clast.c: don't construct set for reduction for local variables
[cloog/uuh.git] / source / matrix / constraintset.c
blob94ac41c7fa4951bed1e6b662bd0cd0f602a134ea
2 /**-------------------------------------------------------------------**
3 ** CLooG **
4 **-------------------------------------------------------------------**
5 ** constraintset.c **
6 **-------------------------------------------------------------------**
7 ** First version: april 17th 2005 **
8 **-------------------------------------------------------------------**/
11 /******************************************************************************
12 * CLooG : the Chunky Loop Generator (experimental) *
13 ******************************************************************************
14 * *
15 * Copyright (C) 2005 Cedric Bastoul *
16 * *
17 * This library is free software; you can redistribute it and/or *
18 * modify it under the terms of the GNU Lesser General Public *
19 * License as published by the Free Software Foundation; either *
20 * version 2.1 of the License, or (at your option) any later version. *
21 * *
22 * This library is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
25 * Lesser General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU Lesser General Public *
28 * License along with this library; if not, write to the Free Software *
29 * Foundation, Inc., 51 Franklin Street, Fifth Floor, *
30 * Boston, MA 02110-1301 USA *
31 * *
32 * CLooG, the Chunky Loop Generator *
33 * Written by Cedric Bastoul, Cedric.Bastoul@inria.fr *
34 * *
35 ******************************************************************************/
36 /* CAUTION: the english used for comments is probably the worst you ever read,
37 * please feel free to correct and improve it !
41 # include <stdlib.h>
42 # include <stdio.h>
43 # include <ctype.h>
44 #include <cloog/cloog.h>
45 #include <cloog/matrix/constraintset.h>
48 #define ALLOC(type) (type*)malloc(sizeof(type))
49 #define ALLOCN(type,n) (type*)malloc((n)*sizeof(type))
52 CloogConstraint *cloog_constraint_first(CloogConstraintSet *constraints);
53 CloogConstraint *cloog_constraint_next(CloogConstraint *constraint);
56 CloogConstraintSet *cloog_constraint_set_from_cloog_matrix(CloogMatrix *M)
58 return (CloogConstraintSet *)M;
62 void cloog_constraint_set_free(CloogConstraintSet *constraints)
64 cloog_matrix_free(&constraints->M);
67 int cloog_constraint_set_contains_level(CloogConstraintSet *constraints,
68 int level, int nb_parameters)
70 return constraints->M.NbColumns - 2 - nb_parameters >= level;
73 /* Check if the variable at position level is defined by an
74 * equality. If so, return the row number. Otherwise, return -1.
76 * If there is an equality, we can print it directly -no ambiguity-.
77 * PolyLib can give more than one equality, we use just the first one
78 * (this is a PolyLib problem, but all equalities are equivalent).
80 CloogConstraint *cloog_constraint_set_defining_equality(CloogConstraintSet *constraints, int level)
82 CloogConstraint *constraint = ALLOC(CloogConstraint);
83 int i;
85 constraint->set = constraints;
86 for (i = 0; i < constraints->M.NbRows; i++)
87 if (cloog_int_is_zero(constraints->M.p[i][0]) &&
88 !cloog_int_is_zero(constraints->M.p[i][level])) {
89 constraint->line = &constraints->M.p[i];
90 return constraint;
92 free(constraint);
93 return cloog_constraint_invalid();
96 /* Check if the variable (e) at position level is defined by a
97 * pair of inequalities
98 * <a, i> + -m e + <b, p> + k1 >= 0
99 * <-a, i> + m e + <-b, p> + k2 >= 0
100 * with 0 <= k1 + k2 < m
101 * If so return the row number of the upper bound and set *lower
102 * to the row number of the lower bound. If not, return -1.
104 * If the variable at position level occurs in any other constraint,
105 * then we currently return -1. The modulo guard that we would generate
106 * would still be correct, but we would also need to generate
107 * guards corresponding to the other constraints, and this has not
108 * been implemented yet.
110 CloogConstraint *cloog_constraint_set_defining_inequalities(CloogConstraintSet *constraints,
111 int level, CloogConstraint **lower, int nb_par)
113 int i, j, k;
114 cloog_int_t m;
115 CloogMatrix *matrix = &constraints->M;
116 unsigned len = matrix->NbColumns - 2;
117 unsigned nb_iter = len - nb_par;
118 CloogConstraint *constraint;
120 for (i = 0; i < matrix->NbRows; i++) {
121 if (cloog_int_is_zero(matrix->p[i][level]))
122 continue;
123 if (cloog_int_is_zero(matrix->p[i][0]))
124 return cloog_constraint_invalid();
125 if (cloog_int_is_one(matrix->p[i][level]))
126 return cloog_constraint_invalid();
127 if (cloog_int_is_neg_one(matrix->p[i][level]))
128 return cloog_constraint_invalid();
129 if (cloog_seq_first_non_zero(matrix->p[i]+level+1,
130 (1+nb_iter)-(level+1)) != -1)
131 return cloog_constraint_invalid();
132 for (j = i+1; j < matrix->NbRows; ++j) {
133 if (cloog_int_is_zero(matrix->p[j][level]))
134 continue;
135 if (cloog_int_is_zero(matrix->p[j][0]))
136 return cloog_constraint_invalid();
137 if (cloog_int_is_one(matrix->p[j][level]))
138 return cloog_constraint_invalid();
139 if (cloog_int_is_neg_one(matrix->p[j][level]))
140 return cloog_constraint_invalid();
141 if (cloog_seq_first_non_zero(matrix->p[j]+level+1,
142 (1+nb_iter)-(level+1)) != -1)
143 return cloog_constraint_invalid();
145 cloog_int_init(m);
146 cloog_int_add(m, matrix->p[i][1+len], matrix->p[j][1+len]);
147 if (cloog_int_is_neg(m) ||
148 cloog_int_abs_ge(m, matrix->p[i][level])) {
149 cloog_int_clear(m);
150 return cloog_constraint_invalid();
152 cloog_int_clear(m);
154 if (!cloog_seq_is_neg(matrix->p[i]+1, matrix->p[j]+1,
155 len))
156 return cloog_constraint_invalid();
157 for (k = j+1; k < matrix->NbRows; ++k)
158 if (!cloog_int_is_zero(matrix->p[k][level]))
159 return cloog_constraint_invalid();
160 *lower = ALLOC(CloogConstraint);
161 constraint = ALLOC(CloogConstraint);
162 (*lower)->set = constraints;
163 constraint->set = constraints;
164 if (cloog_int_is_pos(matrix->p[i][level])) {
165 (*lower)->line = &matrix->p[i];
166 constraint->line = &matrix->p[j];
167 } else {
168 (*lower)->line = &matrix->p[j];
169 constraint->line = &matrix->p[i];
171 return constraint;
174 return cloog_constraint_invalid();
177 int cloog_constraint_set_total_dimension(CloogConstraintSet *constraints)
179 return constraints->M.NbColumns - 2;
182 int cloog_constraint_set_n_iterators(CloogConstraintSet *constraint, int nb_par)
184 return cloog_constraint_set_total_dimension(constraint) - nb_par;
187 int cloog_equal_total_dimension(CloogEqualities *equal)
189 return cloog_constraint_set_total_dimension(equal->constraints);
192 int cloog_constraint_total_dimension(CloogConstraint *constraint)
194 return cloog_constraint_set_total_dimension(constraint->set);
199 /******************************************************************************
200 * Equalities spreading functions *
201 ******************************************************************************/
204 /* Equalities are stored inside a CloogMatrix data structure called "equal".
205 * This matrix has (nb_scattering + nb_iterators + 1) rows (i.e. total
206 * dimensions + 1, the "+ 1" is because a statement can be included inside an
207 * external loop without iteration domain), and (nb_scattering + nb_iterators +
208 * nb_parameters + 2) columns (all unknowns plus the scalar plus the equality
209 * type). The ith row corresponds to the equality "= 0" for the ith dimension
210 * iterator. The first column gives the equality type (0: no equality, then
211 * EQTYPE_* -see pprint.h-). At each recursion of pprint, if an equality for
212 * the current level is found, the corresponding row is updated. Then the
213 * equality if it exists is used to simplify expressions (e.g. if we have
214 * "i+1" while we know that "i=2", we simplify it in "3"). At the end of
215 * the pprint call, the corresponding row is reset to zero.
218 CloogEqualities *cloog_equal_alloc(int n, int nb_levels,
219 int nb_parameters)
221 int i;
222 CloogEqualities *equal = ALLOC(CloogEqualities);
224 equal->constraints = cloog_constraint_set_from_cloog_matrix(
225 cloog_matrix_alloc(n, nb_levels + nb_parameters + 1));
226 equal->types = ALLOCN(int, n);
227 for (i = 0; i < n; ++i)
228 equal->types[i] = EQTYPE_NONE;
229 return equal;
232 void cloog_equal_free(CloogEqualities *equal)
234 cloog_matrix_free(&equal->constraints->M);
235 free(equal->types);
236 free(equal);
239 int cloog_equal_count(CloogEqualities *equal)
241 return equal->constraints->M.NbRows;
244 CloogConstraintSet *cloog_equal_constraints(CloogEqualities *equal)
246 return equal->constraints;
251 * cloog_constraint_equal_type function :
252 * This function returns the type of the equality in the constraint (line) of
253 * (constraints) for the element (level). An equality is 'constant' iff all
254 * other factors are null except the constant one. It is a 'pure item' iff
255 * it is equal or opposite to a single variable or parameter.
256 * Otherwise it is an 'affine expression'.
257 * For instance:
258 * i = -13 is constant, i = j, j = -M are pure items,
259 * j = 2*M, i = j+1, 2*j = M are affine expressions.
261 * - constraints is the matrix of constraints,
262 * - level is the column number in equal of the element which is 'equal to',
264 * - July 3rd 2002: first version, called pprint_equal_isconstant.
265 * - July 6th 2002: adaptation for the 3 types.
266 * - June 15th 2005: (debug) expr = domain->Constraint[line] was evaluated
267 * before checking if line != ONE_TIME_LOOP. Since
268 * ONE_TIME_LOOP is -1, an invalid read was possible.
269 * - October 19th 2005: Removal of the once-time-loop specific processing.
271 static int cloog_constraint_equal_type(CloogConstraint *constraint, int level)
273 int i, one=0 ;
274 cloog_int_t *expr;
276 expr = *constraint->line;
278 if (!cloog_int_is_one(expr[level]) && !cloog_int_is_neg_one(expr[level]))
279 return EQTYPE_EXAFFINE;
281 /* There is only one non null factor, and it must be +1 or -1 for
282 * iterators or parameters.
284 for (i = 1;i <= constraint->set->M.NbColumns-2; i++)
285 if (!cloog_int_is_zero(expr[i]) && (i != level)) {
286 if ((!cloog_int_is_one(expr[i]) && !cloog_int_is_neg_one(expr[i])) || (one != 0))
287 return EQTYPE_EXAFFINE ;
288 else
289 one = 1 ;
291 /* if the constant factor is non null, it must be alone. */
292 if (one != 0) {
293 if (!cloog_int_is_zero(expr[constraint->set->M.NbColumns-1]))
294 return EQTYPE_EXAFFINE ;
296 else
297 return EQTYPE_CONSTANT ;
299 return EQTYPE_PUREITEM ;
303 int cloog_equal_type(CloogEqualities *equal, int level)
305 return equal->types[level-1];
310 * cloog_equal_update function:
311 * this function updates a matrix of equalities where each row corresponds to
312 * the equality "=0" of an affine expression such that the entry at column
313 * "row" (="level") is not zero. This matrix is upper-triangular, except the
314 * row number "level-1" which has to be updated for the matrix to be triangular.
315 * This function achieves the processing.
316 * - equal is the matrix to be updated,
317 * - level gives the row that has to be updated (it is actually row "level-1"),
318 * - nb_par is the number of parameters of the program.
320 * - September 20th 2005: first version.
322 static void cloog_equal_update(CloogEqualities *equal, int level, int nb_par)
323 { int i, j ;
324 cloog_int_t gcd, factor_level, factor_outer, temp_level, temp_outer;
326 cloog_int_init(gcd);
327 cloog_int_init(temp_level);
328 cloog_int_init(temp_outer);
329 cloog_int_init(factor_level);
330 cloog_int_init(factor_outer);
332 /* For each previous level, */
333 for (i=level-2;i>=0;i--)
334 { /* if the corresponding iterator is inside the current equality and is equal
335 * to something,
337 if (!cloog_int_is_zero(equal->constraints->M.p[level-1][i+1]) && equal->types[i])
338 { /* Compute the Greatest Common Divisor. */
339 cloog_int_gcd(gcd, equal->constraints->M.p[level-1][i+1],
340 equal->constraints->M.p[i][i+1]);
342 /* Compute the factors to apply to each row vector element. */
343 cloog_int_divexact(factor_level, equal->constraints->M.p[i][i+1], gcd);
344 cloog_int_divexact(factor_outer, equal->constraints->M.p[level-1][i+1], gcd);
346 /* Now update the row 'level'. */
347 /* - the iterators, up to level, */
348 for (j = 1; j <= level; j++) {
349 cloog_int_mul(temp_level, factor_level,
350 equal->constraints->M.p[level-1][j]);
351 cloog_int_mul(temp_outer, factor_outer, equal->constraints->M.p[i][j]);
352 cloog_int_sub(equal->constraints->M.p[level-1][j], temp_level, temp_outer);
354 /* - between last useful iterator (level) and the first parameter, the
355 * matrix is sparse (full of zeroes), we just do nothing there.
356 * - the parameters and the scalar.
358 for (j = 0; j < nb_par + 1; j++) {
359 cloog_int_mul(temp_level,factor_level,
360 equal->constraints->M.p[level-1]
361 [equal->constraints->M.NbColumns-j-1]);
362 cloog_int_mul(temp_outer,factor_outer,
363 equal->constraints->M.p[i][equal->constraints->M.NbColumns-j-1]);
364 cloog_int_sub(equal->constraints->M.p[level-1]
365 [equal->constraints->M.NbColumns-j-1],
366 temp_level,temp_outer) ;
371 /* Normalize (divide by GCD of all elements) the updated equality. */
372 cloog_seq_normalize(&(equal->constraints->M.p[level-1][1]),
373 equal->constraints->M.NbColumns-1);
375 cloog_int_clear(gcd);
376 cloog_int_clear(temp_level);
377 cloog_int_clear(temp_outer);
378 cloog_int_clear(factor_level);
379 cloog_int_clear(factor_outer);
384 * cloog_equal_add function:
385 * This function updates the row (level-1) of the equality matrix (equal) with
386 * the row that corresponds to the row (line) of the matrix (matrix).
387 * - equal is the matrix of equalities,
388 * - matrix is the matrix of constraints,
389 * - level is the column number in matrix of the element which is 'equal to',
390 * - line is the line number in matrix of the constraint we want to study,
391 * - the infos structure gives the user all options on code printing and more.
393 * - July 2nd 2002: first version.
394 * - October 19th 2005: Addition of the once-time-loop specific processing.
396 void cloog_equal_add(CloogEqualities *equal, CloogConstraintSet *constraints,
397 int level, CloogConstraint *line, int nb_par)
399 int j;
400 CloogConstraint *i = cloog_constraint_invalid();
401 CloogMatrix *matrix = &constraints->M;
403 /* If we are in the case of a loop running once, this means that the equality
404 * comes from an inequality. Here we find this inequality.
406 if (!cloog_constraint_is_valid(line))
407 { for (i = cloog_constraint_first(constraints);
408 cloog_constraint_is_valid(i); i = cloog_constraint_next(i))
409 if ((!cloog_int_is_zero(i->line[0][0]))&& (!cloog_int_is_zero(i->line[0][level])))
410 { line = i ;
412 /* Since in once-time-loops, equalities derive from inequalities, we
413 * may have to offset the values. For instance if we have 2i>=3, the
414 * equality is in fact i=2. This may happen when the level coefficient is
415 * not 1 or -1 and the scalar value is not zero. In any other case (e.g.,
416 * if the inequality is an expression including outer loop counters or
417 * parameters) the once time loop would not have been detected
418 * because of floord and ceild functions.
420 if (cloog_int_ne_si(i->line[0][level],1) &&
421 cloog_int_ne_si(i->line[0][level],-1) &&
422 !cloog_int_is_zero(i->line[0][matrix->NbColumns-1])) {
423 cloog_int_t denominator;
425 cloog_int_init(denominator);
426 cloog_int_abs(denominator, i->line[0][level]);
427 cloog_int_fdiv_q(i->line[0][matrix->NbColumns-1],
428 i->line[0][matrix->NbColumns-1], denominator);
429 cloog_int_set_si(i->line[0][level], cloog_int_sgn(i->line[0][level]));
430 cloog_int_clear(denominator);
433 break ;
436 assert(cloog_constraint_is_valid(line));
438 /* We update the line of equal corresponding to level:
439 * - the first element gives the equality type,
441 equal->types[level-1] = cloog_constraint_equal_type(line, level);
442 /* - the other elements corresponding to the equality itself
443 * (the iterators up to level, then the parameters and the scalar).
445 for (j=1;j<=level;j++)
446 cloog_int_set(equal->constraints->M.p[level-1][j], line->line[0][j]);
447 for (j = 0; j < nb_par + 1; j++)
448 cloog_int_set(equal->constraints->M.p[level-1][equal->constraints->M.NbColumns-j-1],
449 line->line[0][line->set->M.NbColumns-j-1]);
451 if (cloog_constraint_is_valid(i))
452 cloog_constraint_release(line);
453 cloog_equal_update(equal, level, nb_par);
458 * cloog_equal_del function :
459 * This function reset the equality corresponding to the iterator (level)
460 * in the equality matrix (equal).
461 * - July 2nd 2002: first version.
463 void cloog_equal_del(CloogEqualities *equal, int level)
465 equal->types[level-1] = EQTYPE_NONE;
470 /******************************************************************************
471 * Processing functions *
472 ******************************************************************************/
475 * Function cloog_constraint_set_normalize:
476 * This function will modify the constraint system in such a way that when
477 * there is an equality depending on the element at level 'level', there are
478 * no more (in)equalities depending on this element. For instance, try
479 * test/valilache.cloog with options -f 8 -l 9, with and without the call
480 * to this function. At a given moment, for the level L we will have
481 * 32*P=L && L>=1 (P is a lower level), this constraint system cannot be
482 * translated directly into a source code. Thus, we normalize the domain to
483 * remove L from the inequalities. In our example, this leads to
484 * 32*P=L && 32*P>=1, that can be transated to the code
485 * if (P>=1) { L=32*P ; ... }. This function solves the DaeGon Kim bug.
486 * WARNING: Remember that if there is another call to Polylib after a call to
487 * this function, we have to recall this function.
488 * -June 16th 2005: first version (adaptation from URGent June-7th-2005 by
489 * N. Vasilache).
490 * - June 21rd 2005: Adaptation for GMP.
491 * - November 4th 2005: Complete rewriting, simpler and faster. It is no more an
492 * adaptation from URGent.
494 void cloog_constraint_set_normalize(CloogConstraintSet *constraints, int level)
495 { int ref, i, j ;
496 cloog_int_t factor_i, factor_ref, temp_i, temp_ref, gcd;
497 CloogMatrix *matrix = &constraints->M;
499 if (matrix == NULL)
500 return ;
502 /* Don't "normalize" the constant term. */
503 if (level == matrix->NbColumns-1)
504 return;
506 /* Let us find an equality for the current level that can be propagated. */
507 for (ref=0;ref<matrix->NbRows;ref++)
508 if (cloog_int_is_zero(matrix->p[ref][0]) && !cloog_int_is_zero(matrix->p[ref][level])) {
509 cloog_int_init(gcd);
510 cloog_int_init(temp_i);
511 cloog_int_init(temp_ref);
512 cloog_int_init(factor_i);
513 cloog_int_init(factor_ref);
515 /* Row "ref" is the reference equality, now let us find a row to simplify.*/
516 for (i=ref+1;i<matrix->NbRows;i++)
517 if (!cloog_int_is_zero(matrix->p[i][level])) {
518 /* Now let us set to 0 the "level" coefficient of row "j" using "ref".
519 * First we compute the factors to apply to each row vector element.
521 cloog_int_gcd(gcd, matrix->p[ref][level], matrix->p[i][level]);
522 cloog_int_divexact(factor_i, matrix->p[ref][level], gcd);
523 cloog_int_divexact(factor_ref, matrix->p[i][level], gcd);
525 /* Maybe we are simplifying an inequality: factor_i must not be <0. */
526 if (cloog_int_is_neg(factor_i)) {
527 cloog_int_abs(factor_i, factor_i);
528 cloog_int_neg(factor_ref, factor_ref);
531 /* Now update the vector. */
532 for (j=1;j<matrix->NbColumns;j++) {
533 cloog_int_mul(temp_i, factor_i, matrix->p[i][j]);
534 cloog_int_mul(temp_ref, factor_ref, matrix->p[ref][j]);
535 cloog_int_sub(matrix->p[i][j], temp_i, temp_ref);
538 /* Normalize (divide by GCD of all elements) the updated vector. */
539 cloog_seq_normalize(&(matrix->p[i][1]), matrix->NbColumns-1);
542 cloog_int_clear(gcd);
543 cloog_int_clear(temp_i);
544 cloog_int_clear(temp_ref);
545 cloog_int_clear(factor_i);
546 cloog_int_clear(factor_ref);
547 break ;
554 * cloog_constraint_set_copy function:
555 * this functions builds and returns a "hard copy" (not a pointer copy) of a
556 * CloogMatrix data structure.
557 * - October 26th 2005: first version.
559 CloogConstraintSet *cloog_constraint_set_copy(CloogConstraintSet *constraints)
560 { int i, j ;
561 CloogMatrix *copy;
562 CloogMatrix *matrix = &constraints->M;
564 copy = cloog_matrix_alloc(matrix->NbRows, matrix->NbColumns);
566 for (i=0;i<matrix->NbRows;i++)
567 for (j=0;j<matrix->NbColumns;j++)
568 cloog_int_set(copy->p[i][j], matrix->p[i][j]);
570 return cloog_constraint_set_from_cloog_matrix(copy);
575 * cloog_equal_vector_simplify function:
576 * this function simplify an affine expression with its coefficients in
577 * "vector" of length "length" thanks to an equality matrix "equal" that gives
578 * for some elements of the affine expression an equality with other elements,
579 * preferably constants. For instance, if the vector contains i+j+3 and the
580 * equality matrix gives i=n and j=2, the vector is simplified to n+3 and is
581 * returned in a new vector.
582 * - vector is the array of affine expression coefficients
583 * - equal is the matrix of equalities,
584 * - length is the vector length,
585 * - level is a level we don't want to simplify (-1 if none),
586 * - nb_par is the number of parameters of the program.
588 * - September 20th 2005: first version.
589 * - November 2nd 2005: (debug) we are simplifying inequalities, thus we are
590 * not allowed to multiply the vector by a negative
591 * constant.Problem found after a report of Michael
592 * Classen.
594 struct cloog_vec *cloog_equal_vector_simplify(CloogEqualities *equal, cloog_int_t *vector,
595 int length, int level, int nb_par)
596 { int i, j ;
597 cloog_int_t gcd, factor_vector, factor_equal, temp_vector, temp_equal;
598 struct cloog_vec *simplified;
600 simplified = cloog_vec_alloc(length);
601 cloog_seq_cpy(simplified->p, vector, length);
603 cloog_int_init(gcd);
604 cloog_int_init(temp_vector);
605 cloog_int_init(temp_equal);
606 cloog_int_init(factor_vector);
607 cloog_int_init(factor_equal);
609 /* For each non-null coefficient in the vector, */
610 for (i=length-nb_par-2;i>0;i--)
611 if (i != level)
612 { /* if the coefficient in not null, and there exists a useful equality */
613 if ((!cloog_int_is_zero(simplified->p[i])) && equal->types[i-1])
614 { /* Compute the Greatest Common Divisor. */
615 cloog_int_gcd(gcd, simplified->p[i], equal->constraints->M.p[i-1][i]);
617 /* Compute the factors to apply to each row vector element. */
618 cloog_int_divexact(factor_vector, equal->constraints->M.p[i-1][i], gcd);
619 cloog_int_divexact(factor_equal, simplified->p[i], gcd);
621 /* We are simplifying an inequality: factor_vector must not be <0. */
622 if (cloog_int_is_neg(factor_vector)) {
623 cloog_int_abs(factor_vector, factor_vector);
624 cloog_int_neg(factor_equal, factor_equal);
627 /* Now update the vector. */
628 /* - the iterators, up to the current level, */
629 for (j=1;j<=length-nb_par-2;j++) {
630 cloog_int_mul(temp_vector, factor_vector, simplified->p[j]);
631 cloog_int_mul(temp_equal, factor_equal, equal->constraints->M.p[i-1][j]);
632 cloog_int_sub(simplified->p[j], temp_vector, temp_equal);
634 /* - between last useful iterator (i) and the first parameter, the equal
635 * matrix is sparse (full of zeroes), we just do nothing there.
636 * - the parameters and the scalar.
638 for (j = 0; j < nb_par + 1; j++) {
639 cloog_int_mul(temp_vector, factor_vector, simplified->p[length-1-j]);
640 cloog_int_mul(temp_equal,factor_equal,
641 equal->constraints->M.p[i-1][equal->constraints->M.NbColumns-j-1]);
642 cloog_int_sub(simplified->p[length-1-j],temp_vector,temp_equal) ;
647 /* Normalize (divide by GCD of all elements) the updated vector. */
648 cloog_seq_normalize(&simplified->p[1], length - 1);
650 cloog_int_clear(gcd);
651 cloog_int_clear(temp_vector);
652 cloog_int_clear(temp_equal);
653 cloog_int_clear(factor_vector);
654 cloog_int_clear(factor_equal);
656 return simplified ;
661 * cloog_constraint_set_simplify function:
662 * this function simplify all constraints inside the matrix "matrix" thanks to
663 * an equality matrix "equal" that gives for some elements of the affine
664 * constraint an equality with other elements, preferably constants.
665 * For instance, if a row of the matrix contains i+j+3>=0 and the equality
666 * matrix gives i=n and j=2, the constraint is simplified to n+3>=0. The
667 * simplified constraints are returned back inside a new simplified matrix.
668 * - matrix is the set of constraints to simplify,
669 * - equal is the matrix of equalities,
670 * - level is a level we don't want to simplify (-1 if none),
671 * - nb_par is the number of parameters of the program.
673 * - November 4th 2005: first version.
675 CloogConstraintSet *cloog_constraint_set_simplify(CloogConstraintSet *constraints,
676 CloogEqualities *equal, int level, int nb_par)
677 { int i, j, k ;
678 struct cloog_vec *vector;
679 CloogMatrix *simplified;
680 CloogMatrix *matrix = &constraints->M;
682 if (matrix == NULL)
683 return NULL ;
685 /* The simplified matrix is such that each row has been simplified thanks
686 * tho the "equal" matrix. We allocate the memory for the simplified matrix,
687 * then for each row of the original matrix, we compute the simplified
688 * vector and we copy its content into the according simplified row.
690 simplified = cloog_matrix_alloc(matrix->NbRows, matrix->NbColumns);
691 for (i=0;i<matrix->NbRows;i++)
692 { vector = cloog_equal_vector_simplify(equal, matrix->p[i],
693 matrix->NbColumns, level, nb_par);
694 for (j=0;j<matrix->NbColumns;j++)
695 cloog_int_set(simplified->p[i][j], vector->p[j]);
697 cloog_vec_free(vector);
700 /* After simplification, it may happen that few constraints are the same,
701 * we remove them here by replacing them with 0=0 constraints.
703 for (i=0;i<simplified->NbRows;i++)
704 for (j=i+1;j<simplified->NbRows;j++)
705 { for (k=0;k<simplified->NbColumns;k++)
706 if (cloog_int_ne(simplified->p[i][k],simplified->p[j][k]))
707 break ;
709 if (k == matrix->NbColumns)
710 { for (k=0;k<matrix->NbColumns;k++)
711 cloog_int_set_si(simplified->p[j][k],0);
715 return cloog_constraint_set_from_cloog_matrix(simplified);
720 * Return clast_expr corresponding to the variable "level" (1 based) in
721 * the given constraint.
723 struct clast_expr *cloog_constraint_variable_expr(CloogConstraint *constraint,
724 int level, CloogNames *names)
726 int total_dim, nb_iter;
727 const char *name;
729 total_dim = cloog_constraint_total_dimension(constraint);
730 nb_iter = total_dim - names->nb_parameters;
732 if (level <= nb_iter)
733 name = cloog_names_name_at_level(names, level);
734 else
735 name = names->parameters[level - (nb_iter+1)] ;
737 return &new_clast_name(name)->expr;
742 * Return true if constraint c involves variable v (zero-based).
744 int cloog_constraint_involves(CloogConstraint *constraint, int v)
746 return !cloog_int_is_zero(constraint->line[0][1+v]);
749 int cloog_constraint_is_lower_bound(CloogConstraint *constraint, int v)
751 return cloog_int_is_pos(constraint->line[0][1+v]);
754 int cloog_constraint_is_upper_bound(CloogConstraint *constraint, int v)
756 return cloog_int_is_neg(constraint->line[0][1+v]);
759 int cloog_constraint_is_equality(CloogConstraint *constraint)
761 return cloog_int_is_zero(constraint->line[0][0]);
764 void cloog_constraint_clear(CloogConstraint *constraint)
766 int k;
768 for (k = 1; k <= constraint->set->M.NbColumns - 2; k++)
769 cloog_int_set_si(constraint->line[0][k], 0);
772 void cloog_constraint_coefficient_get(CloogConstraint *constraint,
773 int var, cloog_int_t *val)
775 cloog_int_set(*val, constraint->line[0][1+var]);
778 void cloog_constraint_coefficient_set(CloogConstraint *constraint,
779 int var, cloog_int_t val)
781 cloog_int_set(constraint->line[0][1+var], val);
784 void cloog_constraint_constant_get(CloogConstraint *constraint, cloog_int_t *val)
786 cloog_int_set(*val, constraint->line[0][constraint->set->M.NbColumns-1]);
790 * Copy the coefficient of constraint c into dst in PolyLib order,
791 * i.e., first the coefficients of the variables, then the coefficients
792 * of the parameters and finally the constant.
794 void cloog_constraint_copy_coefficients(CloogConstraint *constraint,
795 cloog_int_t *dst)
797 cloog_seq_cpy(dst, constraint->line[0]+1, constraint->set->M.NbColumns-1);
800 CloogConstraint *cloog_constraint_invalid(void)
802 return NULL;
805 int cloog_constraint_is_valid(CloogConstraint *constraint)
807 return constraint != NULL;
812 * Check whether there is any need for the constraint "upper" on
813 * "level" to get reduced.
814 * Yes.
816 int cloog_constraint_needs_reduction(CloogConstraint *upper, int level)
818 return 1;
823 * Create a CloogConstraintSet containing enough information to perform
824 * a reduction on the upper equality (in this case lower is an invalid
825 * CloogConstraint) or the pair of inequalities upper and lower
826 * from within insert_modulo_guard.
827 * In the PolyLib backend, we return a CloogConstraintSet containting only
828 * the upper bound. The reduction will not change the stride so there
829 * will be no need to recompute the bound on the modulo expression.
831 CloogConstraintSet *cloog_constraint_set_for_reduction(CloogConstraint *upper,
832 CloogConstraint *lower)
834 CloogConstraintSet *set;
836 set = cloog_constraint_set_from_cloog_matrix(
837 cloog_matrix_alloc(1, upper->set->M.NbColumns));
838 cloog_seq_cpy(set->M.p[0], upper->line[0], set->M.NbColumns);
839 return set;
843 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
844 static void Euclid(cloog_int_t a, cloog_int_t b,
845 cloog_int_t *x, cloog_int_t *y, cloog_int_t *g)
847 cloog_int_t c, d, e, f, tmp;
849 cloog_int_init(c);
850 cloog_int_init(d);
851 cloog_int_init(e);
852 cloog_int_init(f);
853 cloog_int_init(tmp);
854 cloog_int_abs(c, a);
855 cloog_int_abs(d, b);
856 cloog_int_set_si(e, 1);
857 cloog_int_set_si(f, 0);
858 while (cloog_int_is_pos(d)) {
859 cloog_int_tdiv_q(tmp, c, d);
860 cloog_int_mul(tmp, tmp, f);
861 cloog_int_sub(e, e, tmp);
862 cloog_int_tdiv_q(tmp, c, d);
863 cloog_int_mul(tmp, tmp, d);
864 cloog_int_sub(c, c, tmp);
865 cloog_int_swap(c, d);
866 cloog_int_swap(e, f);
868 cloog_int_set(*g, c);
869 if (cloog_int_is_zero(a))
870 cloog_int_set_si(*x, 0);
871 else if (cloog_int_is_pos(a))
872 cloog_int_set(*x, e);
873 else cloog_int_neg(*x, e);
874 if (cloog_int_is_zero(b))
875 cloog_int_set_si(*y, 0);
876 else {
877 cloog_int_mul(tmp, a, *x);
878 cloog_int_sub(tmp, c, tmp);
879 cloog_int_divexact(*y, tmp, b);
881 cloog_int_clear(c);
882 cloog_int_clear(d);
883 cloog_int_clear(e);
884 cloog_int_clear(f);
885 cloog_int_clear(tmp);
889 * Reduce the modulo guard expressed by "contraints" using equalities
890 * found in outer nesting levels (stored in "equal").
891 * The modulo guard may be an equality or a pair of inequalities.
892 * In case of a pair of inequalities, "constraints" only contains the
893 * upper bound and *bound contains the bound on the
894 * corresponding modulo expression. The bound is left untouched by
895 * this function.
897 CloogConstraintSet *cloog_constraint_set_reduce(CloogConstraintSet *constraints,
898 int level, CloogEqualities *equal, int nb_par, cloog_int_t *bound)
900 int i, j, k, len, len2, nb_iter;
901 struct cloog_vec *line_vector2;
902 cloog_int_t *line, *line2, val, x, y, g;
904 len = constraints->M.NbColumns;
905 len2 = cloog_equal_total_dimension(equal) + 2;
906 nb_iter = len - 2 - nb_par;
908 cloog_int_init(val);
909 cloog_int_init(x);
910 cloog_int_init(y);
911 cloog_int_init(g);
913 line_vector2 = cloog_vec_alloc(len2);
914 line2 = line_vector2->p;
916 line = constraints->M.p[0];
917 if (cloog_int_is_pos(line[level]))
918 cloog_seq_neg(line+1, line+1, len-1);
919 cloog_int_neg(line[level], line[level]);
920 assert(cloog_int_is_pos(line[level]));
922 for (i = nb_iter; i >= 1; --i) {
923 if (i == level)
924 continue;
925 cloog_int_fdiv_r(line[i], line[i], line[level]);
926 if (cloog_int_is_zero(line[i]))
927 continue;
929 /* Look for an earlier variable that is also a multiple of line[level]
930 * and check whether we can use the corresponding affine expression
931 * to "reduce" the modulo guard, where reduction means that we eliminate
932 * a variable, possibly at the expense of introducing other variables
933 * with smaller index.
935 for (j = level-1; j >= 0; --j) {
936 CloogConstraint *equal_constraint;
937 if (cloog_equal_type(equal, j+1) != EQTYPE_EXAFFINE)
938 continue;
939 equal_constraint = cloog_equal_constraint(equal, j);
940 cloog_constraint_coefficient_get(equal_constraint, j, &val);
941 if (!cloog_int_is_divisible_by(val, line[level])) {
942 cloog_constraint_release(equal_constraint);
943 continue;
945 cloog_constraint_coefficient_get(equal_constraint, i-1, &val);
946 if (cloog_int_is_divisible_by(val, line[level])) {
947 cloog_constraint_release(equal_constraint);
948 continue;
950 for (k = j; k > i; --k) {
951 cloog_constraint_coefficient_get(equal_constraint, k-1, &val);
952 if (cloog_int_is_zero(val))
953 continue;
954 if (!cloog_int_is_divisible_by(val, line[level]))
955 break;
957 if (k > i) {
958 cloog_constraint_release(equal_constraint);
959 continue;
961 cloog_constraint_coefficient_get(equal_constraint, i-1, &val);
962 Euclid(val, line[level], &x, &y, &g);
963 if (!cloog_int_is_divisible_by(val, line[i])) {
964 cloog_constraint_release(equal_constraint);
965 continue;
967 cloog_int_divexact(val, line[i], g);
968 cloog_int_neg(val, val);
969 cloog_int_mul(val, val, x);
970 cloog_int_set_si(y, 1);
971 /* Add (equal->p[j][i])^{-1} * line[i] times the equality */
972 cloog_constraint_copy_coefficients(equal_constraint, line2+1);
973 cloog_seq_combine(line+1, y, line+1, val, line2+1, i);
974 cloog_seq_combine(line+len-nb_par-1, y, line+len-nb_par-1,
975 val, line2+len2-nb_par-1, nb_par+1);
976 cloog_constraint_release(equal_constraint);
977 break;
981 cloog_vec_free(line_vector2);
983 cloog_int_clear(val);
984 cloog_int_clear(x);
985 cloog_int_clear(y);
986 cloog_int_clear(g);
988 /* Make sure the line is not inverted again in the calling function. */
989 cloog_int_neg(line[level], line[level]);
991 return constraints;
994 CloogConstraint *cloog_constraint_first(CloogConstraintSet *constraints)
996 CloogConstraint *c;
997 if (constraints->M.NbRows == 0)
998 return cloog_constraint_invalid();
999 c = ALLOC(CloogConstraint);
1000 c->set = constraints;
1001 c->line = &constraints->M.p[0];
1002 return c;
1005 CloogConstraint *cloog_constraint_next(CloogConstraint *constraint)
1007 constraint->line++;
1008 if (constraint->line == constraint->set->M.p + constraint->set->M.NbRows) {
1009 cloog_constraint_release(constraint);
1010 return NULL;
1012 return constraint;
1015 CloogConstraint *cloog_constraint_copy(CloogConstraint *constraint)
1017 CloogConstraint *c = ALLOC(CloogConstraint);
1018 c->set = constraint->set;
1019 c->line = constraint->line;
1020 return c;
1023 void cloog_constraint_release(CloogConstraint *constraint)
1025 free(constraint);
1028 int cloog_constraint_set_foreach_constraint(CloogConstraintSet *constraints,
1029 int (*fn)(CloogConstraint *constraint, void *user), void *user)
1031 CloogConstraint *c;
1033 for (c = cloog_constraint_first(constraints);
1034 cloog_constraint_is_valid(c); c = cloog_constraint_next(c))
1035 if (fn(c, user) < 0) {
1036 cloog_constraint_release(c);
1037 return -1;
1040 return 0;
1043 CloogConstraint *cloog_equal_constraint(CloogEqualities *equal, int j)
1045 CloogConstraint *c = ALLOC(CloogConstraint);
1046 c->set = equal->constraints;
1047 c->line = &equal->constraints->M.p[j];
1048 return c;