fix noaddr, connect and listen
[cor.git] / drivers / crypto / atmel-aes.c
blob91092504bc96b43d9d9b8a0928b77af9e790905f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
5 * Support for ATMEL AES HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
10 * Some ideas are from omap-aes.c driver.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <crypto/internal/skcipher.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43 #include "atmel-authenc.h"
45 #define ATMEL_AES_PRIORITY 300
47 #define ATMEL_AES_BUFFER_ORDER 2
48 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
50 #define CFB8_BLOCK_SIZE 1
51 #define CFB16_BLOCK_SIZE 2
52 #define CFB32_BLOCK_SIZE 4
53 #define CFB64_BLOCK_SIZE 8
55 #define SIZE_IN_WORDS(x) ((x) >> 2)
57 /* AES flags */
58 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
59 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
60 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
61 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
62 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
63 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
64 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
65 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
66 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
67 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
68 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
69 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
70 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
71 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
72 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
74 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
75 AES_FLAGS_ENCRYPT | \
76 AES_FLAGS_GTAGEN)
78 #define AES_FLAGS_BUSY BIT(3)
79 #define AES_FLAGS_DUMP_REG BIT(4)
80 #define AES_FLAGS_OWN_SHA BIT(5)
82 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
84 #define ATMEL_AES_QUEUE_LENGTH 50
86 #define ATMEL_AES_DMA_THRESHOLD 256
89 struct atmel_aes_caps {
90 bool has_dualbuff;
91 bool has_cfb64;
92 bool has_ctr32;
93 bool has_gcm;
94 bool has_xts;
95 bool has_authenc;
96 u32 max_burst_size;
99 struct atmel_aes_dev;
102 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
105 struct atmel_aes_base_ctx {
106 struct atmel_aes_dev *dd;
107 atmel_aes_fn_t start;
108 int keylen;
109 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
110 u16 block_size;
111 bool is_aead;
114 struct atmel_aes_ctx {
115 struct atmel_aes_base_ctx base;
118 struct atmel_aes_ctr_ctx {
119 struct atmel_aes_base_ctx base;
121 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
122 size_t offset;
123 struct scatterlist src[2];
124 struct scatterlist dst[2];
127 struct atmel_aes_gcm_ctx {
128 struct atmel_aes_base_ctx base;
130 struct scatterlist src[2];
131 struct scatterlist dst[2];
133 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
134 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
135 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
136 size_t textlen;
138 const __be32 *ghash_in;
139 __be32 *ghash_out;
140 atmel_aes_fn_t ghash_resume;
143 struct atmel_aes_xts_ctx {
144 struct atmel_aes_base_ctx base;
146 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151 struct atmel_aes_base_ctx base;
152 struct atmel_sha_authenc_ctx *auth;
154 #endif
156 struct atmel_aes_reqctx {
157 unsigned long mode;
158 u8 lastc[AES_BLOCK_SIZE];
161 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
162 struct atmel_aes_authenc_reqctx {
163 struct atmel_aes_reqctx base;
165 struct scatterlist src[2];
166 struct scatterlist dst[2];
167 size_t textlen;
168 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170 /* auth_req MUST be place last. */
171 struct ahash_request auth_req;
173 #endif
175 struct atmel_aes_dma {
176 struct dma_chan *chan;
177 struct scatterlist *sg;
178 int nents;
179 unsigned int remainder;
180 unsigned int sg_len;
183 struct atmel_aes_dev {
184 struct list_head list;
185 unsigned long phys_base;
186 void __iomem *io_base;
188 struct crypto_async_request *areq;
189 struct atmel_aes_base_ctx *ctx;
191 bool is_async;
192 atmel_aes_fn_t resume;
193 atmel_aes_fn_t cpu_transfer_complete;
195 struct device *dev;
196 struct clk *iclk;
197 int irq;
199 unsigned long flags;
201 spinlock_t lock;
202 struct crypto_queue queue;
204 struct tasklet_struct done_task;
205 struct tasklet_struct queue_task;
207 size_t total;
208 size_t datalen;
209 u32 *data;
211 struct atmel_aes_dma src;
212 struct atmel_aes_dma dst;
214 size_t buflen;
215 void *buf;
216 struct scatterlist aligned_sg;
217 struct scatterlist *real_dst;
219 struct atmel_aes_caps caps;
221 u32 hw_version;
224 struct atmel_aes_drv {
225 struct list_head dev_list;
226 spinlock_t lock;
229 static struct atmel_aes_drv atmel_aes = {
230 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
231 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
234 #ifdef VERBOSE_DEBUG
235 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 switch (offset) {
238 case AES_CR:
239 return "CR";
241 case AES_MR:
242 return "MR";
244 case AES_ISR:
245 return "ISR";
247 case AES_IMR:
248 return "IMR";
250 case AES_IER:
251 return "IER";
253 case AES_IDR:
254 return "IDR";
256 case AES_KEYWR(0):
257 case AES_KEYWR(1):
258 case AES_KEYWR(2):
259 case AES_KEYWR(3):
260 case AES_KEYWR(4):
261 case AES_KEYWR(5):
262 case AES_KEYWR(6):
263 case AES_KEYWR(7):
264 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
265 break;
267 case AES_IDATAR(0):
268 case AES_IDATAR(1):
269 case AES_IDATAR(2):
270 case AES_IDATAR(3):
271 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
272 break;
274 case AES_ODATAR(0):
275 case AES_ODATAR(1):
276 case AES_ODATAR(2):
277 case AES_ODATAR(3):
278 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
279 break;
281 case AES_IVR(0):
282 case AES_IVR(1):
283 case AES_IVR(2):
284 case AES_IVR(3):
285 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
286 break;
288 case AES_AADLENR:
289 return "AADLENR";
291 case AES_CLENR:
292 return "CLENR";
294 case AES_GHASHR(0):
295 case AES_GHASHR(1):
296 case AES_GHASHR(2):
297 case AES_GHASHR(3):
298 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
299 break;
301 case AES_TAGR(0):
302 case AES_TAGR(1):
303 case AES_TAGR(2):
304 case AES_TAGR(3):
305 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
306 break;
308 case AES_CTRR:
309 return "CTRR";
311 case AES_GCMHR(0):
312 case AES_GCMHR(1):
313 case AES_GCMHR(2):
314 case AES_GCMHR(3):
315 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
316 break;
318 case AES_EMR:
319 return "EMR";
321 case AES_TWR(0):
322 case AES_TWR(1):
323 case AES_TWR(2):
324 case AES_TWR(3):
325 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
326 break;
328 case AES_ALPHAR(0):
329 case AES_ALPHAR(1):
330 case AES_ALPHAR(2):
331 case AES_ALPHAR(3):
332 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
333 break;
335 default:
336 snprintf(tmp, sz, "0x%02x", offset);
337 break;
340 return tmp;
342 #endif /* VERBOSE_DEBUG */
344 /* Shared functions */
346 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 u32 value = readl_relaxed(dd->io_base + offset);
350 #ifdef VERBOSE_DEBUG
351 if (dd->flags & AES_FLAGS_DUMP_REG) {
352 char tmp[16];
354 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
355 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357 #endif /* VERBOSE_DEBUG */
359 return value;
362 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
363 u32 offset, u32 value)
365 #ifdef VERBOSE_DEBUG
366 if (dd->flags & AES_FLAGS_DUMP_REG) {
367 char tmp[16];
369 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
370 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372 #endif /* VERBOSE_DEBUG */
374 writel_relaxed(value, dd->io_base + offset);
377 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
378 u32 *value, int count)
380 for (; count--; value++, offset += 4)
381 *value = atmel_aes_read(dd, offset);
384 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
385 const u32 *value, int count)
387 for (; count--; value++, offset += 4)
388 atmel_aes_write(dd, offset, *value);
391 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
392 void *value)
394 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
397 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
398 const void *value)
400 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
403 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
404 atmel_aes_fn_t resume)
406 u32 isr = atmel_aes_read(dd, AES_ISR);
408 if (unlikely(isr & AES_INT_DATARDY))
409 return resume(dd);
411 dd->resume = resume;
412 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
413 return -EINPROGRESS;
416 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 len &= block_size - 1;
419 return len ? block_size - len : 0;
422 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
424 struct atmel_aes_dev *aes_dd = NULL;
425 struct atmel_aes_dev *tmp;
427 spin_lock_bh(&atmel_aes.lock);
428 if (!ctx->dd) {
429 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
430 aes_dd = tmp;
431 break;
433 ctx->dd = aes_dd;
434 } else {
435 aes_dd = ctx->dd;
438 spin_unlock_bh(&atmel_aes.lock);
440 return aes_dd;
443 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
445 int err;
447 err = clk_enable(dd->iclk);
448 if (err)
449 return err;
451 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
452 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
454 return 0;
457 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
459 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
462 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
464 int err;
466 err = atmel_aes_hw_init(dd);
467 if (err)
468 return err;
470 dd->hw_version = atmel_aes_get_version(dd);
472 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
474 clk_disable(dd->iclk);
475 return 0;
478 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
479 const struct atmel_aes_reqctx *rctx)
481 /* Clear all but persistent flags and set request flags. */
482 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
485 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
487 return (dd->flags & AES_FLAGS_ENCRYPT);
490 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
491 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
492 #endif
494 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
496 struct skcipher_request *req = skcipher_request_cast(dd->areq);
497 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
498 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
499 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
501 if (req->cryptlen < ivsize)
502 return;
504 if (rctx->mode & AES_FLAGS_ENCRYPT) {
505 scatterwalk_map_and_copy(req->iv, req->dst,
506 req->cryptlen - ivsize, ivsize, 0);
507 } else {
508 if (req->src == req->dst)
509 memcpy(req->iv, rctx->lastc, ivsize);
510 else
511 scatterwalk_map_and_copy(req->iv, req->src,
512 req->cryptlen - ivsize,
513 ivsize, 0);
517 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
519 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
520 if (dd->ctx->is_aead)
521 atmel_aes_authenc_complete(dd, err);
522 #endif
524 clk_disable(dd->iclk);
525 dd->flags &= ~AES_FLAGS_BUSY;
527 if (!dd->ctx->is_aead)
528 atmel_aes_set_iv_as_last_ciphertext_block(dd);
530 if (dd->is_async)
531 dd->areq->complete(dd->areq, err);
533 tasklet_schedule(&dd->queue_task);
535 return err;
538 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
539 const __be32 *iv, const u32 *key, int keylen)
541 u32 valmr = 0;
543 /* MR register must be set before IV registers */
544 if (keylen == AES_KEYSIZE_128)
545 valmr |= AES_MR_KEYSIZE_128;
546 else if (keylen == AES_KEYSIZE_192)
547 valmr |= AES_MR_KEYSIZE_192;
548 else
549 valmr |= AES_MR_KEYSIZE_256;
551 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
553 if (use_dma) {
554 valmr |= AES_MR_SMOD_IDATAR0;
555 if (dd->caps.has_dualbuff)
556 valmr |= AES_MR_DUALBUFF;
557 } else {
558 valmr |= AES_MR_SMOD_AUTO;
561 atmel_aes_write(dd, AES_MR, valmr);
563 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
565 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
566 atmel_aes_write_block(dd, AES_IVR(0), iv);
569 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
570 const __be32 *iv)
573 atmel_aes_write_ctrl_key(dd, use_dma, iv,
574 dd->ctx->key, dd->ctx->keylen);
577 /* CPU transfer */
579 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
581 int err = 0;
582 u32 isr;
584 for (;;) {
585 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
586 dd->data += 4;
587 dd->datalen -= AES_BLOCK_SIZE;
589 if (dd->datalen < AES_BLOCK_SIZE)
590 break;
592 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
594 isr = atmel_aes_read(dd, AES_ISR);
595 if (!(isr & AES_INT_DATARDY)) {
596 dd->resume = atmel_aes_cpu_transfer;
597 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
598 return -EINPROGRESS;
602 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
603 dd->buf, dd->total))
604 err = -EINVAL;
606 if (err)
607 return atmel_aes_complete(dd, err);
609 return dd->cpu_transfer_complete(dd);
612 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
613 struct scatterlist *src,
614 struct scatterlist *dst,
615 size_t len,
616 atmel_aes_fn_t resume)
618 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
620 if (unlikely(len == 0))
621 return -EINVAL;
623 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
625 dd->total = len;
626 dd->real_dst = dst;
627 dd->cpu_transfer_complete = resume;
628 dd->datalen = len + padlen;
629 dd->data = (u32 *)dd->buf;
630 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
631 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
635 /* DMA transfer */
637 static void atmel_aes_dma_callback(void *data);
639 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
640 struct scatterlist *sg,
641 size_t len,
642 struct atmel_aes_dma *dma)
644 int nents;
646 if (!IS_ALIGNED(len, dd->ctx->block_size))
647 return false;
649 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
650 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
651 return false;
653 if (len <= sg->length) {
654 if (!IS_ALIGNED(len, dd->ctx->block_size))
655 return false;
657 dma->nents = nents+1;
658 dma->remainder = sg->length - len;
659 sg->length = len;
660 return true;
663 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
664 return false;
666 len -= sg->length;
669 return false;
672 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
674 struct scatterlist *sg = dma->sg;
675 int nents = dma->nents;
677 if (!dma->remainder)
678 return;
680 while (--nents > 0 && sg)
681 sg = sg_next(sg);
683 if (!sg)
684 return;
686 sg->length += dma->remainder;
689 static int atmel_aes_map(struct atmel_aes_dev *dd,
690 struct scatterlist *src,
691 struct scatterlist *dst,
692 size_t len)
694 bool src_aligned, dst_aligned;
695 size_t padlen;
697 dd->total = len;
698 dd->src.sg = src;
699 dd->dst.sg = dst;
700 dd->real_dst = dst;
702 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
703 if (src == dst)
704 dst_aligned = src_aligned;
705 else
706 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
707 if (!src_aligned || !dst_aligned) {
708 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
710 if (dd->buflen < len + padlen)
711 return -ENOMEM;
713 if (!src_aligned) {
714 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
715 dd->src.sg = &dd->aligned_sg;
716 dd->src.nents = 1;
717 dd->src.remainder = 0;
720 if (!dst_aligned) {
721 dd->dst.sg = &dd->aligned_sg;
722 dd->dst.nents = 1;
723 dd->dst.remainder = 0;
726 sg_init_table(&dd->aligned_sg, 1);
727 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
730 if (dd->src.sg == dd->dst.sg) {
731 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
732 DMA_BIDIRECTIONAL);
733 dd->dst.sg_len = dd->src.sg_len;
734 if (!dd->src.sg_len)
735 return -EFAULT;
736 } else {
737 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
738 DMA_TO_DEVICE);
739 if (!dd->src.sg_len)
740 return -EFAULT;
742 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
743 DMA_FROM_DEVICE);
744 if (!dd->dst.sg_len) {
745 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
746 DMA_TO_DEVICE);
747 return -EFAULT;
751 return 0;
754 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
756 if (dd->src.sg == dd->dst.sg) {
757 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
758 DMA_BIDIRECTIONAL);
760 if (dd->src.sg != &dd->aligned_sg)
761 atmel_aes_restore_sg(&dd->src);
762 } else {
763 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
764 DMA_FROM_DEVICE);
766 if (dd->dst.sg != &dd->aligned_sg)
767 atmel_aes_restore_sg(&dd->dst);
769 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
770 DMA_TO_DEVICE);
772 if (dd->src.sg != &dd->aligned_sg)
773 atmel_aes_restore_sg(&dd->src);
776 if (dd->dst.sg == &dd->aligned_sg)
777 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
778 dd->buf, dd->total);
781 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
782 enum dma_slave_buswidth addr_width,
783 enum dma_transfer_direction dir,
784 u32 maxburst)
786 struct dma_async_tx_descriptor *desc;
787 struct dma_slave_config config;
788 dma_async_tx_callback callback;
789 struct atmel_aes_dma *dma;
790 int err;
792 memset(&config, 0, sizeof(config));
793 config.direction = dir;
794 config.src_addr_width = addr_width;
795 config.dst_addr_width = addr_width;
796 config.src_maxburst = maxburst;
797 config.dst_maxburst = maxburst;
799 switch (dir) {
800 case DMA_MEM_TO_DEV:
801 dma = &dd->src;
802 callback = NULL;
803 config.dst_addr = dd->phys_base + AES_IDATAR(0);
804 break;
806 case DMA_DEV_TO_MEM:
807 dma = &dd->dst;
808 callback = atmel_aes_dma_callback;
809 config.src_addr = dd->phys_base + AES_ODATAR(0);
810 break;
812 default:
813 return -EINVAL;
816 err = dmaengine_slave_config(dma->chan, &config);
817 if (err)
818 return err;
820 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
821 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
822 if (!desc)
823 return -ENOMEM;
825 desc->callback = callback;
826 desc->callback_param = dd;
827 dmaengine_submit(desc);
828 dma_async_issue_pending(dma->chan);
830 return 0;
833 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
834 enum dma_transfer_direction dir)
836 struct atmel_aes_dma *dma;
838 switch (dir) {
839 case DMA_MEM_TO_DEV:
840 dma = &dd->src;
841 break;
843 case DMA_DEV_TO_MEM:
844 dma = &dd->dst;
845 break;
847 default:
848 return;
851 dmaengine_terminate_all(dma->chan);
854 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
855 struct scatterlist *src,
856 struct scatterlist *dst,
857 size_t len,
858 atmel_aes_fn_t resume)
860 enum dma_slave_buswidth addr_width;
861 u32 maxburst;
862 int err;
864 switch (dd->ctx->block_size) {
865 case CFB8_BLOCK_SIZE:
866 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
867 maxburst = 1;
868 break;
870 case CFB16_BLOCK_SIZE:
871 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
872 maxburst = 1;
873 break;
875 case CFB32_BLOCK_SIZE:
876 case CFB64_BLOCK_SIZE:
877 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
878 maxburst = 1;
879 break;
881 case AES_BLOCK_SIZE:
882 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 maxburst = dd->caps.max_burst_size;
884 break;
886 default:
887 err = -EINVAL;
888 goto exit;
891 err = atmel_aes_map(dd, src, dst, len);
892 if (err)
893 goto exit;
895 dd->resume = resume;
897 /* Set output DMA transfer first */
898 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
899 maxburst);
900 if (err)
901 goto unmap;
903 /* Then set input DMA transfer */
904 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
905 maxburst);
906 if (err)
907 goto output_transfer_stop;
909 return -EINPROGRESS;
911 output_transfer_stop:
912 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
913 unmap:
914 atmel_aes_unmap(dd);
915 exit:
916 return atmel_aes_complete(dd, err);
919 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
921 atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
922 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
923 atmel_aes_unmap(dd);
926 static void atmel_aes_dma_callback(void *data)
928 struct atmel_aes_dev *dd = data;
930 atmel_aes_dma_stop(dd);
931 dd->is_async = true;
932 (void)dd->resume(dd);
935 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
936 struct crypto_async_request *new_areq)
938 struct crypto_async_request *areq, *backlog;
939 struct atmel_aes_base_ctx *ctx;
940 unsigned long flags;
941 bool start_async;
942 int err, ret = 0;
944 spin_lock_irqsave(&dd->lock, flags);
945 if (new_areq)
946 ret = crypto_enqueue_request(&dd->queue, new_areq);
947 if (dd->flags & AES_FLAGS_BUSY) {
948 spin_unlock_irqrestore(&dd->lock, flags);
949 return ret;
951 backlog = crypto_get_backlog(&dd->queue);
952 areq = crypto_dequeue_request(&dd->queue);
953 if (areq)
954 dd->flags |= AES_FLAGS_BUSY;
955 spin_unlock_irqrestore(&dd->lock, flags);
957 if (!areq)
958 return ret;
960 if (backlog)
961 backlog->complete(backlog, -EINPROGRESS);
963 ctx = crypto_tfm_ctx(areq->tfm);
965 dd->areq = areq;
966 dd->ctx = ctx;
967 start_async = (areq != new_areq);
968 dd->is_async = start_async;
970 /* WARNING: ctx->start() MAY change dd->is_async. */
971 err = ctx->start(dd);
972 return (start_async) ? ret : err;
976 /* AES async block ciphers */
978 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
980 return atmel_aes_complete(dd, 0);
983 static int atmel_aes_start(struct atmel_aes_dev *dd)
985 struct skcipher_request *req = skcipher_request_cast(dd->areq);
986 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
987 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
988 dd->ctx->block_size != AES_BLOCK_SIZE);
989 int err;
991 atmel_aes_set_mode(dd, rctx);
993 err = atmel_aes_hw_init(dd);
994 if (err)
995 return atmel_aes_complete(dd, err);
997 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
998 if (use_dma)
999 return atmel_aes_dma_start(dd, req->src, req->dst,
1000 req->cryptlen,
1001 atmel_aes_transfer_complete);
1003 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1004 atmel_aes_transfer_complete);
1007 static inline struct atmel_aes_ctr_ctx *
1008 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1010 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1013 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1015 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1016 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1017 struct scatterlist *src, *dst;
1018 u32 ctr, blocks;
1019 size_t datalen;
1020 bool use_dma, fragmented = false;
1022 /* Check for transfer completion. */
1023 ctx->offset += dd->total;
1024 if (ctx->offset >= req->cryptlen)
1025 return atmel_aes_transfer_complete(dd);
1027 /* Compute data length. */
1028 datalen = req->cryptlen - ctx->offset;
1029 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1030 ctr = be32_to_cpu(ctx->iv[3]);
1031 if (dd->caps.has_ctr32) {
1032 /* Check 32bit counter overflow. */
1033 u32 start = ctr;
1034 u32 end = start + blocks - 1;
1036 if (end < start) {
1037 ctr |= 0xffffffff;
1038 datalen = AES_BLOCK_SIZE * -start;
1039 fragmented = true;
1041 } else {
1042 /* Check 16bit counter overflow. */
1043 u16 start = ctr & 0xffff;
1044 u16 end = start + (u16)blocks - 1;
1046 if (blocks >> 16 || end < start) {
1047 ctr |= 0xffff;
1048 datalen = AES_BLOCK_SIZE * (0x10000-start);
1049 fragmented = true;
1052 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1054 /* Jump to offset. */
1055 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1056 dst = ((req->src == req->dst) ? src :
1057 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1059 /* Configure hardware. */
1060 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1061 if (unlikely(fragmented)) {
1063 * Increment the counter manually to cope with the hardware
1064 * counter overflow.
1066 ctx->iv[3] = cpu_to_be32(ctr);
1067 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1070 if (use_dma)
1071 return atmel_aes_dma_start(dd, src, dst, datalen,
1072 atmel_aes_ctr_transfer);
1074 return atmel_aes_cpu_start(dd, src, dst, datalen,
1075 atmel_aes_ctr_transfer);
1078 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1080 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1081 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1082 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1083 int err;
1085 atmel_aes_set_mode(dd, rctx);
1087 err = atmel_aes_hw_init(dd);
1088 if (err)
1089 return atmel_aes_complete(dd, err);
1091 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1092 ctx->offset = 0;
1093 dd->total = 0;
1094 return atmel_aes_ctr_transfer(dd);
1097 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1099 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1100 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1101 struct atmel_aes_reqctx *rctx;
1102 struct atmel_aes_dev *dd;
1104 switch (mode & AES_FLAGS_OPMODE_MASK) {
1105 case AES_FLAGS_CFB8:
1106 ctx->block_size = CFB8_BLOCK_SIZE;
1107 break;
1109 case AES_FLAGS_CFB16:
1110 ctx->block_size = CFB16_BLOCK_SIZE;
1111 break;
1113 case AES_FLAGS_CFB32:
1114 ctx->block_size = CFB32_BLOCK_SIZE;
1115 break;
1117 case AES_FLAGS_CFB64:
1118 ctx->block_size = CFB64_BLOCK_SIZE;
1119 break;
1121 default:
1122 ctx->block_size = AES_BLOCK_SIZE;
1123 break;
1125 ctx->is_aead = false;
1127 dd = atmel_aes_find_dev(ctx);
1128 if (!dd)
1129 return -ENODEV;
1131 rctx = skcipher_request_ctx(req);
1132 rctx->mode = mode;
1134 if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1135 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1137 if (req->cryptlen >= ivsize)
1138 scatterwalk_map_and_copy(rctx->lastc, req->src,
1139 req->cryptlen - ivsize,
1140 ivsize, 0);
1143 return atmel_aes_handle_queue(dd, &req->base);
1146 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1147 unsigned int keylen)
1149 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1151 if (keylen != AES_KEYSIZE_128 &&
1152 keylen != AES_KEYSIZE_192 &&
1153 keylen != AES_KEYSIZE_256) {
1154 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1155 return -EINVAL;
1158 memcpy(ctx->key, key, keylen);
1159 ctx->keylen = keylen;
1161 return 0;
1164 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1166 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1169 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1171 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1174 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1176 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1179 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1181 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1184 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1186 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1189 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1191 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1194 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1196 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1199 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1201 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1204 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1206 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1209 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1211 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1214 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1216 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1219 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1221 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1224 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1226 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1229 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1231 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1234 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1236 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1239 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1241 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1244 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1246 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1249 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1251 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1254 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1256 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1258 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1259 ctx->base.start = atmel_aes_start;
1261 return 0;
1264 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1266 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1268 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1269 ctx->base.start = atmel_aes_ctr_start;
1271 return 0;
1274 static struct skcipher_alg aes_algs[] = {
1276 .base.cra_name = "ecb(aes)",
1277 .base.cra_driver_name = "atmel-ecb-aes",
1278 .base.cra_priority = ATMEL_AES_PRIORITY,
1279 .base.cra_flags = CRYPTO_ALG_ASYNC,
1280 .base.cra_blocksize = AES_BLOCK_SIZE,
1281 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1282 .base.cra_alignmask = 0xf,
1283 .base.cra_module = THIS_MODULE,
1285 .init = atmel_aes_init_tfm,
1286 .min_keysize = AES_MIN_KEY_SIZE,
1287 .max_keysize = AES_MAX_KEY_SIZE,
1288 .setkey = atmel_aes_setkey,
1289 .encrypt = atmel_aes_ecb_encrypt,
1290 .decrypt = atmel_aes_ecb_decrypt,
1293 .base.cra_name = "cbc(aes)",
1294 .base.cra_driver_name = "atmel-cbc-aes",
1295 .base.cra_priority = ATMEL_AES_PRIORITY,
1296 .base.cra_flags = CRYPTO_ALG_ASYNC,
1297 .base.cra_blocksize = AES_BLOCK_SIZE,
1298 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1299 .base.cra_alignmask = 0xf,
1300 .base.cra_module = THIS_MODULE,
1302 .init = atmel_aes_init_tfm,
1303 .min_keysize = AES_MIN_KEY_SIZE,
1304 .max_keysize = AES_MAX_KEY_SIZE,
1305 .setkey = atmel_aes_setkey,
1306 .encrypt = atmel_aes_cbc_encrypt,
1307 .decrypt = atmel_aes_cbc_decrypt,
1308 .ivsize = AES_BLOCK_SIZE,
1311 .base.cra_name = "ofb(aes)",
1312 .base.cra_driver_name = "atmel-ofb-aes",
1313 .base.cra_priority = ATMEL_AES_PRIORITY,
1314 .base.cra_flags = CRYPTO_ALG_ASYNC,
1315 .base.cra_blocksize = AES_BLOCK_SIZE,
1316 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1317 .base.cra_alignmask = 0xf,
1318 .base.cra_module = THIS_MODULE,
1320 .init = atmel_aes_init_tfm,
1321 .min_keysize = AES_MIN_KEY_SIZE,
1322 .max_keysize = AES_MAX_KEY_SIZE,
1323 .setkey = atmel_aes_setkey,
1324 .encrypt = atmel_aes_ofb_encrypt,
1325 .decrypt = atmel_aes_ofb_decrypt,
1326 .ivsize = AES_BLOCK_SIZE,
1329 .base.cra_name = "cfb(aes)",
1330 .base.cra_driver_name = "atmel-cfb-aes",
1331 .base.cra_priority = ATMEL_AES_PRIORITY,
1332 .base.cra_flags = CRYPTO_ALG_ASYNC,
1333 .base.cra_blocksize = AES_BLOCK_SIZE,
1334 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1335 .base.cra_alignmask = 0xf,
1336 .base.cra_module = THIS_MODULE,
1338 .init = atmel_aes_init_tfm,
1339 .min_keysize = AES_MIN_KEY_SIZE,
1340 .max_keysize = AES_MAX_KEY_SIZE,
1341 .setkey = atmel_aes_setkey,
1342 .encrypt = atmel_aes_cfb_encrypt,
1343 .decrypt = atmel_aes_cfb_decrypt,
1344 .ivsize = AES_BLOCK_SIZE,
1347 .base.cra_name = "cfb32(aes)",
1348 .base.cra_driver_name = "atmel-cfb32-aes",
1349 .base.cra_priority = ATMEL_AES_PRIORITY,
1350 .base.cra_flags = CRYPTO_ALG_ASYNC,
1351 .base.cra_blocksize = CFB32_BLOCK_SIZE,
1352 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1353 .base.cra_alignmask = 0xf,
1354 .base.cra_module = THIS_MODULE,
1356 .init = atmel_aes_init_tfm,
1357 .min_keysize = AES_MIN_KEY_SIZE,
1358 .max_keysize = AES_MAX_KEY_SIZE,
1359 .setkey = atmel_aes_setkey,
1360 .encrypt = atmel_aes_cfb32_encrypt,
1361 .decrypt = atmel_aes_cfb32_decrypt,
1362 .ivsize = AES_BLOCK_SIZE,
1365 .base.cra_name = "cfb16(aes)",
1366 .base.cra_driver_name = "atmel-cfb16-aes",
1367 .base.cra_priority = ATMEL_AES_PRIORITY,
1368 .base.cra_flags = CRYPTO_ALG_ASYNC,
1369 .base.cra_blocksize = CFB16_BLOCK_SIZE,
1370 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1371 .base.cra_alignmask = 0xf,
1372 .base.cra_module = THIS_MODULE,
1374 .init = atmel_aes_init_tfm,
1375 .min_keysize = AES_MIN_KEY_SIZE,
1376 .max_keysize = AES_MAX_KEY_SIZE,
1377 .setkey = atmel_aes_setkey,
1378 .encrypt = atmel_aes_cfb16_encrypt,
1379 .decrypt = atmel_aes_cfb16_decrypt,
1380 .ivsize = AES_BLOCK_SIZE,
1383 .base.cra_name = "cfb8(aes)",
1384 .base.cra_driver_name = "atmel-cfb8-aes",
1385 .base.cra_priority = ATMEL_AES_PRIORITY,
1386 .base.cra_flags = CRYPTO_ALG_ASYNC,
1387 .base.cra_blocksize = CFB8_BLOCK_SIZE,
1388 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1389 .base.cra_alignmask = 0xf,
1390 .base.cra_module = THIS_MODULE,
1392 .init = atmel_aes_init_tfm,
1393 .min_keysize = AES_MIN_KEY_SIZE,
1394 .max_keysize = AES_MAX_KEY_SIZE,
1395 .setkey = atmel_aes_setkey,
1396 .encrypt = atmel_aes_cfb8_encrypt,
1397 .decrypt = atmel_aes_cfb8_decrypt,
1398 .ivsize = AES_BLOCK_SIZE,
1401 .base.cra_name = "ctr(aes)",
1402 .base.cra_driver_name = "atmel-ctr-aes",
1403 .base.cra_priority = ATMEL_AES_PRIORITY,
1404 .base.cra_flags = CRYPTO_ALG_ASYNC,
1405 .base.cra_blocksize = 1,
1406 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1407 .base.cra_alignmask = 0xf,
1408 .base.cra_module = THIS_MODULE,
1410 .init = atmel_aes_ctr_init_tfm,
1411 .min_keysize = AES_MIN_KEY_SIZE,
1412 .max_keysize = AES_MAX_KEY_SIZE,
1413 .setkey = atmel_aes_setkey,
1414 .encrypt = atmel_aes_ctr_encrypt,
1415 .decrypt = atmel_aes_ctr_decrypt,
1416 .ivsize = AES_BLOCK_SIZE,
1420 static struct skcipher_alg aes_cfb64_alg = {
1421 .base.cra_name = "cfb64(aes)",
1422 .base.cra_driver_name = "atmel-cfb64-aes",
1423 .base.cra_priority = ATMEL_AES_PRIORITY,
1424 .base.cra_flags = CRYPTO_ALG_ASYNC,
1425 .base.cra_blocksize = CFB64_BLOCK_SIZE,
1426 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1427 .base.cra_alignmask = 0xf,
1428 .base.cra_module = THIS_MODULE,
1430 .init = atmel_aes_init_tfm,
1431 .min_keysize = AES_MIN_KEY_SIZE,
1432 .max_keysize = AES_MAX_KEY_SIZE,
1433 .setkey = atmel_aes_setkey,
1434 .encrypt = atmel_aes_cfb64_encrypt,
1435 .decrypt = atmel_aes_cfb64_decrypt,
1436 .ivsize = AES_BLOCK_SIZE,
1440 /* gcm aead functions */
1442 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1443 const u32 *data, size_t datalen,
1444 const __be32 *ghash_in, __be32 *ghash_out,
1445 atmel_aes_fn_t resume);
1446 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1449 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1450 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1451 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1452 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1453 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1454 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1455 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1457 static inline struct atmel_aes_gcm_ctx *
1458 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1460 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1463 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1464 const u32 *data, size_t datalen,
1465 const __be32 *ghash_in, __be32 *ghash_out,
1466 atmel_aes_fn_t resume)
1468 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1470 dd->data = (u32 *)data;
1471 dd->datalen = datalen;
1472 ctx->ghash_in = ghash_in;
1473 ctx->ghash_out = ghash_out;
1474 ctx->ghash_resume = resume;
1476 atmel_aes_write_ctrl(dd, false, NULL);
1477 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1480 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1482 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1484 /* Set the data length. */
1485 atmel_aes_write(dd, AES_AADLENR, dd->total);
1486 atmel_aes_write(dd, AES_CLENR, 0);
1488 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1489 if (ctx->ghash_in)
1490 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1492 return atmel_aes_gcm_ghash_finalize(dd);
1495 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1497 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1498 u32 isr;
1500 /* Write data into the Input Data Registers. */
1501 while (dd->datalen > 0) {
1502 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1503 dd->data += 4;
1504 dd->datalen -= AES_BLOCK_SIZE;
1506 isr = atmel_aes_read(dd, AES_ISR);
1507 if (!(isr & AES_INT_DATARDY)) {
1508 dd->resume = atmel_aes_gcm_ghash_finalize;
1509 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1510 return -EINPROGRESS;
1514 /* Read the computed hash from GHASHRx. */
1515 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1517 return ctx->ghash_resume(dd);
1521 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1523 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1524 struct aead_request *req = aead_request_cast(dd->areq);
1525 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1526 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1527 size_t ivsize = crypto_aead_ivsize(tfm);
1528 size_t datalen, padlen;
1529 const void *iv = req->iv;
1530 u8 *data = dd->buf;
1531 int err;
1533 atmel_aes_set_mode(dd, rctx);
1535 err = atmel_aes_hw_init(dd);
1536 if (err)
1537 return atmel_aes_complete(dd, err);
1539 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1540 memcpy(ctx->j0, iv, ivsize);
1541 ctx->j0[3] = cpu_to_be32(1);
1542 return atmel_aes_gcm_process(dd);
1545 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1546 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1547 if (datalen > dd->buflen)
1548 return atmel_aes_complete(dd, -EINVAL);
1550 memcpy(data, iv, ivsize);
1551 memset(data + ivsize, 0, padlen + sizeof(u64));
1552 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1554 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1555 NULL, ctx->j0, atmel_aes_gcm_process);
1558 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1560 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1561 struct aead_request *req = aead_request_cast(dd->areq);
1562 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1563 bool enc = atmel_aes_is_encrypt(dd);
1564 u32 authsize;
1566 /* Compute text length. */
1567 authsize = crypto_aead_authsize(tfm);
1568 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1571 * According to tcrypt test suite, the GCM Automatic Tag Generation
1572 * fails when both the message and its associated data are empty.
1574 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1575 dd->flags |= AES_FLAGS_GTAGEN;
1577 atmel_aes_write_ctrl(dd, false, NULL);
1578 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1581 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1583 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1584 struct aead_request *req = aead_request_cast(dd->areq);
1585 __be32 j0_lsw, *j0 = ctx->j0;
1586 size_t padlen;
1588 /* Write incr32(J0) into IV. */
1589 j0_lsw = j0[3];
1590 j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1591 atmel_aes_write_block(dd, AES_IVR(0), j0);
1592 j0[3] = j0_lsw;
1594 /* Set aad and text lengths. */
1595 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1596 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1598 /* Check whether AAD are present. */
1599 if (unlikely(req->assoclen == 0)) {
1600 dd->datalen = 0;
1601 return atmel_aes_gcm_data(dd);
1604 /* Copy assoc data and add padding. */
1605 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1606 if (unlikely(req->assoclen + padlen > dd->buflen))
1607 return atmel_aes_complete(dd, -EINVAL);
1608 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1610 /* Write assoc data into the Input Data register. */
1611 dd->data = (u32 *)dd->buf;
1612 dd->datalen = req->assoclen + padlen;
1613 return atmel_aes_gcm_data(dd);
1616 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1618 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619 struct aead_request *req = aead_request_cast(dd->areq);
1620 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1621 struct scatterlist *src, *dst;
1622 u32 isr, mr;
1624 /* Write AAD first. */
1625 while (dd->datalen > 0) {
1626 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1627 dd->data += 4;
1628 dd->datalen -= AES_BLOCK_SIZE;
1630 isr = atmel_aes_read(dd, AES_ISR);
1631 if (!(isr & AES_INT_DATARDY)) {
1632 dd->resume = atmel_aes_gcm_data;
1633 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1634 return -EINPROGRESS;
1638 /* GMAC only. */
1639 if (unlikely(ctx->textlen == 0))
1640 return atmel_aes_gcm_tag_init(dd);
1642 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1643 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1644 dst = ((req->src == req->dst) ? src :
1645 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1647 if (use_dma) {
1648 /* Update the Mode Register for DMA transfers. */
1649 mr = atmel_aes_read(dd, AES_MR);
1650 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1651 mr |= AES_MR_SMOD_IDATAR0;
1652 if (dd->caps.has_dualbuff)
1653 mr |= AES_MR_DUALBUFF;
1654 atmel_aes_write(dd, AES_MR, mr);
1656 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1657 atmel_aes_gcm_tag_init);
1660 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1661 atmel_aes_gcm_tag_init);
1664 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1666 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1667 struct aead_request *req = aead_request_cast(dd->areq);
1668 __be64 *data = dd->buf;
1670 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1671 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1672 dd->resume = atmel_aes_gcm_tag_init;
1673 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1674 return -EINPROGRESS;
1677 return atmel_aes_gcm_finalize(dd);
1680 /* Read the GCM Intermediate Hash Word Registers. */
1681 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1683 data[0] = cpu_to_be64(req->assoclen * 8);
1684 data[1] = cpu_to_be64(ctx->textlen * 8);
1686 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1687 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1690 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1692 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1693 unsigned long flags;
1696 * Change mode to CTR to complete the tag generation.
1697 * Use J0 as Initialization Vector.
1699 flags = dd->flags;
1700 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1701 dd->flags |= AES_FLAGS_CTR;
1702 atmel_aes_write_ctrl(dd, false, ctx->j0);
1703 dd->flags = flags;
1705 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1706 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1709 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1711 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1712 struct aead_request *req = aead_request_cast(dd->areq);
1713 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1714 bool enc = atmel_aes_is_encrypt(dd);
1715 u32 offset, authsize, itag[4], *otag = ctx->tag;
1716 int err;
1718 /* Read the computed tag. */
1719 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1720 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1721 else
1722 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1724 offset = req->assoclen + ctx->textlen;
1725 authsize = crypto_aead_authsize(tfm);
1726 if (enc) {
1727 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1728 err = 0;
1729 } else {
1730 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1731 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1734 return atmel_aes_complete(dd, err);
1737 static int atmel_aes_gcm_crypt(struct aead_request *req,
1738 unsigned long mode)
1740 struct atmel_aes_base_ctx *ctx;
1741 struct atmel_aes_reqctx *rctx;
1742 struct atmel_aes_dev *dd;
1744 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1745 ctx->block_size = AES_BLOCK_SIZE;
1746 ctx->is_aead = true;
1748 dd = atmel_aes_find_dev(ctx);
1749 if (!dd)
1750 return -ENODEV;
1752 rctx = aead_request_ctx(req);
1753 rctx->mode = AES_FLAGS_GCM | mode;
1755 return atmel_aes_handle_queue(dd, &req->base);
1758 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1759 unsigned int keylen)
1761 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1763 if (keylen != AES_KEYSIZE_256 &&
1764 keylen != AES_KEYSIZE_192 &&
1765 keylen != AES_KEYSIZE_128) {
1766 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1767 return -EINVAL;
1770 memcpy(ctx->key, key, keylen);
1771 ctx->keylen = keylen;
1773 return 0;
1776 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1777 unsigned int authsize)
1779 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1780 switch (authsize) {
1781 case 4:
1782 case 8:
1783 case 12:
1784 case 13:
1785 case 14:
1786 case 15:
1787 case 16:
1788 break;
1789 default:
1790 return -EINVAL;
1793 return 0;
1796 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1798 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1801 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1803 return atmel_aes_gcm_crypt(req, 0);
1806 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1808 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1810 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1811 ctx->base.start = atmel_aes_gcm_start;
1813 return 0;
1816 static struct aead_alg aes_gcm_alg = {
1817 .setkey = atmel_aes_gcm_setkey,
1818 .setauthsize = atmel_aes_gcm_setauthsize,
1819 .encrypt = atmel_aes_gcm_encrypt,
1820 .decrypt = atmel_aes_gcm_decrypt,
1821 .init = atmel_aes_gcm_init,
1822 .ivsize = GCM_AES_IV_SIZE,
1823 .maxauthsize = AES_BLOCK_SIZE,
1825 .base = {
1826 .cra_name = "gcm(aes)",
1827 .cra_driver_name = "atmel-gcm-aes",
1828 .cra_priority = ATMEL_AES_PRIORITY,
1829 .cra_flags = CRYPTO_ALG_ASYNC,
1830 .cra_blocksize = 1,
1831 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1832 .cra_alignmask = 0xf,
1833 .cra_module = THIS_MODULE,
1838 /* xts functions */
1840 static inline struct atmel_aes_xts_ctx *
1841 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1843 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1846 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1848 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1850 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1851 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1852 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1853 unsigned long flags;
1854 int err;
1856 atmel_aes_set_mode(dd, rctx);
1858 err = atmel_aes_hw_init(dd);
1859 if (err)
1860 return atmel_aes_complete(dd, err);
1862 /* Compute the tweak value from req->iv with ecb(aes). */
1863 flags = dd->flags;
1864 dd->flags &= ~AES_FLAGS_MODE_MASK;
1865 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1866 atmel_aes_write_ctrl_key(dd, false, NULL,
1867 ctx->key2, ctx->base.keylen);
1868 dd->flags = flags;
1870 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1871 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1874 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1876 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1877 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1878 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1879 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1880 u8 *tweak_bytes = (u8 *)tweak;
1881 int i;
1883 /* Read the computed ciphered tweak value. */
1884 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1886 * Hardware quirk:
1887 * the order of the ciphered tweak bytes need to be reversed before
1888 * writing them into the ODATARx registers.
1890 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1891 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1893 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1894 tweak_bytes[i] = tmp;
1897 /* Process the data. */
1898 atmel_aes_write_ctrl(dd, use_dma, NULL);
1899 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1900 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1901 if (use_dma)
1902 return atmel_aes_dma_start(dd, req->src, req->dst,
1903 req->cryptlen,
1904 atmel_aes_transfer_complete);
1906 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1907 atmel_aes_transfer_complete);
1910 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1911 unsigned int keylen)
1913 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1914 int err;
1916 err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1917 if (err)
1918 return err;
1920 memcpy(ctx->base.key, key, keylen/2);
1921 memcpy(ctx->key2, key + keylen/2, keylen/2);
1922 ctx->base.keylen = keylen/2;
1924 return 0;
1927 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1929 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1932 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1934 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1937 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1939 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1941 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1942 ctx->base.start = atmel_aes_xts_start;
1944 return 0;
1947 static struct skcipher_alg aes_xts_alg = {
1948 .base.cra_name = "xts(aes)",
1949 .base.cra_driver_name = "atmel-xts-aes",
1950 .base.cra_priority = ATMEL_AES_PRIORITY,
1951 .base.cra_flags = CRYPTO_ALG_ASYNC,
1952 .base.cra_blocksize = AES_BLOCK_SIZE,
1953 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1954 .base.cra_alignmask = 0xf,
1955 .base.cra_module = THIS_MODULE,
1957 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1958 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1959 .ivsize = AES_BLOCK_SIZE,
1960 .setkey = atmel_aes_xts_setkey,
1961 .encrypt = atmel_aes_xts_encrypt,
1962 .decrypt = atmel_aes_xts_decrypt,
1963 .init = atmel_aes_xts_init_tfm,
1966 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1967 /* authenc aead functions */
1969 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1970 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1971 bool is_async);
1972 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1973 bool is_async);
1974 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1975 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1976 bool is_async);
1978 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1980 struct aead_request *req = aead_request_cast(dd->areq);
1981 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1984 atmel_sha_authenc_abort(&rctx->auth_req);
1985 dd->flags &= ~AES_FLAGS_OWN_SHA;
1988 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1990 struct aead_request *req = aead_request_cast(dd->areq);
1991 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1993 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1994 int err;
1996 atmel_aes_set_mode(dd, &rctx->base);
1998 err = atmel_aes_hw_init(dd);
1999 if (err)
2000 return atmel_aes_complete(dd, err);
2002 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2003 atmel_aes_authenc_init, dd);
2006 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2007 bool is_async)
2009 struct aead_request *req = aead_request_cast(dd->areq);
2010 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2012 if (is_async)
2013 dd->is_async = true;
2014 if (err)
2015 return atmel_aes_complete(dd, err);
2017 /* If here, we've got the ownership of the SHA device. */
2018 dd->flags |= AES_FLAGS_OWN_SHA;
2020 /* Configure the SHA device. */
2021 return atmel_sha_authenc_init(&rctx->auth_req,
2022 req->src, req->assoclen,
2023 rctx->textlen,
2024 atmel_aes_authenc_transfer, dd);
2027 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2028 bool is_async)
2030 struct aead_request *req = aead_request_cast(dd->areq);
2031 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2032 bool enc = atmel_aes_is_encrypt(dd);
2033 struct scatterlist *src, *dst;
2034 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2035 u32 emr;
2037 if (is_async)
2038 dd->is_async = true;
2039 if (err)
2040 return atmel_aes_complete(dd, err);
2042 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2043 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2044 dst = src;
2046 if (req->src != req->dst)
2047 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2049 /* Configure the AES device. */
2050 memcpy(iv, req->iv, sizeof(iv));
2053 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2054 * 'true' even if the data transfer is actually performed by the CPU (so
2055 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2056 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2057 * must be set to *_MR_SMOD_IDATAR0.
2059 atmel_aes_write_ctrl(dd, true, iv);
2060 emr = AES_EMR_PLIPEN;
2061 if (!enc)
2062 emr |= AES_EMR_PLIPD;
2063 atmel_aes_write(dd, AES_EMR, emr);
2065 /* Transfer data. */
2066 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2067 atmel_aes_authenc_digest);
2070 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2072 struct aead_request *req = aead_request_cast(dd->areq);
2073 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2075 /* atmel_sha_authenc_final() releases the SHA device. */
2076 dd->flags &= ~AES_FLAGS_OWN_SHA;
2077 return atmel_sha_authenc_final(&rctx->auth_req,
2078 rctx->digest, sizeof(rctx->digest),
2079 atmel_aes_authenc_final, dd);
2082 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2083 bool is_async)
2085 struct aead_request *req = aead_request_cast(dd->areq);
2086 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2087 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2088 bool enc = atmel_aes_is_encrypt(dd);
2089 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2090 u32 offs, authsize;
2092 if (is_async)
2093 dd->is_async = true;
2094 if (err)
2095 goto complete;
2097 offs = req->assoclen + rctx->textlen;
2098 authsize = crypto_aead_authsize(tfm);
2099 if (enc) {
2100 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2101 } else {
2102 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2103 if (crypto_memneq(idigest, odigest, authsize))
2104 err = -EBADMSG;
2107 complete:
2108 return atmel_aes_complete(dd, err);
2111 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2112 unsigned int keylen)
2114 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2115 struct crypto_authenc_keys keys;
2116 u32 flags;
2117 int err;
2119 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2120 goto badkey;
2122 if (keys.enckeylen > sizeof(ctx->base.key))
2123 goto badkey;
2125 /* Save auth key. */
2126 flags = crypto_aead_get_flags(tfm);
2127 err = atmel_sha_authenc_setkey(ctx->auth,
2128 keys.authkey, keys.authkeylen,
2129 &flags);
2130 crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2131 if (err) {
2132 memzero_explicit(&keys, sizeof(keys));
2133 return err;
2136 /* Save enc key. */
2137 ctx->base.keylen = keys.enckeylen;
2138 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2140 memzero_explicit(&keys, sizeof(keys));
2141 return 0;
2143 badkey:
2144 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2145 memzero_explicit(&keys, sizeof(keys));
2146 return -EINVAL;
2149 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2150 unsigned long auth_mode)
2152 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2153 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2155 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2156 if (IS_ERR(ctx->auth))
2157 return PTR_ERR(ctx->auth);
2159 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2160 auth_reqsize));
2161 ctx->base.start = atmel_aes_authenc_start;
2163 return 0;
2166 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2168 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2171 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2173 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2176 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2178 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2181 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2183 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2186 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2188 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2191 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2193 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2195 atmel_sha_authenc_free(ctx->auth);
2198 static int atmel_aes_authenc_crypt(struct aead_request *req,
2199 unsigned long mode)
2201 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2202 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2203 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2204 u32 authsize = crypto_aead_authsize(tfm);
2205 bool enc = (mode & AES_FLAGS_ENCRYPT);
2206 struct atmel_aes_dev *dd;
2208 /* Compute text length. */
2209 if (!enc && req->cryptlen < authsize)
2210 return -EINVAL;
2211 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2214 * Currently, empty messages are not supported yet:
2215 * the SHA auto-padding can be used only on non-empty messages.
2216 * Hence a special case needs to be implemented for empty message.
2218 if (!rctx->textlen && !req->assoclen)
2219 return -EINVAL;
2221 rctx->base.mode = mode;
2222 ctx->block_size = AES_BLOCK_SIZE;
2223 ctx->is_aead = true;
2225 dd = atmel_aes_find_dev(ctx);
2226 if (!dd)
2227 return -ENODEV;
2229 return atmel_aes_handle_queue(dd, &req->base);
2232 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2234 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2237 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2239 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2242 static struct aead_alg aes_authenc_algs[] = {
2244 .setkey = atmel_aes_authenc_setkey,
2245 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2246 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2247 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2248 .exit = atmel_aes_authenc_exit_tfm,
2249 .ivsize = AES_BLOCK_SIZE,
2250 .maxauthsize = SHA1_DIGEST_SIZE,
2252 .base = {
2253 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2254 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2255 .cra_priority = ATMEL_AES_PRIORITY,
2256 .cra_flags = CRYPTO_ALG_ASYNC,
2257 .cra_blocksize = AES_BLOCK_SIZE,
2258 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2259 .cra_alignmask = 0xf,
2260 .cra_module = THIS_MODULE,
2264 .setkey = atmel_aes_authenc_setkey,
2265 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2266 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2267 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2268 .exit = atmel_aes_authenc_exit_tfm,
2269 .ivsize = AES_BLOCK_SIZE,
2270 .maxauthsize = SHA224_DIGEST_SIZE,
2272 .base = {
2273 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2274 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2275 .cra_priority = ATMEL_AES_PRIORITY,
2276 .cra_flags = CRYPTO_ALG_ASYNC,
2277 .cra_blocksize = AES_BLOCK_SIZE,
2278 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2279 .cra_alignmask = 0xf,
2280 .cra_module = THIS_MODULE,
2284 .setkey = atmel_aes_authenc_setkey,
2285 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2286 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2287 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2288 .exit = atmel_aes_authenc_exit_tfm,
2289 .ivsize = AES_BLOCK_SIZE,
2290 .maxauthsize = SHA256_DIGEST_SIZE,
2292 .base = {
2293 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2294 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2295 .cra_priority = ATMEL_AES_PRIORITY,
2296 .cra_flags = CRYPTO_ALG_ASYNC,
2297 .cra_blocksize = AES_BLOCK_SIZE,
2298 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2299 .cra_alignmask = 0xf,
2300 .cra_module = THIS_MODULE,
2304 .setkey = atmel_aes_authenc_setkey,
2305 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2306 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2307 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2308 .exit = atmel_aes_authenc_exit_tfm,
2309 .ivsize = AES_BLOCK_SIZE,
2310 .maxauthsize = SHA384_DIGEST_SIZE,
2312 .base = {
2313 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2314 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2315 .cra_priority = ATMEL_AES_PRIORITY,
2316 .cra_flags = CRYPTO_ALG_ASYNC,
2317 .cra_blocksize = AES_BLOCK_SIZE,
2318 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2319 .cra_alignmask = 0xf,
2320 .cra_module = THIS_MODULE,
2324 .setkey = atmel_aes_authenc_setkey,
2325 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2326 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2327 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2328 .exit = atmel_aes_authenc_exit_tfm,
2329 .ivsize = AES_BLOCK_SIZE,
2330 .maxauthsize = SHA512_DIGEST_SIZE,
2332 .base = {
2333 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2334 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2335 .cra_priority = ATMEL_AES_PRIORITY,
2336 .cra_flags = CRYPTO_ALG_ASYNC,
2337 .cra_blocksize = AES_BLOCK_SIZE,
2338 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2339 .cra_alignmask = 0xf,
2340 .cra_module = THIS_MODULE,
2344 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2346 /* Probe functions */
2348 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2350 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2351 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2352 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2354 if (!dd->buf) {
2355 dev_err(dd->dev, "unable to alloc pages.\n");
2356 return -ENOMEM;
2359 return 0;
2362 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2364 free_page((unsigned long)dd->buf);
2367 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2369 struct at_dma_slave *sl = slave;
2371 if (sl && sl->dma_dev == chan->device->dev) {
2372 chan->private = sl;
2373 return true;
2374 } else {
2375 return false;
2379 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2380 struct crypto_platform_data *pdata)
2382 struct at_dma_slave *slave;
2383 dma_cap_mask_t mask;
2385 dma_cap_zero(mask);
2386 dma_cap_set(DMA_SLAVE, mask);
2388 /* Try to grab 2 DMA channels */
2389 slave = &pdata->dma_slave->rxdata;
2390 dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2391 slave, dd->dev, "tx");
2392 if (!dd->src.chan)
2393 goto err_dma_in;
2395 slave = &pdata->dma_slave->txdata;
2396 dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2397 slave, dd->dev, "rx");
2398 if (!dd->dst.chan)
2399 goto err_dma_out;
2401 return 0;
2403 err_dma_out:
2404 dma_release_channel(dd->src.chan);
2405 err_dma_in:
2406 dev_warn(dd->dev, "no DMA channel available\n");
2407 return -ENODEV;
2410 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2412 dma_release_channel(dd->dst.chan);
2413 dma_release_channel(dd->src.chan);
2416 static void atmel_aes_queue_task(unsigned long data)
2418 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2420 atmel_aes_handle_queue(dd, NULL);
2423 static void atmel_aes_done_task(unsigned long data)
2425 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2427 dd->is_async = true;
2428 (void)dd->resume(dd);
2431 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2433 struct atmel_aes_dev *aes_dd = dev_id;
2434 u32 reg;
2436 reg = atmel_aes_read(aes_dd, AES_ISR);
2437 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2438 atmel_aes_write(aes_dd, AES_IDR, reg);
2439 if (AES_FLAGS_BUSY & aes_dd->flags)
2440 tasklet_schedule(&aes_dd->done_task);
2441 else
2442 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2443 return IRQ_HANDLED;
2446 return IRQ_NONE;
2449 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2451 int i;
2453 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2454 if (dd->caps.has_authenc)
2455 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2456 crypto_unregister_aead(&aes_authenc_algs[i]);
2457 #endif
2459 if (dd->caps.has_xts)
2460 crypto_unregister_skcipher(&aes_xts_alg);
2462 if (dd->caps.has_gcm)
2463 crypto_unregister_aead(&aes_gcm_alg);
2465 if (dd->caps.has_cfb64)
2466 crypto_unregister_skcipher(&aes_cfb64_alg);
2468 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2469 crypto_unregister_skcipher(&aes_algs[i]);
2472 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2474 int err, i, j;
2476 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2477 err = crypto_register_skcipher(&aes_algs[i]);
2478 if (err)
2479 goto err_aes_algs;
2482 if (dd->caps.has_cfb64) {
2483 err = crypto_register_skcipher(&aes_cfb64_alg);
2484 if (err)
2485 goto err_aes_cfb64_alg;
2488 if (dd->caps.has_gcm) {
2489 err = crypto_register_aead(&aes_gcm_alg);
2490 if (err)
2491 goto err_aes_gcm_alg;
2494 if (dd->caps.has_xts) {
2495 err = crypto_register_skcipher(&aes_xts_alg);
2496 if (err)
2497 goto err_aes_xts_alg;
2500 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2501 if (dd->caps.has_authenc) {
2502 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2503 err = crypto_register_aead(&aes_authenc_algs[i]);
2504 if (err)
2505 goto err_aes_authenc_alg;
2508 #endif
2510 return 0;
2512 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2513 /* i = ARRAY_SIZE(aes_authenc_algs); */
2514 err_aes_authenc_alg:
2515 for (j = 0; j < i; j++)
2516 crypto_unregister_aead(&aes_authenc_algs[j]);
2517 crypto_unregister_skcipher(&aes_xts_alg);
2518 #endif
2519 err_aes_xts_alg:
2520 crypto_unregister_aead(&aes_gcm_alg);
2521 err_aes_gcm_alg:
2522 crypto_unregister_skcipher(&aes_cfb64_alg);
2523 err_aes_cfb64_alg:
2524 i = ARRAY_SIZE(aes_algs);
2525 err_aes_algs:
2526 for (j = 0; j < i; j++)
2527 crypto_unregister_skcipher(&aes_algs[j]);
2529 return err;
2532 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2534 dd->caps.has_dualbuff = 0;
2535 dd->caps.has_cfb64 = 0;
2536 dd->caps.has_ctr32 = 0;
2537 dd->caps.has_gcm = 0;
2538 dd->caps.has_xts = 0;
2539 dd->caps.has_authenc = 0;
2540 dd->caps.max_burst_size = 1;
2542 /* keep only major version number */
2543 switch (dd->hw_version & 0xff0) {
2544 case 0x500:
2545 dd->caps.has_dualbuff = 1;
2546 dd->caps.has_cfb64 = 1;
2547 dd->caps.has_ctr32 = 1;
2548 dd->caps.has_gcm = 1;
2549 dd->caps.has_xts = 1;
2550 dd->caps.has_authenc = 1;
2551 dd->caps.max_burst_size = 4;
2552 break;
2553 case 0x200:
2554 dd->caps.has_dualbuff = 1;
2555 dd->caps.has_cfb64 = 1;
2556 dd->caps.has_ctr32 = 1;
2557 dd->caps.has_gcm = 1;
2558 dd->caps.max_burst_size = 4;
2559 break;
2560 case 0x130:
2561 dd->caps.has_dualbuff = 1;
2562 dd->caps.has_cfb64 = 1;
2563 dd->caps.max_burst_size = 4;
2564 break;
2565 case 0x120:
2566 break;
2567 default:
2568 dev_warn(dd->dev,
2569 "Unmanaged aes version, set minimum capabilities\n");
2570 break;
2574 #if defined(CONFIG_OF)
2575 static const struct of_device_id atmel_aes_dt_ids[] = {
2576 { .compatible = "atmel,at91sam9g46-aes" },
2577 { /* sentinel */ }
2579 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2581 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2583 struct device_node *np = pdev->dev.of_node;
2584 struct crypto_platform_data *pdata;
2586 if (!np) {
2587 dev_err(&pdev->dev, "device node not found\n");
2588 return ERR_PTR(-EINVAL);
2591 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2592 if (!pdata)
2593 return ERR_PTR(-ENOMEM);
2595 pdata->dma_slave = devm_kzalloc(&pdev->dev,
2596 sizeof(*(pdata->dma_slave)),
2597 GFP_KERNEL);
2598 if (!pdata->dma_slave) {
2599 devm_kfree(&pdev->dev, pdata);
2600 return ERR_PTR(-ENOMEM);
2603 return pdata;
2605 #else
2606 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2608 return ERR_PTR(-EINVAL);
2610 #endif
2612 static int atmel_aes_probe(struct platform_device *pdev)
2614 struct atmel_aes_dev *aes_dd;
2615 struct crypto_platform_data *pdata;
2616 struct device *dev = &pdev->dev;
2617 struct resource *aes_res;
2618 int err;
2620 pdata = pdev->dev.platform_data;
2621 if (!pdata) {
2622 pdata = atmel_aes_of_init(pdev);
2623 if (IS_ERR(pdata)) {
2624 err = PTR_ERR(pdata);
2625 goto aes_dd_err;
2629 if (!pdata->dma_slave) {
2630 err = -ENXIO;
2631 goto aes_dd_err;
2634 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2635 if (aes_dd == NULL) {
2636 err = -ENOMEM;
2637 goto aes_dd_err;
2640 aes_dd->dev = dev;
2642 platform_set_drvdata(pdev, aes_dd);
2644 INIT_LIST_HEAD(&aes_dd->list);
2645 spin_lock_init(&aes_dd->lock);
2647 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2648 (unsigned long)aes_dd);
2649 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2650 (unsigned long)aes_dd);
2652 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2654 /* Get the base address */
2655 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2656 if (!aes_res) {
2657 dev_err(dev, "no MEM resource info\n");
2658 err = -ENODEV;
2659 goto res_err;
2661 aes_dd->phys_base = aes_res->start;
2663 /* Get the IRQ */
2664 aes_dd->irq = platform_get_irq(pdev, 0);
2665 if (aes_dd->irq < 0) {
2666 err = aes_dd->irq;
2667 goto res_err;
2670 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2671 IRQF_SHARED, "atmel-aes", aes_dd);
2672 if (err) {
2673 dev_err(dev, "unable to request aes irq.\n");
2674 goto res_err;
2677 /* Initializing the clock */
2678 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2679 if (IS_ERR(aes_dd->iclk)) {
2680 dev_err(dev, "clock initialization failed.\n");
2681 err = PTR_ERR(aes_dd->iclk);
2682 goto res_err;
2685 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2686 if (IS_ERR(aes_dd->io_base)) {
2687 dev_err(dev, "can't ioremap\n");
2688 err = PTR_ERR(aes_dd->io_base);
2689 goto res_err;
2692 err = clk_prepare(aes_dd->iclk);
2693 if (err)
2694 goto res_err;
2696 err = atmel_aes_hw_version_init(aes_dd);
2697 if (err)
2698 goto iclk_unprepare;
2700 atmel_aes_get_cap(aes_dd);
2702 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2703 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2704 err = -EPROBE_DEFER;
2705 goto iclk_unprepare;
2707 #endif
2709 err = atmel_aes_buff_init(aes_dd);
2710 if (err)
2711 goto err_aes_buff;
2713 err = atmel_aes_dma_init(aes_dd, pdata);
2714 if (err)
2715 goto err_aes_dma;
2717 spin_lock(&atmel_aes.lock);
2718 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2719 spin_unlock(&atmel_aes.lock);
2721 err = atmel_aes_register_algs(aes_dd);
2722 if (err)
2723 goto err_algs;
2725 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2726 dma_chan_name(aes_dd->src.chan),
2727 dma_chan_name(aes_dd->dst.chan));
2729 return 0;
2731 err_algs:
2732 spin_lock(&atmel_aes.lock);
2733 list_del(&aes_dd->list);
2734 spin_unlock(&atmel_aes.lock);
2735 atmel_aes_dma_cleanup(aes_dd);
2736 err_aes_dma:
2737 atmel_aes_buff_cleanup(aes_dd);
2738 err_aes_buff:
2739 iclk_unprepare:
2740 clk_unprepare(aes_dd->iclk);
2741 res_err:
2742 tasklet_kill(&aes_dd->done_task);
2743 tasklet_kill(&aes_dd->queue_task);
2744 aes_dd_err:
2745 if (err != -EPROBE_DEFER)
2746 dev_err(dev, "initialization failed.\n");
2748 return err;
2751 static int atmel_aes_remove(struct platform_device *pdev)
2753 struct atmel_aes_dev *aes_dd;
2755 aes_dd = platform_get_drvdata(pdev);
2756 if (!aes_dd)
2757 return -ENODEV;
2758 spin_lock(&atmel_aes.lock);
2759 list_del(&aes_dd->list);
2760 spin_unlock(&atmel_aes.lock);
2762 atmel_aes_unregister_algs(aes_dd);
2764 tasklet_kill(&aes_dd->done_task);
2765 tasklet_kill(&aes_dd->queue_task);
2767 atmel_aes_dma_cleanup(aes_dd);
2768 atmel_aes_buff_cleanup(aes_dd);
2770 clk_unprepare(aes_dd->iclk);
2772 return 0;
2775 static struct platform_driver atmel_aes_driver = {
2776 .probe = atmel_aes_probe,
2777 .remove = atmel_aes_remove,
2778 .driver = {
2779 .name = "atmel_aes",
2780 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2784 module_platform_driver(atmel_aes_driver);
2786 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2787 MODULE_LICENSE("GPL v2");
2788 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");