move some stuff from common.c to neighbor.c
[cor.git] / fs / xfs / xfs_file.c
blobc932501089520f27f9198919d29d89ecb3a941d0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
33 static const struct vm_operations_struct xfs_file_vm_ops;
35 int
36 xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
40 struct xfs_trans *tp;
41 int error;
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
46 return error;
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
66 return xfs_trans_commit(tp);
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
75 STATIC int
76 xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83 struct xfs_mount *mp = ip->i_mount;
84 xfs_lsn_t lsn = 0;
86 trace_xfs_dir_fsync(ip);
88 xfs_ilock(ip, XFS_ILOCK_SHARED);
89 if (xfs_ipincount(ip))
90 lsn = ip->i_itemp->ili_last_lsn;
91 xfs_iunlock(ip, XFS_ILOCK_SHARED);
93 if (!lsn)
94 return 0;
95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
98 STATIC int
99 xfs_file_fsync(
100 struct file *file,
101 loff_t start,
102 loff_t end,
103 int datasync)
105 struct inode *inode = file->f_mapping->host;
106 struct xfs_inode *ip = XFS_I(inode);
107 struct xfs_mount *mp = ip->i_mount;
108 int error = 0;
109 int log_flushed = 0;
110 xfs_lsn_t lsn = 0;
112 trace_xfs_file_fsync(ip);
114 error = file_write_and_wait_range(file, start, end);
115 if (error)
116 return error;
118 if (XFS_FORCED_SHUTDOWN(mp))
119 return -EIO;
121 xfs_iflags_clear(ip, XFS_ITRUNCATED);
124 * If we have an RT and/or log subvolume we need to make sure to flush
125 * the write cache the device used for file data first. This is to
126 * ensure newly written file data make it to disk before logging the new
127 * inode size in case of an extending write.
129 if (XFS_IS_REALTIME_INODE(ip))
130 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 xfs_blkdev_issue_flush(mp->m_ddev_targp);
135 * All metadata updates are logged, which means that we just have to
136 * flush the log up to the latest LSN that touched the inode. If we have
137 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 * log force before we clear the ili_fsync_fields field. This ensures
139 * that we don't get a racing sync operation that does not wait for the
140 * metadata to hit the journal before returning. If we race with
141 * clearing the ili_fsync_fields, then all that will happen is the log
142 * force will do nothing as the lsn will already be on disk. We can't
143 * race with setting ili_fsync_fields because that is done under
144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 * until after the ili_fsync_fields is cleared.
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
148 if (xfs_ipincount(ip)) {
149 if (!datasync ||
150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 lsn = ip->i_itemp->ili_last_lsn;
154 if (lsn) {
155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 ip->i_itemp->ili_fsync_fields = 0;
158 xfs_iunlock(ip, XFS_ILOCK_SHARED);
161 * If we only have a single device, and the log force about was
162 * a no-op we might have to flush the data device cache here.
163 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 * an already allocated file and thus do not have any metadata to
165 * commit.
167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 mp->m_logdev_targp == mp->m_ddev_targp)
169 xfs_blkdev_issue_flush(mp->m_ddev_targp);
171 return error;
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 struct kiocb *iocb,
177 struct iov_iter *to)
179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
180 size_t count = iov_iter_count(to);
181 ssize_t ret;
183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
185 if (!count)
186 return 0; /* skip atime */
188 file_accessed(iocb->ki_filp);
190 xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
192 is_sync_kiocb(iocb));
193 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
195 return ret;
198 static noinline ssize_t
199 xfs_file_dax_read(
200 struct kiocb *iocb,
201 struct iov_iter *to)
203 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
204 size_t count = iov_iter_count(to);
205 ssize_t ret = 0;
207 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
209 if (!count)
210 return 0; /* skip atime */
212 if (iocb->ki_flags & IOCB_NOWAIT) {
213 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
214 return -EAGAIN;
215 } else {
216 xfs_ilock(ip, XFS_IOLOCK_SHARED);
219 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
220 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222 file_accessed(iocb->ki_filp);
223 return ret;
226 STATIC ssize_t
227 xfs_file_buffered_aio_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
231 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
232 ssize_t ret;
234 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
236 if (iocb->ki_flags & IOCB_NOWAIT) {
237 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
238 return -EAGAIN;
239 } else {
240 xfs_ilock(ip, XFS_IOLOCK_SHARED);
242 ret = generic_file_read_iter(iocb, to);
243 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
245 return ret;
248 STATIC ssize_t
249 xfs_file_read_iter(
250 struct kiocb *iocb,
251 struct iov_iter *to)
253 struct inode *inode = file_inode(iocb->ki_filp);
254 struct xfs_mount *mp = XFS_I(inode)->i_mount;
255 ssize_t ret = 0;
257 XFS_STATS_INC(mp, xs_read_calls);
259 if (XFS_FORCED_SHUTDOWN(mp))
260 return -EIO;
262 if (IS_DAX(inode))
263 ret = xfs_file_dax_read(iocb, to);
264 else if (iocb->ki_flags & IOCB_DIRECT)
265 ret = xfs_file_dio_aio_read(iocb, to);
266 else
267 ret = xfs_file_buffered_aio_read(iocb, to);
269 if (ret > 0)
270 XFS_STATS_ADD(mp, xs_read_bytes, ret);
271 return ret;
275 * Common pre-write limit and setup checks.
277 * Called with the iolocked held either shared and exclusive according to
278 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
279 * if called for a direct write beyond i_size.
281 STATIC ssize_t
282 xfs_file_aio_write_checks(
283 struct kiocb *iocb,
284 struct iov_iter *from,
285 int *iolock)
287 struct file *file = iocb->ki_filp;
288 struct inode *inode = file->f_mapping->host;
289 struct xfs_inode *ip = XFS_I(inode);
290 ssize_t error = 0;
291 size_t count = iov_iter_count(from);
292 bool drained_dio = false;
293 loff_t isize;
295 restart:
296 error = generic_write_checks(iocb, from);
297 if (error <= 0)
298 return error;
300 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
301 if (error)
302 return error;
305 * For changing security info in file_remove_privs() we need i_rwsem
306 * exclusively.
308 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
309 xfs_iunlock(ip, *iolock);
310 *iolock = XFS_IOLOCK_EXCL;
311 xfs_ilock(ip, *iolock);
312 goto restart;
315 * If the offset is beyond the size of the file, we need to zero any
316 * blocks that fall between the existing EOF and the start of this
317 * write. If zeroing is needed and we are currently holding the
318 * iolock shared, we need to update it to exclusive which implies
319 * having to redo all checks before.
321 * We need to serialise against EOF updates that occur in IO
322 * completions here. We want to make sure that nobody is changing the
323 * size while we do this check until we have placed an IO barrier (i.e.
324 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
325 * The spinlock effectively forms a memory barrier once we have the
326 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
327 * and hence be able to correctly determine if we need to run zeroing.
329 spin_lock(&ip->i_flags_lock);
330 isize = i_size_read(inode);
331 if (iocb->ki_pos > isize) {
332 spin_unlock(&ip->i_flags_lock);
333 if (!drained_dio) {
334 if (*iolock == XFS_IOLOCK_SHARED) {
335 xfs_iunlock(ip, *iolock);
336 *iolock = XFS_IOLOCK_EXCL;
337 xfs_ilock(ip, *iolock);
338 iov_iter_reexpand(from, count);
341 * We now have an IO submission barrier in place, but
342 * AIO can do EOF updates during IO completion and hence
343 * we now need to wait for all of them to drain. Non-AIO
344 * DIO will have drained before we are given the
345 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
346 * no-op.
348 inode_dio_wait(inode);
349 drained_dio = true;
350 goto restart;
353 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
354 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
355 NULL, &xfs_buffered_write_iomap_ops);
356 if (error)
357 return error;
358 } else
359 spin_unlock(&ip->i_flags_lock);
362 * Updating the timestamps will grab the ilock again from
363 * xfs_fs_dirty_inode, so we have to call it after dropping the
364 * lock above. Eventually we should look into a way to avoid
365 * the pointless lock roundtrip.
367 return file_modified(file);
370 static int
371 xfs_dio_write_end_io(
372 struct kiocb *iocb,
373 ssize_t size,
374 int error,
375 unsigned flags)
377 struct inode *inode = file_inode(iocb->ki_filp);
378 struct xfs_inode *ip = XFS_I(inode);
379 loff_t offset = iocb->ki_pos;
380 unsigned int nofs_flag;
382 trace_xfs_end_io_direct_write(ip, offset, size);
384 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 return -EIO;
387 if (error)
388 return error;
389 if (!size)
390 return 0;
393 * Capture amount written on completion as we can't reliably account
394 * for it on submission.
396 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
399 * We can allocate memory here while doing writeback on behalf of
400 * memory reclaim. To avoid memory allocation deadlocks set the
401 * task-wide nofs context for the following operations.
403 nofs_flag = memalloc_nofs_save();
405 if (flags & IOMAP_DIO_COW) {
406 error = xfs_reflink_end_cow(ip, offset, size);
407 if (error)
408 goto out;
412 * Unwritten conversion updates the in-core isize after extent
413 * conversion but before updating the on-disk size. Updating isize any
414 * earlier allows a racing dio read to find unwritten extents before
415 * they are converted.
417 if (flags & IOMAP_DIO_UNWRITTEN) {
418 error = xfs_iomap_write_unwritten(ip, offset, size, true);
419 goto out;
423 * We need to update the in-core inode size here so that we don't end up
424 * with the on-disk inode size being outside the in-core inode size. We
425 * have no other method of updating EOF for AIO, so always do it here
426 * if necessary.
428 * We need to lock the test/set EOF update as we can be racing with
429 * other IO completions here to update the EOF. Failing to serialise
430 * here can result in EOF moving backwards and Bad Things Happen when
431 * that occurs.
433 spin_lock(&ip->i_flags_lock);
434 if (offset + size > i_size_read(inode)) {
435 i_size_write(inode, offset + size);
436 spin_unlock(&ip->i_flags_lock);
437 error = xfs_setfilesize(ip, offset, size);
438 } else {
439 spin_unlock(&ip->i_flags_lock);
442 out:
443 memalloc_nofs_restore(nofs_flag);
444 return error;
447 static const struct iomap_dio_ops xfs_dio_write_ops = {
448 .end_io = xfs_dio_write_end_io,
452 * xfs_file_dio_aio_write - handle direct IO writes
454 * Lock the inode appropriately to prepare for and issue a direct IO write.
455 * By separating it from the buffered write path we remove all the tricky to
456 * follow locking changes and looping.
458 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
459 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
460 * pages are flushed out.
462 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
463 * allowing them to be done in parallel with reads and other direct IO writes.
464 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
465 * needs to do sub-block zeroing and that requires serialisation against other
466 * direct IOs to the same block. In this case we need to serialise the
467 * submission of the unaligned IOs so that we don't get racing block zeroing in
468 * the dio layer. To avoid the problem with aio, we also need to wait for
469 * outstanding IOs to complete so that unwritten extent conversion is completed
470 * before we try to map the overlapping block. This is currently implemented by
471 * hitting it with a big hammer (i.e. inode_dio_wait()).
473 * Returns with locks held indicated by @iolock and errors indicated by
474 * negative return values.
476 STATIC ssize_t
477 xfs_file_dio_aio_write(
478 struct kiocb *iocb,
479 struct iov_iter *from)
481 struct file *file = iocb->ki_filp;
482 struct address_space *mapping = file->f_mapping;
483 struct inode *inode = mapping->host;
484 struct xfs_inode *ip = XFS_I(inode);
485 struct xfs_mount *mp = ip->i_mount;
486 ssize_t ret = 0;
487 int unaligned_io = 0;
488 int iolock;
489 size_t count = iov_iter_count(from);
490 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
492 /* DIO must be aligned to device logical sector size */
493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 return -EINVAL;
497 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 * the file system block size. We don't need to consider the EOF
499 * extension case here because xfs_file_aio_write_checks() will relock
500 * the inode as necessary for EOF zeroing cases and fill out the new
501 * inode size as appropriate.
503 if ((iocb->ki_pos & mp->m_blockmask) ||
504 ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 unaligned_io = 1;
508 * We can't properly handle unaligned direct I/O to reflink
509 * files yet, as we can't unshare a partial block.
511 if (xfs_is_cow_inode(ip)) {
512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 return -EREMCHG;
515 iolock = XFS_IOLOCK_EXCL;
516 } else {
517 iolock = XFS_IOLOCK_SHARED;
520 if (iocb->ki_flags & IOCB_NOWAIT) {
521 /* unaligned dio always waits, bail */
522 if (unaligned_io)
523 return -EAGAIN;
524 if (!xfs_ilock_nowait(ip, iolock))
525 return -EAGAIN;
526 } else {
527 xfs_ilock(ip, iolock);
530 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 if (ret)
532 goto out;
533 count = iov_iter_count(from);
536 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 * in-flight at the same time or we risk data corruption. Wait for all
538 * other IO to drain before we submit. If the IO is aligned, demote the
539 * iolock if we had to take the exclusive lock in
540 * xfs_file_aio_write_checks() for other reasons.
542 if (unaligned_io) {
543 inode_dio_wait(inode);
544 } else if (iolock == XFS_IOLOCK_EXCL) {
545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 iolock = XFS_IOLOCK_SHARED;
549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
551 * If unaligned, this is the only IO in-flight. Wait on it before we
552 * release the iolock to prevent subsequent overlapping IO.
554 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
555 &xfs_dio_write_ops,
556 is_sync_kiocb(iocb) || unaligned_io);
557 out:
558 xfs_iunlock(ip, iolock);
561 * No fallback to buffered IO on errors for XFS, direct IO will either
562 * complete fully or fail.
564 ASSERT(ret < 0 || ret == count);
565 return ret;
568 static noinline ssize_t
569 xfs_file_dax_write(
570 struct kiocb *iocb,
571 struct iov_iter *from)
573 struct inode *inode = iocb->ki_filp->f_mapping->host;
574 struct xfs_inode *ip = XFS_I(inode);
575 int iolock = XFS_IOLOCK_EXCL;
576 ssize_t ret, error = 0;
577 size_t count;
578 loff_t pos;
580 if (iocb->ki_flags & IOCB_NOWAIT) {
581 if (!xfs_ilock_nowait(ip, iolock))
582 return -EAGAIN;
583 } else {
584 xfs_ilock(ip, iolock);
587 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
588 if (ret)
589 goto out;
591 pos = iocb->ki_pos;
592 count = iov_iter_count(from);
594 trace_xfs_file_dax_write(ip, count, pos);
595 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
596 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
597 i_size_write(inode, iocb->ki_pos);
598 error = xfs_setfilesize(ip, pos, ret);
600 out:
601 xfs_iunlock(ip, iolock);
602 if (error)
603 return error;
605 if (ret > 0) {
606 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
608 /* Handle various SYNC-type writes */
609 ret = generic_write_sync(iocb, ret);
611 return ret;
614 STATIC ssize_t
615 xfs_file_buffered_aio_write(
616 struct kiocb *iocb,
617 struct iov_iter *from)
619 struct file *file = iocb->ki_filp;
620 struct address_space *mapping = file->f_mapping;
621 struct inode *inode = mapping->host;
622 struct xfs_inode *ip = XFS_I(inode);
623 ssize_t ret;
624 int enospc = 0;
625 int iolock;
627 if (iocb->ki_flags & IOCB_NOWAIT)
628 return -EOPNOTSUPP;
630 write_retry:
631 iolock = XFS_IOLOCK_EXCL;
632 xfs_ilock(ip, iolock);
634 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
635 if (ret)
636 goto out;
638 /* We can write back this queue in page reclaim */
639 current->backing_dev_info = inode_to_bdi(inode);
641 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
642 ret = iomap_file_buffered_write(iocb, from,
643 &xfs_buffered_write_iomap_ops);
644 if (likely(ret >= 0))
645 iocb->ki_pos += ret;
648 * If we hit a space limit, try to free up some lingering preallocated
649 * space before returning an error. In the case of ENOSPC, first try to
650 * write back all dirty inodes to free up some of the excess reserved
651 * metadata space. This reduces the chances that the eofblocks scan
652 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
653 * also behaves as a filter to prevent too many eofblocks scans from
654 * running at the same time.
656 if (ret == -EDQUOT && !enospc) {
657 xfs_iunlock(ip, iolock);
658 enospc = xfs_inode_free_quota_eofblocks(ip);
659 if (enospc)
660 goto write_retry;
661 enospc = xfs_inode_free_quota_cowblocks(ip);
662 if (enospc)
663 goto write_retry;
664 iolock = 0;
665 } else if (ret == -ENOSPC && !enospc) {
666 struct xfs_eofblocks eofb = {0};
668 enospc = 1;
669 xfs_flush_inodes(ip->i_mount);
671 xfs_iunlock(ip, iolock);
672 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
673 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
674 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
675 goto write_retry;
678 current->backing_dev_info = NULL;
679 out:
680 if (iolock)
681 xfs_iunlock(ip, iolock);
683 if (ret > 0) {
684 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
685 /* Handle various SYNC-type writes */
686 ret = generic_write_sync(iocb, ret);
688 return ret;
691 STATIC ssize_t
692 xfs_file_write_iter(
693 struct kiocb *iocb,
694 struct iov_iter *from)
696 struct file *file = iocb->ki_filp;
697 struct address_space *mapping = file->f_mapping;
698 struct inode *inode = mapping->host;
699 struct xfs_inode *ip = XFS_I(inode);
700 ssize_t ret;
701 size_t ocount = iov_iter_count(from);
703 XFS_STATS_INC(ip->i_mount, xs_write_calls);
705 if (ocount == 0)
706 return 0;
708 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
709 return -EIO;
711 if (IS_DAX(inode))
712 return xfs_file_dax_write(iocb, from);
714 if (iocb->ki_flags & IOCB_DIRECT) {
716 * Allow a directio write to fall back to a buffered
717 * write *only* in the case that we're doing a reflink
718 * CoW. In all other directio scenarios we do not
719 * allow an operation to fall back to buffered mode.
721 ret = xfs_file_dio_aio_write(iocb, from);
722 if (ret != -EREMCHG)
723 return ret;
726 return xfs_file_buffered_aio_write(iocb, from);
729 static void
730 xfs_wait_dax_page(
731 struct inode *inode)
733 struct xfs_inode *ip = XFS_I(inode);
735 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
736 schedule();
737 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
740 static int
741 xfs_break_dax_layouts(
742 struct inode *inode,
743 bool *retry)
745 struct page *page;
747 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
749 page = dax_layout_busy_page(inode->i_mapping);
750 if (!page)
751 return 0;
753 *retry = true;
754 return ___wait_var_event(&page->_refcount,
755 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
756 0, 0, xfs_wait_dax_page(inode));
760 xfs_break_layouts(
761 struct inode *inode,
762 uint *iolock,
763 enum layout_break_reason reason)
765 bool retry;
766 int error;
768 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
770 do {
771 retry = false;
772 switch (reason) {
773 case BREAK_UNMAP:
774 error = xfs_break_dax_layouts(inode, &retry);
775 if (error || retry)
776 break;
777 /* fall through */
778 case BREAK_WRITE:
779 error = xfs_break_leased_layouts(inode, iolock, &retry);
780 break;
781 default:
782 WARN_ON_ONCE(1);
783 error = -EINVAL;
785 } while (error == 0 && retry);
787 return error;
790 #define XFS_FALLOC_FL_SUPPORTED \
791 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
792 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
793 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
795 STATIC long
796 xfs_file_fallocate(
797 struct file *file,
798 int mode,
799 loff_t offset,
800 loff_t len)
802 struct inode *inode = file_inode(file);
803 struct xfs_inode *ip = XFS_I(inode);
804 long error;
805 enum xfs_prealloc_flags flags = 0;
806 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
807 loff_t new_size = 0;
808 bool do_file_insert = false;
810 if (!S_ISREG(inode->i_mode))
811 return -EINVAL;
812 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
813 return -EOPNOTSUPP;
815 xfs_ilock(ip, iolock);
816 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
817 if (error)
818 goto out_unlock;
821 * Must wait for all AIO to complete before we continue as AIO can
822 * change the file size on completion without holding any locks we
823 * currently hold. We must do this first because AIO can update both
824 * the on disk and in memory inode sizes, and the operations that follow
825 * require the in-memory size to be fully up-to-date.
827 inode_dio_wait(inode);
830 * Now AIO and DIO has drained we flush and (if necessary) invalidate
831 * the cached range over the first operation we are about to run.
833 * We care about zero and collapse here because they both run a hole
834 * punch over the range first. Because that can zero data, and the range
835 * of invalidation for the shift operations is much larger, we still do
836 * the required flush for collapse in xfs_prepare_shift().
838 * Insert has the same range requirements as collapse, and we extend the
839 * file first which can zero data. Hence insert has the same
840 * flush/invalidate requirements as collapse and so they are both
841 * handled at the right time by xfs_prepare_shift().
843 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
844 FALLOC_FL_COLLAPSE_RANGE)) {
845 error = xfs_flush_unmap_range(ip, offset, len);
846 if (error)
847 goto out_unlock;
850 if (mode & FALLOC_FL_PUNCH_HOLE) {
851 error = xfs_free_file_space(ip, offset, len);
852 if (error)
853 goto out_unlock;
854 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
855 unsigned int blksize_mask = i_blocksize(inode) - 1;
857 if (offset & blksize_mask || len & blksize_mask) {
858 error = -EINVAL;
859 goto out_unlock;
863 * There is no need to overlap collapse range with EOF,
864 * in which case it is effectively a truncate operation
866 if (offset + len >= i_size_read(inode)) {
867 error = -EINVAL;
868 goto out_unlock;
871 new_size = i_size_read(inode) - len;
873 error = xfs_collapse_file_space(ip, offset, len);
874 if (error)
875 goto out_unlock;
876 } else if (mode & FALLOC_FL_INSERT_RANGE) {
877 unsigned int blksize_mask = i_blocksize(inode) - 1;
878 loff_t isize = i_size_read(inode);
880 if (offset & blksize_mask || len & blksize_mask) {
881 error = -EINVAL;
882 goto out_unlock;
886 * New inode size must not exceed ->s_maxbytes, accounting for
887 * possible signed overflow.
889 if (inode->i_sb->s_maxbytes - isize < len) {
890 error = -EFBIG;
891 goto out_unlock;
893 new_size = isize + len;
895 /* Offset should be less than i_size */
896 if (offset >= isize) {
897 error = -EINVAL;
898 goto out_unlock;
900 do_file_insert = true;
901 } else {
902 flags |= XFS_PREALLOC_SET;
904 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
905 offset + len > i_size_read(inode)) {
906 new_size = offset + len;
907 error = inode_newsize_ok(inode, new_size);
908 if (error)
909 goto out_unlock;
912 if (mode & FALLOC_FL_ZERO_RANGE) {
914 * Punch a hole and prealloc the range. We use a hole
915 * punch rather than unwritten extent conversion for two
916 * reasons:
918 * 1.) Hole punch handles partial block zeroing for us.
919 * 2.) If prealloc returns ENOSPC, the file range is
920 * still zero-valued by virtue of the hole punch.
922 unsigned int blksize = i_blocksize(inode);
924 trace_xfs_zero_file_space(ip);
926 error = xfs_free_file_space(ip, offset, len);
927 if (error)
928 goto out_unlock;
930 len = round_up(offset + len, blksize) -
931 round_down(offset, blksize);
932 offset = round_down(offset, blksize);
933 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
934 error = xfs_reflink_unshare(ip, offset, len);
935 if (error)
936 goto out_unlock;
937 } else {
939 * If always_cow mode we can't use preallocations and
940 * thus should not create them.
942 if (xfs_is_always_cow_inode(ip)) {
943 error = -EOPNOTSUPP;
944 goto out_unlock;
948 if (!xfs_is_always_cow_inode(ip)) {
949 error = xfs_alloc_file_space(ip, offset, len,
950 XFS_BMAPI_PREALLOC);
951 if (error)
952 goto out_unlock;
956 if (file->f_flags & O_DSYNC)
957 flags |= XFS_PREALLOC_SYNC;
959 error = xfs_update_prealloc_flags(ip, flags);
960 if (error)
961 goto out_unlock;
963 /* Change file size if needed */
964 if (new_size) {
965 struct iattr iattr;
967 iattr.ia_valid = ATTR_SIZE;
968 iattr.ia_size = new_size;
969 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
970 if (error)
971 goto out_unlock;
975 * Perform hole insertion now that the file size has been
976 * updated so that if we crash during the operation we don't
977 * leave shifted extents past EOF and hence losing access to
978 * the data that is contained within them.
980 if (do_file_insert)
981 error = xfs_insert_file_space(ip, offset, len);
983 out_unlock:
984 xfs_iunlock(ip, iolock);
985 return error;
988 STATIC int
989 xfs_file_fadvise(
990 struct file *file,
991 loff_t start,
992 loff_t end,
993 int advice)
995 struct xfs_inode *ip = XFS_I(file_inode(file));
996 int ret;
997 int lockflags = 0;
1000 * Operations creating pages in page cache need protection from hole
1001 * punching and similar ops
1003 if (advice == POSIX_FADV_WILLNEED) {
1004 lockflags = XFS_IOLOCK_SHARED;
1005 xfs_ilock(ip, lockflags);
1007 ret = generic_fadvise(file, start, end, advice);
1008 if (lockflags)
1009 xfs_iunlock(ip, lockflags);
1010 return ret;
1013 STATIC loff_t
1014 xfs_file_remap_range(
1015 struct file *file_in,
1016 loff_t pos_in,
1017 struct file *file_out,
1018 loff_t pos_out,
1019 loff_t len,
1020 unsigned int remap_flags)
1022 struct inode *inode_in = file_inode(file_in);
1023 struct xfs_inode *src = XFS_I(inode_in);
1024 struct inode *inode_out = file_inode(file_out);
1025 struct xfs_inode *dest = XFS_I(inode_out);
1026 struct xfs_mount *mp = src->i_mount;
1027 loff_t remapped = 0;
1028 xfs_extlen_t cowextsize;
1029 int ret;
1031 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1032 return -EINVAL;
1034 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1035 return -EOPNOTSUPP;
1037 if (XFS_FORCED_SHUTDOWN(mp))
1038 return -EIO;
1040 /* Prepare and then clone file data. */
1041 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1042 &len, remap_flags);
1043 if (ret < 0 || len == 0)
1044 return ret;
1046 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1048 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1049 &remapped);
1050 if (ret)
1051 goto out_unlock;
1054 * Carry the cowextsize hint from src to dest if we're sharing the
1055 * entire source file to the entire destination file, the source file
1056 * has a cowextsize hint, and the destination file does not.
1058 cowextsize = 0;
1059 if (pos_in == 0 && len == i_size_read(inode_in) &&
1060 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1061 pos_out == 0 && len >= i_size_read(inode_out) &&
1062 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1063 cowextsize = src->i_d.di_cowextsize;
1065 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1066 remap_flags);
1068 out_unlock:
1069 xfs_reflink_remap_unlock(file_in, file_out);
1070 if (ret)
1071 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1072 return remapped > 0 ? remapped : ret;
1075 STATIC int
1076 xfs_file_open(
1077 struct inode *inode,
1078 struct file *file)
1080 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1081 return -EFBIG;
1082 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1083 return -EIO;
1084 file->f_mode |= FMODE_NOWAIT;
1085 return 0;
1088 STATIC int
1089 xfs_dir_open(
1090 struct inode *inode,
1091 struct file *file)
1093 struct xfs_inode *ip = XFS_I(inode);
1094 int mode;
1095 int error;
1097 error = xfs_file_open(inode, file);
1098 if (error)
1099 return error;
1102 * If there are any blocks, read-ahead block 0 as we're almost
1103 * certain to have the next operation be a read there.
1105 mode = xfs_ilock_data_map_shared(ip);
1106 if (ip->i_d.di_nextents > 0)
1107 error = xfs_dir3_data_readahead(ip, 0, 0);
1108 xfs_iunlock(ip, mode);
1109 return error;
1112 STATIC int
1113 xfs_file_release(
1114 struct inode *inode,
1115 struct file *filp)
1117 return xfs_release(XFS_I(inode));
1120 STATIC int
1121 xfs_file_readdir(
1122 struct file *file,
1123 struct dir_context *ctx)
1125 struct inode *inode = file_inode(file);
1126 xfs_inode_t *ip = XFS_I(inode);
1127 size_t bufsize;
1130 * The Linux API doesn't pass down the total size of the buffer
1131 * we read into down to the filesystem. With the filldir concept
1132 * it's not needed for correct information, but the XFS dir2 leaf
1133 * code wants an estimate of the buffer size to calculate it's
1134 * readahead window and size the buffers used for mapping to
1135 * physical blocks.
1137 * Try to give it an estimate that's good enough, maybe at some
1138 * point we can change the ->readdir prototype to include the
1139 * buffer size. For now we use the current glibc buffer size.
1141 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1143 return xfs_readdir(NULL, ip, ctx, bufsize);
1146 STATIC loff_t
1147 xfs_file_llseek(
1148 struct file *file,
1149 loff_t offset,
1150 int whence)
1152 struct inode *inode = file->f_mapping->host;
1154 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1155 return -EIO;
1157 switch (whence) {
1158 default:
1159 return generic_file_llseek(file, offset, whence);
1160 case SEEK_HOLE:
1161 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1162 break;
1163 case SEEK_DATA:
1164 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1165 break;
1168 if (offset < 0)
1169 return offset;
1170 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1174 * Locking for serialisation of IO during page faults. This results in a lock
1175 * ordering of:
1177 * mmap_sem (MM)
1178 * sb_start_pagefault(vfs, freeze)
1179 * i_mmaplock (XFS - truncate serialisation)
1180 * page_lock (MM)
1181 * i_lock (XFS - extent map serialisation)
1183 static vm_fault_t
1184 __xfs_filemap_fault(
1185 struct vm_fault *vmf,
1186 enum page_entry_size pe_size,
1187 bool write_fault)
1189 struct inode *inode = file_inode(vmf->vma->vm_file);
1190 struct xfs_inode *ip = XFS_I(inode);
1191 vm_fault_t ret;
1193 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1195 if (write_fault) {
1196 sb_start_pagefault(inode->i_sb);
1197 file_update_time(vmf->vma->vm_file);
1200 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1201 if (IS_DAX(inode)) {
1202 pfn_t pfn;
1204 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1205 (write_fault && !vmf->cow_page) ?
1206 &xfs_direct_write_iomap_ops :
1207 &xfs_read_iomap_ops);
1208 if (ret & VM_FAULT_NEEDDSYNC)
1209 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1210 } else {
1211 if (write_fault)
1212 ret = iomap_page_mkwrite(vmf,
1213 &xfs_buffered_write_iomap_ops);
1214 else
1215 ret = filemap_fault(vmf);
1217 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1219 if (write_fault)
1220 sb_end_pagefault(inode->i_sb);
1221 return ret;
1224 static vm_fault_t
1225 xfs_filemap_fault(
1226 struct vm_fault *vmf)
1228 /* DAX can shortcut the normal fault path on write faults! */
1229 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1230 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1231 (vmf->flags & FAULT_FLAG_WRITE));
1234 static vm_fault_t
1235 xfs_filemap_huge_fault(
1236 struct vm_fault *vmf,
1237 enum page_entry_size pe_size)
1239 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1240 return VM_FAULT_FALLBACK;
1242 /* DAX can shortcut the normal fault path on write faults! */
1243 return __xfs_filemap_fault(vmf, pe_size,
1244 (vmf->flags & FAULT_FLAG_WRITE));
1247 static vm_fault_t
1248 xfs_filemap_page_mkwrite(
1249 struct vm_fault *vmf)
1251 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1255 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1256 * on write faults. In reality, it needs to serialise against truncate and
1257 * prepare memory for writing so handle is as standard write fault.
1259 static vm_fault_t
1260 xfs_filemap_pfn_mkwrite(
1261 struct vm_fault *vmf)
1264 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1267 static const struct vm_operations_struct xfs_file_vm_ops = {
1268 .fault = xfs_filemap_fault,
1269 .huge_fault = xfs_filemap_huge_fault,
1270 .map_pages = filemap_map_pages,
1271 .page_mkwrite = xfs_filemap_page_mkwrite,
1272 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1275 STATIC int
1276 xfs_file_mmap(
1277 struct file *file,
1278 struct vm_area_struct *vma)
1280 struct inode *inode = file_inode(file);
1281 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1284 * We don't support synchronous mappings for non-DAX files and
1285 * for DAX files if underneath dax_device is not synchronous.
1287 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1288 return -EOPNOTSUPP;
1290 file_accessed(file);
1291 vma->vm_ops = &xfs_file_vm_ops;
1292 if (IS_DAX(inode))
1293 vma->vm_flags |= VM_HUGEPAGE;
1294 return 0;
1297 const struct file_operations xfs_file_operations = {
1298 .llseek = xfs_file_llseek,
1299 .read_iter = xfs_file_read_iter,
1300 .write_iter = xfs_file_write_iter,
1301 .splice_read = generic_file_splice_read,
1302 .splice_write = iter_file_splice_write,
1303 .iopoll = iomap_dio_iopoll,
1304 .unlocked_ioctl = xfs_file_ioctl,
1305 #ifdef CONFIG_COMPAT
1306 .compat_ioctl = xfs_file_compat_ioctl,
1307 #endif
1308 .mmap = xfs_file_mmap,
1309 .mmap_supported_flags = MAP_SYNC,
1310 .open = xfs_file_open,
1311 .release = xfs_file_release,
1312 .fsync = xfs_file_fsync,
1313 .get_unmapped_area = thp_get_unmapped_area,
1314 .fallocate = xfs_file_fallocate,
1315 .fadvise = xfs_file_fadvise,
1316 .remap_file_range = xfs_file_remap_range,
1319 const struct file_operations xfs_dir_file_operations = {
1320 .open = xfs_dir_open,
1321 .read = generic_read_dir,
1322 .iterate_shared = xfs_file_readdir,
1323 .llseek = generic_file_llseek,
1324 .unlocked_ioctl = xfs_file_ioctl,
1325 #ifdef CONFIG_COMPAT
1326 .compat_ioctl = xfs_file_compat_ioctl,
1327 #endif
1328 .fsync = xfs_dir_fsync,