1 % Copyright (C) 2008 Bert Burgemeister
3 % Permission is granted to copy, distribute and/or modify this
4 % document under the terms of the GNU Free Documentation License,
5 % Version 1.2 or any later version published by the Free Software
6 % Foundation; with no Invariant Sections, no Front-Cover Texts and
7 % no Back-Cover Texts. For details see file COPYING.
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 \subsection{Predicates
}
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 \IT{\arrGOO{(
\FU{\boldmath$=$
}\RP{\VAR{
22 (
\FU{\boldmath$/=$
}\RP{\VAR{ number
}})
}{.
}}
26 Return
\retval{\T} if all
\VAR{number
}s, or
27 none, respectively, are equal.
30 \IT{\arrGOO{(
\FU{\boldmath$>$
}\RP{\VAR{
31 number
}})\\(
\FU{\boldmath$>=$
}\RP{\VAR{
32 number
}})\\(
\FU{\boldmath$<$
}\RP{\VAR{
33 number
}})\\(
\FU{\boldmath$<=$
}\RP{\VAR{ number
}})
}{.
}}
39 Return
\retval{\T} if
\VAR{number
}s are
40 monotonically decreasing, monotonically non-increasing,
41 monotonically increasing, or monotonically non-decreasing, respectively.
44 \IT{\arrGOO{(
\FU*
{MINUSP
} \VAR{ a
})\\
45 (
\FU*
{ZEROP
} \VAR{ a
})\\
49 Return
\retval{\T} if $a <
0$, $a =
0$, or $a >
0$, respectively.
52 \IT{\arrGOO{(
\FU*
{EVENP
} \VAR{integer
})\\
53 (
\FU*
{ODDP
} \VAR{integer
})
}{.
}}
55 Return
\retval{\T} if
\VAR{integer
} is even or odd, respectively.
58 \IT{\arrGOO{(
\FU*
{NUMBERP
} \VAR{ foo
})\\
59 (
\FU*
{INTEGERP
} \VAR{ foo
})\\
60 (
\FU*
{RATIONALP
} \VAR{ foo
})\\
61 (
\FU*
{FLOATP
} \VAR{ foo
})\\
62 (
\FU*
{REALP
} \VAR{ foo
})\\
63 (
\FU*
{COMPLEXP
} \VAR{ foo
})\\
64 (
\FU*
{RANDOM-STATE-P
} \VAR{ foo
})
67 \retval{\T} if
\VAR{foo
} is of
71 \IT{(
\FU*
{LOGBITP
} \VAR{i
} \VAR{integer
})
}
73 \retval{\T} if zero-indexed
\VAR{i
}th bit of
\VAR{integer
} is set.
79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80 \subsection[Numeric~Functns
]{Numeric Functions
}
81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 \IT{(
\FU*
{ABS
} \VAR{n
})
}
90 \IT{\arrGOO{(
\FU*
{+
} \OPn{\VAR{ a
}})\\
91 (
\FU*
{*
} \OPn{\VAR{ a
}})
}{.
}}
93 Return
\retval{$
\sum{a
}$
} or
\retval{$
\prod{a
}$
}, respectively. Without any
94 \VAR{a
}s, return
\retval{0} or
\retval{1}, respectively.
97 \IT{\arrGOO{(
\FU*
{--
} \VAR{ a
}\OPn{\VAR{ b
}})\\
101 Return
\retval{$a-
\sum{b
}$
} or
\retval{$a/
\prod{b
}$
}, respectively. Without any
102 \VAR{b
}s, return
\retval{$-a$
} or
\retval{$
1/a$
}, respectively.
105 \IT{\arrGOO{(
\FU*
{1+
} \VAR{ a
})\\(
\FU*
{1--
} \VAR{ a
})
}{.
}}
106 {Return
\retval{$a+
1$
} or
107 \retval{$a-
1$
}, respectively.
110 \IT{(
\xorGOO{\MC*
{INCF
}\\
111 \MC*
{DECF
}}{\
}} \DES{\VAR{place
}}
112 \Op{\VAR{delta
}\DF{\LIT{1}}})
}
115 decrement
\VAR{place
} by
\VAR{delta
} returning
\retval{new value
}.
118 \IT{(
\FU*
{EXP
} \VAR{p
})
}
119 {Return
\retval{$
\mbox{e
}^p$
}.
122 \IT{(
\FU*
{EXPT
} \VAR{b
} \VAR{p
})
}
123 {Return
\retval{$b^p$
}.
126 \IT{(
\FU*
{LOG
} \VAR{a
} \Op{\VAR{b
}})
}
128 Return
\retval{$
\log_b a$
} or,
129 without
\VAR{b
},
\retval{$
\ln a$
}.
132 \IT{\arrGOO{(
\FU*
{SQRT
} \VAR{ n
})\\
133 (
\FU*
{ISQRT
} \VAR{ n
})
}{.
}}
135 \retval{$
\sqrt{n
}$
} in complex or natural numbers, respectively.
138 \IT{\arrGOO{(
\FU*
{LCM
} \OPn{\VAR{ integer
}}\DF{\LIT{1}})\\
139 (
\FU*
{GCD
} \OPn{\VAR{ integer
}})
}{.
}}
141 \retval{Least common multiple
} or
\retval{greatest common
142 de\-no\-mi\-na\-tor
}, respectively, of
\VAR{integer
}s.
147 \kwd{long-float
} approximation of $
\pi$, Ludolph's number.
150 \IT{\arrGOO{(
\FU*
{SIN
} \VAR{ a
})\\
151 (
\FU*
{COS
} \VAR{ a
})\\
152 (
\FU*
{TAN
} \VAR{ a
})
}{.
}}
154 With
\VAR{a
} in radians, return
\retval{$
\sin a$
},
\retval{$
\cos
155 a$
}, or
\retval{$
\tan a$
}, respectively.
158 \IT{\arrGOO{(
\FU*
{ASIN
} \VAR{ a
})\\
159 (
\FU*
{ACOS
} \VAR{ a
})
}{.
}}
161 \retval{$
\arcsin a$
} or
\retval{$
\arccos
162 a$
}, respectively, in radians.
165 \IT{(
\FU*
{ATAN
} \VAR{a
} \Op{\VAR{b
}\DF{\LIT{1}}})
}
167 \retval{$
\arctan \frac{a
}{b
}$
} in radians.
170 \IT{\arrGOO{(
\FU*
{SINH
} \VAR{ a
})\\(
\FU*
{COSH
} \VAR{ a
})\\(
\FU*
{TANH
}
173 Return
\retval{$
\sinh a$
},
\retval{$
\cosh
174 a$
}, or
\retval{$
\tanh a$
}, respectively.
177 \IT{\arrGOO{(
\FU*
{ASINH
} \VAR{ a
})\\
178 (
\FU*
{ACOSH
} \VAR{ a
})
179 \\(
\FU*
{ATANH
} \VAR{ a
})
}{.
}}
181 \retval{$
\operatorname{asinh
} a$
},
\retval{$
\operatorname{acosh
}
182 a$
}, or
\retval{$
\operatorname{atanh
} a$
}, respectively.
185 \IT{(
\FU*
{CIS
} \VAR{a
})
}
188 \retval{$
\operatorname{e
}^
{\operatorname{i
} a
} =
\cos a +
189 \operatorname{i
}\sin a$
}.
192 \IT{(
\FU*
{CONJUGATE
} \VAR{a
})
}
193 {Return
\retval{conjugate of
\VAR{a
}}.
196 \IT{\arrGOO{(
\FU*
{NUMERATOR
} \VAR{ rational
})\\
197 (
\FU*
{DENOMINATOR
} \VAR{ rational
})
}{.
}}
199 \retval{Numerator
} or
\retval{denominator
}, respectively, of
200 \VAR{rational
}'s canonical form.
203 \IT{\arrGOO{(
\FU*
{REALPART
} \VAR{ number
})\\
204 (
\FU*
{IMAGPART
} \VAR{ number
})
}{.
}}
206 Return
\retval{real part
} or
\retval{imaginary part
}, respectively, of
\VAR{number
}.
209 \IT{\arrGOO{(
\FU*
{MAX
} \RP{\VAR{num
}})\\
210 (
\FU*
{MIN
} \RP{\VAR{num
}})
}{.
}}
212 Return
\retval{greatest
} or
\retval{least
}, respectively, of
\VAR{num
}s.
216 \Goo{\FU*
{FLOOR
}\XOR\FU*
{FFLOOR
}}\\
217 \Goo{\FU*
{CEILING
}\XOR\FU*
{FCEILING
}}\\
218 \Goo{\FU*
{TRUNCATE
}\XOR\FU*
{FTRUNCATE
}}\\
219 \Goo{\FU*
{ROUND
}\XOR\FU*
{FROUND
}}}{\
}}
220 \VAR{n
} \Op{\VAR{d
}\DF{\LIT{1}}})
}
222 Return
\retval{$n/d$
} (
\kwd{integer
} or
\kwd{float
}, respectively) truncated
223 towards $-
\infty$, $+
\infty$, $
0$, or rounded, respectively; and
\retvalii{re\-main\-der
}.
226 \IT{(
\xorGOO{\FU*
{MOD
}\\
227 \FU*
{REM
}}{\
}} \VAR{n
} \Op{\VAR{d
}\DF{\LIT{1}}})
}
228 {Same as
\FU{floor
} or
229 \FU{truncate
}, respectively, but return
\retval{re\-main\-der
} only.
232 \IT{(
\FU*
{RANDOM
} \VAR{limit
} \Op{\VAR{state
}\DF{\V{*random-state
}}})
}
234 Return non-negative
\retval{random
235 number
} less then, and of type of
\VAR{limit
}.
238 \IT{(
\FU*
{MAKE-RANDOM-STATE
} \Op{\VAR{state
}\DF{\NIL}})
}
240 Make
\retval{random state
}.
243 \IT{\V*
{*random-state*
}}
245 Current random state.
248 \IT{(
\FU*
{FLOAT-SIGN
} \VAR{num-a
} \Op{\VAR{num-b
}\DF{\LIT{1}}})
}
250 \retval{\VAR{num-b
}} with the sign of
\VAR{num-a
}.
253 \IT{(
\FU*
{SIGNUM
} \VAR{n
})
}
254 {\retval{Number
} of magnitude
1
255 representing sign or phase of
\VAR{n
}.
258 \IT{(
\FU*
{COMPLEX
} \VAR{real
} \Op{\VAR{imag
}\DF{\LIT{0}}})
}
259 {Make a
\retval{complex number
}.
262 \IT{(
\FU*
{PHASE
} \VAR{number
})
}
263 {\retval{Angle
} of
\VAR{number
}'s polar representation.
266 \IT{\arrGOO{(
\FU*
{RATIONAL
} \VAR{ real
})\\
267 (
\FU*
{RATIONALIZE
} \VAR{ real
})
}{.
}}
269 Convert
\VAR{real
} to
\retval{rational
}. Assume complete/limited accuracy for
\VAR{real
}.
272 \IT{(
\FU*
{FLOAT
} \VAR{real
}
273 \Op{\VAR{prototype
}\DF{\kwd{single-float
}}})
}
275 Convert
\VAR{real
} into
\VAR{prototype
}-shaped
\retval{float
}.
281 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
282 \subsection{Logic Functions
}
283 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
284 \label{section:Logic Functions
}
288 \IT{(
\FU*
{BOOLE
} \VAR{operation
} \VAR{int-a
} \VAR{int-b
})
}
291 \retval{value
} of bit-wise logical
\VAR{operation
}.
\VAR{operation
}s
296 \IT{\CNS*
{BOOLE-
1}} {\retval{\VAR{int-a
}}.
}
297 \IT{\CNS*
{BOOLE-
2}} {\retval{\VAR{int-b
}}.
}
298 \IT{\CNS*
{BOOLE-C1
}} {\retval{Two's complement of
\VAR{int-a
}}.
}
299 \IT{\CNS*
{BOOLE-C2
}} {\retval{Two's complement of
\VAR{int-b
}}.
}
300 \IT{\CNS*
{BOOLE-SET
}} {\retval{All bits set
}.
}
301 \IT{\CNS*
{BOOLE-CLR
}} {\retval{All bits zero
}.
}
302 \IT{\CNS*
{BOOLE-EQV
}} {\retval{$
\text{\VAR{int-a
}} \equiv \text{\VAR{int-b
}}$
}.
}
303 \IT{\CNS*
{BOOLE-AND
}} {\retval{$
\text{\VAR{int-a
}}\land\text{\VAR{int-b
}}$
}.
}
304 \IT{\CNS*
{BOOLE-ANDC1
}} {\retval{Two's complement of
\VAR{int-a
} $
\land$
\VAR{int-b
}}.
}
305 \IT{\CNS*
{BOOLE-ANDC2
}} {\retval{\VAR{int-a
} $
\land$ two's complement of
\VAR{int-b
}}.
}
306 \IT{\CNS*
{BOOLE-NAND
}} {\retval{$
\lnot(
\text{\VAR{int-a
}} \land \text{\VAR{int-b
}})$
}.
}
307 \IT{\CNS*
{BOOLE-IOR
}} {\retval{$
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}}$
}.
}
308 \IT{\CNS*
{BOOLE-ORC1
}} {\retval{Two's complement of
\VAR{int-a
} $
\lor$
\VAR{int-b
}}.
}
309 \IT{\CNS*
{BOOLE-ORC2
}} {\retval{\VAR{int-a
} $
\lor$ two's complement of
\VAR{int-b
}}.
}
310 \IT{\CNS*
{BOOLE-XOR
}} {\retval{$
\lnot(
\text{\VAR{int-a
}} \equiv \text{\VAR{int-b
}})$
}.
}
311 \IT{\CNS*
{BOOLE-NOR
}} {\retval{$
\lnot(
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}})$
}.
}
314 \IT{(
\FU*
{LOGNOT
}\VAR{ integer
})
}
316 \retval{Two's complement of
\VAR{integer
}}.
319 \IT{\arrGOO{(
\FU*
{LOGEQV
} \OPn{\VAR{ integer
}})\\
320 (
\FU*
{LOGAND
} \OPn{\VAR{ integer
}})
}{.
}}
322 Return
\retval{value of exclusive-nored or anded
\VAR{integer
}s
},
323 respectively. Without any
\VAR{integer
}, return
\retval{$-
1$
}.
326 \IT{(
\FU*
{LOGANDC1
} \VAR{ int-a
} \VAR{ int-b
})
}
328 \retval{Two's complement of
\VAR{int-a
} $
\land$
\VAR{int-b
}}.
331 \IT{(
\FU*
{LOGANDC2
} \VAR{ int-a
} \VAR{ int-b
})
}
333 \retval{\VAR{int-a
} $
\land$ two's complement of
\VAR{int-b
}}.
336 \IT{(
\FU*
{LOGNAND
} \VAR{ int-a
} \VAR{ int-b
})
}
338 \retval{$
\lnot(
\text{\VAR{int-a
}} \land \text{\VAR{int-b
}})$
}.
341 \IT{\arrGOO{(
\FU*
{LOGXOR
} \OPn{\VAR{ integer
}})\\
342 (
\FU*
{LOGIOR
} \OPn{\VAR{ integer
}})
}{.
}}
344 Return
\retval{value of exclusive-ored or ored
\VAR{integer
}s
},
345 respectively. Without any
\VAR{integer
}, return
\retval{0}.
348 \IT{(
\FU*
{LOGORC1
} \VAR{ int-a
} \VAR{ int-b
})
}
350 \retval{Two's complement of
\VAR{int-a
} $
\lor$
\VAR{int-b
}}.
353 \IT{(
\FU*
{LOGORC2
} \VAR{ int-a
} \VAR{ int-b
})
}
355 \retval{\VAR{int-a
} $
\lor$ two's complement of
\VAR{int-b
}}.
358 \IT{(
\FU*
{LOGNOR
} \VAR{ int-a
} \VAR{ int-b
})
}
360 \retval{$
\lnot(
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}})$
}.
363 \IT{(
\FU*
{LOGTEST
} \VAR{int-a
} \VAR{int-b
})
}
364 {Return
\retval{\T} if
365 there is any bit set in
\VAR{int-a
} which is set in
\VAR{int-b
} as well.
368 \IT{(
\FU*
{LOGCOUNT
} \VAR{integer
})
}
370 \retval{number of bits
} set
374 \IT{(
\FU*
{ASH
} \VAR{\VAR{integer
}} \VAR{count
})
}
376 Return copy of
\retval{\VAR{integer
}} arithmetically shifted left with zeros added
377 at the right, or, for $
\VAR{count
}<
0$, shifted right discarding
381 \IT{(
\FU*
{MASK-FIELD
} \VAR{byte-spec
} \VAR{integer
})
}
383 Return copy of
\retval{\VAR{integer
}} with all bits unset but those denoted by
384 \VAR{byte-spec
}.
\kwd{setf
}able.
390 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
391 \subsection{Integer Functions
}
392 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
395 \IT{(
\FU*
{INTEGER-LENGTH
} \VAR{integer
})
}
397 \retval{Number of bits
} necessary to represent
\VAR{integer
}.
400 \IT{(
\FU*
{LDB-TEST
} \VAR{byte-spec
} \VAR{integer
})
}
402 Return
\retval{\T} if any bit specified by
\VAR{byte-spec
} in
403 \VAR{integer
} is set.
406 \IT{(
\FU*
{LDB
} \VAR{byte-spec
} \VAR{integer
})
}
408 Extract
\retval{byte
} denoted by
\VAR{byte-spec
} from
409 \VAR{integer
}.
\kwd{setf
}able.
412 \IT{(
\FU*
{BYTE
} \VAR{size
} \VAR{position
})
}
414 \retval{Byte specifier
} for a byte of
\VAR{size
} bits starting at a
415 weight of $
2^
{\VAR{position
}}$.
418 \IT{\arrGOO{(
\FU*
{BYTE-SIZE
} \VAR{ byte-spec
})\\
419 (
\FU*
{BYTE-POSITION
} \VAR{ byte-spec
})
}{.
}}
421 \retval{Size
} or
\retval{position
}, respective, of
\VAR{byte-spec
}.
424 \IT{(
\xorGOO{\FU*
{DEPOSIT-FIELD
}\\
426 \VAR{int-a
} \VAR{byte-spec
} \VAR{int-b
})
}
428 Return
\retval{\VAR{int-b
}} with bits denoted by
\VAR{byte-spec
} replaced
429 by corresponding bits of
\VAR{int-a
}, or by the low (
\FU{byte-size
}
430 \VAR{byte-spec
}) bits of
\VAR{int-a
}, respectively.
436 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
437 \subsection[Implementation- Dependent
]{Implementation-Dependent
}
438 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
441 \IT{\arrGOO{\CNS{SHORT-FLOAT
}\\
444 \CNS{LONG-FLOAT
}}{\
}}\kwd{-
}%
445 \xorGOO{\kwd{EPSILON
}\\
446 \kwd{NEGATIVE-EPSILON
}}{.
}}
448 \index{SHORT-FLOAT-EPSILON
}%
449 \index{SINGLE-FLOAT-EPSILON
}%
450 \index{DOUBLE-FLOAT-EPSILON
}%
451 \index{LONG-FLOAT-EPSILON
}%
452 \index{SHORT-FLOAT-NEGATIVE-EPSILON
}%
453 \index{SINGLE-FLOAT-NEGATIVE-EPSILON
}%
454 \index{DOUBLE-FLOAT-NEGATIVE-EPSILON
}%
455 \index{LONG-FLOAT-NEGATIVE-EPSILON
}%
456 Smallest possible number making a difference when added or subtracted, respectively.
460 \CNS{LEAST-NEGATIVE
}\\
461 \CNS{LEAST-NEGATIVE-NORMALIZED
}\\
462 \CNS{LEAST-POSITIVE
}\\
463 \CNS{LEAST-POSITIVE-NORMALIZED
}}{\
}}%
469 \kwd{LONG-FLOAT
}}{.
}}
471 \index{LEAST-NEGATIVE-SHORT-FLOAT
}%
472 \index{LEAST-NEGATIVE-NORMALIZED-SHORT-FLOAT
}%
473 \index{LEAST-NEGATIVE-SINGLE-FLOAT
}%
474 \index{LEAST-NEGATIVE-NORMALIZED-SINGLE-FLOAT
}%
475 \index{LEAST-NEGATIVE-DOUBLE-FLOAT
}%
476 \index{LEAST-NEGATIVE-NORMALIZED-DOUBLE-FLOAT
}%
477 \index{LEAST-NEGATIVE-LONG-FLOAT
}%
478 \index{LEAST-NEGATIVE-NORMALIZED-LONG-FLOAT
}%
479 \index{LEAST-POSITIVE-SHORT-FLOAT
}%
480 \index{LEAST-POSITIVE-NORMALIZED-SHORT-FLOAT
}%
481 \index{LEAST-POSITIVE-SINGLE-FLOAT
}%
482 \index{LEAST-POSITIVE-NORMALIZED-SINGLE-FLOAT
}%
483 \index{LEAST-POSITIVE-DOUBLE-FLOAT
}%
484 \index{LEAST-POSITIVE-NORMALIZED-DOUBLE-FLOAT
}%
485 \index{LEAST-POSITIVE-LONG-FLOAT
}%
486 \index{LEAST-POSITIVE-NORMALIZED-LONG-FLOAT
}%
487 Available numbers closest to $-
0$ or $+
0$, respectively.
490 \IT{\arrGOO{\CNS{MOST-NEGATIVE
}\\
491 \CNS{MOST-POSITIVE
}}{\
}}%
500 \index{MOST-NEGATIVE-DOUBLE-FLOAT
}%
501 \index{MOST-NEGATIVE-LONG-FLOAT
}%
502 \index{MOST-NEGATIVE-SHORT-FLOAT
}%
503 \index{MOST-NEGATIVE-SINGLE-FLOAT
}%
504 \index{MOST-NEGATIVE-FIXNUM
}%
505 \index{MOST-POSITIVE-DOUBLE-FLOAT
}%
506 \index{MOST-POSITIVE-LONG-FLOAT
}%
507 \index{MOST-POSITIVE-SHORT-FLOAT
}%
508 \index{MOST-POSITIVE-SINGLE-FLOAT
}%
509 \index{MOST-POSITIVE-FIXNUM
}%
510 Available numbers closest to $-
\infty$ or $+
\infty$, respectively.
513 \IT{\arrGOO{(
\FU*
{DECODE-FLOAT
} \VAR{ n
})\\
514 (
\FU*
{INTEGER-DECODE-FLOAT
} \VAR{ n
})
}{.
}}
516 Return
\retval{significand
},
\retvalii{exponent
}, and
517 \retvaliii{sign
} of
\kwd{float
} \VAR{n
}.
520 \IT{(
\FU*
{SCALE-FLOAT
} \VAR{n
} \Op{\VAR{i
}})
}
522 With
\VAR{n
}'s radix $b$, return $n b^
{i
}$.
526 (
\FU*
{FLOAT-RADIX
} \VAR{ n
})\\
527 (
\FU*
{FLOAT-DIGITS
} \VAR{ n
})\\
528 (
\FU*
{FLOAT-PRECISION
} \VAR{ n
})
}{.
}}
530 \retval{Radix
},
\retval{number of digits
} in that radix, or
531 \retval{precision
} in that radix, respectively, of float
\VAR{n
}.
534 \IT{(
\FU*
{UPGRADED-COMPLEX-PART-TYPE
} \VAR{foo
})
}
536 most specialized complex number able to hold parts of type
\VAR{foo
}.
542 % LocalWords: de na der nored ored