1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains functions which emulate a local clock-event
4 * device via a broadcast event source.
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
20 #include "tick-internal.h"
23 * Broadcast support for broken x86 hardware, where the local apic
24 * timer stops in C3 state.
27 static struct tick_device tick_broadcast_device
;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly
;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly
;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly
;
31 static int tick_broadcast_forced
;
33 static __cacheline_aligned_in_smp
DEFINE_RAW_SPINLOCK(tick_broadcast_lock
);
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
);
37 static void tick_broadcast_clear_oneshot(int cpu
);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
);
39 # ifdef CONFIG_HOTPLUG_CPU
40 static void tick_broadcast_oneshot_offline(unsigned int cpu
);
43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
) { BUG(); }
44 static inline void tick_broadcast_clear_oneshot(int cpu
) { }
45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
) { }
46 # ifdef CONFIG_HOTPLUG_CPU
47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu
) { }
52 * Debugging: see timer_list.c
54 struct tick_device
*tick_get_broadcast_device(void)
56 return &tick_broadcast_device
;
59 struct cpumask
*tick_get_broadcast_mask(void)
61 return tick_broadcast_mask
;
65 * Start the device in periodic mode
67 static void tick_broadcast_start_periodic(struct clock_event_device
*bc
)
70 tick_setup_periodic(bc
, 1);
74 * Check, if the device can be utilized as broadcast device:
76 static bool tick_check_broadcast_device(struct clock_event_device
*curdev
,
77 struct clock_event_device
*newdev
)
79 if ((newdev
->features
& CLOCK_EVT_FEAT_DUMMY
) ||
80 (newdev
->features
& CLOCK_EVT_FEAT_PERCPU
) ||
81 (newdev
->features
& CLOCK_EVT_FEAT_C3STOP
))
84 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
&&
85 !(newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
88 return !curdev
|| newdev
->rating
> curdev
->rating
;
92 * Conditionally install/replace broadcast device
94 void tick_install_broadcast_device(struct clock_event_device
*dev
)
96 struct clock_event_device
*cur
= tick_broadcast_device
.evtdev
;
98 if (!tick_check_broadcast_device(cur
, dev
))
101 if (!try_module_get(dev
->owner
))
104 clockevents_exchange_device(cur
, dev
);
106 cur
->event_handler
= clockevents_handle_noop
;
107 tick_broadcast_device
.evtdev
= dev
;
108 if (!cpumask_empty(tick_broadcast_mask
))
109 tick_broadcast_start_periodic(dev
);
111 * Inform all cpus about this. We might be in a situation
112 * where we did not switch to oneshot mode because the per cpu
113 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
114 * of a oneshot capable broadcast device. Without that
115 * notification the systems stays stuck in periodic mode
118 if (dev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
123 * Check, if the device is the broadcast device
125 int tick_is_broadcast_device(struct clock_event_device
*dev
)
127 return (dev
&& tick_broadcast_device
.evtdev
== dev
);
130 int tick_broadcast_update_freq(struct clock_event_device
*dev
, u32 freq
)
134 if (tick_is_broadcast_device(dev
)) {
135 raw_spin_lock(&tick_broadcast_lock
);
136 ret
= __clockevents_update_freq(dev
, freq
);
137 raw_spin_unlock(&tick_broadcast_lock
);
143 static void err_broadcast(const struct cpumask
*mask
)
145 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
148 static void tick_device_setup_broadcast_func(struct clock_event_device
*dev
)
151 dev
->broadcast
= tick_broadcast
;
152 if (!dev
->broadcast
) {
153 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
155 dev
->broadcast
= err_broadcast
;
160 * Check, if the device is disfunctional and a place holder, which
161 * needs to be handled by the broadcast device.
163 int tick_device_uses_broadcast(struct clock_event_device
*dev
, int cpu
)
165 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
169 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
172 * Devices might be registered with both periodic and oneshot
173 * mode disabled. This signals, that the device needs to be
174 * operated from the broadcast device and is a placeholder for
175 * the cpu local device.
177 if (!tick_device_is_functional(dev
)) {
178 dev
->event_handler
= tick_handle_periodic
;
179 tick_device_setup_broadcast_func(dev
);
180 cpumask_set_cpu(cpu
, tick_broadcast_mask
);
181 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
182 tick_broadcast_start_periodic(bc
);
184 tick_broadcast_setup_oneshot(bc
);
188 * Clear the broadcast bit for this cpu if the
189 * device is not power state affected.
191 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
192 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
194 tick_device_setup_broadcast_func(dev
);
197 * Clear the broadcast bit if the CPU is not in
198 * periodic broadcast on state.
200 if (!cpumask_test_cpu(cpu
, tick_broadcast_on
))
201 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
203 switch (tick_broadcast_device
.mode
) {
204 case TICKDEV_MODE_ONESHOT
:
206 * If the system is in oneshot mode we can
207 * unconditionally clear the oneshot mask bit,
208 * because the CPU is running and therefore
209 * not in an idle state which causes the power
210 * state affected device to stop. Let the
211 * caller initialize the device.
213 tick_broadcast_clear_oneshot(cpu
);
217 case TICKDEV_MODE_PERIODIC
:
219 * If the system is in periodic mode, check
220 * whether the broadcast device can be
223 if (cpumask_empty(tick_broadcast_mask
) && bc
)
224 clockevents_shutdown(bc
);
226 * If we kept the cpu in the broadcast mask,
227 * tell the caller to leave the per cpu device
228 * in shutdown state. The periodic interrupt
229 * is delivered by the broadcast device, if
230 * the broadcast device exists and is not
233 if (bc
&& !(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
))
234 ret
= cpumask_test_cpu(cpu
, tick_broadcast_mask
);
240 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
244 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
245 int tick_receive_broadcast(void)
247 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
248 struct clock_event_device
*evt
= td
->evtdev
;
253 if (!evt
->event_handler
)
256 evt
->event_handler(evt
);
262 * Broadcast the event to the cpus, which are set in the mask (mangled).
264 static bool tick_do_broadcast(struct cpumask
*mask
)
266 int cpu
= smp_processor_id();
267 struct tick_device
*td
;
271 * Check, if the current cpu is in the mask
273 if (cpumask_test_cpu(cpu
, mask
)) {
274 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
276 cpumask_clear_cpu(cpu
, mask
);
278 * We only run the local handler, if the broadcast
279 * device is not hrtimer based. Otherwise we run into
280 * a hrtimer recursion.
282 * local timer_interrupt()
289 local
= !(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
);
292 if (!cpumask_empty(mask
)) {
294 * It might be necessary to actually check whether the devices
295 * have different broadcast functions. For now, just use the
296 * one of the first device. This works as long as we have this
297 * misfeature only on x86 (lapic)
299 td
= &per_cpu(tick_cpu_device
, cpumask_first(mask
));
300 td
->evtdev
->broadcast(mask
);
306 * Periodic broadcast:
307 * - invoke the broadcast handlers
309 static bool tick_do_periodic_broadcast(void)
311 cpumask_and(tmpmask
, cpu_online_mask
, tick_broadcast_mask
);
312 return tick_do_broadcast(tmpmask
);
316 * Event handler for periodic broadcast ticks
318 static void tick_handle_periodic_broadcast(struct clock_event_device
*dev
)
320 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
323 raw_spin_lock(&tick_broadcast_lock
);
325 /* Handle spurious interrupts gracefully */
326 if (clockevent_state_shutdown(tick_broadcast_device
.evtdev
)) {
327 raw_spin_unlock(&tick_broadcast_lock
);
331 bc_local
= tick_do_periodic_broadcast();
333 if (clockevent_state_oneshot(dev
)) {
334 ktime_t next
= ktime_add(dev
->next_event
, tick_period
);
336 clockevents_program_event(dev
, next
, true);
338 raw_spin_unlock(&tick_broadcast_lock
);
341 * We run the handler of the local cpu after dropping
342 * tick_broadcast_lock because the handler might deadlock when
343 * trying to switch to oneshot mode.
346 td
->evtdev
->event_handler(td
->evtdev
);
350 * tick_broadcast_control - Enable/disable or force broadcast mode
351 * @mode: The selected broadcast mode
353 * Called when the system enters a state where affected tick devices
354 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
356 void tick_broadcast_control(enum tick_broadcast_mode mode
)
358 struct clock_event_device
*bc
, *dev
;
359 struct tick_device
*td
;
363 /* Protects also the local clockevent device. */
364 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
365 td
= this_cpu_ptr(&tick_cpu_device
);
369 * Is the device not affected by the powerstate ?
371 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
374 if (!tick_device_is_functional(dev
))
377 cpu
= smp_processor_id();
378 bc
= tick_broadcast_device
.evtdev
;
379 bc_stopped
= cpumask_empty(tick_broadcast_mask
);
382 case TICK_BROADCAST_FORCE
:
383 tick_broadcast_forced
= 1;
385 case TICK_BROADCAST_ON
:
386 cpumask_set_cpu(cpu
, tick_broadcast_on
);
387 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_mask
)) {
389 * Only shutdown the cpu local device, if:
391 * - the broadcast device exists
392 * - the broadcast device is not a hrtimer based one
393 * - the broadcast device is in periodic mode to
394 * avoid a hickup during switch to oneshot mode
396 if (bc
&& !(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
) &&
397 tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
398 clockevents_shutdown(dev
);
402 case TICK_BROADCAST_OFF
:
403 if (tick_broadcast_forced
)
405 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
406 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_mask
)) {
407 if (tick_broadcast_device
.mode
==
408 TICKDEV_MODE_PERIODIC
)
409 tick_setup_periodic(dev
, 0);
415 if (cpumask_empty(tick_broadcast_mask
)) {
417 clockevents_shutdown(bc
);
418 } else if (bc_stopped
) {
419 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
420 tick_broadcast_start_periodic(bc
);
422 tick_broadcast_setup_oneshot(bc
);
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
428 EXPORT_SYMBOL_GPL(tick_broadcast_control
);
431 * Set the periodic handler depending on broadcast on/off
433 void tick_set_periodic_handler(struct clock_event_device
*dev
, int broadcast
)
436 dev
->event_handler
= tick_handle_periodic
;
438 dev
->event_handler
= tick_handle_periodic_broadcast
;
441 #ifdef CONFIG_HOTPLUG_CPU
442 static void tick_shutdown_broadcast(void)
444 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
446 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
447 if (bc
&& cpumask_empty(tick_broadcast_mask
))
448 clockevents_shutdown(bc
);
453 * Remove a CPU from broadcasting
455 void tick_broadcast_offline(unsigned int cpu
)
457 raw_spin_lock(&tick_broadcast_lock
);
458 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
459 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
460 tick_broadcast_oneshot_offline(cpu
);
461 tick_shutdown_broadcast();
462 raw_spin_unlock(&tick_broadcast_lock
);
467 void tick_suspend_broadcast(void)
469 struct clock_event_device
*bc
;
472 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
474 bc
= tick_broadcast_device
.evtdev
;
476 clockevents_shutdown(bc
);
478 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
482 * This is called from tick_resume_local() on a resuming CPU. That's
483 * called from the core resume function, tick_unfreeze() and the magic XEN
486 * In none of these cases the broadcast device mode can change and the
487 * bit of the resuming CPU in the broadcast mask is safe as well.
489 bool tick_resume_check_broadcast(void)
491 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
)
494 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask
);
497 void tick_resume_broadcast(void)
499 struct clock_event_device
*bc
;
502 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
504 bc
= tick_broadcast_device
.evtdev
;
507 clockevents_tick_resume(bc
);
509 switch (tick_broadcast_device
.mode
) {
510 case TICKDEV_MODE_PERIODIC
:
511 if (!cpumask_empty(tick_broadcast_mask
))
512 tick_broadcast_start_periodic(bc
);
514 case TICKDEV_MODE_ONESHOT
:
515 if (!cpumask_empty(tick_broadcast_mask
))
516 tick_resume_broadcast_oneshot(bc
);
520 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
523 #ifdef CONFIG_TICK_ONESHOT
525 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly
;
526 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly
;
527 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly
;
530 * Exposed for debugging: see timer_list.c
532 struct cpumask
*tick_get_broadcast_oneshot_mask(void)
534 return tick_broadcast_oneshot_mask
;
538 * Called before going idle with interrupts disabled. Checks whether a
539 * broadcast event from the other core is about to happen. We detected
540 * that in tick_broadcast_oneshot_control(). The callsite can use this
541 * to avoid a deep idle transition as we are about to get the
542 * broadcast IPI right away.
544 int tick_check_broadcast_expired(void)
546 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask
);
550 * Set broadcast interrupt affinity
552 static void tick_broadcast_set_affinity(struct clock_event_device
*bc
,
553 const struct cpumask
*cpumask
)
555 if (!(bc
->features
& CLOCK_EVT_FEAT_DYNIRQ
))
558 if (cpumask_equal(bc
->cpumask
, cpumask
))
561 bc
->cpumask
= cpumask
;
562 irq_set_affinity(bc
->irq
, bc
->cpumask
);
565 static void tick_broadcast_set_event(struct clock_event_device
*bc
, int cpu
,
568 if (!clockevent_state_oneshot(bc
))
569 clockevents_switch_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
571 clockevents_program_event(bc
, expires
, 1);
572 tick_broadcast_set_affinity(bc
, cpumask_of(cpu
));
575 static void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
)
577 clockevents_switch_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
581 * Called from irq_enter() when idle was interrupted to reenable the
584 void tick_check_oneshot_broadcast_this_cpu(void)
586 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask
)) {
587 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
590 * We might be in the middle of switching over from
591 * periodic to oneshot. If the CPU has not yet
592 * switched over, leave the device alone.
594 if (td
->mode
== TICKDEV_MODE_ONESHOT
) {
595 clockevents_switch_state(td
->evtdev
,
596 CLOCK_EVT_STATE_ONESHOT
);
602 * Handle oneshot mode broadcasting
604 static void tick_handle_oneshot_broadcast(struct clock_event_device
*dev
)
606 struct tick_device
*td
;
607 ktime_t now
, next_event
;
608 int cpu
, next_cpu
= 0;
611 raw_spin_lock(&tick_broadcast_lock
);
612 dev
->next_event
= KTIME_MAX
;
613 next_event
= KTIME_MAX
;
614 cpumask_clear(tmpmask
);
616 /* Find all expired events */
617 for_each_cpu(cpu
, tick_broadcast_oneshot_mask
) {
619 * Required for !SMP because for_each_cpu() reports
620 * unconditionally CPU0 as set on UP kernels.
622 if (!IS_ENABLED(CONFIG_SMP
) &&
623 cpumask_empty(tick_broadcast_oneshot_mask
))
626 td
= &per_cpu(tick_cpu_device
, cpu
);
627 if (td
->evtdev
->next_event
<= now
) {
628 cpumask_set_cpu(cpu
, tmpmask
);
630 * Mark the remote cpu in the pending mask, so
631 * it can avoid reprogramming the cpu local
632 * timer in tick_broadcast_oneshot_control().
634 cpumask_set_cpu(cpu
, tick_broadcast_pending_mask
);
635 } else if (td
->evtdev
->next_event
< next_event
) {
636 next_event
= td
->evtdev
->next_event
;
642 * Remove the current cpu from the pending mask. The event is
643 * delivered immediately in tick_do_broadcast() !
645 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask
);
647 /* Take care of enforced broadcast requests */
648 cpumask_or(tmpmask
, tmpmask
, tick_broadcast_force_mask
);
649 cpumask_clear(tick_broadcast_force_mask
);
652 * Sanity check. Catch the case where we try to broadcast to
655 if (WARN_ON_ONCE(!cpumask_subset(tmpmask
, cpu_online_mask
)))
656 cpumask_and(tmpmask
, tmpmask
, cpu_online_mask
);
659 * Wakeup the cpus which have an expired event.
661 bc_local
= tick_do_broadcast(tmpmask
);
664 * Two reasons for reprogram:
666 * - The global event did not expire any CPU local
667 * events. This happens in dyntick mode, as the maximum PIT
668 * delta is quite small.
670 * - There are pending events on sleeping CPUs which were not
673 if (next_event
!= KTIME_MAX
)
674 tick_broadcast_set_event(dev
, next_cpu
, next_event
);
676 raw_spin_unlock(&tick_broadcast_lock
);
679 td
= this_cpu_ptr(&tick_cpu_device
);
680 td
->evtdev
->event_handler(td
->evtdev
);
684 static int broadcast_needs_cpu(struct clock_event_device
*bc
, int cpu
)
686 if (!(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
))
688 if (bc
->next_event
== KTIME_MAX
)
690 return bc
->bound_on
== cpu
? -EBUSY
: 0;
693 static void broadcast_shutdown_local(struct clock_event_device
*bc
,
694 struct clock_event_device
*dev
)
697 * For hrtimer based broadcasting we cannot shutdown the cpu
698 * local device if our own event is the first one to expire or
699 * if we own the broadcast timer.
701 if (bc
->features
& CLOCK_EVT_FEAT_HRTIMER
) {
702 if (broadcast_needs_cpu(bc
, smp_processor_id()))
704 if (dev
->next_event
< bc
->next_event
)
707 clockevents_switch_state(dev
, CLOCK_EVT_STATE_SHUTDOWN
);
710 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state
)
712 struct clock_event_device
*bc
, *dev
;
717 * If there is no broadcast device, tell the caller not to go
720 if (!tick_broadcast_device
.evtdev
)
723 dev
= this_cpu_ptr(&tick_cpu_device
)->evtdev
;
725 raw_spin_lock(&tick_broadcast_lock
);
726 bc
= tick_broadcast_device
.evtdev
;
727 cpu
= smp_processor_id();
729 if (state
== TICK_BROADCAST_ENTER
) {
731 * If the current CPU owns the hrtimer broadcast
732 * mechanism, it cannot go deep idle and we do not add
733 * the CPU to the broadcast mask. We don't have to go
734 * through the EXIT path as the local timer is not
737 ret
= broadcast_needs_cpu(bc
, cpu
);
742 * If the broadcast device is in periodic mode, we
745 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
746 /* If it is a hrtimer based broadcast, return busy */
747 if (bc
->features
& CLOCK_EVT_FEAT_HRTIMER
)
752 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
753 WARN_ON_ONCE(cpumask_test_cpu(cpu
, tick_broadcast_pending_mask
));
755 /* Conditionally shut down the local timer. */
756 broadcast_shutdown_local(bc
, dev
);
759 * We only reprogram the broadcast timer if we
760 * did not mark ourself in the force mask and
761 * if the cpu local event is earlier than the
762 * broadcast event. If the current CPU is in
763 * the force mask, then we are going to be
764 * woken by the IPI right away; we return
765 * busy, so the CPU does not try to go deep
768 if (cpumask_test_cpu(cpu
, tick_broadcast_force_mask
)) {
770 } else if (dev
->next_event
< bc
->next_event
) {
771 tick_broadcast_set_event(bc
, cpu
, dev
->next_event
);
773 * In case of hrtimer broadcasts the
774 * programming might have moved the
775 * timer to this cpu. If yes, remove
776 * us from the broadcast mask and
779 ret
= broadcast_needs_cpu(bc
, cpu
);
781 cpumask_clear_cpu(cpu
,
782 tick_broadcast_oneshot_mask
);
787 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
788 clockevents_switch_state(dev
, CLOCK_EVT_STATE_ONESHOT
);
790 * The cpu which was handling the broadcast
791 * timer marked this cpu in the broadcast
792 * pending mask and fired the broadcast
793 * IPI. So we are going to handle the expired
794 * event anyway via the broadcast IPI
795 * handler. No need to reprogram the timer
796 * with an already expired event.
798 if (cpumask_test_and_clear_cpu(cpu
,
799 tick_broadcast_pending_mask
))
803 * Bail out if there is no next event.
805 if (dev
->next_event
== KTIME_MAX
)
808 * If the pending bit is not set, then we are
809 * either the CPU handling the broadcast
810 * interrupt or we got woken by something else.
812 * We are no longer in the broadcast mask, so
813 * if the cpu local expiry time is already
814 * reached, we would reprogram the cpu local
815 * timer with an already expired event.
817 * This can lead to a ping-pong when we return
818 * to idle and therefore rearm the broadcast
819 * timer before the cpu local timer was able
820 * to fire. This happens because the forced
821 * reprogramming makes sure that the event
822 * will happen in the future and depending on
823 * the min_delta setting this might be far
824 * enough out that the ping-pong starts.
826 * If the cpu local next_event has expired
827 * then we know that the broadcast timer
828 * next_event has expired as well and
829 * broadcast is about to be handled. So we
830 * avoid reprogramming and enforce that the
831 * broadcast handler, which did not run yet,
832 * will invoke the cpu local handler.
834 * We cannot call the handler directly from
835 * here, because we might be in a NOHZ phase
836 * and we did not go through the irq_enter()
840 if (dev
->next_event
<= now
) {
841 cpumask_set_cpu(cpu
, tick_broadcast_force_mask
);
845 * We got woken by something else. Reprogram
846 * the cpu local timer device.
848 tick_program_event(dev
->next_event
, 1);
852 raw_spin_unlock(&tick_broadcast_lock
);
857 * Reset the one shot broadcast for a cpu
859 * Called with tick_broadcast_lock held
861 static void tick_broadcast_clear_oneshot(int cpu
)
863 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
864 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
867 static void tick_broadcast_init_next_event(struct cpumask
*mask
,
870 struct tick_device
*td
;
873 for_each_cpu(cpu
, mask
) {
874 td
= &per_cpu(tick_cpu_device
, cpu
);
876 td
->evtdev
->next_event
= expires
;
881 * tick_broadcast_setup_oneshot - setup the broadcast device
883 static void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
)
885 int cpu
= smp_processor_id();
890 /* Set it up only once ! */
891 if (bc
->event_handler
!= tick_handle_oneshot_broadcast
) {
892 int was_periodic
= clockevent_state_periodic(bc
);
894 bc
->event_handler
= tick_handle_oneshot_broadcast
;
897 * We must be careful here. There might be other CPUs
898 * waiting for periodic broadcast. We need to set the
899 * oneshot_mask bits for those and program the
900 * broadcast device to fire.
902 cpumask_copy(tmpmask
, tick_broadcast_mask
);
903 cpumask_clear_cpu(cpu
, tmpmask
);
904 cpumask_or(tick_broadcast_oneshot_mask
,
905 tick_broadcast_oneshot_mask
, tmpmask
);
907 if (was_periodic
&& !cpumask_empty(tmpmask
)) {
908 clockevents_switch_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
909 tick_broadcast_init_next_event(tmpmask
,
911 tick_broadcast_set_event(bc
, cpu
, tick_next_period
);
913 bc
->next_event
= KTIME_MAX
;
916 * The first cpu which switches to oneshot mode sets
917 * the bit for all other cpus which are in the general
918 * (periodic) broadcast mask. So the bit is set and
919 * would prevent the first broadcast enter after this
920 * to program the bc device.
922 tick_broadcast_clear_oneshot(cpu
);
927 * Select oneshot operating mode for the broadcast device
929 void tick_broadcast_switch_to_oneshot(void)
931 struct clock_event_device
*bc
;
934 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
936 tick_broadcast_device
.mode
= TICKDEV_MODE_ONESHOT
;
937 bc
= tick_broadcast_device
.evtdev
;
939 tick_broadcast_setup_oneshot(bc
);
941 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
944 #ifdef CONFIG_HOTPLUG_CPU
945 void hotplug_cpu__broadcast_tick_pull(int deadcpu
)
947 struct clock_event_device
*bc
;
950 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
951 bc
= tick_broadcast_device
.evtdev
;
953 if (bc
&& broadcast_needs_cpu(bc
, deadcpu
)) {
954 /* This moves the broadcast assignment to this CPU: */
955 clockevents_program_event(bc
, bc
->next_event
, 1);
957 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
961 * Remove a dying CPU from broadcasting
963 static void tick_broadcast_oneshot_offline(unsigned int cpu
)
966 * Clear the broadcast masks for the dead cpu, but do not stop
967 * the broadcast device!
969 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
970 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
971 cpumask_clear_cpu(cpu
, tick_broadcast_force_mask
);
976 * Check, whether the broadcast device is in one shot mode
978 int tick_broadcast_oneshot_active(void)
980 return tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
;
984 * Check whether the broadcast device supports oneshot.
986 bool tick_broadcast_oneshot_available(void)
988 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
990 return bc
? bc
->features
& CLOCK_EVT_FEAT_ONESHOT
: false;
994 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state
)
996 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
998 if (!bc
|| (bc
->features
& CLOCK_EVT_FEAT_HRTIMER
))
1005 void __init
tick_broadcast_init(void)
1007 zalloc_cpumask_var(&tick_broadcast_mask
, GFP_NOWAIT
);
1008 zalloc_cpumask_var(&tick_broadcast_on
, GFP_NOWAIT
);
1009 zalloc_cpumask_var(&tmpmask
, GFP_NOWAIT
);
1010 #ifdef CONFIG_TICK_ONESHOT
1011 zalloc_cpumask_var(&tick_broadcast_oneshot_mask
, GFP_NOWAIT
);
1012 zalloc_cpumask_var(&tick_broadcast_pending_mask
, GFP_NOWAIT
);
1013 zalloc_cpumask_var(&tick_broadcast_force_mask
, GFP_NOWAIT
);