function for request stacking drivers
1408 * @req: the request being processed
1409 * @error: block status code
1410 * @nr_bytes: number of bytes to complete @req
1412 * Description:
1413 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1414 * the request structure even if @req doesn't have leftover.
1415 * If @req has leftover, sets it up for the next range of segments.
1417 * This special helper function is only for request stacking drivers
1418 * (e.g. request-based dm) so that they can handle partial completion.
1419 * Actual device drivers should use blk_mq_end_request instead.
1421 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1422 * %false return from this function.
1424 * Note:
1425 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1426 * blk_rq_bytes() and in blk_update_request().
1428 * Return:
1429 * %false - this request doesn't have any more data
1430 * %true - this request has more data
1432 bool blk_update_request(struct request *req, blk_status_t error,
1433 unsigned int nr_bytes)
1435 int total_bytes;
1437 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1439 if (!req->bio)
1440 return false;
1442 #ifdef CONFIG_BLK_DEV_INTEGRITY
1443 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1444 error == BLK_STS_OK)
1445 req->q->integrity.profile->complete_fn(req, nr_bytes);
1446 #endif
1448 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1449 !(req->rq_flags & RQF_QUIET)))
1450 print_req_error(req, error, __func__);
1452 blk_account_io_completion(req, nr_bytes);
1454 total_bytes = 0;
1455 while (req->bio) {
1456 struct bio *bio = req->bio;
1457 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1459 if (bio_bytes == bio->bi_iter.bi_size)
1460 req->bio = bio->bi_next;
1462 /* Completion has already been traced */
1463 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1464 req_bio_endio(req, bio, bio_bytes, error);
1466 total_bytes += bio_bytes;
1467 nr_bytes -= bio_bytes;
1469 if (!nr_bytes)
1470 break;
1474 * completely done
1476 if (!req->bio) {
1478 * Reset counters so that the request stacking driver
1479 * can find how many bytes remain in the request
1480 * later.
1482 req->__data_len = 0;
1483 return false;
1486 req->__data_len -= total_bytes;
1488 /* update sector only for requests with clear definition of sector */
1489 if (!blk_rq_is_passthrough(req))
1490 req->__sector += total_bytes >> 9;
1492 /* mixed attributes always follow the first bio */
1493 if (req->rq_flags & RQF_MIXED_MERGE) {
1494 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1495 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1498 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1500 * If total number of sectors is less than the first segment
1501 * size, something has gone terribly wrong.
1503 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1504 blk_dump_rq_flags(req, "request botched");
1505 req->__data_len = blk_rq_cur_bytes(req);
1508 /* recalculate the number of segments */
1509 req->nr_phys_segments = blk_recalc_rq_segments(req);
1512 return true;
1514 EXPORT_SYMBOL_GPL(blk_update_request);
1516 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1518 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1519 * @rq: the request to be flushed
1521 * Description:
1522 * Flush all pages in @rq.
1524 void rq_flush_dcache_pages(struct request *rq)
1526 struct req_iterator iter;
1527 struct bio_vec bvec;
1529 rq_for_each_segment(bvec, rq, iter)
1530 flush_dcache_page(bvec.bv_page);
1532 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1533 #endif
1536 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1537 * @q : the queue of the device being checked
1539 * Description:
1540 * Check if underlying low-level drivers of a device are busy.
1541 * If the drivers want to export their busy state, they must set own
1542 * exporting function using blk_queue_lld_busy() first.
1544 * Basically, this function is used only by request stacking drivers
1545 * to stop dispatching requests to underlying devices when underlying
1546 * devices are busy. This behavior helps more I/O merging on the queue
1547 * of the request stacking driver and prevents I/O throughput regression
1548 * on burst I/O load.
1550 * Return:
1551 * 0 - Not busy (The request stacking driver should dispatch request)
1552 * 1 - Busy (The request stacking driver should stop dispatching request)
1554 int blk_lld_busy(struct request_queue *q)
1556 if (queue_is_mq(q) && q->mq_ops->busy)
1557 return q->mq_ops->busy(q);
1559 return 0;
1561 EXPORT_SYMBOL_GPL(blk_lld_busy);
1564 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1565 * @rq: the clone request to be cleaned up
1567 * Description:
1568 * Free all bios in @rq for a cloned request.
1570 void blk_rq_unprep_clone(struct request *rq)
1572 struct bio *bio;
1574 while ((bio = rq->bio) != NULL) {
1575 rq->bio = bio->bi_next;
1577 bio_put(bio);
1580 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1583 * Copy attributes of the original request to the clone request.
1584 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1586 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1588 dst->__sector = blk_rq_pos(src);
1589 dst->__data_len = blk_rq_bytes(src);
1590 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1591 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1592 dst->special_vec = src->special_vec;
1594 dst->nr_phys_segments = src->nr_phys_segments;
1595 dst->ioprio = src->ioprio;
1596 dst->extra_len = src->extra_len;
1600 * blk_rq_prep_clone - Helper function to setup clone request
1601 * @rq: the request to be setup
1602 * @rq_src: original request to be cloned
1603 * @bs: bio_set that bios for clone are allocated from
1604 * @gfp_mask: memory allocation mask for bio
1605 * @bio_ctr: setup function to be called for each clone bio.
1606 * Returns %0 for success, non %0 for failure.
1607 * @data: private data to be passed to @bio_ctr
1609 * Description:
1610 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1611 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1612 * are not copied, and copying such parts is the caller's responsibility.
1613 * Also, pages which the original bios are pointing to are not copied
1614 * and the cloned bios just point same pages.
1615 * So cloned bios must be completed before original bios, which means
1616 * the caller must complete @rq before @rq_src.
1618 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1619 struct bio_set *bs, gfp_t gfp_mask,
1620 int (*bio_ctr)(struct bio *, struct bio *, void *),
1621 void *data)
1623 struct bio *bio, *bio_src;
1625 if (!bs)
1626 bs = &fs_bio_set;
1628 __rq_for_each_bio(bio_src, rq_src) {
1629 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1630 if (!bio)
1631 goto free_and_out;
1633 if (bio_ctr && bio_ctr(bio, bio_src, data))
1634 goto free_and_out;
1636 if (rq->bio) {
1637 rq->biotail->bi_next = bio;
1638 rq->biotail = bio;
1639 } else
1640 rq->bio = rq->biotail = bio;
1643 __blk_rq_prep_clone(rq, rq_src);
1645 return 0;
1647 free_and_out:
1648 if (bio)
1649 bio_put(bio);
1650 blk_rq_unprep_clone(rq);
1652 return -ENOMEM;
1654 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1656 int kblockd_schedule_work(struct work_struct *work)
1658 return queue_work(kblockd_workqueue, work);
1660 EXPORT_SYMBOL(kblockd_schedule_work);
1662 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1664 return queue_work_on(cpu, kblockd_workqueue, work);
1666 EXPORT_SYMBOL(kblockd_schedule_work_on);
1668 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1669 unsigned long delay)
1671 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1673 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1676 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1677 * @plug: The &struct blk_plug that needs to be initialized
1679 * Description:
1680 * blk_start_plug() indicates to the block layer an intent by the caller
1681 * to submit multiple I/O requests in a batch. The block layer may use
1682 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1683 * is called. However, the block layer may choose to submit requests
1684 * before a call to blk_finish_plug() if the number of queued I/Os
1685 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1686 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1687 * the task schedules (see below).
1689 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1690 * pending I/O should the task end up blocking between blk_start_plug() and
1691 * blk_finish_plug(). This is important from a performance perspective, but
1692 * also ensures that we don't deadlock. For instance, if the task is blocking
1693 * for a memory allocation, memory reclaim could end up wanting to free a
1694 * page belonging to that request that is currently residing in our private
1695 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1696 * this kind of deadlock.
1698 void blk_start_plug(struct blk_plug *plug)
1700 struct task_struct *tsk = current;
1703 * If this is a nested plug, don't actually assign it.
1705 if (tsk->plug)
1706 return;
1708 INIT_LIST_HEAD(&plug->mq_list);
1709 INIT_LIST_HEAD(&plug->cb_list);
1710 plug->rq_count = 0;
1711 plug->multiple_queues = false;
1714 * Store ordering should not be needed here, since a potential
1715 * preempt will imply a full memory barrier
1717 tsk->plug = plug;
1719 EXPORT_SYMBOL(blk_start_plug);
1721 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1723 LIST_HEAD(callbacks);
1725 while (!list_empty(&plug->cb_list)) {
1726 list_splice_init(&plug->cb_list, &callbacks);
1728 while (!list_empty(&callbacks)) {
1729 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1730 struct blk_plug_cb,
1731 list);
1732 list_del(&cb->list);
1733 cb->callback(cb, from_schedule);
1738 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1739 int size)
1741 struct blk_plug *plug = current->plug;
1742 struct blk_plug_cb *cb;
1744 if (!plug)
1745 return NULL;
1747 list_for_each_entry(cb, &plug->cb_list, list)
1748 if (cb->callback == unplug && cb->data == data)
1749 return cb;
1751 /* Not currently on the callback list */
1752 BUG_ON(size < sizeof(*cb));
1753 cb = kzalloc(size, GFP_ATOMIC);
1754 if (cb) {
1755 cb->data = data;
1756 cb->callback = unplug;
1757 list_add(&cb->list, &plug->cb_list);
1759 return cb;
1761 EXPORT_SYMBOL(blk_check_plugged);
1763 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1765 flush_plug_callbacks(plug, from_schedule);
1767 if (!list_empty(&plug->mq_list))
1768 blk_mq_flush_plug_list(plug, from_schedule);
1772 * blk_finish_plug - mark the end of a batch of submitted I/O
1773 * @plug: The &struct blk_plug passed to blk_start_plug()
1775 * Description:
1776 * Indicate that a batch of I/O submissions is complete. This function
1777 * must be paired with an initial call to blk_start_plug(). The intent
1778 * is to allow the block layer to optimize I/O submission. See the
1779 * documentation for blk_start_plug() for more information.
1781 void blk_finish_plug(struct blk_plug *plug)
1783 if (plug != current->plug)
1784 return;
1785 blk_flush_plug_list(plug, false);
1787 current->plug = NULL;
1789 EXPORT_SYMBOL(blk_finish_plug);
1791 int __init blk_dev_init(void)
1793 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1794 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 FIELD_SIZEOF(struct request, cmd_flags));
1796 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1797 FIELD_SIZEOF(struct bio, bi_opf));
1799 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1800 kblockd_workqueue = alloc_workqueue("kblockd",
1801 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1802 if (!kblockd_workqueue)
1803 panic("Failed to create kblockd\n");
1805 blk_requestq_cachep = kmem_cache_create("request_queue",
1806 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1808 #ifdef CONFIG_DEBUG_FS
1809 blk_debugfs_root = debugfs_create_dir("block", NULL);
1810 #endif
1812 return 0;