changes in cor for 5.4 compatibility
[cor.git] / block / blk-mq.c
blob323c9cb28066bcc385ea77d43efcb89b36a55820
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
30 #include <trace/events/block.h>
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 int ddir, sectors, bucket;
50 ddir = rq_data_dir(rq);
51 sectors = blk_rq_stats_sectors(rq);
53 bucket = ddir + 2 * ilog2(sectors);
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 return bucket;
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
71 blk_mq_sched_has_work(hctx);
75 * Mark this ctx as having pending work in this hardware queue
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
80 const int bit = ctx->index_hw[hctx->type];
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
89 const int bit = ctx->index_hw[hctx->type];
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
94 struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int inflight[2];
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 struct request *rq, void *priv,
101 bool reserved)
103 struct mq_inflight *mi = priv;
105 if (rq->part == mi->part)
106 mi->inflight[rq_data_dir(rq)]++;
108 return true;
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 struct mq_inflight mi = { .part = part };
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 return mi.inflight[0] + mi.inflight[1];
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 unsigned int inflight[2])
123 struct mq_inflight mi = { .part = part };
125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 inflight[0] = mi.inflight[0];
127 inflight[1] = mi.inflight[1];
130 void blk_freeze_queue_start(struct request_queue *q)
132 mutex_lock(&q->mq_freeze_lock);
133 if (++q->mq_freeze_depth == 1) {
134 percpu_ref_kill(&q->q_usage_counter);
135 mutex_unlock(&q->mq_freeze_lock);
136 if (queue_is_mq(q))
137 blk_mq_run_hw_queues(q, false);
138 } else {
139 mutex_unlock(&q->mq_freeze_lock);
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 unsigned long timeout)
153 return wait_event_timeout(q->mq_freeze_wq,
154 percpu_ref_is_zero(&q->q_usage_counter),
155 timeout);
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160 * Guarantee no request is in use, so we can change any data structure of
161 * the queue afterward.
163 void blk_freeze_queue(struct request_queue *q)
166 * In the !blk_mq case we are only calling this to kill the
167 * q_usage_counter, otherwise this increases the freeze depth
168 * and waits for it to return to zero. For this reason there is
169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 * exported to drivers as the only user for unfreeze is blk_mq.
172 blk_freeze_queue_start(q);
173 blk_mq_freeze_queue_wait(q);
176 void blk_mq_freeze_queue(struct request_queue *q)
179 * ...just an alias to keep freeze and unfreeze actions balanced
180 * in the blk_mq_* namespace
182 blk_freeze_queue(q);
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186 void blk_mq_unfreeze_queue(struct request_queue *q)
188 mutex_lock(&q->mq_freeze_lock);
189 q->mq_freeze_depth--;
190 WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 if (!q->mq_freeze_depth) {
192 percpu_ref_resurrect(&q->q_usage_counter);
193 wake_up_all(&q->mq_freeze_wq);
195 mutex_unlock(&q->mq_freeze_lock);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211 * @q: request queue.
213 * Note: this function does not prevent that the struct request end_io()
214 * callback function is invoked. Once this function is returned, we make
215 * sure no dispatch can happen until the queue is unquiesced via
216 * blk_mq_unquiesce_queue().
218 void blk_mq_quiesce_queue(struct request_queue *q)
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222 bool rcu = false;
224 blk_mq_quiesce_queue_nowait(q);
226 queue_for_each_hw_ctx(q, hctx, i) {
227 if (hctx->flags & BLK_MQ_F_BLOCKING)
228 synchronize_srcu(hctx->srcu);
229 else
230 rcu = true;
232 if (rcu)
233 synchronize_rcu();
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239 * @q: request queue.
241 * This function recovers queue into the state before quiescing
242 * which is done by blk_mq_quiesce_queue.
244 void blk_mq_unquiesce_queue(struct request_queue *q)
246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 void blk_mq_wake_waiters(struct request_queue *q)
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
264 * Only need start/end time stamping if we have iostat or
265 * blk stats enabled, or using an IO scheduler.
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 unsigned int tag, unsigned int op, u64 alloc_time_ns)
275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 struct request *rq = tags->static_rqs[tag];
277 req_flags_t rq_flags = 0;
279 if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 rq->tag = -1;
281 rq->internal_tag = tag;
282 } else {
283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 rq_flags = RQF_MQ_INFLIGHT;
285 atomic_inc(&data->hctx->nr_active);
287 rq->tag = tag;
288 rq->internal_tag = -1;
289 data->hctx->tags->rqs[rq->tag] = rq;
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->mq_hctx = data->hctx;
296 rq->rq_flags = rq_flags;
297 rq->cmd_flags = op;
298 if (data->flags & BLK_MQ_REQ_PREEMPT)
299 rq->rq_flags |= RQF_PREEMPT;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 INIT_LIST_HEAD(&rq->queuelist);
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 if (blk_mq_need_time_stamp(rq))
311 rq->start_time_ns = ktime_get_ns();
312 else
313 rq->start_time_ns = 0;
314 rq->io_start_time_ns = 0;
315 rq->stats_sectors = 0;
316 rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319 #endif
320 /* tag was already set */
321 rq->extra_len = 0;
322 WRITE_ONCE(rq->deadline, 0);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 refcount_set(&rq->ref, 1);
331 return rq;
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio,
336 struct blk_mq_alloc_data *data)
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
340 unsigned int tag;
341 bool clear_ctx_on_error = false;
342 u64 alloc_time_ns = 0;
344 blk_queue_enter_live(q);
346 /* alloc_time includes depth and tag waits */
347 if (blk_queue_rq_alloc_time(q))
348 alloc_time_ns = ktime_get_ns();
350 data->q = q;
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 clear_ctx_on_error = true;
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 data->ctx);
358 if (data->cmd_flags & REQ_NOWAIT)
359 data->flags |= BLK_MQ_REQ_NOWAIT;
361 if (e) {
362 data->flags |= BLK_MQ_REQ_INTERNAL;
365 * Flush requests are special and go directly to the
366 * dispatch list. Don't include reserved tags in the
367 * limiting, as it isn't useful.
369 if (!op_is_flush(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 } else {
374 blk_mq_tag_busy(data->hctx);
377 tag = blk_mq_get_tag(data);
378 if (tag == BLK_MQ_TAG_FAIL) {
379 if (clear_ctx_on_error)
380 data->ctx = NULL;
381 blk_queue_exit(q);
382 return NULL;
385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 if (!op_is_flush(data->cmd_flags)) {
387 rq->elv.icq = NULL;
388 if (e && e->type->ops.prepare_request) {
389 if (e->type->icq_cache)
390 blk_mq_sched_assign_ioc(rq);
392 e->type->ops.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
396 data->hctx->queued++;
397 return rq;
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 blk_mq_req_flags_t flags)
403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 struct request *rq;
405 int ret;
407 ret = blk_queue_enter(q, flags);
408 if (ret)
409 return ERR_PTR(ret);
411 rq = blk_mq_get_request(q, NULL, &alloc_data);
412 blk_queue_exit(q);
414 if (!rq)
415 return ERR_PTR(-EWOULDBLOCK);
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
422 EXPORT_SYMBOL(blk_mq_alloc_request);
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 struct request *rq;
429 unsigned int cpu;
430 int ret;
433 * If the tag allocator sleeps we could get an allocation for a
434 * different hardware context. No need to complicate the low level
435 * allocator for this for the rare use case of a command tied to
436 * a specific queue.
438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 return ERR_PTR(-EINVAL);
441 if (hctx_idx >= q->nr_hw_queues)
442 return ERR_PTR(-EIO);
444 ret = blk_queue_enter(q, flags);
445 if (ret)
446 return ERR_PTR(ret);
449 * Check if the hardware context is actually mapped to anything.
450 * If not tell the caller that it should skip this queue.
452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 blk_queue_exit(q);
455 return ERR_PTR(-EXDEV);
457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 rq = blk_mq_get_request(q, NULL, &alloc_data);
461 blk_queue_exit(q);
463 if (!rq)
464 return ERR_PTR(-EWOULDBLOCK);
466 return rq;
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 static void __blk_mq_free_request(struct request *rq)
472 struct request_queue *q = rq->q;
473 struct blk_mq_ctx *ctx = rq->mq_ctx;
474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 const int sched_tag = rq->internal_tag;
477 blk_pm_mark_last_busy(rq);
478 rq->mq_hctx = NULL;
479 if (rq->tag != -1)
480 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
481 if (sched_tag != -1)
482 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
487 void blk_mq_free_request(struct request *rq)
489 struct request_queue *q = rq->q;
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 if (rq->rq_flags & RQF_ELVPRIV) {
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
503 ctx->rq_completed[rq_is_sync(rq)]++;
504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 atomic_dec(&hctx->nr_active);
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
510 rq_qos_done(q, rq);
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
520 u64 now = 0;
522 if (blk_mq_need_time_stamp(rq))
523 now = ktime_get_ns();
525 if (rq->rq_flags & RQF_STATS) {
526 blk_mq_poll_stats_start(rq->q);
527 blk_stat_add(rq, now);
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq, now);
533 blk_account_io_done(rq, now);
535 if (rq->end_io) {
536 rq_qos_done(rq->q, rq);
537 rq->end_io(rq, error);
538 } else {
539 blk_mq_free_request(rq);
542 EXPORT_SYMBOL(__blk_mq_end_request);
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
546 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 BUG();
548 __blk_mq_end_request(rq, error);
550 EXPORT_SYMBOL(blk_mq_end_request);
552 static void __blk_mq_complete_request_remote(void *data)
554 struct request *rq = data;
555 struct request_queue *q = rq->q;
557 q->mq_ops->complete(rq);
560 static void __blk_mq_complete_request(struct request *rq)
562 struct blk_mq_ctx *ctx = rq->mq_ctx;
563 struct request_queue *q = rq->q;
564 bool shared = false;
565 int cpu;
567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
569 * Most of single queue controllers, there is only one irq vector
570 * for handling IO completion, and the only irq's affinity is set
571 * as all possible CPUs. On most of ARCHs, this affinity means the
572 * irq is handled on one specific CPU.
574 * So complete IO reqeust in softirq context in case of single queue
575 * for not degrading IO performance by irqsoff latency.
577 if (q->nr_hw_queues == 1) {
578 __blk_complete_request(rq);
579 return;
583 * For a polled request, always complete locallly, it's pointless
584 * to redirect the completion.
586 if ((rq->cmd_flags & REQ_HIPRI) ||
587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 q->mq_ops->complete(rq);
589 return;
592 cpu = get_cpu();
593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 shared = cpus_share_cache(cpu, ctx->cpu);
596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 rq->csd.func = __blk_mq_complete_request_remote;
598 rq->csd.info = rq;
599 rq->csd.flags = 0;
600 smp_call_function_single_async(ctx->cpu, &rq->csd);
601 } else {
602 q->mq_ops->complete(rq);
604 put_cpu();
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 __releases(hctx->srcu)
610 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 rcu_read_unlock();
612 else
613 srcu_read_unlock(hctx->srcu, srcu_idx);
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 __acquires(hctx->srcu)
619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 /* shut up gcc false positive */
621 *srcu_idx = 0;
622 rcu_read_lock();
623 } else
624 *srcu_idx = srcu_read_lock(hctx->srcu);
628 * blk_mq_complete_request - end I/O on a request
629 * @rq: the request being processed
631 * Description:
632 * Ends all I/O on a request. It does not handle partial completions.
633 * The actual completion happens out-of-order, through a IPI handler.
635 bool blk_mq_complete_request(struct request *rq)
637 if (unlikely(blk_should_fake_timeout(rq->q)))
638 return false;
639 __blk_mq_complete_request(rq);
640 return true;
642 EXPORT_SYMBOL(blk_mq_complete_request);
644 void blk_mq_start_request(struct request *rq)
646 struct request_queue *q = rq->q;
648 trace_block_rq_issue(q, rq);
650 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
651 rq->io_start_time_ns = ktime_get_ns();
652 rq->stats_sectors = blk_rq_sectors(rq);
653 rq->rq_flags |= RQF_STATS;
654 rq_qos_issue(q, rq);
657 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
659 blk_add_timer(rq);
660 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
662 if (q->dma_drain_size && blk_rq_bytes(rq)) {
664 * Make sure space for the drain appears. We know we can do
665 * this because max_hw_segments has been adjusted to be one
666 * fewer than the device can handle.
668 rq->nr_phys_segments++;
671 #ifdef CONFIG_BLK_DEV_INTEGRITY
672 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
673 q->integrity.profile->prepare_fn(rq);
674 #endif
676 EXPORT_SYMBOL(blk_mq_start_request);
678 static void __blk_mq_requeue_request(struct request *rq)
680 struct request_queue *q = rq->q;
682 blk_mq_put_driver_tag(rq);
684 trace_block_rq_requeue(q, rq);
685 rq_qos_requeue(q, rq);
687 if (blk_mq_request_started(rq)) {
688 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
689 rq->rq_flags &= ~RQF_TIMED_OUT;
690 if (q->dma_drain_size && blk_rq_bytes(rq))
691 rq->nr_phys_segments--;
695 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
697 __blk_mq_requeue_request(rq);
699 /* this request will be re-inserted to io scheduler queue */
700 blk_mq_sched_requeue_request(rq);
702 BUG_ON(!list_empty(&rq->queuelist));
703 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
705 EXPORT_SYMBOL(blk_mq_requeue_request);
707 static void blk_mq_requeue_work(struct work_struct *work)
709 struct request_queue *q =
710 container_of(work, struct request_queue, requeue_work.work);
711 LIST_HEAD(rq_list);
712 struct request *rq, *next;
714 spin_lock_irq(&q->requeue_lock);
715 list_splice_init(&q->requeue_list, &rq_list);
716 spin_unlock_irq(&q->requeue_lock);
718 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
719 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
720 continue;
722 rq->rq_flags &= ~RQF_SOFTBARRIER;
723 list_del_init(&rq->queuelist);
725 * If RQF_DONTPREP, rq has contained some driver specific
726 * data, so insert it to hctx dispatch list to avoid any
727 * merge.
729 if (rq->rq_flags & RQF_DONTPREP)
730 blk_mq_request_bypass_insert(rq, false);
731 else
732 blk_mq_sched_insert_request(rq, true, false, false);
735 while (!list_empty(&rq_list)) {
736 rq = list_entry(rq_list.next, struct request, queuelist);
737 list_del_init(&rq->queuelist);
738 blk_mq_sched_insert_request(rq, false, false, false);
741 blk_mq_run_hw_queues(q, false);
744 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
745 bool kick_requeue_list)
747 struct request_queue *q = rq->q;
748 unsigned long flags;
751 * We abuse this flag that is otherwise used by the I/O scheduler to
752 * request head insertion from the workqueue.
754 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
756 spin_lock_irqsave(&q->requeue_lock, flags);
757 if (at_head) {
758 rq->rq_flags |= RQF_SOFTBARRIER;
759 list_add(&rq->queuelist, &q->requeue_list);
760 } else {
761 list_add_tail(&rq->queuelist, &q->requeue_list);
763 spin_unlock_irqrestore(&q->requeue_lock, flags);
765 if (kick_requeue_list)
766 blk_mq_kick_requeue_list(q);
769 void blk_mq_kick_requeue_list(struct request_queue *q)
771 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
773 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
775 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
776 unsigned long msecs)
778 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
779 msecs_to_jiffies(msecs));
781 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
783 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
785 if (tag < tags->nr_tags) {
786 prefetch(tags->rqs[tag]);
787 return tags->rqs[tag];
790 return NULL;
792 EXPORT_SYMBOL(blk_mq_tag_to_rq);
794 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
795 void *priv, bool reserved)
798 * If we find a request that is inflight and the queue matches,
799 * we know the queue is busy. Return false to stop the iteration.
801 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
802 bool *busy = priv;
804 *busy = true;
805 return false;
808 return true;
811 bool blk_mq_queue_inflight(struct request_queue *q)
813 bool busy = false;
815 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
816 return busy;
818 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
820 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
822 req->rq_flags |= RQF_TIMED_OUT;
823 if (req->q->mq_ops->timeout) {
824 enum blk_eh_timer_return ret;
826 ret = req->q->mq_ops->timeout(req, reserved);
827 if (ret == BLK_EH_DONE)
828 return;
829 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
832 blk_add_timer(req);
835 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
837 unsigned long deadline;
839 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
840 return false;
841 if (rq->rq_flags & RQF_TIMED_OUT)
842 return false;
844 deadline = READ_ONCE(rq->deadline);
845 if (time_after_eq(jiffies, deadline))
846 return true;
848 if (*next == 0)
849 *next = deadline;
850 else if (time_after(*next, deadline))
851 *next = deadline;
852 return false;
855 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
856 struct request *rq, void *priv, bool reserved)
858 unsigned long *next = priv;
861 * Just do a quick check if it is expired before locking the request in
862 * so we're not unnecessarilly synchronizing across CPUs.
864 if (!blk_mq_req_expired(rq, next))
865 return true;
868 * We have reason to believe the request may be expired. Take a
869 * reference on the request to lock this request lifetime into its
870 * currently allocated context to prevent it from being reallocated in
871 * the event the completion by-passes this timeout handler.
873 * If the reference was already released, then the driver beat the
874 * timeout handler to posting a natural completion.
876 if (!refcount_inc_not_zero(&rq->ref))
877 return true;
880 * The request is now locked and cannot be reallocated underneath the
881 * timeout handler's processing. Re-verify this exact request is truly
882 * expired; if it is not expired, then the request was completed and
883 * reallocated as a new request.
885 if (blk_mq_req_expired(rq, next))
886 blk_mq_rq_timed_out(rq, reserved);
888 if (is_flush_rq(rq, hctx))
889 rq->end_io(rq, 0);
890 else if (refcount_dec_and_test(&rq->ref))
891 __blk_mq_free_request(rq);
893 return true;
896 static void blk_mq_timeout_work(struct work_struct *work)
898 struct request_queue *q =
899 container_of(work, struct request_queue, timeout_work);
900 unsigned long next = 0;
901 struct blk_mq_hw_ctx *hctx;
902 int i;
904 /* A deadlock might occur if a request is stuck requiring a
905 * timeout at the same time a queue freeze is waiting
906 * completion, since the timeout code would not be able to
907 * acquire the queue reference here.
909 * That's why we don't use blk_queue_enter here; instead, we use
910 * percpu_ref_tryget directly, because we need to be able to
911 * obtain a reference even in the short window between the queue
912 * starting to freeze, by dropping the first reference in
913 * blk_freeze_queue_start, and the moment the last request is
914 * consumed, marked by the instant q_usage_counter reaches
915 * zero.
917 if (!percpu_ref_tryget(&q->q_usage_counter))
918 return;
920 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
922 if (next != 0) {
923 mod_timer(&q->timeout, next);
924 } else {
926 * Request timeouts are handled as a forward rolling timer. If
927 * we end up here it means that no requests are pending and
928 * also that no request has been pending for a while. Mark
929 * each hctx as idle.
931 queue_for_each_hw_ctx(q, hctx, i) {
932 /* the hctx may be unmapped, so check it here */
933 if (blk_mq_hw_queue_mapped(hctx))
934 blk_mq_tag_idle(hctx);
937 blk_queue_exit(q);
940 struct flush_busy_ctx_data {
941 struct blk_mq_hw_ctx *hctx;
942 struct list_head *list;
945 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
947 struct flush_busy_ctx_data *flush_data = data;
948 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
949 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
950 enum hctx_type type = hctx->type;
952 spin_lock(&ctx->lock);
953 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
954 sbitmap_clear_bit(sb, bitnr);
955 spin_unlock(&ctx->lock);
956 return true;
960 * Process software queues that have been marked busy, splicing them
961 * to the for-dispatch
963 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
965 struct flush_busy_ctx_data data = {
966 .hctx = hctx,
967 .list = list,
970 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
972 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
974 struct dispatch_rq_data {
975 struct blk_mq_hw_ctx *hctx;
976 struct request *rq;
979 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
980 void *data)
982 struct dispatch_rq_data *dispatch_data = data;
983 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
984 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
985 enum hctx_type type = hctx->type;
987 spin_lock(&ctx->lock);
988 if (!list_empty(&ctx->rq_lists[type])) {
989 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
990 list_del_init(&dispatch_data->rq->queuelist);
991 if (list_empty(&ctx->rq_lists[type]))
992 sbitmap_clear_bit(sb, bitnr);
994 spin_unlock(&ctx->lock);
996 return !dispatch_data->rq;
999 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1000 struct blk_mq_ctx *start)
1002 unsigned off = start ? start->index_hw[hctx->type] : 0;
1003 struct dispatch_rq_data data = {
1004 .hctx = hctx,
1005 .rq = NULL,
1008 __sbitmap_for_each_set(&hctx->ctx_map, off,
1009 dispatch_rq_from_ctx, &data);
1011 return data.rq;
1014 static inline unsigned int queued_to_index(unsigned int queued)
1016 if (!queued)
1017 return 0;
1019 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1022 bool blk_mq_get_driver_tag(struct request *rq)
1024 struct blk_mq_alloc_data data = {
1025 .q = rq->q,
1026 .hctx = rq->mq_hctx,
1027 .flags = BLK_MQ_REQ_NOWAIT,
1028 .cmd_flags = rq->cmd_flags,
1030 bool shared;
1032 if (rq->tag != -1)
1033 return true;
1035 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1036 data.flags |= BLK_MQ_REQ_RESERVED;
1038 shared = blk_mq_tag_busy(data.hctx);
1039 rq->tag = blk_mq_get_tag(&data);
1040 if (rq->tag >= 0) {
1041 if (shared) {
1042 rq->rq_flags |= RQF_MQ_INFLIGHT;
1043 atomic_inc(&data.hctx->nr_active);
1045 data.hctx->tags->rqs[rq->tag] = rq;
1048 return rq->tag != -1;
1051 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1052 int flags, void *key)
1054 struct blk_mq_hw_ctx *hctx;
1056 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1058 spin_lock(&hctx->dispatch_wait_lock);
1059 if (!list_empty(&wait->entry)) {
1060 struct sbitmap_queue *sbq;
1062 list_del_init(&wait->entry);
1063 sbq = &hctx->tags->bitmap_tags;
1064 atomic_dec(&sbq->ws_active);
1066 spin_unlock(&hctx->dispatch_wait_lock);
1068 blk_mq_run_hw_queue(hctx, true);
1069 return 1;
1073 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1074 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1075 * restart. For both cases, take care to check the condition again after
1076 * marking us as waiting.
1078 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1079 struct request *rq)
1081 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1082 struct wait_queue_head *wq;
1083 wait_queue_entry_t *wait;
1084 bool ret;
1086 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1087 blk_mq_sched_mark_restart_hctx(hctx);
1090 * It's possible that a tag was freed in the window between the
1091 * allocation failure and adding the hardware queue to the wait
1092 * queue.
1094 * Don't clear RESTART here, someone else could have set it.
1095 * At most this will cost an extra queue run.
1097 return blk_mq_get_driver_tag(rq);
1100 wait = &hctx->dispatch_wait;
1101 if (!list_empty_careful(&wait->entry))
1102 return false;
1104 wq = &bt_wait_ptr(sbq, hctx)->wait;
1106 spin_lock_irq(&wq->lock);
1107 spin_lock(&hctx->dispatch_wait_lock);
1108 if (!list_empty(&wait->entry)) {
1109 spin_unlock(&hctx->dispatch_wait_lock);
1110 spin_unlock_irq(&wq->lock);
1111 return false;
1114 atomic_inc(&sbq->ws_active);
1115 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1116 __add_wait_queue(wq, wait);
1119 * It's possible that a tag was freed in the window between the
1120 * allocation failure and adding the hardware queue to the wait
1121 * queue.
1123 ret = blk_mq_get_driver_tag(rq);
1124 if (!ret) {
1125 spin_unlock(&hctx->dispatch_wait_lock);
1126 spin_unlock_irq(&wq->lock);
1127 return false;
1131 * We got a tag, remove ourselves from the wait queue to ensure
1132 * someone else gets the wakeup.
1134 list_del_init(&wait->entry);
1135 atomic_dec(&sbq->ws_active);
1136 spin_unlock(&hctx->dispatch_wait_lock);
1137 spin_unlock_irq(&wq->lock);
1139 return true;
1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1143 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1145 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1146 * - EWMA is one simple way to compute running average value
1147 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1148 * - take 4 as factor for avoiding to get too small(0) result, and this
1149 * factor doesn't matter because EWMA decreases exponentially
1151 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1153 unsigned int ewma;
1155 if (hctx->queue->elevator)
1156 return;
1158 ewma = hctx->dispatch_busy;
1160 if (!ewma && !busy)
1161 return;
1163 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1164 if (busy)
1165 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1166 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1168 hctx->dispatch_busy = ewma;
1171 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1174 * Returns true if we did some work AND can potentially do more.
1176 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1177 bool got_budget)
1179 struct blk_mq_hw_ctx *hctx;
1180 struct request *rq, *nxt;
1181 bool no_tag = false;
1182 int errors, queued;
1183 blk_status_t ret = BLK_STS_OK;
1185 if (list_empty(list))
1186 return false;
1188 WARN_ON(!list_is_singular(list) && got_budget);
1191 * Now process all the entries, sending them to the driver.
1193 errors = queued = 0;
1194 do {
1195 struct blk_mq_queue_data bd;
1197 rq = list_first_entry(list, struct request, queuelist);
1199 hctx = rq->mq_hctx;
1200 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1201 break;
1203 if (!blk_mq_get_driver_tag(rq)) {
1205 * The initial allocation attempt failed, so we need to
1206 * rerun the hardware queue when a tag is freed. The
1207 * waitqueue takes care of that. If the queue is run
1208 * before we add this entry back on the dispatch list,
1209 * we'll re-run it below.
1211 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1212 blk_mq_put_dispatch_budget(hctx);
1214 * For non-shared tags, the RESTART check
1215 * will suffice.
1217 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1218 no_tag = true;
1219 break;
1223 list_del_init(&rq->queuelist);
1225 bd.rq = rq;
1228 * Flag last if we have no more requests, or if we have more
1229 * but can't assign a driver tag to it.
1231 if (list_empty(list))
1232 bd.last = true;
1233 else {
1234 nxt = list_first_entry(list, struct request, queuelist);
1235 bd.last = !blk_mq_get_driver_tag(nxt);
1238 ret = q->mq_ops->queue_rq(hctx, &bd);
1239 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241 * If an I/O scheduler has been configured and we got a
1242 * driver tag for the next request already, free it
1243 * again.
1245 if (!list_empty(list)) {
1246 nxt = list_first_entry(list, struct request, queuelist);
1247 blk_mq_put_driver_tag(nxt);
1249 list_add(&rq->queuelist, list);
1250 __blk_mq_requeue_request(rq);
1251 break;
1254 if (unlikely(ret != BLK_STS_OK)) {
1255 errors++;
1256 blk_mq_end_request(rq, BLK_STS_IOERR);
1257 continue;
1260 queued++;
1261 } while (!list_empty(list));
1263 hctx->dispatched[queued_to_index(queued)]++;
1266 * Any items that need requeuing? Stuff them into hctx->dispatch,
1267 * that is where we will continue on next queue run.
1269 if (!list_empty(list)) {
1270 bool needs_restart;
1273 * If we didn't flush the entire list, we could have told
1274 * the driver there was more coming, but that turned out to
1275 * be a lie.
1277 if (q->mq_ops->commit_rqs)
1278 q->mq_ops->commit_rqs(hctx);
1280 spin_lock(&hctx->lock);
1281 list_splice_init(list, &hctx->dispatch);
1282 spin_unlock(&hctx->lock);
1285 * If SCHED_RESTART was set by the caller of this function and
1286 * it is no longer set that means that it was cleared by another
1287 * thread and hence that a queue rerun is needed.
1289 * If 'no_tag' is set, that means that we failed getting
1290 * a driver tag with an I/O scheduler attached. If our dispatch
1291 * waitqueue is no longer active, ensure that we run the queue
1292 * AFTER adding our entries back to the list.
1294 * If no I/O scheduler has been configured it is possible that
1295 * the hardware queue got stopped and restarted before requests
1296 * were pushed back onto the dispatch list. Rerun the queue to
1297 * avoid starvation. Notes:
1298 * - blk_mq_run_hw_queue() checks whether or not a queue has
1299 * been stopped before rerunning a queue.
1300 * - Some but not all block drivers stop a queue before
1301 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302 * and dm-rq.
1304 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1305 * bit is set, run queue after a delay to avoid IO stalls
1306 * that could otherwise occur if the queue is idle.
1308 needs_restart = blk_mq_sched_needs_restart(hctx);
1309 if (!needs_restart ||
1310 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311 blk_mq_run_hw_queue(hctx, true);
1312 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1313 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1315 blk_mq_update_dispatch_busy(hctx, true);
1316 return false;
1317 } else
1318 blk_mq_update_dispatch_busy(hctx, false);
1321 * If the host/device is unable to accept more work, inform the
1322 * caller of that.
1324 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1325 return false;
1327 return (queued + errors) != 0;
1330 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1332 int srcu_idx;
1335 * We should be running this queue from one of the CPUs that
1336 * are mapped to it.
1338 * There are at least two related races now between setting
1339 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1340 * __blk_mq_run_hw_queue():
1342 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1343 * but later it becomes online, then this warning is harmless
1344 * at all
1346 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1347 * but later it becomes offline, then the warning can't be
1348 * triggered, and we depend on blk-mq timeout handler to
1349 * handle dispatched requests to this hctx
1351 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1352 cpu_online(hctx->next_cpu)) {
1353 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1354 raw_smp_processor_id(),
1355 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1356 dump_stack();
1360 * We can't run the queue inline with ints disabled. Ensure that
1361 * we catch bad users of this early.
1363 WARN_ON_ONCE(in_interrupt());
1365 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1367 hctx_lock(hctx, &srcu_idx);
1368 blk_mq_sched_dispatch_requests(hctx);
1369 hctx_unlock(hctx, srcu_idx);
1372 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1374 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1376 if (cpu >= nr_cpu_ids)
1377 cpu = cpumask_first(hctx->cpumask);
1378 return cpu;
1382 * It'd be great if the workqueue API had a way to pass
1383 * in a mask and had some smarts for more clever placement.
1384 * For now we just round-robin here, switching for every
1385 * BLK_MQ_CPU_WORK_BATCH queued items.
1387 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1389 bool tried = false;
1390 int next_cpu = hctx->next_cpu;
1392 if (hctx->queue->nr_hw_queues == 1)
1393 return WORK_CPU_UNBOUND;
1395 if (--hctx->next_cpu_batch <= 0) {
1396 select_cpu:
1397 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1398 cpu_online_mask);
1399 if (next_cpu >= nr_cpu_ids)
1400 next_cpu = blk_mq_first_mapped_cpu(hctx);
1401 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1405 * Do unbound schedule if we can't find a online CPU for this hctx,
1406 * and it should only happen in the path of handling CPU DEAD.
1408 if (!cpu_online(next_cpu)) {
1409 if (!tried) {
1410 tried = true;
1411 goto select_cpu;
1415 * Make sure to re-select CPU next time once after CPUs
1416 * in hctx->cpumask become online again.
1418 hctx->next_cpu = next_cpu;
1419 hctx->next_cpu_batch = 1;
1420 return WORK_CPU_UNBOUND;
1423 hctx->next_cpu = next_cpu;
1424 return next_cpu;
1427 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1428 unsigned long msecs)
1430 if (unlikely(blk_mq_hctx_stopped(hctx)))
1431 return;
1433 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1434 int cpu = get_cpu();
1435 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1436 __blk_mq_run_hw_queue(hctx);
1437 put_cpu();
1438 return;
1441 put_cpu();
1444 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1445 msecs_to_jiffies(msecs));
1448 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1450 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1452 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1454 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1456 int srcu_idx;
1457 bool need_run;
1460 * When queue is quiesced, we may be switching io scheduler, or
1461 * updating nr_hw_queues, or other things, and we can't run queue
1462 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1464 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1465 * quiesced.
1467 hctx_lock(hctx, &srcu_idx);
1468 need_run = !blk_queue_quiesced(hctx->queue) &&
1469 blk_mq_hctx_has_pending(hctx);
1470 hctx_unlock(hctx, srcu_idx);
1472 if (need_run)
1473 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1475 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1477 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1479 struct blk_mq_hw_ctx *hctx;
1480 int i;
1482 queue_for_each_hw_ctx(q, hctx, i) {
1483 if (blk_mq_hctx_stopped(hctx))
1484 continue;
1486 blk_mq_run_hw_queue(hctx, async);
1489 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1492 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1493 * @q: request queue.
1495 * The caller is responsible for serializing this function against
1496 * blk_mq_{start,stop}_hw_queue().
1498 bool blk_mq_queue_stopped(struct request_queue *q)
1500 struct blk_mq_hw_ctx *hctx;
1501 int i;
1503 queue_for_each_hw_ctx(q, hctx, i)
1504 if (blk_mq_hctx_stopped(hctx))
1505 return true;
1507 return false;
1509 EXPORT_SYMBOL(blk_mq_queue_stopped);
1512 * This function is often used for pausing .queue_rq() by driver when
1513 * there isn't enough resource or some conditions aren't satisfied, and
1514 * BLK_STS_RESOURCE is usually returned.
1516 * We do not guarantee that dispatch can be drained or blocked
1517 * after blk_mq_stop_hw_queue() returns. Please use
1518 * blk_mq_quiesce_queue() for that requirement.
1520 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1522 cancel_delayed_work(&hctx->run_work);
1524 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1526 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1529 * This function is often used for pausing .queue_rq() by driver when
1530 * there isn't enough resource or some conditions aren't satisfied, and
1531 * BLK_STS_RESOURCE is usually returned.
1533 * We do not guarantee that dispatch can be drained or blocked
1534 * after blk_mq_stop_hw_queues() returns. Please use
1535 * blk_mq_quiesce_queue() for that requirement.
1537 void blk_mq_stop_hw_queues(struct request_queue *q)
1539 struct blk_mq_hw_ctx *hctx;
1540 int i;
1542 queue_for_each_hw_ctx(q, hctx, i)
1543 blk_mq_stop_hw_queue(hctx);
1545 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1547 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1549 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1551 blk_mq_run_hw_queue(hctx, false);
1553 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1555 void blk_mq_start_hw_queues(struct request_queue *q)
1557 struct blk_mq_hw_ctx *hctx;
1558 int i;
1560 queue_for_each_hw_ctx(q, hctx, i)
1561 blk_mq_start_hw_queue(hctx);
1563 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1565 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1567 if (!blk_mq_hctx_stopped(hctx))
1568 return;
1570 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1571 blk_mq_run_hw_queue(hctx, async);
1573 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1575 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1577 struct blk_mq_hw_ctx *hctx;
1578 int i;
1580 queue_for_each_hw_ctx(q, hctx, i)
1581 blk_mq_start_stopped_hw_queue(hctx, async);
1583 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1585 static void blk_mq_run_work_fn(struct work_struct *work)
1587 struct blk_mq_hw_ctx *hctx;
1589 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1592 * If we are stopped, don't run the queue.
1594 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1595 return;
1597 __blk_mq_run_hw_queue(hctx);
1600 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1601 struct request *rq,
1602 bool at_head)
1604 struct blk_mq_ctx *ctx = rq->mq_ctx;
1605 enum hctx_type type = hctx->type;
1607 lockdep_assert_held(&ctx->lock);
1609 trace_block_rq_insert(hctx->queue, rq);
1611 if (at_head)
1612 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1613 else
1614 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1617 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1618 bool at_head)
1620 struct blk_mq_ctx *ctx = rq->mq_ctx;
1622 lockdep_assert_held(&ctx->lock);
1624 __blk_mq_insert_req_list(hctx, rq, at_head);
1625 blk_mq_hctx_mark_pending(hctx, ctx);
1629 * Should only be used carefully, when the caller knows we want to
1630 * bypass a potential IO scheduler on the target device.
1632 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1634 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1636 spin_lock(&hctx->lock);
1637 list_add_tail(&rq->queuelist, &hctx->dispatch);
1638 spin_unlock(&hctx->lock);
1640 if (run_queue)
1641 blk_mq_run_hw_queue(hctx, false);
1644 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1645 struct list_head *list)
1648 struct request *rq;
1649 enum hctx_type type = hctx->type;
1652 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1653 * offline now
1655 list_for_each_entry(rq, list, queuelist) {
1656 BUG_ON(rq->mq_ctx != ctx);
1657 trace_block_rq_insert(hctx->queue, rq);
1660 spin_lock(&ctx->lock);
1661 list_splice_tail_init(list, &ctx->rq_lists[type]);
1662 blk_mq_hctx_mark_pending(hctx, ctx);
1663 spin_unlock(&ctx->lock);
1666 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1668 struct request *rqa = container_of(a, struct request, queuelist);
1669 struct request *rqb = container_of(b, struct request, queuelist);
1671 if (rqa->mq_ctx < rqb->mq_ctx)
1672 return -1;
1673 else if (rqa->mq_ctx > rqb->mq_ctx)
1674 return 1;
1675 else if (rqa->mq_hctx < rqb->mq_hctx)
1676 return -1;
1677 else if (rqa->mq_hctx > rqb->mq_hctx)
1678 return 1;
1680 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1683 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1685 struct blk_mq_hw_ctx *this_hctx;
1686 struct blk_mq_ctx *this_ctx;
1687 struct request_queue *this_q;
1688 struct request *rq;
1689 LIST_HEAD(list);
1690 LIST_HEAD(rq_list);
1691 unsigned int depth;
1693 list_splice_init(&plug->mq_list, &list);
1695 if (plug->rq_count > 2 && plug->multiple_queues)
1696 list_sort(NULL, &list, plug_rq_cmp);
1698 plug->rq_count = 0;
1700 this_q = NULL;
1701 this_hctx = NULL;
1702 this_ctx = NULL;
1703 depth = 0;
1705 while (!list_empty(&list)) {
1706 rq = list_entry_rq(list.next);
1707 list_del_init(&rq->queuelist);
1708 BUG_ON(!rq->q);
1709 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1710 if (this_hctx) {
1711 trace_block_unplug(this_q, depth, !from_schedule);
1712 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1713 &rq_list,
1714 from_schedule);
1717 this_q = rq->q;
1718 this_ctx = rq->mq_ctx;
1719 this_hctx = rq->mq_hctx;
1720 depth = 0;
1723 depth++;
1724 list_add_tail(&rq->queuelist, &rq_list);
1728 * If 'this_hctx' is set, we know we have entries to complete
1729 * on 'rq_list'. Do those.
1731 if (this_hctx) {
1732 trace_block_unplug(this_q, depth, !from_schedule);
1733 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1734 from_schedule);
1738 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1739 unsigned int nr_segs)
1741 if (bio->bi_opf & REQ_RAHEAD)
1742 rq->cmd_flags |= REQ_FAILFAST_MASK;
1744 rq->__sector = bio->bi_iter.bi_sector;
1745 rq->write_hint = bio->bi_write_hint;
1746 blk_rq_bio_prep(rq, bio, nr_segs);
1748 blk_account_io_start(rq, true);
1751 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1752 struct request *rq,
1753 blk_qc_t *cookie, bool last)
1755 struct request_queue *q = rq->q;
1756 struct blk_mq_queue_data bd = {
1757 .rq = rq,
1758 .last = last,
1760 blk_qc_t new_cookie;
1761 blk_status_t ret;
1763 new_cookie = request_to_qc_t(hctx, rq);
1766 * For OK queue, we are done. For error, caller may kill it.
1767 * Any other error (busy), just add it to our list as we
1768 * previously would have done.
1770 ret = q->mq_ops->queue_rq(hctx, &bd);
1771 switch (ret) {
1772 case BLK_STS_OK:
1773 blk_mq_update_dispatch_busy(hctx, false);
1774 *cookie = new_cookie;
1775 break;
1776 case BLK_STS_RESOURCE:
1777 case BLK_STS_DEV_RESOURCE:
1778 blk_mq_update_dispatch_busy(hctx, true);
1779 __blk_mq_requeue_request(rq);
1780 break;
1781 default:
1782 blk_mq_update_dispatch_busy(hctx, false);
1783 *cookie = BLK_QC_T_NONE;
1784 break;
1787 return ret;
1790 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1791 struct request *rq,
1792 blk_qc_t *cookie,
1793 bool bypass_insert, bool last)
1795 struct request_queue *q = rq->q;
1796 bool run_queue = true;
1799 * RCU or SRCU read lock is needed before checking quiesced flag.
1801 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1802 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1803 * and avoid driver to try to dispatch again.
1805 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1806 run_queue = false;
1807 bypass_insert = false;
1808 goto insert;
1811 if (q->elevator && !bypass_insert)
1812 goto insert;
1814 if (!blk_mq_get_dispatch_budget(hctx))
1815 goto insert;
1817 if (!blk_mq_get_driver_tag(rq)) {
1818 blk_mq_put_dispatch_budget(hctx);
1819 goto insert;
1822 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1823 insert:
1824 if (bypass_insert)
1825 return BLK_STS_RESOURCE;
1827 blk_mq_request_bypass_insert(rq, run_queue);
1828 return BLK_STS_OK;
1831 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1832 struct request *rq, blk_qc_t *cookie)
1834 blk_status_t ret;
1835 int srcu_idx;
1837 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1839 hctx_lock(hctx, &srcu_idx);
1841 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1842 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1843 blk_mq_request_bypass_insert(rq, true);
1844 else if (ret != BLK_STS_OK)
1845 blk_mq_end_request(rq, ret);
1847 hctx_unlock(hctx, srcu_idx);
1850 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1852 blk_status_t ret;
1853 int srcu_idx;
1854 blk_qc_t unused_cookie;
1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1857 hctx_lock(hctx, &srcu_idx);
1858 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1859 hctx_unlock(hctx, srcu_idx);
1861 return ret;
1864 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1865 struct list_head *list)
1867 while (!list_empty(list)) {
1868 blk_status_t ret;
1869 struct request *rq = list_first_entry(list, struct request,
1870 queuelist);
1872 list_del_init(&rq->queuelist);
1873 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1874 if (ret != BLK_STS_OK) {
1875 if (ret == BLK_STS_RESOURCE ||
1876 ret == BLK_STS_DEV_RESOURCE) {
1877 blk_mq_request_bypass_insert(rq,
1878 list_empty(list));
1879 break;
1881 blk_mq_end_request(rq, ret);
1886 * If we didn't flush the entire list, we could have told
1887 * the driver there was more coming, but that turned out to
1888 * be a lie.
1890 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1891 hctx->queue->mq_ops->commit_rqs(hctx);
1894 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1896 list_add_tail(&rq->queuelist, &plug->mq_list);
1897 plug->rq_count++;
1898 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1899 struct request *tmp;
1901 tmp = list_first_entry(&plug->mq_list, struct request,
1902 queuelist);
1903 if (tmp->q != rq->q)
1904 plug->multiple_queues = true;
1908 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1910 const int is_sync = op_is_sync(bio->bi_opf);
1911 const int is_flush_fua = op_is_flush(bio->bi_opf);
1912 struct blk_mq_alloc_data data = { .flags = 0};
1913 struct request *rq;
1914 struct blk_plug *plug;
1915 struct request *same_queue_rq = NULL;
1916 unsigned int nr_segs;
1917 blk_qc_t cookie;
1919 blk_queue_bounce(q, &bio);
1920 __blk_queue_split(q, &bio, &nr_segs);
1922 if (!bio_integrity_prep(bio))
1923 return BLK_QC_T_NONE;
1925 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1926 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1927 return BLK_QC_T_NONE;
1929 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1930 return BLK_QC_T_NONE;
1932 rq_qos_throttle(q, bio);
1934 data.cmd_flags = bio->bi_opf;
1935 rq = blk_mq_get_request(q, bio, &data);
1936 if (unlikely(!rq)) {
1937 rq_qos_cleanup(q, bio);
1938 if (bio->bi_opf & REQ_NOWAIT)
1939 bio_wouldblock_error(bio);
1940 return BLK_QC_T_NONE;
1943 trace_block_getrq(q, bio, bio->bi_opf);
1945 rq_qos_track(q, rq, bio);
1947 cookie = request_to_qc_t(data.hctx, rq);
1949 blk_mq_bio_to_request(rq, bio, nr_segs);
1951 plug = blk_mq_plug(q, bio);
1952 if (unlikely(is_flush_fua)) {
1953 /* bypass scheduler for flush rq */
1954 blk_insert_flush(rq);
1955 blk_mq_run_hw_queue(data.hctx, true);
1956 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1957 !blk_queue_nonrot(q))) {
1959 * Use plugging if we have a ->commit_rqs() hook as well, as
1960 * we know the driver uses bd->last in a smart fashion.
1962 * Use normal plugging if this disk is slow HDD, as sequential
1963 * IO may benefit a lot from plug merging.
1965 unsigned int request_count = plug->rq_count;
1966 struct request *last = NULL;
1968 if (!request_count)
1969 trace_block_plug(q);
1970 else
1971 last = list_entry_rq(plug->mq_list.prev);
1973 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1974 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1975 blk_flush_plug_list(plug, false);
1976 trace_block_plug(q);
1979 blk_add_rq_to_plug(plug, rq);
1980 } else if (q->elevator) {
1981 blk_mq_sched_insert_request(rq, false, true, true);
1982 } else if (plug && !blk_queue_nomerges(q)) {
1984 * We do limited plugging. If the bio can be merged, do that.
1985 * Otherwise the existing request in the plug list will be
1986 * issued. So the plug list will have one request at most
1987 * The plug list might get flushed before this. If that happens,
1988 * the plug list is empty, and same_queue_rq is invalid.
1990 if (list_empty(&plug->mq_list))
1991 same_queue_rq = NULL;
1992 if (same_queue_rq) {
1993 list_del_init(&same_queue_rq->queuelist);
1994 plug->rq_count--;
1996 blk_add_rq_to_plug(plug, rq);
1997 trace_block_plug(q);
1999 if (same_queue_rq) {
2000 data.hctx = same_queue_rq->mq_hctx;
2001 trace_block_unplug(q, 1, true);
2002 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2003 &cookie);
2005 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2006 !data.hctx->dispatch_busy) {
2007 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2008 } else {
2009 blk_mq_sched_insert_request(rq, false, true, true);
2012 return cookie;
2015 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2016 unsigned int hctx_idx)
2018 struct page *page;
2020 if (tags->rqs && set->ops->exit_request) {
2021 int i;
2023 for (i = 0; i < tags->nr_tags; i++) {
2024 struct request *rq = tags->static_rqs[i];
2026 if (!rq)
2027 continue;
2028 set->ops->exit_request(set, rq, hctx_idx);
2029 tags->static_rqs[i] = NULL;
2033 while (!list_empty(&tags->page_list)) {
2034 page = list_first_entry(&tags->page_list, struct page, lru);
2035 list_del_init(&page->lru);
2037 * Remove kmemleak object previously allocated in
2038 * blk_mq_alloc_rqs().
2040 kmemleak_free(page_address(page));
2041 __free_pages(page, page->private);
2045 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2047 kfree(tags->rqs);
2048 tags->rqs = NULL;
2049 kfree(tags->static_rqs);
2050 tags->static_rqs = NULL;
2052 blk_mq_free_tags(tags);
2055 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2056 unsigned int hctx_idx,
2057 unsigned int nr_tags,
2058 unsigned int reserved_tags)
2060 struct blk_mq_tags *tags;
2061 int node;
2063 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2064 if (node == NUMA_NO_NODE)
2065 node = set->numa_node;
2067 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2068 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2069 if (!tags)
2070 return NULL;
2072 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2073 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2074 node);
2075 if (!tags->rqs) {
2076 blk_mq_free_tags(tags);
2077 return NULL;
2080 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2081 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2082 node);
2083 if (!tags->static_rqs) {
2084 kfree(tags->rqs);
2085 blk_mq_free_tags(tags);
2086 return NULL;
2089 return tags;
2092 static size_t order_to_size(unsigned int order)
2094 return (size_t)PAGE_SIZE << order;
2097 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2098 unsigned int hctx_idx, int node)
2100 int ret;
2102 if (set->ops->init_request) {
2103 ret = set->ops->init_request(set, rq, hctx_idx, node);
2104 if (ret)
2105 return ret;
2108 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2109 return 0;
2112 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2113 unsigned int hctx_idx, unsigned int depth)
2115 unsigned int i, j, entries_per_page, max_order = 4;
2116 size_t rq_size, left;
2117 int node;
2119 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2120 if (node == NUMA_NO_NODE)
2121 node = set->numa_node;
2123 INIT_LIST_HEAD(&tags->page_list);
2126 * rq_size is the size of the request plus driver payload, rounded
2127 * to the cacheline size
2129 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2130 cache_line_size());
2131 left = rq_size * depth;
2133 for (i = 0; i < depth; ) {
2134 int this_order = max_order;
2135 struct page *page;
2136 int to_do;
2137 void *p;
2139 while (this_order && left < order_to_size(this_order - 1))
2140 this_order--;
2142 do {
2143 page = alloc_pages_node(node,
2144 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2145 this_order);
2146 if (page)
2147 break;
2148 if (!this_order--)
2149 break;
2150 if (order_to_size(this_order) < rq_size)
2151 break;
2152 } while (1);
2154 if (!page)
2155 goto fail;
2157 page->private = this_order;
2158 list_add_tail(&page->lru, &tags->page_list);
2160 p = page_address(page);
2162 * Allow kmemleak to scan these pages as they contain pointers
2163 * to additional allocations like via ops->init_request().
2165 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2166 entries_per_page = order_to_size(this_order) / rq_size;
2167 to_do = min(entries_per_page, depth - i);
2168 left -= to_do * rq_size;
2169 for (j = 0; j < to_do; j++) {
2170 struct request *rq = p;
2172 tags->static_rqs[i] = rq;
2173 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2174 tags->static_rqs[i] = NULL;
2175 goto fail;
2178 p += rq_size;
2179 i++;
2182 return 0;
2184 fail:
2185 blk_mq_free_rqs(set, tags, hctx_idx);
2186 return -ENOMEM;
2190 * 'cpu' is going away. splice any existing rq_list entries from this
2191 * software queue to the hw queue dispatch list, and ensure that it
2192 * gets run.
2194 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2196 struct blk_mq_hw_ctx *hctx;
2197 struct blk_mq_ctx *ctx;
2198 LIST_HEAD(tmp);
2199 enum hctx_type type;
2201 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2202 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2203 type = hctx->type;
2205 spin_lock(&ctx->lock);
2206 if (!list_empty(&ctx->rq_lists[type])) {
2207 list_splice_init(&ctx->rq_lists[type], &tmp);
2208 blk_mq_hctx_clear_pending(hctx, ctx);
2210 spin_unlock(&ctx->lock);
2212 if (list_empty(&tmp))
2213 return 0;
2215 spin_lock(&hctx->lock);
2216 list_splice_tail_init(&tmp, &hctx->dispatch);
2217 spin_unlock(&hctx->lock);
2219 blk_mq_run_hw_queue(hctx, true);
2220 return 0;
2223 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2225 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2226 &hctx->cpuhp_dead);
2229 /* hctx->ctxs will be freed in queue's release handler */
2230 static void blk_mq_exit_hctx(struct request_queue *q,
2231 struct blk_mq_tag_set *set,
2232 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2234 if (blk_mq_hw_queue_mapped(hctx))
2235 blk_mq_tag_idle(hctx);
2237 if (set->ops->exit_request)
2238 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2240 if (set->ops->exit_hctx)
2241 set->ops->exit_hctx(hctx, hctx_idx);
2243 blk_mq_remove_cpuhp(hctx);
2245 spin_lock(&q->unused_hctx_lock);
2246 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2247 spin_unlock(&q->unused_hctx_lock);
2250 static void blk_mq_exit_hw_queues(struct request_queue *q,
2251 struct blk_mq_tag_set *set, int nr_queue)
2253 struct blk_mq_hw_ctx *hctx;
2254 unsigned int i;
2256 queue_for_each_hw_ctx(q, hctx, i) {
2257 if (i == nr_queue)
2258 break;
2259 blk_mq_debugfs_unregister_hctx(hctx);
2260 blk_mq_exit_hctx(q, set, hctx, i);
2264 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2266 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2268 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2269 __alignof__(struct blk_mq_hw_ctx)) !=
2270 sizeof(struct blk_mq_hw_ctx));
2272 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2273 hw_ctx_size += sizeof(struct srcu_struct);
2275 return hw_ctx_size;
2278 static int blk_mq_init_hctx(struct request_queue *q,
2279 struct blk_mq_tag_set *set,
2280 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2282 hctx->queue_num = hctx_idx;
2284 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2286 hctx->tags = set->tags[hctx_idx];
2288 if (set->ops->init_hctx &&
2289 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2290 goto unregister_cpu_notifier;
2292 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2293 hctx->numa_node))
2294 goto exit_hctx;
2295 return 0;
2297 exit_hctx:
2298 if (set->ops->exit_hctx)
2299 set->ops->exit_hctx(hctx, hctx_idx);
2300 unregister_cpu_notifier:
2301 blk_mq_remove_cpuhp(hctx);
2302 return -1;
2305 static struct blk_mq_hw_ctx *
2306 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2307 int node)
2309 struct blk_mq_hw_ctx *hctx;
2310 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2312 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2313 if (!hctx)
2314 goto fail_alloc_hctx;
2316 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2317 goto free_hctx;
2319 atomic_set(&hctx->nr_active, 0);
2320 if (node == NUMA_NO_NODE)
2321 node = set->numa_node;
2322 hctx->numa_node = node;
2324 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2325 spin_lock_init(&hctx->lock);
2326 INIT_LIST_HEAD(&hctx->dispatch);
2327 hctx->queue = q;
2328 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2330 INIT_LIST_HEAD(&hctx->hctx_list);
2333 * Allocate space for all possible cpus to avoid allocation at
2334 * runtime
2336 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2337 gfp, node);
2338 if (!hctx->ctxs)
2339 goto free_cpumask;
2341 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2342 gfp, node))
2343 goto free_ctxs;
2344 hctx->nr_ctx = 0;
2346 spin_lock_init(&hctx->dispatch_wait_lock);
2347 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2348 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2350 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2351 gfp);
2352 if (!hctx->fq)
2353 goto free_bitmap;
2355 if (hctx->flags & BLK_MQ_F_BLOCKING)
2356 init_srcu_struct(hctx->srcu);
2357 blk_mq_hctx_kobj_init(hctx);
2359 return hctx;
2361 free_bitmap:
2362 sbitmap_free(&hctx->ctx_map);
2363 free_ctxs:
2364 kfree(hctx->ctxs);
2365 free_cpumask:
2366 free_cpumask_var(hctx->cpumask);
2367 free_hctx:
2368 kfree(hctx);
2369 fail_alloc_hctx:
2370 return NULL;
2373 static void blk_mq_init_cpu_queues(struct request_queue *q,
2374 unsigned int nr_hw_queues)
2376 struct blk_mq_tag_set *set = q->tag_set;
2377 unsigned int i, j;
2379 for_each_possible_cpu(i) {
2380 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2381 struct blk_mq_hw_ctx *hctx;
2382 int k;
2384 __ctx->cpu = i;
2385 spin_lock_init(&__ctx->lock);
2386 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2387 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2389 __ctx->queue = q;
2392 * Set local node, IFF we have more than one hw queue. If
2393 * not, we remain on the home node of the device
2395 for (j = 0; j < set->nr_maps; j++) {
2396 hctx = blk_mq_map_queue_type(q, j, i);
2397 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2398 hctx->numa_node = local_memory_node(cpu_to_node(i));
2403 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2405 int ret = 0;
2407 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2408 set->queue_depth, set->reserved_tags);
2409 if (!set->tags[hctx_idx])
2410 return false;
2412 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2413 set->queue_depth);
2414 if (!ret)
2415 return true;
2417 blk_mq_free_rq_map(set->tags[hctx_idx]);
2418 set->tags[hctx_idx] = NULL;
2419 return false;
2422 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2423 unsigned int hctx_idx)
2425 if (set->tags && set->tags[hctx_idx]) {
2426 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2427 blk_mq_free_rq_map(set->tags[hctx_idx]);
2428 set->tags[hctx_idx] = NULL;
2432 static void blk_mq_map_swqueue(struct request_queue *q)
2434 unsigned int i, j, hctx_idx;
2435 struct blk_mq_hw_ctx *hctx;
2436 struct blk_mq_ctx *ctx;
2437 struct blk_mq_tag_set *set = q->tag_set;
2439 queue_for_each_hw_ctx(q, hctx, i) {
2440 cpumask_clear(hctx->cpumask);
2441 hctx->nr_ctx = 0;
2442 hctx->dispatch_from = NULL;
2446 * Map software to hardware queues.
2448 * If the cpu isn't present, the cpu is mapped to first hctx.
2450 for_each_possible_cpu(i) {
2451 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2452 /* unmapped hw queue can be remapped after CPU topo changed */
2453 if (!set->tags[hctx_idx] &&
2454 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2456 * If tags initialization fail for some hctx,
2457 * that hctx won't be brought online. In this
2458 * case, remap the current ctx to hctx[0] which
2459 * is guaranteed to always have tags allocated
2461 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2464 ctx = per_cpu_ptr(q->queue_ctx, i);
2465 for (j = 0; j < set->nr_maps; j++) {
2466 if (!set->map[j].nr_queues) {
2467 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2468 HCTX_TYPE_DEFAULT, i);
2469 continue;
2472 hctx = blk_mq_map_queue_type(q, j, i);
2473 ctx->hctxs[j] = hctx;
2475 * If the CPU is already set in the mask, then we've
2476 * mapped this one already. This can happen if
2477 * devices share queues across queue maps.
2479 if (cpumask_test_cpu(i, hctx->cpumask))
2480 continue;
2482 cpumask_set_cpu(i, hctx->cpumask);
2483 hctx->type = j;
2484 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2485 hctx->ctxs[hctx->nr_ctx++] = ctx;
2488 * If the nr_ctx type overflows, we have exceeded the
2489 * amount of sw queues we can support.
2491 BUG_ON(!hctx->nr_ctx);
2494 for (; j < HCTX_MAX_TYPES; j++)
2495 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2496 HCTX_TYPE_DEFAULT, i);
2499 queue_for_each_hw_ctx(q, hctx, i) {
2501 * If no software queues are mapped to this hardware queue,
2502 * disable it and free the request entries.
2504 if (!hctx->nr_ctx) {
2505 /* Never unmap queue 0. We need it as a
2506 * fallback in case of a new remap fails
2507 * allocation
2509 if (i && set->tags[i])
2510 blk_mq_free_map_and_requests(set, i);
2512 hctx->tags = NULL;
2513 continue;
2516 hctx->tags = set->tags[i];
2517 WARN_ON(!hctx->tags);
2520 * Set the map size to the number of mapped software queues.
2521 * This is more accurate and more efficient than looping
2522 * over all possibly mapped software queues.
2524 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2527 * Initialize batch roundrobin counts
2529 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2530 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2535 * Caller needs to ensure that we're either frozen/quiesced, or that
2536 * the queue isn't live yet.
2538 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2540 struct blk_mq_hw_ctx *hctx;
2541 int i;
2543 queue_for_each_hw_ctx(q, hctx, i) {
2544 if (shared)
2545 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2546 else
2547 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2551 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2552 bool shared)
2554 struct request_queue *q;
2556 lockdep_assert_held(&set->tag_list_lock);
2558 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2559 blk_mq_freeze_queue(q);
2560 queue_set_hctx_shared(q, shared);
2561 blk_mq_unfreeze_queue(q);
2565 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2567 struct blk_mq_tag_set *set = q->tag_set;
2569 mutex_lock(&set->tag_list_lock);
2570 list_del_rcu(&q->tag_set_list);
2571 if (list_is_singular(&set->tag_list)) {
2572 /* just transitioned to unshared */
2573 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2574 /* update existing queue */
2575 blk_mq_update_tag_set_depth(set, false);
2577 mutex_unlock(&set->tag_list_lock);
2578 INIT_LIST_HEAD(&q->tag_set_list);
2581 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2582 struct request_queue *q)
2584 mutex_lock(&set->tag_list_lock);
2587 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2589 if (!list_empty(&set->tag_list) &&
2590 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2591 set->flags |= BLK_MQ_F_TAG_SHARED;
2592 /* update existing queue */
2593 blk_mq_update_tag_set_depth(set, true);
2595 if (set->flags & BLK_MQ_F_TAG_SHARED)
2596 queue_set_hctx_shared(q, true);
2597 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2599 mutex_unlock(&set->tag_list_lock);
2602 /* All allocations will be freed in release handler of q->mq_kobj */
2603 static int blk_mq_alloc_ctxs(struct request_queue *q)
2605 struct blk_mq_ctxs *ctxs;
2606 int cpu;
2608 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2609 if (!ctxs)
2610 return -ENOMEM;
2612 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2613 if (!ctxs->queue_ctx)
2614 goto fail;
2616 for_each_possible_cpu(cpu) {
2617 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2618 ctx->ctxs = ctxs;
2621 q->mq_kobj = &ctxs->kobj;
2622 q->queue_ctx = ctxs->queue_ctx;
2624 return 0;
2625 fail:
2626 kfree(ctxs);
2627 return -ENOMEM;
2631 * It is the actual release handler for mq, but we do it from
2632 * request queue's release handler for avoiding use-after-free
2633 * and headache because q->mq_kobj shouldn't have been introduced,
2634 * but we can't group ctx/kctx kobj without it.
2636 void blk_mq_release(struct request_queue *q)
2638 struct blk_mq_hw_ctx *hctx, *next;
2639 int i;
2641 queue_for_each_hw_ctx(q, hctx, i)
2642 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2644 /* all hctx are in .unused_hctx_list now */
2645 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2646 list_del_init(&hctx->hctx_list);
2647 kobject_put(&hctx->kobj);
2650 kfree(q->queue_hw_ctx);
2653 * release .mq_kobj and sw queue's kobject now because
2654 * both share lifetime with request queue.
2656 blk_mq_sysfs_deinit(q);
2659 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2661 struct request_queue *uninit_q, *q;
2663 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2664 if (!uninit_q)
2665 return ERR_PTR(-ENOMEM);
2668 * Initialize the queue without an elevator. device_add_disk() will do
2669 * the initialization.
2671 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2672 if (IS_ERR(q))
2673 blk_cleanup_queue(uninit_q);
2675 return q;
2677 EXPORT_SYMBOL(blk_mq_init_queue);
2680 * Helper for setting up a queue with mq ops, given queue depth, and
2681 * the passed in mq ops flags.
2683 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2684 const struct blk_mq_ops *ops,
2685 unsigned int queue_depth,
2686 unsigned int set_flags)
2688 struct request_queue *q;
2689 int ret;
2691 memset(set, 0, sizeof(*set));
2692 set->ops = ops;
2693 set->nr_hw_queues = 1;
2694 set->nr_maps = 1;
2695 set->queue_depth = queue_depth;
2696 set->numa_node = NUMA_NO_NODE;
2697 set->flags = set_flags;
2699 ret = blk_mq_alloc_tag_set(set);
2700 if (ret)
2701 return ERR_PTR(ret);
2703 q = blk_mq_init_queue(set);
2704 if (IS_ERR(q)) {
2705 blk_mq_free_tag_set(set);
2706 return q;
2709 return q;
2711 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2713 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2714 struct blk_mq_tag_set *set, struct request_queue *q,
2715 int hctx_idx, int node)
2717 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2719 /* reuse dead hctx first */
2720 spin_lock(&q->unused_hctx_lock);
2721 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2722 if (tmp->numa_node == node) {
2723 hctx = tmp;
2724 break;
2727 if (hctx)
2728 list_del_init(&hctx->hctx_list);
2729 spin_unlock(&q->unused_hctx_lock);
2731 if (!hctx)
2732 hctx = blk_mq_alloc_hctx(q, set, node);
2733 if (!hctx)
2734 goto fail;
2736 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2737 goto free_hctx;
2739 return hctx;
2741 free_hctx:
2742 kobject_put(&hctx->kobj);
2743 fail:
2744 return NULL;
2747 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2748 struct request_queue *q)
2750 int i, j, end;
2751 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2753 if (q->nr_hw_queues < set->nr_hw_queues) {
2754 struct blk_mq_hw_ctx **new_hctxs;
2756 new_hctxs = kcalloc_node(set->nr_hw_queues,
2757 sizeof(*new_hctxs), GFP_KERNEL,
2758 set->numa_node);
2759 if (!new_hctxs)
2760 return;
2761 if (hctxs)
2762 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2763 sizeof(*hctxs));
2764 q->queue_hw_ctx = new_hctxs;
2765 q->nr_hw_queues = set->nr_hw_queues;
2766 kfree(hctxs);
2767 hctxs = new_hctxs;
2770 /* protect against switching io scheduler */
2771 mutex_lock(&q->sysfs_lock);
2772 for (i = 0; i < set->nr_hw_queues; i++) {
2773 int node;
2774 struct blk_mq_hw_ctx *hctx;
2776 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2778 * If the hw queue has been mapped to another numa node,
2779 * we need to realloc the hctx. If allocation fails, fallback
2780 * to use the previous one.
2782 if (hctxs[i] && (hctxs[i]->numa_node == node))
2783 continue;
2785 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2786 if (hctx) {
2787 if (hctxs[i])
2788 blk_mq_exit_hctx(q, set, hctxs[i], i);
2789 hctxs[i] = hctx;
2790 } else {
2791 if (hctxs[i])
2792 pr_warn("Allocate new hctx on node %d fails,\
2793 fallback to previous one on node %d\n",
2794 node, hctxs[i]->numa_node);
2795 else
2796 break;
2800 * Increasing nr_hw_queues fails. Free the newly allocated
2801 * hctxs and keep the previous q->nr_hw_queues.
2803 if (i != set->nr_hw_queues) {
2804 j = q->nr_hw_queues;
2805 end = i;
2806 } else {
2807 j = i;
2808 end = q->nr_hw_queues;
2809 q->nr_hw_queues = set->nr_hw_queues;
2812 for (; j < end; j++) {
2813 struct blk_mq_hw_ctx *hctx = hctxs[j];
2815 if (hctx) {
2816 if (hctx->tags)
2817 blk_mq_free_map_and_requests(set, j);
2818 blk_mq_exit_hctx(q, set, hctx, j);
2819 hctxs[j] = NULL;
2822 mutex_unlock(&q->sysfs_lock);
2825 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2826 struct request_queue *q,
2827 bool elevator_init)
2829 /* mark the queue as mq asap */
2830 q->mq_ops = set->ops;
2832 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2833 blk_mq_poll_stats_bkt,
2834 BLK_MQ_POLL_STATS_BKTS, q);
2835 if (!q->poll_cb)
2836 goto err_exit;
2838 if (blk_mq_alloc_ctxs(q))
2839 goto err_poll;
2841 /* init q->mq_kobj and sw queues' kobjects */
2842 blk_mq_sysfs_init(q);
2844 INIT_LIST_HEAD(&q->unused_hctx_list);
2845 spin_lock_init(&q->unused_hctx_lock);
2847 blk_mq_realloc_hw_ctxs(set, q);
2848 if (!q->nr_hw_queues)
2849 goto err_hctxs;
2851 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2852 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2854 q->tag_set = set;
2856 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2857 if (set->nr_maps > HCTX_TYPE_POLL &&
2858 set->map[HCTX_TYPE_POLL].nr_queues)
2859 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2861 q->sg_reserved_size = INT_MAX;
2863 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2864 INIT_LIST_HEAD(&q->requeue_list);
2865 spin_lock_init(&q->requeue_lock);
2867 blk_queue_make_request(q, blk_mq_make_request);
2870 * Do this after blk_queue_make_request() overrides it...
2872 q->nr_requests = set->queue_depth;
2875 * Default to classic polling
2877 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2879 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2880 blk_mq_add_queue_tag_set(set, q);
2881 blk_mq_map_swqueue(q);
2883 if (elevator_init)
2884 elevator_init_mq(q);
2886 return q;
2888 err_hctxs:
2889 kfree(q->queue_hw_ctx);
2890 q->nr_hw_queues = 0;
2891 blk_mq_sysfs_deinit(q);
2892 err_poll:
2893 blk_stat_free_callback(q->poll_cb);
2894 q->poll_cb = NULL;
2895 err_exit:
2896 q->mq_ops = NULL;
2897 return ERR_PTR(-ENOMEM);
2899 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2901 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2902 void blk_mq_exit_queue(struct request_queue *q)
2904 struct blk_mq_tag_set *set = q->tag_set;
2906 blk_mq_del_queue_tag_set(q);
2907 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2910 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2912 int i;
2914 for (i = 0; i < set->nr_hw_queues; i++)
2915 if (!__blk_mq_alloc_rq_map(set, i))
2916 goto out_unwind;
2918 return 0;
2920 out_unwind:
2921 while (--i >= 0)
2922 blk_mq_free_rq_map(set->tags[i]);
2924 return -ENOMEM;
2928 * Allocate the request maps associated with this tag_set. Note that this
2929 * may reduce the depth asked for, if memory is tight. set->queue_depth
2930 * will be updated to reflect the allocated depth.
2932 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2934 unsigned int depth;
2935 int err;
2937 depth = set->queue_depth;
2938 do {
2939 err = __blk_mq_alloc_rq_maps(set);
2940 if (!err)
2941 break;
2943 set->queue_depth >>= 1;
2944 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2945 err = -ENOMEM;
2946 break;
2948 } while (set->queue_depth);
2950 if (!set->queue_depth || err) {
2951 pr_err("blk-mq: failed to allocate request map\n");
2952 return -ENOMEM;
2955 if (depth != set->queue_depth)
2956 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2957 depth, set->queue_depth);
2959 return 0;
2962 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2964 if (set->ops->map_queues && !is_kdump_kernel()) {
2965 int i;
2968 * transport .map_queues is usually done in the following
2969 * way:
2971 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2972 * mask = get_cpu_mask(queue)
2973 * for_each_cpu(cpu, mask)
2974 * set->map[x].mq_map[cpu] = queue;
2977 * When we need to remap, the table has to be cleared for
2978 * killing stale mapping since one CPU may not be mapped
2979 * to any hw queue.
2981 for (i = 0; i < set->nr_maps; i++)
2982 blk_mq_clear_mq_map(&set->map[i]);
2984 return set->ops->map_queues(set);
2985 } else {
2986 BUG_ON(set->nr_maps > 1);
2987 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2991 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
2992 int cur_nr_hw_queues, int new_nr_hw_queues)
2994 struct blk_mq_tags **new_tags;
2996 if (cur_nr_hw_queues >= new_nr_hw_queues)
2997 return 0;
2999 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3000 GFP_KERNEL, set->numa_node);
3001 if (!new_tags)
3002 return -ENOMEM;
3004 if (set->tags)
3005 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3006 sizeof(*set->tags));
3007 kfree(set->tags);
3008 set->tags = new_tags;
3009 set->nr_hw_queues = new_nr_hw_queues;
3011 return 0;
3015 * Alloc a tag set to be associated with one or more request queues.
3016 * May fail with EINVAL for various error conditions. May adjust the
3017 * requested depth down, if it's too large. In that case, the set
3018 * value will be stored in set->queue_depth.
3020 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3022 int i, ret;
3024 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3026 if (!set->nr_hw_queues)
3027 return -EINVAL;
3028 if (!set->queue_depth)
3029 return -EINVAL;
3030 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3031 return -EINVAL;
3033 if (!set->ops->queue_rq)
3034 return -EINVAL;
3036 if (!set->ops->get_budget ^ !set->ops->put_budget)
3037 return -EINVAL;
3039 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3040 pr_info("blk-mq: reduced tag depth to %u\n",
3041 BLK_MQ_MAX_DEPTH);
3042 set->queue_depth = BLK_MQ_MAX_DEPTH;
3045 if (!set->nr_maps)
3046 set->nr_maps = 1;
3047 else if (set->nr_maps > HCTX_MAX_TYPES)
3048 return -EINVAL;
3051 * If a crashdump is active, then we are potentially in a very
3052 * memory constrained environment. Limit us to 1 queue and
3053 * 64 tags to prevent using too much memory.
3055 if (is_kdump_kernel()) {
3056 set->nr_hw_queues = 1;
3057 set->nr_maps = 1;
3058 set->queue_depth = min(64U, set->queue_depth);
3061 * There is no use for more h/w queues than cpus if we just have
3062 * a single map
3064 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3065 set->nr_hw_queues = nr_cpu_ids;
3067 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3068 return -ENOMEM;
3070 ret = -ENOMEM;
3071 for (i = 0; i < set->nr_maps; i++) {
3072 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3073 sizeof(set->map[i].mq_map[0]),
3074 GFP_KERNEL, set->numa_node);
3075 if (!set->map[i].mq_map)
3076 goto out_free_mq_map;
3077 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3080 ret = blk_mq_update_queue_map(set);
3081 if (ret)
3082 goto out_free_mq_map;
3084 ret = blk_mq_alloc_rq_maps(set);
3085 if (ret)
3086 goto out_free_mq_map;
3088 mutex_init(&set->tag_list_lock);
3089 INIT_LIST_HEAD(&set->tag_list);
3091 return 0;
3093 out_free_mq_map:
3094 for (i = 0; i < set->nr_maps; i++) {
3095 kfree(set->map[i].mq_map);
3096 set->map[i].mq_map = NULL;
3098 kfree(set->tags);
3099 set->tags = NULL;
3100 return ret;
3102 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3104 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3106 int i, j;
3108 for (i = 0; i < set->nr_hw_queues; i++)
3109 blk_mq_free_map_and_requests(set, i);
3111 for (j = 0; j < set->nr_maps; j++) {
3112 kfree(set->map[j].mq_map);
3113 set->map[j].mq_map = NULL;
3116 kfree(set->tags);
3117 set->tags = NULL;
3119 EXPORT_SYMBOL(blk_mq_free_tag_set);
3121 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3123 struct blk_mq_tag_set *set = q->tag_set;
3124 struct blk_mq_hw_ctx *hctx;
3125 int i, ret;
3127 if (!set)
3128 return -EINVAL;
3130 if (q->nr_requests == nr)
3131 return 0;
3133 blk_mq_freeze_queue(q);
3134 blk_mq_quiesce_queue(q);
3136 ret = 0;
3137 queue_for_each_hw_ctx(q, hctx, i) {
3138 if (!hctx->tags)
3139 continue;
3141 * If we're using an MQ scheduler, just update the scheduler
3142 * queue depth. This is similar to what the old code would do.
3144 if (!hctx->sched_tags) {
3145 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3146 false);
3147 } else {
3148 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3149 nr, true);
3151 if (ret)
3152 break;
3153 if (q->elevator && q->elevator->type->ops.depth_updated)
3154 q->elevator->type->ops.depth_updated(hctx);
3157 if (!ret)
3158 q->nr_requests = nr;
3160 blk_mq_unquiesce_queue(q);
3161 blk_mq_unfreeze_queue(q);
3163 return ret;
3167 * request_queue and elevator_type pair.
3168 * It is just used by __blk_mq_update_nr_hw_queues to cache
3169 * the elevator_type associated with a request_queue.
3171 struct blk_mq_qe_pair {
3172 struct list_head node;
3173 struct request_queue *q;
3174 struct elevator_type *type;
3178 * Cache the elevator_type in qe pair list and switch the
3179 * io scheduler to 'none'
3181 static bool blk_mq_elv_switch_none(struct list_head *head,
3182 struct request_queue *q)
3184 struct blk_mq_qe_pair *qe;
3186 if (!q->elevator)
3187 return true;
3189 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3190 if (!qe)
3191 return false;
3193 INIT_LIST_HEAD(&qe->node);
3194 qe->q = q;
3195 qe->type = q->elevator->type;
3196 list_add(&qe->node, head);
3198 mutex_lock(&q->sysfs_lock);
3200 * After elevator_switch_mq, the previous elevator_queue will be
3201 * released by elevator_release. The reference of the io scheduler
3202 * module get by elevator_get will also be put. So we need to get
3203 * a reference of the io scheduler module here to prevent it to be
3204 * removed.
3206 __module_get(qe->type->elevator_owner);
3207 elevator_switch_mq(q, NULL);
3208 mutex_unlock(&q->sysfs_lock);
3210 return true;
3213 static void blk_mq_elv_switch_back(struct list_head *head,
3214 struct request_queue *q)
3216 struct blk_mq_qe_pair *qe;
3217 struct elevator_type *t = NULL;
3219 list_for_each_entry(qe, head, node)
3220 if (qe->q == q) {
3221 t = qe->type;
3222 break;
3225 if (!t)
3226 return;
3228 list_del(&qe->node);
3229 kfree(qe);
3231 mutex_lock(&q->sysfs_lock);
3232 elevator_switch_mq(q, t);
3233 mutex_unlock(&q->sysfs_lock);
3236 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3237 int nr_hw_queues)
3239 struct request_queue *q;
3240 LIST_HEAD(head);
3241 int prev_nr_hw_queues;
3243 lockdep_assert_held(&set->tag_list_lock);
3245 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3246 nr_hw_queues = nr_cpu_ids;
3247 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3248 return;
3250 list_for_each_entry(q, &set->tag_list, tag_set_list)
3251 blk_mq_freeze_queue(q);
3253 * Switch IO scheduler to 'none', cleaning up the data associated
3254 * with the previous scheduler. We will switch back once we are done
3255 * updating the new sw to hw queue mappings.
3257 list_for_each_entry(q, &set->tag_list, tag_set_list)
3258 if (!blk_mq_elv_switch_none(&head, q))
3259 goto switch_back;
3261 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3262 blk_mq_debugfs_unregister_hctxs(q);
3263 blk_mq_sysfs_unregister(q);
3266 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3268 goto reregister;
3270 prev_nr_hw_queues = set->nr_hw_queues;
3271 set->nr_hw_queues = nr_hw_queues;
3272 blk_mq_update_queue_map(set);
3273 fallback:
3274 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3275 blk_mq_realloc_hw_ctxs(set, q);
3276 if (q->nr_hw_queues != set->nr_hw_queues) {
3277 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3278 nr_hw_queues, prev_nr_hw_queues);
3279 set->nr_hw_queues = prev_nr_hw_queues;
3280 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3281 goto fallback;
3283 blk_mq_map_swqueue(q);
3286 reregister:
3287 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3288 blk_mq_sysfs_register(q);
3289 blk_mq_debugfs_register_hctxs(q);
3292 switch_back:
3293 list_for_each_entry(q, &set->tag_list, tag_set_list)
3294 blk_mq_elv_switch_back(&head, q);
3296 list_for_each_entry(q, &set->tag_list, tag_set_list)
3297 blk_mq_unfreeze_queue(q);
3300 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3302 mutex_lock(&set->tag_list_lock);
3303 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3304 mutex_unlock(&set->tag_list_lock);
3306 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3308 /* Enable polling stats and return whether they were already enabled. */
3309 static bool blk_poll_stats_enable(struct request_queue *q)
3311 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3312 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3313 return true;
3314 blk_stat_add_callback(q, q->poll_cb);
3315 return false;
3318 static void blk_mq_poll_stats_start(struct request_queue *q)
3321 * We don't arm the callback if polling stats are not enabled or the
3322 * callback is already active.
3324 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3325 blk_stat_is_active(q->poll_cb))
3326 return;
3328 blk_stat_activate_msecs(q->poll_cb, 100);
3331 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3333 struct request_queue *q = cb->data;
3334 int bucket;
3336 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3337 if (cb->stat[bucket].nr_samples)
3338 q->poll_stat[bucket] = cb->stat[bucket];
3342 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3343 struct blk_mq_hw_ctx *hctx,
3344 struct request *rq)
3346 unsigned long ret = 0;
3347 int bucket;
3350 * If stats collection isn't on, don't sleep but turn it on for
3351 * future users
3353 if (!blk_poll_stats_enable(q))
3354 return 0;
3357 * As an optimistic guess, use half of the mean service time
3358 * for this type of request. We can (and should) make this smarter.
3359 * For instance, if the completion latencies are tight, we can
3360 * get closer than just half the mean. This is especially
3361 * important on devices where the completion latencies are longer
3362 * than ~10 usec. We do use the stats for the relevant IO size
3363 * if available which does lead to better estimates.
3365 bucket = blk_mq_poll_stats_bkt(rq);
3366 if (bucket < 0)
3367 return ret;
3369 if (q->poll_stat[bucket].nr_samples)
3370 ret = (q->poll_stat[bucket].mean + 1) / 2;
3372 return ret;
3375 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3376 struct blk_mq_hw_ctx *hctx,
3377 struct request *rq)
3379 struct hrtimer_sleeper hs;
3380 enum hrtimer_mode mode;
3381 unsigned int nsecs;
3382 ktime_t kt;
3384 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3385 return false;
3388 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3390 * 0: use half of prev avg
3391 * >0: use this specific value
3393 if (q->poll_nsec > 0)
3394 nsecs = q->poll_nsec;
3395 else
3396 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3398 if (!nsecs)
3399 return false;
3401 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3404 * This will be replaced with the stats tracking code, using
3405 * 'avg_completion_time / 2' as the pre-sleep target.
3407 kt = nsecs;
3409 mode = HRTIMER_MODE_REL;
3410 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3411 hrtimer_set_expires(&hs.timer, kt);
3413 do {
3414 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3415 break;
3416 set_current_state(TASK_UNINTERRUPTIBLE);
3417 hrtimer_sleeper_start_expires(&hs, mode);
3418 if (hs.task)
3419 io_schedule();
3420 hrtimer_cancel(&hs.timer);
3421 mode = HRTIMER_MODE_ABS;
3422 } while (hs.task && !signal_pending(current));
3424 __set_current_state(TASK_RUNNING);
3425 destroy_hrtimer_on_stack(&hs.timer);
3426 return true;
3429 static bool blk_mq_poll_hybrid(struct request_queue *q,
3430 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3432 struct request *rq;
3434 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3435 return false;
3437 if (!blk_qc_t_is_internal(cookie))
3438 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3439 else {
3440 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3442 * With scheduling, if the request has completed, we'll
3443 * get a NULL return here, as we clear the sched tag when
3444 * that happens. The request still remains valid, like always,
3445 * so we should be safe with just the NULL check.
3447 if (!rq)
3448 return false;
3451 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3455 * blk_poll - poll for IO completions
3456 * @q: the queue
3457 * @cookie: cookie passed back at IO submission time
3458 * @spin: whether to spin for completions
3460 * Description:
3461 * Poll for completions on the passed in queue. Returns number of
3462 * completed entries found. If @spin is true, then blk_poll will continue
3463 * looping until at least one completion is found, unless the task is
3464 * otherwise marked running (or we need to reschedule).
3466 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3468 struct blk_mq_hw_ctx *hctx;
3469 long state;
3471 if (!blk_qc_t_valid(cookie) ||
3472 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3473 return 0;
3475 if (current->plug)
3476 blk_flush_plug_list(current->plug, false);
3478 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3481 * If we sleep, have the caller restart the poll loop to reset
3482 * the state. Like for the other success return cases, the
3483 * caller is responsible for checking if the IO completed. If
3484 * the IO isn't complete, we'll get called again and will go
3485 * straight to the busy poll loop.
3487 if (blk_mq_poll_hybrid(q, hctx, cookie))
3488 return 1;
3490 hctx->poll_considered++;
3492 state = current->state;
3493 do {
3494 int ret;
3496 hctx->poll_invoked++;
3498 ret = q->mq_ops->poll(hctx);
3499 if (ret > 0) {
3500 hctx->poll_success++;
3501 __set_current_state(TASK_RUNNING);
3502 return ret;
3505 if (signal_pending_state(state, current))
3506 __set_current_state(TASK_RUNNING);
3508 if (current->state == TASK_RUNNING)
3509 return 1;
3510 if (ret < 0 || !spin)
3511 break;
3512 cpu_relax();
3513 } while (!need_resched());
3515 __set_current_state(TASK_RUNNING);
3516 return 0;
3518 EXPORT_SYMBOL_GPL(blk_poll);
3520 unsigned int blk_mq_rq_cpu(struct request *rq)
3522 return rq->mq_ctx->cpu;
3524 EXPORT_SYMBOL(blk_mq_rq_cpu);
3526 static int __init blk_mq_init(void)
3528 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3529 blk_mq_hctx_notify_dead);
3530 return 0;
3532 subsys_initcall(blk_mq_init);