do not preallocate cor_connid_reuse_item
[cor.git] / kernel / time / timekeeping.c
blobca69290bee2a3131358993e9a3bbc32c6a9a9231
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
43 * The most important data for readout fits into a single 64 byte
44 * cache line.
46 static struct {
47 seqcount_t seq;
48 struct timekeeper timekeeper;
49 } tk_core ____cacheline_aligned = {
50 .seq = SEQCNT_ZERO(tk_core.seq),
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
56 /**
57 * struct tk_fast - NMI safe timekeeper
58 * @seq: Sequence counter for protecting updates. The lowest bit
59 * is the index for the tk_read_base array
60 * @base: tk_read_base array. Access is indexed by the lowest bit of
61 * @seq.
63 * See @update_fast_timekeeper() below.
65 struct tk_fast {
66 seqcount_t seq;
67 struct tk_read_base base[2];
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
73 static u64 dummy_clock_read(struct clocksource *cs)
75 return cycles_at_suspend;
78 static struct clocksource dummy_clock = {
79 .read = dummy_clock_read,
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 .base[0] = { .clock = &dummy_clock, },
84 .base[1] = { .clock = &dummy_clock, },
87 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
88 .base[0] = { .clock = &dummy_clock, },
89 .base[1] = { .clock = &dummy_clock, },
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 tk->xtime_sec++;
101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 tk->raw_sec++;
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
109 struct timespec64 ts;
111 ts.tv_sec = tk->xtime_sec;
112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 return ts;
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
118 tk->xtime_sec = ts->tv_sec;
119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
124 tk->xtime_sec += ts->tv_sec;
125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 tk_normalize_xtime(tk);
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
131 struct timespec64 tmp;
134 * Verify consistency of: offset_real = -wall_to_monotonic
135 * before modifying anything
137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 -tk->wall_to_monotonic.tv_nsec);
139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 tk->wall_to_monotonic = wtm;
141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 tk->offs_real = timespec64_to_ktime(tmp);
143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
148 tk->offs_boot = ktime_add(tk->offs_boot, delta);
150 * Timespec representation for VDSO update to avoid 64bit division
151 * on every update.
153 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
157 * tk_clock_read - atomic clocksource read() helper
159 * This helper is necessary to use in the read paths because, while the
160 * seqlock ensures we don't return a bad value while structures are updated,
161 * it doesn't protect from potential crashes. There is the possibility that
162 * the tkr's clocksource may change between the read reference, and the
163 * clock reference passed to the read function. This can cause crashes if
164 * the wrong clocksource is passed to the wrong read function.
165 * This isn't necessary to use when holding the timekeeper_lock or doing
166 * a read of the fast-timekeeper tkrs (which is protected by its own locking
167 * and update logic).
169 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
171 struct clocksource *clock = READ_ONCE(tkr->clock);
173 return clock->read(clock);
176 #ifdef CONFIG_DEBUG_TIMEKEEPING
177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
182 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183 const char *name = tk->tkr_mono.clock->name;
185 if (offset > max_cycles) {
186 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187 offset, name, max_cycles);
188 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189 } else {
190 if (offset > (max_cycles >> 1)) {
191 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192 offset, name, max_cycles >> 1);
193 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
197 if (tk->underflow_seen) {
198 if (jiffies - tk->last_warning > WARNING_FREQ) {
199 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
201 printk_deferred(" Your kernel is probably still fine.\n");
202 tk->last_warning = jiffies;
204 tk->underflow_seen = 0;
207 if (tk->overflow_seen) {
208 if (jiffies - tk->last_warning > WARNING_FREQ) {
209 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
211 printk_deferred(" Your kernel is probably still fine.\n");
212 tk->last_warning = jiffies;
214 tk->overflow_seen = 0;
218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
220 struct timekeeper *tk = &tk_core.timekeeper;
221 u64 now, last, mask, max, delta;
222 unsigned int seq;
225 * Since we're called holding a seqlock, the data may shift
226 * under us while we're doing the calculation. This can cause
227 * false positives, since we'd note a problem but throw the
228 * results away. So nest another seqlock here to atomically
229 * grab the points we are checking with.
231 do {
232 seq = read_seqcount_begin(&tk_core.seq);
233 now = tk_clock_read(tkr);
234 last = tkr->cycle_last;
235 mask = tkr->mask;
236 max = tkr->clock->max_cycles;
237 } while (read_seqcount_retry(&tk_core.seq, seq));
239 delta = clocksource_delta(now, last, mask);
242 * Try to catch underflows by checking if we are seeing small
243 * mask-relative negative values.
245 if (unlikely((~delta & mask) < (mask >> 3))) {
246 tk->underflow_seen = 1;
247 delta = 0;
250 /* Cap delta value to the max_cycles values to avoid mult overflows */
251 if (unlikely(delta > max)) {
252 tk->overflow_seen = 1;
253 delta = tkr->clock->max_cycles;
256 return delta;
258 #else
259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
264 u64 cycle_now, delta;
266 /* read clocksource */
267 cycle_now = tk_clock_read(tkr);
269 /* calculate the delta since the last update_wall_time */
270 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
272 return delta;
274 #endif
277 * tk_setup_internals - Set up internals to use clocksource clock.
279 * @tk: The target timekeeper to setup.
280 * @clock: Pointer to clocksource.
282 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283 * pair and interval request.
285 * Unless you're the timekeeping code, you should not be using this!
287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
289 u64 interval;
290 u64 tmp, ntpinterval;
291 struct clocksource *old_clock;
293 ++tk->cs_was_changed_seq;
294 old_clock = tk->tkr_mono.clock;
295 tk->tkr_mono.clock = clock;
296 tk->tkr_mono.mask = clock->mask;
297 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
299 tk->tkr_raw.clock = clock;
300 tk->tkr_raw.mask = clock->mask;
301 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
303 /* Do the ns -> cycle conversion first, using original mult */
304 tmp = NTP_INTERVAL_LENGTH;
305 tmp <<= clock->shift;
306 ntpinterval = tmp;
307 tmp += clock->mult/2;
308 do_div(tmp, clock->mult);
309 if (tmp == 0)
310 tmp = 1;
312 interval = (u64) tmp;
313 tk->cycle_interval = interval;
315 /* Go back from cycles -> shifted ns */
316 tk->xtime_interval = interval * clock->mult;
317 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318 tk->raw_interval = interval * clock->mult;
320 /* if changing clocks, convert xtime_nsec shift units */
321 if (old_clock) {
322 int shift_change = clock->shift - old_clock->shift;
323 if (shift_change < 0) {
324 tk->tkr_mono.xtime_nsec >>= -shift_change;
325 tk->tkr_raw.xtime_nsec >>= -shift_change;
326 } else {
327 tk->tkr_mono.xtime_nsec <<= shift_change;
328 tk->tkr_raw.xtime_nsec <<= shift_change;
332 tk->tkr_mono.shift = clock->shift;
333 tk->tkr_raw.shift = clock->shift;
335 tk->ntp_error = 0;
336 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
340 * The timekeeper keeps its own mult values for the currently
341 * active clocksource. These value will be adjusted via NTP
342 * to counteract clock drifting.
344 tk->tkr_mono.mult = clock->mult;
345 tk->tkr_raw.mult = clock->mult;
346 tk->ntp_err_mult = 0;
347 tk->skip_second_overflow = 0;
350 /* Timekeeper helper functions. */
352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
353 static u32 default_arch_gettimeoffset(void) { return 0; }
354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355 #else
356 static inline u32 arch_gettimeoffset(void) { return 0; }
357 #endif
359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
361 u64 nsec;
363 nsec = delta * tkr->mult + tkr->xtime_nsec;
364 nsec >>= tkr->shift;
366 /* If arch requires, add in get_arch_timeoffset() */
367 return nsec + arch_gettimeoffset();
370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
372 u64 delta;
374 delta = timekeeping_get_delta(tkr);
375 return timekeeping_delta_to_ns(tkr, delta);
378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
380 u64 delta;
382 /* calculate the delta since the last update_wall_time */
383 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384 return timekeeping_delta_to_ns(tkr, delta);
388 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389 * @tkr: Timekeeping readout base from which we take the update
391 * We want to use this from any context including NMI and tracing /
392 * instrumenting the timekeeping code itself.
394 * Employ the latch technique; see @raw_write_seqcount_latch.
396 * So if a NMI hits the update of base[0] then it will use base[1]
397 * which is still consistent. In the worst case this can result is a
398 * slightly wrong timestamp (a few nanoseconds). See
399 * @ktime_get_mono_fast_ns.
401 static void update_fast_timekeeper(const struct tk_read_base *tkr,
402 struct tk_fast *tkf)
404 struct tk_read_base *base = tkf->base;
406 /* Force readers off to base[1] */
407 raw_write_seqcount_latch(&tkf->seq);
409 /* Update base[0] */
410 memcpy(base, tkr, sizeof(*base));
412 /* Force readers back to base[0] */
413 raw_write_seqcount_latch(&tkf->seq);
415 /* Update base[1] */
416 memcpy(base + 1, base, sizeof(*base));
420 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
422 * This timestamp is not guaranteed to be monotonic across an update.
423 * The timestamp is calculated by:
425 * now = base_mono + clock_delta * slope
427 * So if the update lowers the slope, readers who are forced to the
428 * not yet updated second array are still using the old steeper slope.
430 * tmono
432 * | o n
433 * | o n
434 * | u
435 * | o
436 * |o
437 * |12345678---> reader order
439 * o = old slope
440 * u = update
441 * n = new slope
443 * So reader 6 will observe time going backwards versus reader 5.
445 * While other CPUs are likely to be able observe that, the only way
446 * for a CPU local observation is when an NMI hits in the middle of
447 * the update. Timestamps taken from that NMI context might be ahead
448 * of the following timestamps. Callers need to be aware of that and
449 * deal with it.
451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
453 struct tk_read_base *tkr;
454 unsigned int seq;
455 u64 now;
457 do {
458 seq = raw_read_seqcount_latch(&tkf->seq);
459 tkr = tkf->base + (seq & 0x01);
460 now = ktime_to_ns(tkr->base);
462 now += timekeeping_delta_to_ns(tkr,
463 clocksource_delta(
464 tk_clock_read(tkr),
465 tkr->cycle_last,
466 tkr->mask));
467 } while (read_seqcount_retry(&tkf->seq, seq));
469 return now;
472 u64 ktime_get_mono_fast_ns(void)
474 return __ktime_get_fast_ns(&tk_fast_mono);
476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
478 u64 ktime_get_raw_fast_ns(void)
480 return __ktime_get_fast_ns(&tk_fast_raw);
482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
485 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
487 * To keep it NMI safe since we're accessing from tracing, we're not using a
488 * separate timekeeper with updates to monotonic clock and boot offset
489 * protected with seqlocks. This has the following minor side effects:
491 * (1) Its possible that a timestamp be taken after the boot offset is updated
492 * but before the timekeeper is updated. If this happens, the new boot offset
493 * is added to the old timekeeping making the clock appear to update slightly
494 * earlier:
495 * CPU 0 CPU 1
496 * timekeeping_inject_sleeptime64()
497 * __timekeeping_inject_sleeptime(tk, delta);
498 * timestamp();
499 * timekeeping_update(tk, TK_CLEAR_NTP...);
501 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502 * partially updated. Since the tk->offs_boot update is a rare event, this
503 * should be a rare occurrence which postprocessing should be able to handle.
505 u64 notrace ktime_get_boot_fast_ns(void)
507 struct timekeeper *tk = &tk_core.timekeeper;
509 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
515 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
519 struct tk_read_base *tkr;
520 unsigned int seq;
521 u64 now;
523 do {
524 seq = raw_read_seqcount_latch(&tkf->seq);
525 tkr = tkf->base + (seq & 0x01);
526 now = ktime_to_ns(tkr->base_real);
528 now += timekeeping_delta_to_ns(tkr,
529 clocksource_delta(
530 tk_clock_read(tkr),
531 tkr->cycle_last,
532 tkr->mask));
533 } while (read_seqcount_retry(&tkf->seq, seq));
535 return now;
539 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
541 u64 ktime_get_real_fast_ns(void)
543 return __ktime_get_real_fast_ns(&tk_fast_mono);
545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
548 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549 * @tk: Timekeeper to snapshot.
551 * It generally is unsafe to access the clocksource after timekeeping has been
552 * suspended, so take a snapshot of the readout base of @tk and use it as the
553 * fast timekeeper's readout base while suspended. It will return the same
554 * number of cycles every time until timekeeping is resumed at which time the
555 * proper readout base for the fast timekeeper will be restored automatically.
557 static void halt_fast_timekeeper(const struct timekeeper *tk)
559 static struct tk_read_base tkr_dummy;
560 const struct tk_read_base *tkr = &tk->tkr_mono;
562 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563 cycles_at_suspend = tk_clock_read(tkr);
564 tkr_dummy.clock = &dummy_clock;
565 tkr_dummy.base_real = tkr->base + tk->offs_real;
566 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
568 tkr = &tk->tkr_raw;
569 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570 tkr_dummy.clock = &dummy_clock;
571 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
578 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
582 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
584 int pvclock_gtod_register_notifier(struct notifier_block *nb)
586 struct timekeeper *tk = &tk_core.timekeeper;
587 unsigned long flags;
588 int ret;
590 raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592 update_pvclock_gtod(tk, true);
593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
595 return ret;
597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
600 * pvclock_gtod_unregister_notifier - unregister a pvclock
601 * timedata update listener
603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
605 unsigned long flags;
606 int ret;
608 raw_spin_lock_irqsave(&timekeeper_lock, flags);
609 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
612 return ret;
614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
617 * tk_update_leap_state - helper to update the next_leap_ktime
619 static inline void tk_update_leap_state(struct timekeeper *tk)
621 tk->next_leap_ktime = ntp_get_next_leap();
622 if (tk->next_leap_ktime != KTIME_MAX)
623 /* Convert to monotonic time */
624 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
628 * Update the ktime_t based scalar nsec members of the timekeeper
630 static inline void tk_update_ktime_data(struct timekeeper *tk)
632 u64 seconds;
633 u32 nsec;
636 * The xtime based monotonic readout is:
637 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638 * The ktime based monotonic readout is:
639 * nsec = base_mono + now();
640 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
642 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
647 * The sum of the nanoseconds portions of xtime and
648 * wall_to_monotonic can be greater/equal one second. Take
649 * this into account before updating tk->ktime_sec.
651 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652 if (nsec >= NSEC_PER_SEC)
653 seconds++;
654 tk->ktime_sec = seconds;
656 /* Update the monotonic raw base */
657 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
660 /* must hold timekeeper_lock */
661 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
663 if (action & TK_CLEAR_NTP) {
664 tk->ntp_error = 0;
665 ntp_clear();
668 tk_update_leap_state(tk);
669 tk_update_ktime_data(tk);
671 update_vsyscall(tk);
672 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
674 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
678 if (action & TK_CLOCK_WAS_SET)
679 tk->clock_was_set_seq++;
681 * The mirroring of the data to the shadow-timekeeper needs
682 * to happen last here to ensure we don't over-write the
683 * timekeeper structure on the next update with stale data
685 if (action & TK_MIRROR)
686 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687 sizeof(tk_core.timekeeper));
691 * timekeeping_forward_now - update clock to the current time
693 * Forward the current clock to update its state since the last call to
694 * update_wall_time(). This is useful before significant clock changes,
695 * as it avoids having to deal with this time offset explicitly.
697 static void timekeeping_forward_now(struct timekeeper *tk)
699 u64 cycle_now, delta;
701 cycle_now = tk_clock_read(&tk->tkr_mono);
702 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703 tk->tkr_mono.cycle_last = cycle_now;
704 tk->tkr_raw.cycle_last = cycle_now;
706 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
712 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
714 /* If arch requires, add in get_arch_timeoffset() */
715 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
717 tk_normalize_xtime(tk);
721 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722 * @ts: pointer to the timespec to be set
724 * Returns the time of day in a timespec64 (WARN if suspended).
726 void ktime_get_real_ts64(struct timespec64 *ts)
728 struct timekeeper *tk = &tk_core.timekeeper;
729 unsigned int seq;
730 u64 nsecs;
732 WARN_ON(timekeeping_suspended);
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
737 ts->tv_sec = tk->xtime_sec;
738 nsecs = timekeeping_get_ns(&tk->tkr_mono);
740 } while (read_seqcount_retry(&tk_core.seq, seq));
742 ts->tv_nsec = 0;
743 timespec64_add_ns(ts, nsecs);
745 EXPORT_SYMBOL(ktime_get_real_ts64);
747 ktime_t ktime_get(void)
749 struct timekeeper *tk = &tk_core.timekeeper;
750 unsigned int seq;
751 ktime_t base;
752 u64 nsecs;
754 WARN_ON(timekeeping_suspended);
756 do {
757 seq = read_seqcount_begin(&tk_core.seq);
758 base = tk->tkr_mono.base;
759 nsecs = timekeeping_get_ns(&tk->tkr_mono);
761 } while (read_seqcount_retry(&tk_core.seq, seq));
763 return ktime_add_ns(base, nsecs);
765 EXPORT_SYMBOL_GPL(ktime_get);
767 u32 ktime_get_resolution_ns(void)
769 struct timekeeper *tk = &tk_core.timekeeper;
770 unsigned int seq;
771 u32 nsecs;
773 WARN_ON(timekeeping_suspended);
775 do {
776 seq = read_seqcount_begin(&tk_core.seq);
777 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 } while (read_seqcount_retry(&tk_core.seq, seq));
780 return nsecs;
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
786 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
787 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
792 struct timekeeper *tk = &tk_core.timekeeper;
793 unsigned int seq;
794 ktime_t base, *offset = offsets[offs];
795 u64 nsecs;
797 WARN_ON(timekeeping_suspended);
799 do {
800 seq = read_seqcount_begin(&tk_core.seq);
801 base = ktime_add(tk->tkr_mono.base, *offset);
802 nsecs = timekeeping_get_ns(&tk->tkr_mono);
804 } while (read_seqcount_retry(&tk_core.seq, seq));
806 return ktime_add_ns(base, nsecs);
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
813 struct timekeeper *tk = &tk_core.timekeeper;
814 unsigned int seq;
815 ktime_t base, *offset = offsets[offs];
816 u64 nsecs;
818 WARN_ON(timekeeping_suspended);
820 do {
821 seq = read_seqcount_begin(&tk_core.seq);
822 base = ktime_add(tk->tkr_mono.base, *offset);
823 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
825 } while (read_seqcount_retry(&tk_core.seq, seq));
827 return ktime_add_ns(base, nsecs);
829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
832 * ktime_mono_to_any() - convert mononotic time to any other time
833 * @tmono: time to convert.
834 * @offs: which offset to use
836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
838 ktime_t *offset = offsets[offs];
839 unsigned int seq;
840 ktime_t tconv;
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 tconv = ktime_add(tmono, *offset);
845 } while (read_seqcount_retry(&tk_core.seq, seq));
847 return tconv;
849 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
852 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
854 ktime_t ktime_get_raw(void)
856 struct timekeeper *tk = &tk_core.timekeeper;
857 unsigned int seq;
858 ktime_t base;
859 u64 nsecs;
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 base = tk->tkr_raw.base;
864 nsecs = timekeeping_get_ns(&tk->tkr_raw);
866 } while (read_seqcount_retry(&tk_core.seq, seq));
868 return ktime_add_ns(base, nsecs);
870 EXPORT_SYMBOL_GPL(ktime_get_raw);
873 * ktime_get_ts64 - get the monotonic clock in timespec64 format
874 * @ts: pointer to timespec variable
876 * The function calculates the monotonic clock from the realtime
877 * clock and the wall_to_monotonic offset and stores the result
878 * in normalized timespec64 format in the variable pointed to by @ts.
880 void ktime_get_ts64(struct timespec64 *ts)
882 struct timekeeper *tk = &tk_core.timekeeper;
883 struct timespec64 tomono;
884 unsigned int seq;
885 u64 nsec;
887 WARN_ON(timekeeping_suspended);
889 do {
890 seq = read_seqcount_begin(&tk_core.seq);
891 ts->tv_sec = tk->xtime_sec;
892 nsec = timekeeping_get_ns(&tk->tkr_mono);
893 tomono = tk->wall_to_monotonic;
895 } while (read_seqcount_retry(&tk_core.seq, seq));
897 ts->tv_sec += tomono.tv_sec;
898 ts->tv_nsec = 0;
899 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
901 EXPORT_SYMBOL_GPL(ktime_get_ts64);
904 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
906 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908 * works on both 32 and 64 bit systems. On 32 bit systems the readout
909 * covers ~136 years of uptime which should be enough to prevent
910 * premature wrap arounds.
912 time64_t ktime_get_seconds(void)
914 struct timekeeper *tk = &tk_core.timekeeper;
916 WARN_ON(timekeeping_suspended);
917 return tk->ktime_sec;
919 EXPORT_SYMBOL_GPL(ktime_get_seconds);
922 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
924 * Returns the wall clock seconds since 1970. This replaces the
925 * get_seconds() interface which is not y2038 safe on 32bit systems.
927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928 * 32bit systems the access must be protected with the sequence
929 * counter to provide "atomic" access to the 64bit tk->xtime_sec
930 * value.
932 time64_t ktime_get_real_seconds(void)
934 struct timekeeper *tk = &tk_core.timekeeper;
935 time64_t seconds;
936 unsigned int seq;
938 if (IS_ENABLED(CONFIG_64BIT))
939 return tk->xtime_sec;
941 do {
942 seq = read_seqcount_begin(&tk_core.seq);
943 seconds = tk->xtime_sec;
945 } while (read_seqcount_retry(&tk_core.seq, seq));
947 return seconds;
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953 * but without the sequence counter protect. This internal function
954 * is called just when timekeeping lock is already held.
956 time64_t __ktime_get_real_seconds(void)
958 struct timekeeper *tk = &tk_core.timekeeper;
960 return tk->xtime_sec;
964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965 * @systime_snapshot: pointer to struct receiving the system time snapshot
967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
969 struct timekeeper *tk = &tk_core.timekeeper;
970 unsigned int seq;
971 ktime_t base_raw;
972 ktime_t base_real;
973 u64 nsec_raw;
974 u64 nsec_real;
975 u64 now;
977 WARN_ON_ONCE(timekeeping_suspended);
979 do {
980 seq = read_seqcount_begin(&tk_core.seq);
981 now = tk_clock_read(&tk->tkr_mono);
982 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984 base_real = ktime_add(tk->tkr_mono.base,
985 tk_core.timekeeper.offs_real);
986 base_raw = tk->tkr_raw.base;
987 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989 } while (read_seqcount_retry(&tk_core.seq, seq));
991 systime_snapshot->cycles = now;
992 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
995 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
997 /* Scale base by mult/div checking for overflow */
998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1000 u64 tmp, rem;
1002 tmp = div64_u64_rem(*base, div, &rem);
1004 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006 return -EOVERFLOW;
1007 tmp *= mult;
1008 rem *= mult;
1010 do_div(rem, div);
1011 *base = tmp + rem;
1012 return 0;
1016 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1017 * @history: Snapshot representing start of history
1018 * @partial_history_cycles: Cycle offset into history (fractional part)
1019 * @total_history_cycles: Total history length in cycles
1020 * @discontinuity: True indicates clock was set on history period
1021 * @ts: Cross timestamp that should be adjusted using
1022 * partial/total ratio
1024 * Helper function used by get_device_system_crosststamp() to correct the
1025 * crosstimestamp corresponding to the start of the current interval to the
1026 * system counter value (timestamp point) provided by the driver. The
1027 * total_history_* quantities are the total history starting at the provided
1028 * reference point and ending at the start of the current interval. The cycle
1029 * count between the driver timestamp point and the start of the current
1030 * interval is partial_history_cycles.
1032 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1033 u64 partial_history_cycles,
1034 u64 total_history_cycles,
1035 bool discontinuity,
1036 struct system_device_crosststamp *ts)
1038 struct timekeeper *tk = &tk_core.timekeeper;
1039 u64 corr_raw, corr_real;
1040 bool interp_forward;
1041 int ret;
1043 if (total_history_cycles == 0 || partial_history_cycles == 0)
1044 return 0;
1046 /* Interpolate shortest distance from beginning or end of history */
1047 interp_forward = partial_history_cycles > total_history_cycles / 2;
1048 partial_history_cycles = interp_forward ?
1049 total_history_cycles - partial_history_cycles :
1050 partial_history_cycles;
1053 * Scale the monotonic raw time delta by:
1054 * partial_history_cycles / total_history_cycles
1056 corr_raw = (u64)ktime_to_ns(
1057 ktime_sub(ts->sys_monoraw, history->raw));
1058 ret = scale64_check_overflow(partial_history_cycles,
1059 total_history_cycles, &corr_raw);
1060 if (ret)
1061 return ret;
1064 * If there is a discontinuity in the history, scale monotonic raw
1065 * correction by:
1066 * mult(real)/mult(raw) yielding the realtime correction
1067 * Otherwise, calculate the realtime correction similar to monotonic
1068 * raw calculation
1070 if (discontinuity) {
1071 corr_real = mul_u64_u32_div
1072 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1073 } else {
1074 corr_real = (u64)ktime_to_ns(
1075 ktime_sub(ts->sys_realtime, history->real));
1076 ret = scale64_check_overflow(partial_history_cycles,
1077 total_history_cycles, &corr_real);
1078 if (ret)
1079 return ret;
1082 /* Fixup monotonic raw and real time time values */
1083 if (interp_forward) {
1084 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1085 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1086 } else {
1087 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1088 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1091 return 0;
1095 * cycle_between - true if test occurs chronologically between before and after
1097 static bool cycle_between(u64 before, u64 test, u64 after)
1099 if (test > before && test < after)
1100 return true;
1101 if (test < before && before > after)
1102 return true;
1103 return false;
1107 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1108 * @get_time_fn: Callback to get simultaneous device time and
1109 * system counter from the device driver
1110 * @ctx: Context passed to get_time_fn()
1111 * @history_begin: Historical reference point used to interpolate system
1112 * time when counter provided by the driver is before the current interval
1113 * @xtstamp: Receives simultaneously captured system and device time
1115 * Reads a timestamp from a device and correlates it to system time
1117 int get_device_system_crosststamp(int (*get_time_fn)
1118 (ktime_t *device_time,
1119 struct system_counterval_t *sys_counterval,
1120 void *ctx),
1121 void *ctx,
1122 struct system_time_snapshot *history_begin,
1123 struct system_device_crosststamp *xtstamp)
1125 struct system_counterval_t system_counterval;
1126 struct timekeeper *tk = &tk_core.timekeeper;
1127 u64 cycles, now, interval_start;
1128 unsigned int clock_was_set_seq = 0;
1129 ktime_t base_real, base_raw;
1130 u64 nsec_real, nsec_raw;
1131 u8 cs_was_changed_seq;
1132 unsigned int seq;
1133 bool do_interp;
1134 int ret;
1136 do {
1137 seq = read_seqcount_begin(&tk_core.seq);
1139 * Try to synchronously capture device time and a system
1140 * counter value calling back into the device driver
1142 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1143 if (ret)
1144 return ret;
1147 * Verify that the clocksource associated with the captured
1148 * system counter value is the same as the currently installed
1149 * timekeeper clocksource
1151 if (tk->tkr_mono.clock != system_counterval.cs)
1152 return -ENODEV;
1153 cycles = system_counterval.cycles;
1156 * Check whether the system counter value provided by the
1157 * device driver is on the current timekeeping interval.
1159 now = tk_clock_read(&tk->tkr_mono);
1160 interval_start = tk->tkr_mono.cycle_last;
1161 if (!cycle_between(interval_start, cycles, now)) {
1162 clock_was_set_seq = tk->clock_was_set_seq;
1163 cs_was_changed_seq = tk->cs_was_changed_seq;
1164 cycles = interval_start;
1165 do_interp = true;
1166 } else {
1167 do_interp = false;
1170 base_real = ktime_add(tk->tkr_mono.base,
1171 tk_core.timekeeper.offs_real);
1172 base_raw = tk->tkr_raw.base;
1174 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1175 system_counterval.cycles);
1176 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1177 system_counterval.cycles);
1178 } while (read_seqcount_retry(&tk_core.seq, seq));
1180 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1181 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1184 * Interpolate if necessary, adjusting back from the start of the
1185 * current interval
1187 if (do_interp) {
1188 u64 partial_history_cycles, total_history_cycles;
1189 bool discontinuity;
1192 * Check that the counter value occurs after the provided
1193 * history reference and that the history doesn't cross a
1194 * clocksource change
1196 if (!history_begin ||
1197 !cycle_between(history_begin->cycles,
1198 system_counterval.cycles, cycles) ||
1199 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1200 return -EINVAL;
1201 partial_history_cycles = cycles - system_counterval.cycles;
1202 total_history_cycles = cycles - history_begin->cycles;
1203 discontinuity =
1204 history_begin->clock_was_set_seq != clock_was_set_seq;
1206 ret = adjust_historical_crosststamp(history_begin,
1207 partial_history_cycles,
1208 total_history_cycles,
1209 discontinuity, xtstamp);
1210 if (ret)
1211 return ret;
1214 return 0;
1216 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1219 * do_settimeofday64 - Sets the time of day.
1220 * @ts: pointer to the timespec64 variable containing the new time
1222 * Sets the time of day to the new time and update NTP and notify hrtimers
1224 int do_settimeofday64(const struct timespec64 *ts)
1226 struct timekeeper *tk = &tk_core.timekeeper;
1227 struct timespec64 ts_delta, xt;
1228 unsigned long flags;
1229 int ret = 0;
1231 if (!timespec64_valid_settod(ts))
1232 return -EINVAL;
1234 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235 write_seqcount_begin(&tk_core.seq);
1237 timekeeping_forward_now(tk);
1239 xt = tk_xtime(tk);
1240 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1241 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1243 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1244 ret = -EINVAL;
1245 goto out;
1248 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1250 tk_set_xtime(tk, ts);
1251 out:
1252 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1254 write_seqcount_end(&tk_core.seq);
1255 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1257 /* signal hrtimers about time change */
1258 clock_was_set();
1260 if (!ret)
1261 audit_tk_injoffset(ts_delta);
1263 return ret;
1265 EXPORT_SYMBOL(do_settimeofday64);
1268 * timekeeping_inject_offset - Adds or subtracts from the current time.
1269 * @tv: pointer to the timespec variable containing the offset
1271 * Adds or subtracts an offset value from the current time.
1273 static int timekeeping_inject_offset(const struct timespec64 *ts)
1275 struct timekeeper *tk = &tk_core.timekeeper;
1276 unsigned long flags;
1277 struct timespec64 tmp;
1278 int ret = 0;
1280 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1281 return -EINVAL;
1283 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1284 write_seqcount_begin(&tk_core.seq);
1286 timekeeping_forward_now(tk);
1288 /* Make sure the proposed value is valid */
1289 tmp = timespec64_add(tk_xtime(tk), *ts);
1290 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1291 !timespec64_valid_settod(&tmp)) {
1292 ret = -EINVAL;
1293 goto error;
1296 tk_xtime_add(tk, ts);
1297 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1299 error: /* even if we error out, we forwarded the time, so call update */
1300 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1302 write_seqcount_end(&tk_core.seq);
1303 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1305 /* signal hrtimers about time change */
1306 clock_was_set();
1308 return ret;
1312 * Indicates if there is an offset between the system clock and the hardware
1313 * clock/persistent clock/rtc.
1315 int persistent_clock_is_local;
1318 * Adjust the time obtained from the CMOS to be UTC time instead of
1319 * local time.
1321 * This is ugly, but preferable to the alternatives. Otherwise we
1322 * would either need to write a program to do it in /etc/rc (and risk
1323 * confusion if the program gets run more than once; it would also be
1324 * hard to make the program warp the clock precisely n hours) or
1325 * compile in the timezone information into the kernel. Bad, bad....
1327 * - TYT, 1992-01-01
1329 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1330 * as real UNIX machines always do it. This avoids all headaches about
1331 * daylight saving times and warping kernel clocks.
1333 void timekeeping_warp_clock(void)
1335 if (sys_tz.tz_minuteswest != 0) {
1336 struct timespec64 adjust;
1338 persistent_clock_is_local = 1;
1339 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1340 adjust.tv_nsec = 0;
1341 timekeeping_inject_offset(&adjust);
1346 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1349 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1351 tk->tai_offset = tai_offset;
1352 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1356 * change_clocksource - Swaps clocksources if a new one is available
1358 * Accumulates current time interval and initializes new clocksource
1360 static int change_clocksource(void *data)
1362 struct timekeeper *tk = &tk_core.timekeeper;
1363 struct clocksource *new, *old;
1364 unsigned long flags;
1366 new = (struct clocksource *) data;
1368 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 write_seqcount_begin(&tk_core.seq);
1371 timekeeping_forward_now(tk);
1373 * If the cs is in module, get a module reference. Succeeds
1374 * for built-in code (owner == NULL) as well.
1376 if (try_module_get(new->owner)) {
1377 if (!new->enable || new->enable(new) == 0) {
1378 old = tk->tkr_mono.clock;
1379 tk_setup_internals(tk, new);
1380 if (old->disable)
1381 old->disable(old);
1382 module_put(old->owner);
1383 } else {
1384 module_put(new->owner);
1387 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1389 write_seqcount_end(&tk_core.seq);
1390 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1392 return 0;
1396 * timekeeping_notify - Install a new clock source
1397 * @clock: pointer to the clock source
1399 * This function is called from clocksource.c after a new, better clock
1400 * source has been registered. The caller holds the clocksource_mutex.
1402 int timekeeping_notify(struct clocksource *clock)
1404 struct timekeeper *tk = &tk_core.timekeeper;
1406 if (tk->tkr_mono.clock == clock)
1407 return 0;
1408 stop_machine(change_clocksource, clock, NULL);
1409 tick_clock_notify();
1410 return tk->tkr_mono.clock == clock ? 0 : -1;
1414 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1415 * @ts: pointer to the timespec64 to be set
1417 * Returns the raw monotonic time (completely un-modified by ntp)
1419 void ktime_get_raw_ts64(struct timespec64 *ts)
1421 struct timekeeper *tk = &tk_core.timekeeper;
1422 unsigned int seq;
1423 u64 nsecs;
1425 do {
1426 seq = read_seqcount_begin(&tk_core.seq);
1427 ts->tv_sec = tk->raw_sec;
1428 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1430 } while (read_seqcount_retry(&tk_core.seq, seq));
1432 ts->tv_nsec = 0;
1433 timespec64_add_ns(ts, nsecs);
1435 EXPORT_SYMBOL(ktime_get_raw_ts64);
1439 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1441 int timekeeping_valid_for_hres(void)
1443 struct timekeeper *tk = &tk_core.timekeeper;
1444 unsigned int seq;
1445 int ret;
1447 do {
1448 seq = read_seqcount_begin(&tk_core.seq);
1450 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1452 } while (read_seqcount_retry(&tk_core.seq, seq));
1454 return ret;
1458 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1460 u64 timekeeping_max_deferment(void)
1462 struct timekeeper *tk = &tk_core.timekeeper;
1463 unsigned int seq;
1464 u64 ret;
1466 do {
1467 seq = read_seqcount_begin(&tk_core.seq);
1469 ret = tk->tkr_mono.clock->max_idle_ns;
1471 } while (read_seqcount_retry(&tk_core.seq, seq));
1473 return ret;
1477 * read_persistent_clock64 - Return time from the persistent clock.
1479 * Weak dummy function for arches that do not yet support it.
1480 * Reads the time from the battery backed persistent clock.
1481 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1483 * XXX - Do be sure to remove it once all arches implement it.
1485 void __weak read_persistent_clock64(struct timespec64 *ts)
1487 ts->tv_sec = 0;
1488 ts->tv_nsec = 0;
1492 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1493 * from the boot.
1495 * Weak dummy function for arches that do not yet support it.
1496 * wall_time - current time as returned by persistent clock
1497 * boot_offset - offset that is defined as wall_time - boot_time
1498 * The default function calculates offset based on the current value of
1499 * local_clock(). This way architectures that support sched_clock() but don't
1500 * support dedicated boot time clock will provide the best estimate of the
1501 * boot time.
1503 void __weak __init
1504 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1505 struct timespec64 *boot_offset)
1507 read_persistent_clock64(wall_time);
1508 *boot_offset = ns_to_timespec64(local_clock());
1512 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1514 * The flag starts of false and is only set when a suspend reaches
1515 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1516 * timekeeper clocksource is not stopping across suspend and has been
1517 * used to update sleep time. If the timekeeper clocksource has stopped
1518 * then the flag stays true and is used by the RTC resume code to decide
1519 * whether sleeptime must be injected and if so the flag gets false then.
1521 * If a suspend fails before reaching timekeeping_resume() then the flag
1522 * stays false and prevents erroneous sleeptime injection.
1524 static bool suspend_timing_needed;
1526 /* Flag for if there is a persistent clock on this platform */
1527 static bool persistent_clock_exists;
1530 * timekeeping_init - Initializes the clocksource and common timekeeping values
1532 void __init timekeeping_init(void)
1534 struct timespec64 wall_time, boot_offset, wall_to_mono;
1535 struct timekeeper *tk = &tk_core.timekeeper;
1536 struct clocksource *clock;
1537 unsigned long flags;
1539 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1540 if (timespec64_valid_settod(&wall_time) &&
1541 timespec64_to_ns(&wall_time) > 0) {
1542 persistent_clock_exists = true;
1543 } else if (timespec64_to_ns(&wall_time) != 0) {
1544 pr_warn("Persistent clock returned invalid value");
1545 wall_time = (struct timespec64){0};
1548 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1549 boot_offset = (struct timespec64){0};
1552 * We want set wall_to_mono, so the following is true:
1553 * wall time + wall_to_mono = boot time
1555 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1557 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1558 write_seqcount_begin(&tk_core.seq);
1559 ntp_init();
1561 clock = clocksource_default_clock();
1562 if (clock->enable)
1563 clock->enable(clock);
1564 tk_setup_internals(tk, clock);
1566 tk_set_xtime(tk, &wall_time);
1567 tk->raw_sec = 0;
1569 tk_set_wall_to_mono(tk, wall_to_mono);
1571 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1573 write_seqcount_end(&tk_core.seq);
1574 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1577 /* time in seconds when suspend began for persistent clock */
1578 static struct timespec64 timekeeping_suspend_time;
1581 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1582 * @delta: pointer to a timespec delta value
1584 * Takes a timespec offset measuring a suspend interval and properly
1585 * adds the sleep offset to the timekeeping variables.
1587 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1588 const struct timespec64 *delta)
1590 if (!timespec64_valid_strict(delta)) {
1591 printk_deferred(KERN_WARNING
1592 "__timekeeping_inject_sleeptime: Invalid "
1593 "sleep delta value!\n");
1594 return;
1596 tk_xtime_add(tk, delta);
1597 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1598 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1599 tk_debug_account_sleep_time(delta);
1602 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1604 * We have three kinds of time sources to use for sleep time
1605 * injection, the preference order is:
1606 * 1) non-stop clocksource
1607 * 2) persistent clock (ie: RTC accessible when irqs are off)
1608 * 3) RTC
1610 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1611 * If system has neither 1) nor 2), 3) will be used finally.
1614 * If timekeeping has injected sleeptime via either 1) or 2),
1615 * 3) becomes needless, so in this case we don't need to call
1616 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1617 * means.
1619 bool timekeeping_rtc_skipresume(void)
1621 return !suspend_timing_needed;
1625 * 1) can be determined whether to use or not only when doing
1626 * timekeeping_resume() which is invoked after rtc_suspend(),
1627 * so we can't skip rtc_suspend() surely if system has 1).
1629 * But if system has 2), 2) will definitely be used, so in this
1630 * case we don't need to call rtc_suspend(), and this is what
1631 * timekeeping_rtc_skipsuspend() means.
1633 bool timekeeping_rtc_skipsuspend(void)
1635 return persistent_clock_exists;
1639 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1640 * @delta: pointer to a timespec64 delta value
1642 * This hook is for architectures that cannot support read_persistent_clock64
1643 * because their RTC/persistent clock is only accessible when irqs are enabled.
1644 * and also don't have an effective nonstop clocksource.
1646 * This function should only be called by rtc_resume(), and allows
1647 * a suspend offset to be injected into the timekeeping values.
1649 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1651 struct timekeeper *tk = &tk_core.timekeeper;
1652 unsigned long flags;
1654 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655 write_seqcount_begin(&tk_core.seq);
1657 suspend_timing_needed = false;
1659 timekeeping_forward_now(tk);
1661 __timekeeping_inject_sleeptime(tk, delta);
1663 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1665 write_seqcount_end(&tk_core.seq);
1666 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1668 /* signal hrtimers about time change */
1669 clock_was_set();
1671 #endif
1674 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1676 void timekeeping_resume(void)
1678 struct timekeeper *tk = &tk_core.timekeeper;
1679 struct clocksource *clock = tk->tkr_mono.clock;
1680 unsigned long flags;
1681 struct timespec64 ts_new, ts_delta;
1682 u64 cycle_now, nsec;
1683 bool inject_sleeptime = false;
1685 read_persistent_clock64(&ts_new);
1687 clockevents_resume();
1688 clocksource_resume();
1690 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1691 write_seqcount_begin(&tk_core.seq);
1694 * After system resumes, we need to calculate the suspended time and
1695 * compensate it for the OS time. There are 3 sources that could be
1696 * used: Nonstop clocksource during suspend, persistent clock and rtc
1697 * device.
1699 * One specific platform may have 1 or 2 or all of them, and the
1700 * preference will be:
1701 * suspend-nonstop clocksource -> persistent clock -> rtc
1702 * The less preferred source will only be tried if there is no better
1703 * usable source. The rtc part is handled separately in rtc core code.
1705 cycle_now = tk_clock_read(&tk->tkr_mono);
1706 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1707 if (nsec > 0) {
1708 ts_delta = ns_to_timespec64(nsec);
1709 inject_sleeptime = true;
1710 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1711 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1712 inject_sleeptime = true;
1715 if (inject_sleeptime) {
1716 suspend_timing_needed = false;
1717 __timekeeping_inject_sleeptime(tk, &ts_delta);
1720 /* Re-base the last cycle value */
1721 tk->tkr_mono.cycle_last = cycle_now;
1722 tk->tkr_raw.cycle_last = cycle_now;
1724 tk->ntp_error = 0;
1725 timekeeping_suspended = 0;
1726 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1727 write_seqcount_end(&tk_core.seq);
1728 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1730 touch_softlockup_watchdog();
1732 tick_resume();
1733 hrtimers_resume();
1736 int timekeeping_suspend(void)
1738 struct timekeeper *tk = &tk_core.timekeeper;
1739 unsigned long flags;
1740 struct timespec64 delta, delta_delta;
1741 static struct timespec64 old_delta;
1742 struct clocksource *curr_clock;
1743 u64 cycle_now;
1745 read_persistent_clock64(&timekeeping_suspend_time);
1748 * On some systems the persistent_clock can not be detected at
1749 * timekeeping_init by its return value, so if we see a valid
1750 * value returned, update the persistent_clock_exists flag.
1752 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1753 persistent_clock_exists = true;
1755 suspend_timing_needed = true;
1757 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1758 write_seqcount_begin(&tk_core.seq);
1759 timekeeping_forward_now(tk);
1760 timekeeping_suspended = 1;
1763 * Since we've called forward_now, cycle_last stores the value
1764 * just read from the current clocksource. Save this to potentially
1765 * use in suspend timing.
1767 curr_clock = tk->tkr_mono.clock;
1768 cycle_now = tk->tkr_mono.cycle_last;
1769 clocksource_start_suspend_timing(curr_clock, cycle_now);
1771 if (persistent_clock_exists) {
1773 * To avoid drift caused by repeated suspend/resumes,
1774 * which each can add ~1 second drift error,
1775 * try to compensate so the difference in system time
1776 * and persistent_clock time stays close to constant.
1778 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1779 delta_delta = timespec64_sub(delta, old_delta);
1780 if (abs(delta_delta.tv_sec) >= 2) {
1782 * if delta_delta is too large, assume time correction
1783 * has occurred and set old_delta to the current delta.
1785 old_delta = delta;
1786 } else {
1787 /* Otherwise try to adjust old_system to compensate */
1788 timekeeping_suspend_time =
1789 timespec64_add(timekeeping_suspend_time, delta_delta);
1793 timekeeping_update(tk, TK_MIRROR);
1794 halt_fast_timekeeper(tk);
1795 write_seqcount_end(&tk_core.seq);
1796 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1798 tick_suspend();
1799 clocksource_suspend();
1800 clockevents_suspend();
1802 return 0;
1805 /* sysfs resume/suspend bits for timekeeping */
1806 static struct syscore_ops timekeeping_syscore_ops = {
1807 .resume = timekeeping_resume,
1808 .suspend = timekeeping_suspend,
1811 static int __init timekeeping_init_ops(void)
1813 register_syscore_ops(&timekeeping_syscore_ops);
1814 return 0;
1816 device_initcall(timekeeping_init_ops);
1819 * Apply a multiplier adjustment to the timekeeper
1821 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1822 s64 offset,
1823 s32 mult_adj)
1825 s64 interval = tk->cycle_interval;
1827 if (mult_adj == 0) {
1828 return;
1829 } else if (mult_adj == -1) {
1830 interval = -interval;
1831 offset = -offset;
1832 } else if (mult_adj != 1) {
1833 interval *= mult_adj;
1834 offset *= mult_adj;
1838 * So the following can be confusing.
1840 * To keep things simple, lets assume mult_adj == 1 for now.
1842 * When mult_adj != 1, remember that the interval and offset values
1843 * have been appropriately scaled so the math is the same.
1845 * The basic idea here is that we're increasing the multiplier
1846 * by one, this causes the xtime_interval to be incremented by
1847 * one cycle_interval. This is because:
1848 * xtime_interval = cycle_interval * mult
1849 * So if mult is being incremented by one:
1850 * xtime_interval = cycle_interval * (mult + 1)
1851 * Its the same as:
1852 * xtime_interval = (cycle_interval * mult) + cycle_interval
1853 * Which can be shortened to:
1854 * xtime_interval += cycle_interval
1856 * So offset stores the non-accumulated cycles. Thus the current
1857 * time (in shifted nanoseconds) is:
1858 * now = (offset * adj) + xtime_nsec
1859 * Now, even though we're adjusting the clock frequency, we have
1860 * to keep time consistent. In other words, we can't jump back
1861 * in time, and we also want to avoid jumping forward in time.
1863 * So given the same offset value, we need the time to be the same
1864 * both before and after the freq adjustment.
1865 * now = (offset * adj_1) + xtime_nsec_1
1866 * now = (offset * adj_2) + xtime_nsec_2
1867 * So:
1868 * (offset * adj_1) + xtime_nsec_1 =
1869 * (offset * adj_2) + xtime_nsec_2
1870 * And we know:
1871 * adj_2 = adj_1 + 1
1872 * So:
1873 * (offset * adj_1) + xtime_nsec_1 =
1874 * (offset * (adj_1+1)) + xtime_nsec_2
1875 * (offset * adj_1) + xtime_nsec_1 =
1876 * (offset * adj_1) + offset + xtime_nsec_2
1877 * Canceling the sides:
1878 * xtime_nsec_1 = offset + xtime_nsec_2
1879 * Which gives us:
1880 * xtime_nsec_2 = xtime_nsec_1 - offset
1881 * Which simplfies to:
1882 * xtime_nsec -= offset
1884 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1885 /* NTP adjustment caused clocksource mult overflow */
1886 WARN_ON_ONCE(1);
1887 return;
1890 tk->tkr_mono.mult += mult_adj;
1891 tk->xtime_interval += interval;
1892 tk->tkr_mono.xtime_nsec -= offset;
1896 * Adjust the timekeeper's multiplier to the correct frequency
1897 * and also to reduce the accumulated error value.
1899 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1901 u32 mult;
1904 * Determine the multiplier from the current NTP tick length.
1905 * Avoid expensive division when the tick length doesn't change.
1907 if (likely(tk->ntp_tick == ntp_tick_length())) {
1908 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1909 } else {
1910 tk->ntp_tick = ntp_tick_length();
1911 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1912 tk->xtime_remainder, tk->cycle_interval);
1916 * If the clock is behind the NTP time, increase the multiplier by 1
1917 * to catch up with it. If it's ahead and there was a remainder in the
1918 * tick division, the clock will slow down. Otherwise it will stay
1919 * ahead until the tick length changes to a non-divisible value.
1921 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1922 mult += tk->ntp_err_mult;
1924 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1926 if (unlikely(tk->tkr_mono.clock->maxadj &&
1927 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1928 > tk->tkr_mono.clock->maxadj))) {
1929 printk_once(KERN_WARNING
1930 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1931 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1932 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1936 * It may be possible that when we entered this function, xtime_nsec
1937 * was very small. Further, if we're slightly speeding the clocksource
1938 * in the code above, its possible the required corrective factor to
1939 * xtime_nsec could cause it to underflow.
1941 * Now, since we have already accumulated the second and the NTP
1942 * subsystem has been notified via second_overflow(), we need to skip
1943 * the next update.
1945 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1946 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1947 tk->tkr_mono.shift;
1948 tk->xtime_sec--;
1949 tk->skip_second_overflow = 1;
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1956 * Helper function that accumulates the nsecs greater than a second
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1963 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964 unsigned int clock_set = 0;
1966 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 int leap;
1969 tk->tkr_mono.xtime_nsec -= nsecps;
1970 tk->xtime_sec++;
1973 * Skip NTP update if this second was accumulated before,
1974 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1976 if (unlikely(tk->skip_second_overflow)) {
1977 tk->skip_second_overflow = 0;
1978 continue;
1981 /* Figure out if its a leap sec and apply if needed */
1982 leap = second_overflow(tk->xtime_sec);
1983 if (unlikely(leap)) {
1984 struct timespec64 ts;
1986 tk->xtime_sec += leap;
1988 ts.tv_sec = leap;
1989 ts.tv_nsec = 0;
1990 tk_set_wall_to_mono(tk,
1991 timespec64_sub(tk->wall_to_monotonic, ts));
1993 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995 clock_set = TK_CLOCK_WAS_SET;
1998 return clock_set;
2002 * logarithmic_accumulation - shifted accumulation of cycles
2004 * This functions accumulates a shifted interval of cycles into
2005 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2006 * loop.
2008 * Returns the unconsumed cycles.
2010 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2011 u32 shift, unsigned int *clock_set)
2013 u64 interval = tk->cycle_interval << shift;
2014 u64 snsec_per_sec;
2016 /* If the offset is smaller than a shifted interval, do nothing */
2017 if (offset < interval)
2018 return offset;
2020 /* Accumulate one shifted interval */
2021 offset -= interval;
2022 tk->tkr_mono.cycle_last += interval;
2023 tk->tkr_raw.cycle_last += interval;
2025 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2026 *clock_set |= accumulate_nsecs_to_secs(tk);
2028 /* Accumulate raw time */
2029 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2030 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2031 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2032 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2033 tk->raw_sec++;
2036 /* Accumulate error between NTP and clock interval */
2037 tk->ntp_error += tk->ntp_tick << shift;
2038 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2039 (tk->ntp_error_shift + shift);
2041 return offset;
2045 * timekeeping_advance - Updates the timekeeper to the current time and
2046 * current NTP tick length
2048 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2050 struct timekeeper *real_tk = &tk_core.timekeeper;
2051 struct timekeeper *tk = &shadow_timekeeper;
2052 u64 offset;
2053 int shift = 0, maxshift;
2054 unsigned int clock_set = 0;
2055 unsigned long flags;
2057 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2059 /* Make sure we're fully resumed: */
2060 if (unlikely(timekeeping_suspended))
2061 goto out;
2063 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2064 offset = real_tk->cycle_interval;
2066 if (mode != TK_ADV_TICK)
2067 goto out;
2068 #else
2069 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2070 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2072 /* Check if there's really nothing to do */
2073 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2074 goto out;
2075 #endif
2077 /* Do some additional sanity checking */
2078 timekeeping_check_update(tk, offset);
2081 * With NO_HZ we may have to accumulate many cycle_intervals
2082 * (think "ticks") worth of time at once. To do this efficiently,
2083 * we calculate the largest doubling multiple of cycle_intervals
2084 * that is smaller than the offset. We then accumulate that
2085 * chunk in one go, and then try to consume the next smaller
2086 * doubled multiple.
2088 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 shift = max(0, shift);
2090 /* Bound shift to one less than what overflows tick_length */
2091 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 shift = min(shift, maxshift);
2093 while (offset >= tk->cycle_interval) {
2094 offset = logarithmic_accumulation(tk, offset, shift,
2095 &clock_set);
2096 if (offset < tk->cycle_interval<<shift)
2097 shift--;
2100 /* Adjust the multiplier to correct NTP error */
2101 timekeeping_adjust(tk, offset);
2104 * Finally, make sure that after the rounding
2105 * xtime_nsec isn't larger than NSEC_PER_SEC
2107 clock_set |= accumulate_nsecs_to_secs(tk);
2109 write_seqcount_begin(&tk_core.seq);
2111 * Update the real timekeeper.
2113 * We could avoid this memcpy by switching pointers, but that
2114 * requires changes to all other timekeeper usage sites as
2115 * well, i.e. move the timekeeper pointer getter into the
2116 * spinlocked/seqcount protected sections. And we trade this
2117 * memcpy under the tk_core.seq against one before we start
2118 * updating.
2120 timekeeping_update(tk, clock_set);
2121 memcpy(real_tk, tk, sizeof(*tk));
2122 /* The memcpy must come last. Do not put anything here! */
2123 write_seqcount_end(&tk_core.seq);
2124 out:
2125 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2126 if (clock_set)
2127 /* Have to call _delayed version, since in irq context*/
2128 clock_was_set_delayed();
2132 * update_wall_time - Uses the current clocksource to increment the wall time
2135 void update_wall_time(void)
2137 timekeeping_advance(TK_ADV_TICK);
2141 * getboottime64 - Return the real time of system boot.
2142 * @ts: pointer to the timespec64 to be set
2144 * Returns the wall-time of boot in a timespec64.
2146 * This is based on the wall_to_monotonic offset and the total suspend
2147 * time. Calls to settimeofday will affect the value returned (which
2148 * basically means that however wrong your real time clock is at boot time,
2149 * you get the right time here).
2151 void getboottime64(struct timespec64 *ts)
2153 struct timekeeper *tk = &tk_core.timekeeper;
2154 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2156 *ts = ktime_to_timespec64(t);
2158 EXPORT_SYMBOL_GPL(getboottime64);
2160 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2162 struct timekeeper *tk = &tk_core.timekeeper;
2163 unsigned int seq;
2165 do {
2166 seq = read_seqcount_begin(&tk_core.seq);
2168 *ts = tk_xtime(tk);
2169 } while (read_seqcount_retry(&tk_core.seq, seq));
2171 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2173 void ktime_get_coarse_ts64(struct timespec64 *ts)
2175 struct timekeeper *tk = &tk_core.timekeeper;
2176 struct timespec64 now, mono;
2177 unsigned int seq;
2179 do {
2180 seq = read_seqcount_begin(&tk_core.seq);
2182 now = tk_xtime(tk);
2183 mono = tk->wall_to_monotonic;
2184 } while (read_seqcount_retry(&tk_core.seq, seq));
2186 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2187 now.tv_nsec + mono.tv_nsec);
2189 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2192 * Must hold jiffies_lock
2194 void do_timer(unsigned long ticks)
2196 jiffies_64 += ticks;
2197 calc_global_load(ticks);
2201 * ktime_get_update_offsets_now - hrtimer helper
2202 * @cwsseq: pointer to check and store the clock was set sequence number
2203 * @offs_real: pointer to storage for monotonic -> realtime offset
2204 * @offs_boot: pointer to storage for monotonic -> boottime offset
2205 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2207 * Returns current monotonic time and updates the offsets if the
2208 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2209 * different.
2211 * Called from hrtimer_interrupt() or retrigger_next_event()
2213 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2214 ktime_t *offs_boot, ktime_t *offs_tai)
2216 struct timekeeper *tk = &tk_core.timekeeper;
2217 unsigned int seq;
2218 ktime_t base;
2219 u64 nsecs;
2221 do {
2222 seq = read_seqcount_begin(&tk_core.seq);
2224 base = tk->tkr_mono.base;
2225 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2226 base = ktime_add_ns(base, nsecs);
2228 if (*cwsseq != tk->clock_was_set_seq) {
2229 *cwsseq = tk->clock_was_set_seq;
2230 *offs_real = tk->offs_real;
2231 *offs_boot = tk->offs_boot;
2232 *offs_tai = tk->offs_tai;
2235 /* Handle leapsecond insertion adjustments */
2236 if (unlikely(base >= tk->next_leap_ktime))
2237 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2239 } while (read_seqcount_retry(&tk_core.seq, seq));
2241 return base;
2245 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2247 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2249 if (txc->modes & ADJ_ADJTIME) {
2250 /* singleshot must not be used with any other mode bits */
2251 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2252 return -EINVAL;
2253 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2254 !capable(CAP_SYS_TIME))
2255 return -EPERM;
2256 } else {
2257 /* In order to modify anything, you gotta be super-user! */
2258 if (txc->modes && !capable(CAP_SYS_TIME))
2259 return -EPERM;
2261 * if the quartz is off by more than 10% then
2262 * something is VERY wrong!
2264 if (txc->modes & ADJ_TICK &&
2265 (txc->tick < 900000/USER_HZ ||
2266 txc->tick > 1100000/USER_HZ))
2267 return -EINVAL;
2270 if (txc->modes & ADJ_SETOFFSET) {
2271 /* In order to inject time, you gotta be super-user! */
2272 if (!capable(CAP_SYS_TIME))
2273 return -EPERM;
2276 * Validate if a timespec/timeval used to inject a time
2277 * offset is valid. Offsets can be postive or negative, so
2278 * we don't check tv_sec. The value of the timeval/timespec
2279 * is the sum of its fields,but *NOTE*:
2280 * The field tv_usec/tv_nsec must always be non-negative and
2281 * we can't have more nanoseconds/microseconds than a second.
2283 if (txc->time.tv_usec < 0)
2284 return -EINVAL;
2286 if (txc->modes & ADJ_NANO) {
2287 if (txc->time.tv_usec >= NSEC_PER_SEC)
2288 return -EINVAL;
2289 } else {
2290 if (txc->time.tv_usec >= USEC_PER_SEC)
2291 return -EINVAL;
2296 * Check for potential multiplication overflows that can
2297 * only happen on 64-bit systems:
2299 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2300 if (LLONG_MIN / PPM_SCALE > txc->freq)
2301 return -EINVAL;
2302 if (LLONG_MAX / PPM_SCALE < txc->freq)
2303 return -EINVAL;
2306 return 0;
2311 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2313 int do_adjtimex(struct __kernel_timex *txc)
2315 struct timekeeper *tk = &tk_core.timekeeper;
2316 struct audit_ntp_data ad;
2317 unsigned long flags;
2318 struct timespec64 ts;
2319 s32 orig_tai, tai;
2320 int ret;
2322 /* Validate the data before disabling interrupts */
2323 ret = timekeeping_validate_timex(txc);
2324 if (ret)
2325 return ret;
2327 if (txc->modes & ADJ_SETOFFSET) {
2328 struct timespec64 delta;
2329 delta.tv_sec = txc->time.tv_sec;
2330 delta.tv_nsec = txc->time.tv_usec;
2331 if (!(txc->modes & ADJ_NANO))
2332 delta.tv_nsec *= 1000;
2333 ret = timekeeping_inject_offset(&delta);
2334 if (ret)
2335 return ret;
2337 audit_tk_injoffset(delta);
2340 audit_ntp_init(&ad);
2342 ktime_get_real_ts64(&ts);
2344 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2345 write_seqcount_begin(&tk_core.seq);
2347 orig_tai = tai = tk->tai_offset;
2348 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2350 if (tai != orig_tai) {
2351 __timekeeping_set_tai_offset(tk, tai);
2352 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2354 tk_update_leap_state(tk);
2356 write_seqcount_end(&tk_core.seq);
2357 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2359 audit_ntp_log(&ad);
2361 /* Update the multiplier immediately if frequency was set directly */
2362 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2363 timekeeping_advance(TK_ADV_FREQ);
2365 if (tai != orig_tai)
2366 clock_was_set();
2368 ntp_notify_cmos_timer();
2370 return ret;
2373 #ifdef CONFIG_NTP_PPS
2375 * hardpps() - Accessor function to NTP __hardpps function
2377 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2379 unsigned long flags;
2381 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2382 write_seqcount_begin(&tk_core.seq);
2384 __hardpps(phase_ts, raw_ts);
2386 write_seqcount_end(&tk_core.seq);
2387 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2389 EXPORT_SYMBOL(hardpps);
2390 #endif /* CONFIG_NTP_PPS */
2393 * xtime_update() - advances the timekeeping infrastructure
2394 * @ticks: number of ticks, that have elapsed since the last call.
2396 * Must be called with interrupts disabled.
2398 void xtime_update(unsigned long ticks)
2400 write_seqlock(&jiffies_lock);
2401 do_timer(ticks);
2402 write_sequnlock(&jiffies_lock);
2403 update_wall_time();