Fix include directory for libcloog-isl
[cloog/bastoul.git] / source / clast.c
blob78143c357575f63b43149a1ec17453e1278da51a
1 #include <stdlib.h>
2 #include <string.h>
3 #include <assert.h>
4 #include "../include/cloog/cloog.h"
6 #define ALLOC(type) (type*)malloc(sizeof(type))
7 #define ALLOCN(type,n) (type*)malloc((n)*sizeof(type))
9 /**
10 * CloogInfos structure:
11 * this structure contains all the informations necessary for pretty printing,
12 * they come from the original CloogProgram structure (language, names), from
13 * genereral options (options) or are built only for pretty printing (stride).
14 * This structure is mainly there to reduce the number of function parameters,
15 * since most pprint.c functions need most of its field.
17 struct clooginfos {
18 CloogState *state; /**< State. */
19 CloogStride **stride;
20 int stride_level; /**< Number of valid entries in stride array. */
21 int nb_scattdims ; /**< Scattering dimension number. */
22 int * scaldims ; /**< Boolean array saying whether a given
23 * scattering dimension is scalar or not.
25 CloogNames * names ; /**< Names of iterators and parameters. */
26 CloogOptions * options ; /**< Options on CLooG's behaviour. */
27 CloogEqualities *equal; /**< Matrix of equalities. */
28 } ;
30 typedef struct clooginfos CloogInfos ;
32 static int clast_expr_cmp(struct clast_expr *e1, struct clast_expr *e2);
33 static int clast_term_cmp(struct clast_term *t1, struct clast_term *t2);
34 static int clast_binary_cmp(struct clast_binary *b1, struct clast_binary *b2);
35 static int clast_reduction_cmp(struct clast_reduction *r1,
36 struct clast_reduction *r2);
38 static struct clast_expr *clast_expr_copy(struct clast_expr *e);
40 static int clast_equal_add(CloogEqualities *equal,
41 CloogConstraintSet *constraints,
42 int level, CloogConstraint *constraint,
43 CloogInfos *infos);
45 static struct clast_stmt *clast_equal(int level, CloogInfos *infos);
46 static struct clast_expr *clast_minmax(CloogConstraintSet *constraints,
47 int level, int max, int guard,
48 int lower_bound, int no_earlier,
49 CloogInfos *infos);
50 static void insert_guard(CloogConstraintSet *constraints, int level,
51 struct clast_stmt ***next, CloogInfos *infos);
52 static int insert_modulo_guard(CloogConstraint *upper,
53 CloogConstraint *lower, int level,
54 struct clast_stmt ***next, CloogInfos *infos);
55 static int insert_equation(CloogDomain *domain, CloogConstraint *upper,
56 CloogConstraint *lower, int level,
57 struct clast_stmt ***next, CloogInfos *infos);
58 static int insert_for(CloogDomain *domain, CloogConstraintSet *constraints,
59 int level, int otl, struct clast_stmt ***next,
60 CloogInfos *infos);
61 static void insert_block(CloogDomain *domain, CloogBlock *block, int level,
62 struct clast_stmt ***next, CloogInfos *infos);
63 static void insert_loop(CloogLoop * loop, int level,
64 struct clast_stmt ***next, CloogInfos *infos);
67 struct clast_name *new_clast_name(const char *name)
69 struct clast_name *n = malloc(sizeof(struct clast_name));
70 n->expr.type = clast_expr_name;
71 n->name = name;
72 return n;
75 struct clast_term *new_clast_term(cloog_int_t c, struct clast_expr *v)
77 struct clast_term *t = malloc(sizeof(struct clast_term));
78 t->expr.type = clast_expr_term;
79 cloog_int_init(t->val);
80 cloog_int_set(t->val, c);
81 t->var = v;
82 return t;
85 struct clast_binary *new_clast_binary(enum clast_bin_type t,
86 struct clast_expr *lhs, cloog_int_t rhs)
88 struct clast_binary *b = malloc(sizeof(struct clast_binary));
89 b->expr.type = clast_expr_bin;
90 b->type = t;
91 b->LHS = lhs;
92 cloog_int_init(b->RHS);
93 cloog_int_set(b->RHS, rhs);
94 return b;
97 struct clast_reduction *new_clast_reduction(enum clast_red_type t, int n)
99 int i;
100 struct clast_reduction *r;
101 r = malloc(sizeof(struct clast_reduction)+(n-1)*sizeof(struct clast_expr *));
102 r->expr.type = clast_expr_red;
103 r->type = t;
104 r->n = n;
105 for (i = 0; i < n; ++i)
106 r->elts[i] = NULL;
107 return r;
110 static void free_clast_root(struct clast_stmt *s);
112 const struct clast_stmt_op stmt_root = { free_clast_root };
114 static void free_clast_root(struct clast_stmt *s)
116 struct clast_root *r = (struct clast_root *)s;
117 assert(CLAST_STMT_IS_A(s, stmt_root));
118 cloog_names_free(r->names);
119 free(r);
122 struct clast_root *new_clast_root(CloogNames *names)
124 struct clast_root *r = malloc(sizeof(struct clast_root));
125 r->stmt.op = &stmt_root;
126 r->stmt.next = NULL;
127 r->names = cloog_names_copy(names);
128 return r;
131 static void free_clast_assignment(struct clast_stmt *s);
133 const struct clast_stmt_op stmt_ass = { free_clast_assignment };
135 static void free_clast_assignment(struct clast_stmt *s)
137 struct clast_assignment *a = (struct clast_assignment *)s;
138 assert(CLAST_STMT_IS_A(s, stmt_ass));
139 free_clast_expr(a->RHS);
140 free(a);
143 struct clast_assignment *new_clast_assignment(const char *lhs,
144 struct clast_expr *rhs)
146 struct clast_assignment *a = malloc(sizeof(struct clast_assignment));
147 a->stmt.op = &stmt_ass;
148 a->stmt.next = NULL;
149 a->LHS = lhs;
150 a->RHS = rhs;
151 return a;
154 static void free_clast_user_stmt(struct clast_stmt *s);
156 const struct clast_stmt_op stmt_user = { free_clast_user_stmt };
158 static void free_clast_user_stmt(struct clast_stmt *s)
160 struct clast_user_stmt *u = (struct clast_user_stmt *)s;
161 assert(CLAST_STMT_IS_A(s, stmt_user));
162 cloog_domain_free(u->domain);
163 cloog_statement_free(u->statement);
164 cloog_clast_free(u->substitutions);
165 free(u);
168 struct clast_user_stmt *new_clast_user_stmt(CloogDomain *domain,
169 CloogStatement *stmt, struct clast_stmt *subs)
171 struct clast_user_stmt *u = malloc(sizeof(struct clast_user_stmt));
172 u->stmt.op = &stmt_user;
173 u->stmt.next = NULL;
174 u->domain = cloog_domain_copy(domain);
175 u->statement = cloog_statement_copy(stmt);
176 u->substitutions = subs;
177 return u;
180 static void free_clast_block(struct clast_stmt *b);
182 const struct clast_stmt_op stmt_block = { free_clast_block };
184 static void free_clast_block(struct clast_stmt *s)
186 struct clast_block *b = (struct clast_block *)s;
187 assert(CLAST_STMT_IS_A(s, stmt_block));
188 cloog_clast_free(b->body);
189 free(b);
192 struct clast_block *new_clast_block()
194 struct clast_block *b = malloc(sizeof(struct clast_block));
195 b->stmt.op = &stmt_block;
196 b->stmt.next = NULL;
197 b->body = NULL;
198 return b;
201 static void free_clast_for(struct clast_stmt *s);
203 const struct clast_stmt_op stmt_for = { free_clast_for };
205 static void free_clast_for(struct clast_stmt *s)
207 struct clast_for *f = (struct clast_for *)s;
208 assert(CLAST_STMT_IS_A(s, stmt_for));
209 cloog_domain_free(f->domain);
210 free_clast_expr(f->LB);
211 free_clast_expr(f->UB);
212 cloog_int_clear(f->stride);
213 cloog_clast_free(f->body);
214 if (f->private_vars) free(f->private_vars);
215 if (f->reduction_vars) free(f->reduction_vars);
216 free(f);
219 struct clast_for *new_clast_for(CloogDomain *domain, const char *it,
220 struct clast_expr *LB, struct clast_expr *UB,
221 CloogStride *stride)
223 struct clast_for *f = malloc(sizeof(struct clast_for));
224 f->stmt.op = &stmt_for;
225 f->stmt.next = NULL;
226 f->domain = cloog_domain_copy(domain);
227 f->iterator = it;
228 f->LB = LB;
229 f->UB = UB;
230 f->body = NULL;
231 f->parallel = CLAST_PARALLEL_NOT;
232 f->private_vars = NULL;
233 f->reduction_vars = NULL;
234 cloog_int_init(f->stride);
235 if (stride)
236 cloog_int_set(f->stride, stride->stride);
237 else
238 cloog_int_set_si(f->stride, 1);
239 return f;
242 static void free_clast_guard(struct clast_stmt *s);
244 const struct clast_stmt_op stmt_guard = { free_clast_guard };
246 static void free_clast_guard(struct clast_stmt *s)
248 int i;
249 struct clast_guard *g = (struct clast_guard *)s;
250 assert(CLAST_STMT_IS_A(s, stmt_guard));
251 cloog_clast_free(g->then);
252 for (i = 0; i < g->n; ++i) {
253 free_clast_expr(g->eq[i].LHS);
254 free_clast_expr(g->eq[i].RHS);
256 free(g);
259 struct clast_guard *new_clast_guard(int n)
261 int i;
262 struct clast_guard *g = malloc(sizeof(struct clast_guard) +
263 (n-1) * sizeof(struct clast_equation));
264 g->stmt.op = &stmt_guard;
265 g->stmt.next = NULL;
266 g->then = NULL;
267 g->n = n;
268 for (i = 0; i < n; ++i) {
269 g->eq[i].LHS = NULL;
270 g->eq[i].RHS = NULL;
272 return g;
275 void free_clast_name(struct clast_name *n)
277 free(n);
280 void free_clast_term(struct clast_term *t)
282 cloog_int_clear(t->val);
283 free_clast_expr(t->var);
284 free(t);
287 void free_clast_binary(struct clast_binary *b)
289 cloog_int_clear(b->RHS);
290 free_clast_expr(b->LHS);
291 free(b);
294 void free_clast_reduction(struct clast_reduction *r)
296 int i;
297 for (i = 0; i < r->n; ++i)
298 free_clast_expr(r->elts[i]);
299 free(r);
302 void free_clast_expr(struct clast_expr *e)
304 if (!e)
305 return;
306 switch (e->type) {
307 case clast_expr_name:
308 free_clast_name((struct clast_name*) e);
309 break;
310 case clast_expr_term:
311 free_clast_term((struct clast_term*) e);
312 break;
313 case clast_expr_red:
314 free_clast_reduction((struct clast_reduction*) e);
315 break;
316 case clast_expr_bin:
317 free_clast_binary((struct clast_binary*) e);
318 break;
319 default:
320 assert(0);
324 void free_clast_stmt(struct clast_stmt *s)
326 assert(s->op);
327 assert(s->op->free);
328 s->op->free(s);
331 void cloog_clast_free(struct clast_stmt *s)
333 struct clast_stmt *next;
334 while (s) {
335 next = s->next;
336 free_clast_stmt(s);
337 s = next;
341 static int clast_name_cmp(struct clast_name *n1, struct clast_name *n2)
343 return n1->name == n2->name ? 0 : strcmp(n1->name, n2->name);
346 static int clast_term_cmp(struct clast_term *t1, struct clast_term *t2)
348 int c;
349 if (!t1->var && t2->var)
350 return -1;
351 if (t1->var && !t2->var)
352 return 1;
353 c = clast_expr_cmp(t1->var, t2->var);
354 if (c)
355 return c;
356 return cloog_int_cmp(t1->val, t2->val);
359 static int clast_binary_cmp(struct clast_binary *b1, struct clast_binary *b2)
361 int c;
363 if (b1->type != b2->type)
364 return b1->type - b2->type;
365 if ((c = cloog_int_cmp(b1->RHS, b2->RHS)))
366 return c;
367 return clast_expr_cmp(b1->LHS, b2->LHS);
370 static int clast_reduction_cmp(struct clast_reduction *r1, struct clast_reduction *r2)
372 int i;
373 int c;
375 if (r1->n == 1 && r2->n == 1)
376 return clast_expr_cmp(r1->elts[0], r2->elts[0]);
377 if (r1->type != r2->type)
378 return r1->type - r2->type;
379 if (r1->n != r2->n)
380 return r1->n - r2->n;
381 for (i = 0; i < r1->n; ++i)
382 if ((c = clast_expr_cmp(r1->elts[i], r2->elts[i])))
383 return c;
384 return 0;
387 static int clast_expr_cmp(struct clast_expr *e1, struct clast_expr *e2)
389 if (!e1 && !e2)
390 return 0;
391 if (!e1)
392 return -1;
393 if (!e2)
394 return 1;
395 if (e1->type != e2->type)
396 return e1->type - e2->type;
397 switch (e1->type) {
398 case clast_expr_name:
399 return clast_name_cmp((struct clast_name*) e1,
400 (struct clast_name*) e2);
401 case clast_expr_term:
402 return clast_term_cmp((struct clast_term*) e1,
403 (struct clast_term*) e2);
404 case clast_expr_bin:
405 return clast_binary_cmp((struct clast_binary*) e1,
406 (struct clast_binary*) e2);
407 case clast_expr_red:
408 return clast_reduction_cmp((struct clast_reduction*) e1,
409 (struct clast_reduction*) e2);
410 default:
411 assert(0);
415 int clast_expr_equal(struct clast_expr *e1, struct clast_expr *e2)
417 return clast_expr_cmp(e1, e2) == 0;
421 * Return 1 is both expressions are constant terms and e1 is bigger than e2.
423 int clast_expr_is_bigger_constant(struct clast_expr *e1, struct clast_expr *e2)
425 struct clast_term *t1, *t2;
426 struct clast_reduction *r;
428 if (!e1 || !e2)
429 return 0;
430 if (e1->type == clast_expr_red) {
431 r = (struct clast_reduction *)e1;
432 return r->n == 1 && clast_expr_is_bigger_constant(r->elts[0], e2);
434 if (e2->type == clast_expr_red) {
435 r = (struct clast_reduction *)e2;
436 return r->n == 1 && clast_expr_is_bigger_constant(e1, r->elts[0]);
438 if (e1->type != clast_expr_term || e2->type != clast_expr_term)
439 return 0;
440 t1 = (struct clast_term *)e1;
441 t2 = (struct clast_term *)e2;
442 if (t1->var || t2->var)
443 return 0;
444 return cloog_int_gt(t1->val, t2->val);
447 static int qsort_expr_cmp(const void *p1, const void *p2)
449 return clast_expr_cmp(*(struct clast_expr **)p1, *(struct clast_expr **)p2);
452 static void clast_reduction_sort(struct clast_reduction *r)
454 qsort(&r->elts[0], r->n, sizeof(struct clast_expr *), qsort_expr_cmp);
457 static int qsort_eq_cmp(const void *p1, const void *p2)
459 struct clast_equation *eq1 = (struct clast_equation *)p1;
460 struct clast_equation *eq2 = (struct clast_equation *)p2;
461 int cmp;
463 cmp = clast_expr_cmp(eq1->LHS, eq2->LHS);
464 if (cmp)
465 return cmp;
467 cmp = clast_expr_cmp(eq1->RHS, eq2->RHS);
468 if (cmp)
469 return cmp;
471 return eq1->sign - eq2->sign;
475 * Sort equations in a clast_guard.
477 static void clast_guard_sort(struct clast_guard *g)
479 qsort(&g->eq[0], g->n, sizeof(struct clast_equation), qsort_eq_cmp);
484 * Construct a (deep) copy of an expression clast.
486 static struct clast_expr *clast_expr_copy(struct clast_expr *e)
488 if (!e)
489 return NULL;
490 switch (e->type) {
491 case clast_expr_name: {
492 struct clast_name* n = (struct clast_name*) e;
493 return &new_clast_name(n->name)->expr;
495 case clast_expr_term: {
496 struct clast_term* t = (struct clast_term*) e;
497 return &new_clast_term(t->val, clast_expr_copy(t->var))->expr;
499 case clast_expr_red: {
500 int i;
501 struct clast_reduction *r = (struct clast_reduction*) e;
502 struct clast_reduction *r2 = new_clast_reduction(r->type, r->n);
503 for (i = 0; i < r->n; ++i)
504 r2->elts[i] = clast_expr_copy(r->elts[i]);
505 return &r2->expr;
507 case clast_expr_bin: {
508 struct clast_binary *b = (struct clast_binary*) e;
509 return &new_clast_binary(b->type, clast_expr_copy(b->LHS), b->RHS)->expr;
511 default:
512 assert(0);
517 /******************************************************************************
518 * Equalities spreading functions *
519 ******************************************************************************/
523 * clast_equal_allow function:
524 * This function checks whether the options allow us to spread the equality or
525 * not. It returns 1 if so, 0 otherwise.
526 * - equal is the matrix of equalities,
527 * - level is the column number in equal of the element which is 'equal to',
528 * - line is the line number in equal of the constraint we want to study,
529 * - the infos structure gives the user all options on code printing and more.
531 * - October 27th 2005: first version (extracted from old pprint_equal_add).
533 static int clast_equal_allow(CloogEqualities *equal, int level, int line,
534 CloogInfos *infos)
536 if (level < infos->options->fsp)
537 return 0 ;
539 if ((cloog_equal_type(equal, level) == EQTYPE_EXAFFINE) &&
540 !infos->options->esp)
541 return 0 ;
543 return 1 ;
548 * clast_equal_add function:
549 * This function updates the row (level-1) of the equality matrix (equal) with
550 * the row that corresponds to the row (line) of the matrix (matrix). It returns
551 * 1 if the row can be updated, 0 otherwise.
552 * - equal is the matrix of equalities,
553 * - matrix is the matrix of constraints,
554 * - level is the column number in matrix of the element which is 'equal to',
555 * - line is the line number in matrix of the constraint we want to study,
556 * - the infos structure gives the user all options on code printing and more.
558 static int clast_equal_add(CloogEqualities *equal,
559 CloogConstraintSet *constraints,
560 int level, CloogConstraint *constraint,
561 CloogInfos *infos)
563 cloog_equal_add(equal, constraints, level, constraint,
564 infos->names->nb_parameters);
566 return clast_equal_allow(equal, level, level-1, infos);
572 * clast_equal function:
573 * This function prints the substitution data of a statement into a clast_stmt.
574 * Using this function instead of pprint_equal is useful for generating
575 * a compilable pseudo-code by using preprocessor macro for each statement.
576 * By opposition to pprint_equal, the result is less human-readable. For
577 * instance this function will print (i,i+3,k,3) where pprint_equal would
578 * return (j=i+3,l=3).
579 * - level is the number of loops enclosing the statement,
580 * - the infos structure gives the user all options on code printing and more.
582 * - March 12th 2004: first version.
583 * - November 21th 2005: (debug) now works well with GMP version.
585 static struct clast_stmt *clast_equal(int level, CloogInfos *infos)
587 int i ;
588 struct clast_expr *e;
589 struct clast_stmt *a = NULL;
590 struct clast_stmt **next = &a;
591 CloogEqualities *equal = infos->equal;
592 CloogConstraint *equal_constraint;
594 for (i=infos->names->nb_scattering;i<level-1;i++)
595 { if (cloog_equal_type(equal, i+1)) {
596 equal_constraint = cloog_equal_constraint(equal, i);
597 e = clast_bound_from_constraint(equal_constraint, i+1, infos->names);
598 cloog_constraint_release(equal_constraint);
599 } else {
600 e = &new_clast_term(infos->state->one, &new_clast_name(
601 cloog_names_name_at_level(infos->names, i+1))->expr)->expr;
603 *next = &new_clast_assignment(NULL, e)->stmt;
604 next = &(*next)->next;
607 return a;
612 * clast_bound_from_constraint function:
613 * This function returns a clast_expr containing the printing of the
614 * 'right part' of a constraint according to an element.
615 * For instance, for the constraint -3*i + 2*j - M >=0 and the element j,
616 * we have j >= (3*i + M)/2. As we are looking for integral solutions, this
617 * function should return 'ceild(3*i+M,2)'.
618 * - matrix is the polyhedron containing all the constraints,
619 * - line_num is the line number in domain of the constraint we want to print,
620 * - level is the column number in domain of the element we want to use,
621 * - names structure gives the user some options about code printing,
622 * the number of parameters in domain (nb_par), and the arrays of iterator
623 * names and parameters (iters and params).
625 * - November 2nd 2001: first version.
626 * - June 27th 2003: 64 bits version ready.
628 struct clast_expr *clast_bound_from_constraint(CloogConstraint *constraint,
629 int level, CloogNames *names)
631 int i, sign, nb_elts=0, len;
632 cloog_int_t *line, numerator, denominator, temp, division;
633 struct clast_expr *e = NULL;
634 struct cloog_vec *line_vector;
636 len = cloog_constraint_total_dimension(constraint) + 2;
637 line_vector = cloog_vec_alloc(len);
638 line = line_vector->p;
639 cloog_constraint_copy_coefficients(constraint, line+1);
640 cloog_int_init(temp);
641 cloog_int_init(numerator);
642 cloog_int_init(denominator);
644 if (!cloog_int_is_zero(line[level])) {
645 struct clast_reduction *r;
646 /* Maybe we need to invert signs in such a way that the element sign is>0.*/
647 sign = -cloog_int_sgn(line[level]);
649 for (i = 1, nb_elts = 0; i <= len - 1; ++i)
650 if (i != level && !cloog_int_is_zero(line[i]))
651 nb_elts++;
652 r = new_clast_reduction(clast_red_sum, nb_elts);
653 nb_elts = 0;
655 /* First, we have to print the iterators and the parameters. */
656 for (i = 1; i <= len - 2; i++) {
657 struct clast_expr *v;
659 if (i == level || cloog_int_is_zero(line[i]))
660 continue;
662 v = cloog_constraint_variable_expr(constraint, i, names);
664 if (sign == -1)
665 cloog_int_neg(temp,line[i]);
666 else
667 cloog_int_set(temp,line[i]);
669 r->elts[nb_elts++] = &new_clast_term(temp, v)->expr;
672 if (sign == -1) {
673 cloog_int_neg(numerator, line[len - 1]);
674 cloog_int_set(denominator, line[level]);
676 else {
677 cloog_int_set(numerator, line[len - 1]);
678 cloog_int_neg(denominator, line[level]);
681 /* Finally, the constant, and the final printing. */
682 if (nb_elts) {
683 if (!cloog_int_is_zero(numerator))
684 r->elts[nb_elts++] = &new_clast_term(numerator, NULL)->expr;
686 if (!cloog_int_is_one(line[level]) && !cloog_int_is_neg_one(line[level]))
687 { if (!cloog_constraint_is_equality(constraint))
688 { if (cloog_int_is_pos(line[level]))
689 e = &new_clast_binary(clast_bin_cdiv, &r->expr, denominator)->expr;
690 else
691 e = &new_clast_binary(clast_bin_fdiv, &r->expr, denominator)->expr;
692 } else
693 e = &new_clast_binary(clast_bin_div, &r->expr, denominator)->expr;
695 else
696 e = &r->expr;
697 } else {
698 free_clast_reduction(r);
699 if (cloog_int_is_zero(numerator))
700 e = &new_clast_term(numerator, NULL)->expr;
701 else
702 { if (!cloog_int_is_one(denominator))
703 { if (!cloog_constraint_is_equality(constraint)) { /* useful? */
704 if (cloog_int_is_divisible_by(numerator, denominator)) {
705 cloog_int_divexact(temp, numerator, denominator);
706 e = &new_clast_term(temp, NULL)->expr;
708 else {
709 cloog_int_init(division);
710 cloog_int_tdiv_q(division, numerator, denominator);
711 if (cloog_int_is_neg(numerator)) {
712 if (cloog_int_is_pos(line[level])) {
713 /* nb<0 need max */
714 e = &new_clast_term(division, NULL)->expr;
715 } else {
716 /* nb<0 need min */
717 cloog_int_sub_ui(temp, division, 1);
718 e = &new_clast_term(temp, NULL)->expr;
721 else
722 { if (cloog_int_is_pos(line[level]))
723 { /* nb>0 need max */
724 cloog_int_add_ui(temp, division, 1);
725 e = &new_clast_term(temp, NULL)->expr;
727 else
728 /* nb>0 need min */
729 e = &new_clast_term(division, NULL)->expr;
731 cloog_int_clear(division);
734 else
735 e = &new_clast_binary(clast_bin_div,
736 &new_clast_term(numerator, NULL)->expr,
737 denominator)->expr;
739 else
740 e = &new_clast_term(numerator, NULL)->expr;
745 cloog_vec_free(line_vector);
747 cloog_int_clear(temp);
748 cloog_int_clear(numerator);
749 cloog_int_clear(denominator);
751 return e;
755 /* Temporary structure for communication between clast_minmax and
756 * its cloog_constraint_set_foreach_constraint callback functions.
758 struct clast_minmax_data {
759 int level;
760 int max;
761 int guard;
762 int lower_bound;
763 int no_earlier;
764 CloogInfos *infos;
765 int n;
766 struct clast_reduction *r;
770 /* Should constraint "c" be considered by clast_minmax?
772 * If d->no_earlier is set, then the constraint may not involve
773 * any earlier variables.
775 static int valid_bound(CloogConstraint *c, struct clast_minmax_data *d)
777 int i;
779 if (d->max && !cloog_constraint_is_lower_bound(c, d->level - 1))
780 return 0;
781 if (!d->max && !cloog_constraint_is_upper_bound(c, d->level - 1))
782 return 0;
783 if (cloog_constraint_is_equality(c))
784 return 0;
785 if (d->guard && cloog_constraint_involves(c, d->guard - 1))
786 return 0;
788 if (d->no_earlier)
789 for (i = 0; i < d->level - 1; ++i)
790 if (cloog_constraint_involves(c, i))
791 return 0;
793 return 1;
797 /* Increment n for each bound that should be considered by clast_minmax.
799 static int count_bounds(CloogConstraint *c, void *user)
801 struct clast_minmax_data *d = (struct clast_minmax_data *) user;
803 if (!valid_bound(c, d))
804 return 0;
806 d->n++;
808 return 0;
812 /* Update the given lower bound based on stride information,
813 * for those cases where the stride offset is represented by
814 * a constraint.
815 * Note that cloog_loop_stride may have already performed a
816 * similar update of the lower bounds, but the updated lower
817 * bounds may have been eliminated because they are redundant
818 * by definition. On the other hand, performing the update
819 * on an already updated constraint is an identity operation
820 * and is therefore harmless.
822 static CloogConstraint *update_lower_bound_c(CloogConstraint *c, int level,
823 CloogStride *stride)
825 if (!stride->constraint)
826 return c;
827 return cloog_constraint_stride_lower_bound(c, level, stride);
831 /* Update the given lower bound based on stride information.
832 * If the stride offset is represented by a constraint,
833 * then we have already performed the update in update_lower_bound_c.
834 * Otherwise, the original lower bound is known to be a constant.
835 * If the bound has already been updated and it just happens
836 * to be a constant, then this function performs an identity
837 * operation on the constant.
839 static void update_lower_bound(struct clast_expr *expr, int level,
840 CloogStride *stride)
842 struct clast_term *t;
843 if (stride->constraint)
844 return;
845 if (expr->type != clast_expr_term)
846 return;
847 t = (struct clast_term *)expr;
848 if (t->var)
849 return;
850 cloog_int_sub(t->val, t->val, stride->offset);
851 cloog_int_cdiv_q(t->val, t->val, stride->stride);
852 cloog_int_mul(t->val, t->val, stride->stride);
853 cloog_int_add(t->val, t->val, stride->offset);
857 /* Add all relevant bounds to r->elts and update lower bounds
858 * based on stride information.
860 static int collect_bounds(CloogConstraint *c, void *user)
862 struct clast_minmax_data *d = (struct clast_minmax_data *) user;
864 if (!valid_bound(c, d))
865 return 0;
867 c = cloog_constraint_copy(c);
869 if (d->lower_bound && d->infos->stride[d->level - 1])
870 c = update_lower_bound_c(c, d->level, d->infos->stride[d->level - 1]);
872 d->r->elts[d->n] = clast_bound_from_constraint(c, d->level,
873 d->infos->names);
874 if (d->lower_bound && d->infos->stride[d->level - 1]) {
875 update_lower_bound(d->r->elts[d->n], d->level,
876 d->infos->stride[d->level - 1]);
879 cloog_constraint_release(c);
881 d->n++;
883 return 0;
888 * clast_minmax function:
889 * This function returns a clast_expr containing the printing of a minimum or a
890 * maximum of the 'right parts' of all constraints according to an element.
891 * For instance consider the constraints:
892 * -3*i +2*j -M >= 0
893 * 2*i +j >= 0
894 * -i -j +2*M >= 0
895 * if we are looking for the minimum for the element j, the function should
896 * return 'max(ceild(3*i+M,2),-2*i)'.
897 * - constraints is the constraints,
898 * - level is the column number in domain of the element we want to use,
899 * - max is a boolean set to 1 if we are looking for a maximum, 0 for a minimum,
900 * - guard is set to 0 if there is no guard, and set to the level of the element
901 * with a guard otherwise (then the function gives the max or the min only
902 * for the constraint where the guarded coefficient is 0),
903 * - lower is set to 1 if the maximum is to be used a lower bound on a loop
904 * - no_earlier is set if no constraints should be used that involve
905 * earlier dimensions,
906 * - the infos structure gives the user some options about code printing,
907 * the number of parameters in domain (nb_par), and the arrays of iterator
908 * names and parameters (iters and params).
910 * - November 2nd 2001: first version.
912 static struct clast_expr *clast_minmax(CloogConstraintSet *constraints,
913 int level, int max, int guard,
914 int lower_bound, int no_earlier,
915 CloogInfos *infos)
917 struct clast_minmax_data data = { level, max, guard, lower_bound,
918 no_earlier, infos };
920 data.n = 0;
922 cloog_constraint_set_foreach_constraint(constraints, count_bounds, &data);
924 if (!data.n)
925 return NULL;
926 data.r = new_clast_reduction(max ? clast_red_max : clast_red_min, data.n);
928 data.n = 0;
929 cloog_constraint_set_foreach_constraint(constraints, collect_bounds, &data);
931 clast_reduction_sort(data.r);
932 return &data.r->expr;
937 * Insert modulo guards defined by existentially quantified dimensions,
938 * not involving the given level.
940 * This function is called from within insert_guard.
941 * Any constraint used in constructing a modulo guard is removed
942 * from the constraint set to avoid insert_guard
943 * adding a duplicate (pair of) constraint(s).
945 * Return the updated CloogConstraintSet.
947 static CloogConstraintSet *insert_extra_modulo_guards(
948 CloogConstraintSet *constraints, int level,
949 struct clast_stmt ***next, CloogInfos *infos)
951 int i;
952 int nb_iter;
953 int total_dim;
954 CloogConstraint *upper, *lower;
956 total_dim = cloog_constraint_set_total_dimension(constraints);
957 nb_iter = cloog_constraint_set_n_iterators(constraints,
958 infos->names->nb_parameters);
960 for (i = total_dim - infos->names->nb_parameters; i >= nb_iter + 1; i--) {
961 if (cloog_constraint_is_valid(upper =
962 cloog_constraint_set_defining_equality(constraints, i))) {
963 if (!level || (nb_iter < level) ||
964 !cloog_constraint_involves(upper, level-1)) {
965 insert_modulo_guard(upper,
966 cloog_constraint_invalid(), i, next, infos);
967 constraints = cloog_constraint_set_drop_constraint(constraints,
968 upper);
970 cloog_constraint_release(upper);
971 } else if (cloog_constraint_is_valid(upper =
972 cloog_constraint_set_defining_inequalities(constraints,
973 i, &lower, infos->names->nb_parameters))) {
974 if (!level || (nb_iter < level) ||
975 !cloog_constraint_involves(upper, level-1)) {
976 insert_modulo_guard(upper, lower, i, next, infos);
977 constraints = cloog_constraint_set_drop_constraint(constraints,
978 upper);
979 constraints = cloog_constraint_set_drop_constraint(constraints,
980 lower);
982 cloog_constraint_release(upper);
983 cloog_constraint_release(lower);
987 return constraints;
991 /* Temporary structure for communication between insert_guard and
992 * its cloog_constraint_set_foreach_constraint callback function.
994 struct clast_guard_data {
995 int level;
996 CloogInfos *infos;
997 int n;
998 int i;
999 int nb_iter;
1000 CloogConstraintSet *copy;
1001 struct clast_guard *g;
1003 int min;
1004 int max;
1008 static int guard_count_bounds(CloogConstraint *c, void *user)
1010 struct clast_guard_data *d = (struct clast_guard_data *) user;
1012 d->n++;
1014 return 0;
1018 /* Insert a guard, if necesessary, for constraint j.
1020 * If the constraint involves any earlier dimensions, then we have
1021 * already considered it during a previous iteration over the constraints.
1023 * If we have already generated a min [max] for the current level d->i
1024 * and if the current constraint is an upper [lower] bound, then we
1025 * can skip the constraint as it will already have been used
1026 * in that previously generated min [max].
1028 static int insert_guard_constraint(CloogConstraint *j, void *user)
1030 int i;
1031 struct clast_guard_data *d = (struct clast_guard_data *) user;
1032 int minmax = -1;
1033 int individual_constraint;
1034 struct clast_expr *v;
1035 struct clast_term *t;
1037 if (!cloog_constraint_involves(j, d->i - 1))
1038 return 0;
1040 for (i = 0; i < d->i - 1; ++i)
1041 if (cloog_constraint_involves(j, i))
1042 return 0;
1044 if (d->level && d->nb_iter >= d->level &&
1045 cloog_constraint_involves(j, d->level - 1))
1046 return 0;
1048 individual_constraint = !d->level || cloog_constraint_is_equality(j);
1049 if (!individual_constraint) {
1050 if (d->max && cloog_constraint_is_lower_bound(j, d->i - 1))
1051 return 0;
1052 if (d->min && cloog_constraint_is_upper_bound(j, d->i - 1))
1053 return 0;
1056 v = cloog_constraint_variable_expr(j, d->i, d->infos->names);
1057 d->g->eq[d->n].LHS = &(t = new_clast_term(d->infos->state->one, v))->expr;
1058 if (individual_constraint) {
1059 /* put the "denominator" in the LHS */
1060 cloog_constraint_coefficient_get(j, d->i - 1, &t->val);
1061 cloog_constraint_coefficient_set(j, d->i - 1, d->infos->state->one);
1062 if (cloog_int_is_neg(t->val)) {
1063 cloog_int_neg(t->val, t->val);
1064 cloog_constraint_coefficient_set(j, d->i - 1, d->infos->state->negone);
1066 if (d->level || cloog_constraint_is_equality(j))
1067 d->g->eq[d->n].sign = 0;
1068 else if (cloog_constraint_is_lower_bound(j, d->i - 1))
1069 d->g->eq[d->n].sign = 1;
1070 else
1071 d->g->eq[d->n].sign = -1;
1072 d->g->eq[d->n].RHS = clast_bound_from_constraint(j, d->i, d->infos->names);
1073 } else {
1074 int guarded;
1076 if (cloog_constraint_is_lower_bound(j, d->i - 1)) {
1077 minmax = 1;
1078 d->max = 1;
1079 d->g->eq[d->n].sign = 1;
1080 } else {
1081 minmax = 0;
1082 d->min = 1;
1083 d->g->eq[d->n].sign = -1;
1086 guarded = (d->nb_iter >= d->level) ? d->level : 0 ;
1087 d->g->eq[d->n].RHS = clast_minmax(d->copy, d->i, minmax, guarded, 0, 1,
1088 d->infos);
1090 d->n++;
1092 return 0;
1097 * insert_guard function:
1098 * This function inserts a guard in the clast.
1099 * A guard on an element (level) is :
1100 * -> the conjunction of all the existing constraints where the coefficient of
1101 * this element is 0 if the element is an iterator,
1102 * -> the conjunction of all the existing constraints if the element isn't an
1103 * iterator.
1104 * For instance, considering these constraints and the element j:
1105 * -3*i +2*j -M >= 0
1106 * 2*i +M >= 0
1107 * this function should return 'if (2*i+M>=0) {'.
1108 * - matrix is the polyhedron containing all the constraints,
1109 * - level is the column number of the element in matrix we want to use,
1110 * - the infos structure gives the user some options about code printing,
1111 * the number of parameters in matrix (nb_par), and the arrays of iterator
1112 * names and parameters (iters and params).
1114 * - November 3rd 2001: first version.
1115 * - November 14th 2001: a lot of 'purifications'.
1116 * - July 31th 2002: (debug) some guard parts are no more redundants.
1117 * - August 12th 2002: polyhedra union ('or' conditions) are now supported.
1118 * - October 27th 2005: polyhedra union ('or' conditions) are no more supported
1119 * (the need came from loop_simplify that may result in
1120 * domain unions, now it should be fixed directly in
1121 * cloog_loop_simplify).
1123 static void insert_guard(CloogConstraintSet *constraints, int level,
1124 struct clast_stmt ***next, CloogInfos *infos)
1126 int total_dim;
1127 struct clast_guard_data data = { level, infos, 0 };
1129 if (!constraints)
1130 return;
1132 data.copy = cloog_constraint_set_copy(constraints);
1134 data.copy = insert_extra_modulo_guards(data.copy, level, next, infos);
1136 cloog_constraint_set_foreach_constraint(constraints,
1137 guard_count_bounds, &data);
1139 data.g = new_clast_guard(data.n);
1140 data.n = 0;
1142 /* Well, it looks complicated because I wanted to have a particular, more
1143 * readable, ordering, obviously this function may be far much simpler !
1145 data.nb_iter = cloog_constraint_set_n_iterators(constraints,
1146 infos->names->nb_parameters);
1148 /* We search for guard parts. */
1149 total_dim = cloog_constraint_set_total_dimension(constraints);
1150 for (data.i = 1; data.i <= total_dim; data.i++) {
1151 data.min = 0;
1152 data.max = 0;
1153 cloog_constraint_set_foreach_constraint(data.copy,
1154 insert_guard_constraint, &data);
1157 cloog_constraint_set_free(data.copy);
1159 data.g->n = data.n;
1160 if (data.n) {
1161 clast_guard_sort(data.g);
1162 **next = &data.g->stmt;
1163 *next = &data.g->then;
1164 } else
1165 free_clast_stmt(&data.g->stmt);
1169 * Check if the constant "cst" satisfies the modulo guard that
1170 * would be introduced by insert_computed_modulo_guard.
1171 * The constant is assumed to have been reduced prior to calling
1172 * this function.
1174 static int constant_modulo_guard_is_satisfied(CloogConstraint *lower,
1175 cloog_int_t bound, cloog_int_t cst)
1177 if (cloog_constraint_is_valid(lower))
1178 return cloog_int_le(cst, bound);
1179 else
1180 return cloog_int_is_zero(cst);
1184 * Insert a modulo guard "r % mod == 0" or "r % mod <= bound",
1185 * depending on whether lower represents a valid constraint.
1187 static void insert_computed_modulo_guard(struct clast_reduction *r,
1188 CloogConstraint *lower, cloog_int_t mod, cloog_int_t bound,
1189 struct clast_stmt ***next)
1191 struct clast_expr *e;
1192 struct clast_guard *g;
1194 e = &new_clast_binary(clast_bin_mod, &r->expr, mod)->expr;
1195 g = new_clast_guard(1);
1196 if (!cloog_constraint_is_valid(lower)) {
1197 g->eq[0].LHS = e;
1198 cloog_int_set_si(bound, 0);
1199 g->eq[0].RHS = &new_clast_term(bound, NULL)->expr;
1200 g->eq[0].sign = 0;
1201 } else {
1202 g->eq[0].LHS = e;
1203 g->eq[0].RHS = &new_clast_term(bound, NULL)->expr;
1204 g->eq[0].sign = -1;
1207 **next = &g->stmt;
1208 *next = &g->then;
1212 /* Try and eliminate coefficients from a modulo constraint based on
1213 * stride information of an earlier level.
1214 * The modulo of the constraint being constructed is "m".
1215 * The stride information at level "level" is given by "stride"
1216 * and indicated that the iterator i at level "level" is equal to
1217 * some expression modulo stride->stride.
1218 * If stride->stride is a multiple of "m' then i is also equal to
1219 * the expression modulo m and so we can eliminate the coefficient of i.
1221 * If stride->constraint is NULL, then i has a constant value modulo m, stored
1222 * stride->offset. We simply multiply this constant with the coefficient
1223 * of i and add the result to the constant term, reducing it modulo m.
1225 * If stride->constraint is not NULL, then it is a constraint of the form
1227 * e + k i = s a
1229 * with s equal to stride->stride, e an expression in terms of the
1230 * parameters and earlier iterators and a some arbitrary expression
1231 * in terms of existentially quantified variables.
1232 * stride->factor is a value f such that f * k = -1 mod s.
1233 * Adding stride->constraint f * c times to the current modulo constraint,
1234 * with c the coefficient of i eliminates i in favor of parameters and
1235 * earlier variables.
1237 static void eliminate_using_stride_constraint(cloog_int_t *line, int len,
1238 int nb_iter, CloogStride *stride, int level, cloog_int_t m)
1240 if (!stride)
1241 return;
1242 if (!cloog_int_is_divisible_by(stride->stride, m))
1243 return;
1245 if (stride->constraint) {
1246 int i, s_len;
1247 cloog_int_t t, v;
1249 cloog_int_init(t);
1250 cloog_int_init(v);
1251 cloog_int_mul(t, line[level], stride->factor);
1252 for (i = 1; i < level; ++i) {
1253 cloog_constraint_coefficient_get(stride->constraint,
1254 i - 1, &v);
1255 cloog_int_addmul(line[i], t, v);
1256 cloog_int_fdiv_r(line[i], line[i], m);
1258 s_len = cloog_constraint_total_dimension(stride->constraint)+2;
1259 for (i = nb_iter + 1; i <= len - 2; ++i) {
1260 cloog_constraint_coefficient_get(stride->constraint,
1261 i - (len - s_len) - 1, &v);
1262 cloog_int_addmul(line[i], t, v);
1263 cloog_int_fdiv_r(line[i], line[i], m);
1265 cloog_constraint_constant_get(stride->constraint, &v);
1266 cloog_int_addmul(line[len - 1], t, v);
1267 cloog_int_fdiv_r(line[len - 1], line[len - 1], m);
1268 cloog_int_clear(v);
1269 cloog_int_clear(t);
1270 } else {
1271 cloog_int_addmul(line[len - 1], line[level], stride->offset);
1272 cloog_int_fdiv_r(line[len - 1], line[len - 1], m);
1275 cloog_int_set_si(line[level], 0);
1279 /* Temporary structure for communication between insert_modulo_guard and
1280 * its cloog_constraint_set_foreach_constraint callback function.
1282 struct clast_modulo_guard_data {
1283 CloogConstraint *lower;
1284 int level;
1285 struct clast_stmt ***next;
1286 CloogInfos *infos;
1287 int empty;
1288 cloog_int_t val, bound;
1292 /* Insert a modulo guard for constraint c.
1293 * The constraint may be either an equality or an inequality.
1294 * Since this function returns -1, it is only called on a single constraint.
1295 * In case of an inequality, the constraint is usually an upper bound
1296 * on d->level. However, if this variable is an existentially
1297 * quantified variable, the upper bound constraint may get removed
1298 * as trivially holding and then this function is called with
1299 * a lower bound instead. In this case, we need to adjust the constraint
1300 * based on the sum of the constant terms of the lower and upper bound
1301 * stored in d->bound.
1303 static int insert_modulo_guard_constraint(CloogConstraint *c, void *user)
1305 struct clast_modulo_guard_data *d = (struct clast_modulo_guard_data *) user;
1306 int level = d->level;
1307 CloogInfos *infos = d->infos;
1308 int i, nb_elts = 0, len, nb_iter, nb_par;
1309 int constant;
1310 struct cloog_vec *line_vector;
1311 cloog_int_t *line;
1313 len = cloog_constraint_total_dimension(c) + 2;
1314 nb_par = infos->names->nb_parameters;
1315 nb_iter = len - 2 - nb_par;
1317 line_vector = cloog_vec_alloc(len);
1318 line = line_vector->p;
1319 cloog_constraint_copy_coefficients(c, line + 1);
1321 if (cloog_int_is_pos(line[level])) {
1322 cloog_seq_neg(line + 1, line + 1, len - 1);
1323 if (!cloog_constraint_is_equality(c))
1324 cloog_int_add(line[len - 1], line[len - 1], d->bound);
1326 cloog_int_neg(line[level], line[level]);
1327 assert(cloog_int_is_pos(line[level]));
1329 nb_elts = 0;
1330 for (i = 1; i <= len-1; ++i) {
1331 if (i == level)
1332 continue;
1333 cloog_int_fdiv_r(line[i], line[i], line[level]);
1334 if (cloog_int_is_zero(line[i]))
1335 continue;
1336 if (i == len-1)
1337 continue;
1339 nb_elts++;
1342 if (nb_elts || !cloog_int_is_zero(line[len-1])) {
1343 struct clast_reduction *r;
1344 const char *name;
1346 r = new_clast_reduction(clast_red_sum, nb_elts + 1);
1347 nb_elts = 0;
1349 /* First, the modulo guard : the iterators... */
1350 i = level - 1;
1351 if (i > infos->stride_level)
1352 i = infos->stride_level;
1353 for (; i >= 1; --i)
1354 eliminate_using_stride_constraint(line, len, nb_iter,
1355 infos->stride[i - 1], i, line[level]);
1356 for (i=1;i<=nb_iter;i++) {
1357 if (i == level || cloog_int_is_zero(line[i]))
1358 continue;
1360 name = cloog_names_name_at_level(infos->names, i);
1362 r->elts[nb_elts++] = &new_clast_term(line[i],
1363 &new_clast_name(name)->expr)->expr;
1366 /* ...the parameters... */
1367 for (i=nb_iter+1;i<=len-2;i++) {
1368 if (cloog_int_is_zero(line[i]))
1369 continue;
1371 name = infos->names->parameters[i-nb_iter-1] ;
1372 r->elts[nb_elts++] = &new_clast_term(line[i],
1373 &new_clast_name(name)->expr)->expr;
1376 constant = nb_elts == 0;
1377 /* ...the constant. */
1378 if (!cloog_int_is_zero(line[len-1]))
1379 r->elts[nb_elts++] = &new_clast_term(line[len-1], NULL)->expr;
1381 /* our initial computation may have been an overestimate */
1382 r->n = nb_elts;
1384 if (constant) {
1385 d->empty = !constant_modulo_guard_is_satisfied(d->lower, d->bound,
1386 line[len - 1]);
1387 free_clast_reduction(r);
1388 } else
1389 insert_computed_modulo_guard(r, d->lower, line[level], d->bound,
1390 d->next);
1393 cloog_vec_free(line_vector);
1395 return -1;
1400 * insert_modulo_guard:
1401 * This function inserts a modulo guard corresponding to an equality
1402 * or a pair of inequalities.
1403 * Returns 0 if the modulo guard is discovered to be unsatisfiable.
1405 * See insert_equation.
1406 * - matrix is the polyhedron containing all the constraints,
1407 * - upper and lower are the line numbers of the constraint in matrix
1408 * we want to print; in particular, if we want to print an equality,
1409 * then lower == -1 and upper is the row of the equality; if we want
1410 * to print an inequality, then upper is the row of the upper bound
1411 * and lower in the row of the lower bound
1412 * - level is the column number of the element in matrix we want to use,
1413 * - the infos structure gives the user some options about code printing,
1414 * the number of parameters in matrix (nb_par), and the arrays of iterator
1415 * names and parameters (iters and params).
1417 static int insert_modulo_guard(CloogConstraint *upper,
1418 CloogConstraint *lower, int level,
1419 struct clast_stmt ***next, CloogInfos *infos)
1421 int nb_par;
1422 CloogConstraintSet *set;
1423 struct clast_modulo_guard_data data = { lower, level, next, infos, 0 };
1425 cloog_int_init(data.val);
1426 cloog_constraint_coefficient_get(upper, level-1, &data.val);
1427 if (cloog_int_is_one(data.val) || cloog_int_is_neg_one(data.val)) {
1428 cloog_int_clear(data.val);
1429 return 1;
1432 nb_par = infos->names->nb_parameters;
1434 cloog_int_init(data.bound);
1435 /* Check if would be emitting the redundant constraint mod(e,m) <= m-1 */
1436 if (cloog_constraint_is_valid(lower)) {
1437 cloog_constraint_constant_get(upper, &data.val);
1438 cloog_constraint_constant_get(lower, &data.bound);
1439 cloog_int_add(data.bound, data.val, data.bound);
1440 cloog_constraint_coefficient_get(lower, level-1, &data.val);
1441 cloog_int_sub_ui(data.val, data.val, 1);
1442 if (cloog_int_eq(data.val, data.bound)) {
1443 cloog_int_clear(data.val);
1444 cloog_int_clear(data.bound);
1445 return 1;
1449 if (cloog_constraint_needs_reduction(upper, level)) {
1450 set = cloog_constraint_set_for_reduction(upper, lower);
1451 set = cloog_constraint_set_reduce(set, level, infos->equal,
1452 nb_par, &data.bound);
1453 cloog_constraint_set_foreach_constraint(set,
1454 insert_modulo_guard_constraint, &data);
1455 cloog_constraint_set_free(set);
1456 } else
1457 insert_modulo_guard_constraint(upper, &data);
1459 cloog_int_clear(data.val);
1460 cloog_int_clear(data.bound);
1462 return !data.empty;
1467 * We found an equality or a pair of inequalities identifying
1468 * a loop with a single iteration, but the user wants us to generate
1469 * a loop anyway, so we do it here.
1471 static int insert_equation_as_loop(CloogDomain *domain, CloogConstraint *upper,
1472 CloogConstraint *lower, int level, struct clast_stmt ***next,
1473 CloogInfos *infos)
1475 const char *iterator = cloog_names_name_at_level(infos->names, level);
1476 struct clast_expr *e1, *e2;
1477 struct clast_for *f;
1479 e2 = clast_bound_from_constraint(upper, level, infos->names);
1480 if (!cloog_constraint_is_valid(lower))
1481 e1 = clast_expr_copy(e2);
1482 else
1483 e1 = clast_bound_from_constraint(lower, level, infos->names);
1485 f = new_clast_for(domain, iterator, e1, e2, infos->stride[level-1]);
1486 **next = &f->stmt;
1487 *next = &f->body;
1489 cloog_constraint_release(lower);
1490 cloog_constraint_release(upper);
1491 return 1;
1496 * insert_equation function:
1497 * This function inserts an equality
1498 * constraint according to an element in the clast.
1499 * Returns 1 if the calling function should recurse into inner loops.
1501 * An equality can be preceded by a 'modulo guard'.
1502 * For instance, consider the constraint i -2*j = 0 and the
1503 * element j: pprint_equality should return 'if(i%2==0) { j = i/2 ;'.
1504 * - matrix is the polyhedron containing all the constraints,
1505 * - num is the line number of the constraint in matrix we want to print,
1506 * - level is the column number of the element in matrix we want to use,
1507 * - the infos structure gives the user some options about code printing,
1508 * the number of parameters in matrix (nb_par), and the arrays of iterator
1509 * names and parameters (iters and params).
1511 * - November 13th 2001: first version.
1512 * - June 26th 2003: simplification of the modulo guards (remove parts such as
1513 * modulo is 0, compare vivien or vivien2 with a previous
1514 * version for an idea).
1515 * - June 29th 2003: non-unit strides support.
1516 * - July 14th 2003: (debug) no more print the constant in the modulo guard when
1517 * it was previously included in a stride calculation.
1519 static int insert_equation(CloogDomain *domain, CloogConstraint *upper,
1520 CloogConstraint *lower, int level, struct clast_stmt
1521 ***next, CloogInfos *infos)
1523 struct clast_expr *e;
1524 struct clast_assignment *ass;
1526 if (!infos->options->otl)
1527 return insert_equation_as_loop(domain, upper, lower, level, next, infos);
1529 if (!insert_modulo_guard(upper, lower, level, next, infos)) {
1530 cloog_constraint_release(lower);
1531 cloog_constraint_release(upper);
1533 return 0;
1536 if (cloog_constraint_is_valid(lower) ||
1537 !clast_equal_add(infos->equal, NULL, level, upper, infos))
1538 { /* Finally, the equality. */
1540 /* If we have to make a block by dimension, we start the block. Function
1541 * pprint knows if there is an equality, if this is the case, it checks
1542 * for the same following condition to close the brace.
1544 if (infos->options->block) {
1545 struct clast_block *b = new_clast_block();
1546 **next = &b->stmt;
1547 *next = &b->body;
1550 e = clast_bound_from_constraint(upper, level, infos->names);
1551 ass = new_clast_assignment(cloog_names_name_at_level(infos->names, level), e);
1553 **next = &ass->stmt;
1554 *next = &(**next)->next;
1557 cloog_constraint_release(lower);
1558 cloog_constraint_release(upper);
1560 return 1;
1565 * Insert a loop that is executed exactly once as an assignment.
1566 * In particular, the loop
1568 * for (i = e; i <= e; ++i) {
1569 * S;
1572 * is generated as
1574 * i = e;
1575 * S;
1578 static void insert_otl_for(CloogConstraintSet *constraints, int level,
1579 struct clast_expr *e, struct clast_stmt ***next, CloogInfos *infos)
1581 const char *iterator;
1583 iterator = cloog_names_name_at_level(infos->names, level);
1585 if (!clast_equal_add(infos->equal, constraints, level,
1586 cloog_constraint_invalid(), infos)) {
1587 struct clast_assignment *ass;
1588 if (infos->options->block) {
1589 struct clast_block *b = new_clast_block();
1590 **next = &b->stmt;
1591 *next = &b->body;
1593 ass = new_clast_assignment(iterator, e);
1594 **next = &ass->stmt;
1595 *next = &(**next)->next;
1596 } else {
1597 free_clast_expr(e);
1603 * Insert a loop that is executed at most once as an assignment followed
1604 * by a guard. In particular, the loop
1606 * for (i = e1; i <= e2; ++i) {
1607 * S;
1610 * is generated as
1612 * i = e1;
1613 * if (i <= e2) {
1614 * S;
1618 static void insert_guarded_otl_for(CloogConstraintSet *constraints, int level,
1619 struct clast_expr *e1, struct clast_expr *e2,
1620 struct clast_stmt ***next, CloogInfos *infos)
1622 const char *iterator;
1623 struct clast_assignment *ass;
1624 struct clast_guard *guard;
1626 iterator = cloog_names_name_at_level(infos->names, level);
1628 if (infos->options->block) {
1629 struct clast_block *b = new_clast_block();
1630 **next = &b->stmt;
1631 *next = &b->body;
1633 ass = new_clast_assignment(iterator, e1);
1634 **next = &ass->stmt;
1635 *next = &(**next)->next;
1637 guard = new_clast_guard(1);
1638 guard->eq[0].sign = -1;
1639 guard->eq[0].LHS = &new_clast_term(infos->state->one,
1640 &new_clast_name(iterator)->expr)->expr;
1641 guard->eq[0].RHS = e2;
1643 **next = &guard->stmt;
1644 *next = &guard->then;
1649 * insert_for function:
1650 * This function inserts a for loop in the clast.
1651 * Returns 1 if the calling function should recurse into inner loops.
1653 * A loop header according to an element is the conjunction of a minimum and a
1654 * maximum on a given element (they give the loop bounds).
1655 * For instance, considering these constraints and the element j:
1656 * i + j -9*M >= 0
1657 * -j +5*M >= 0
1658 * j -4*M >= 0
1659 * this function should return 'for (j=max(-i+9*M,4*M),j<=5*M;j++) {'.
1660 * - constraints contains all constraints,
1661 * - level is the column number of the element in matrix we want to use,
1662 * - otl is set if the loop is executed at most once,
1663 * - the infos structure gives the user some options about code printing,
1664 * the number of parameters in matrix (nb_par), and the arrays of iterator
1665 * names and parameters (iters and params).
1667 static int insert_for(CloogDomain *domain, CloogConstraintSet *constraints,
1668 int level, int otl, struct clast_stmt ***next,
1669 CloogInfos *infos)
1671 const char *iterator;
1672 struct clast_expr *e1;
1673 struct clast_expr *e2;
1675 e1 = clast_minmax(constraints, level, 1, 0, 1, 0, infos);
1676 e2 = clast_minmax(constraints, level, 0, 0, 0, 0, infos);
1678 if (clast_expr_is_bigger_constant(e1, e2)) {
1679 free_clast_expr(e1);
1680 free_clast_expr(e2);
1681 return 0;
1684 /* If min and max are not equal there is a 'for' else, there is a '='.
1685 * In the special case e1 = e2 = NULL, this is an infinite loop
1686 * so this is not a '='.
1688 if (e1 && e2 && infos->options->otl && clast_expr_equal(e1, e2)) {
1689 free_clast_expr(e2);
1690 insert_otl_for(constraints, level, e1, next, infos);
1691 } else if (otl) {
1692 insert_guarded_otl_for(constraints, level, e1, e2, next, infos);
1693 } else {
1694 struct clast_for *f;
1695 iterator = cloog_names_name_at_level(infos->names, level);
1697 f = new_clast_for(domain, iterator, e1, e2, infos->stride[level-1]);
1698 **next = &f->stmt;
1699 *next = &f->body;
1702 return 1;
1707 * insert_block function:
1708 * This function inserts a statement block.
1709 * - block is the statement block,
1710 * - level is the number of loops enclosing the statement,
1711 * - the infos structure gives the user some options about code printing,
1712 * the number of parameters in domain (nb_par), and the arrays of iterator
1713 * names and parameters (iters and params).
1715 * - September 21th 2003: first version (pick from pprint function).
1717 static void insert_block(CloogDomain *domain, CloogBlock *block, int level,
1718 struct clast_stmt ***next, CloogInfos *infos)
1720 CloogStatement * statement ;
1721 struct clast_stmt *subs;
1723 if (!block)
1724 return;
1726 for (statement = block->statement; statement; statement = statement->next) {
1727 CloogStatement *s_next = statement->next;
1729 subs = clast_equal(level,infos);
1731 statement->next = NULL;
1732 **next = &new_clast_user_stmt(domain, statement, subs)->stmt;
1733 statement->next = s_next;
1734 *next = &(**next)->next;
1740 * insert_loop function:
1741 * This function converts the content of a CloogLoop structure (loop) into a
1742 * clast_stmt (inserted at **next).
1743 * The iterator (level) of
1744 * the current loop is given by 'level': this is the column number of the
1745 * domain corresponding to the current loop iterator. The data of a loop are
1746 * written in this order:
1747 * 1. The guard of the loop, i.e. each constraint in the domain that does not
1748 * depend on the iterator (when the entry in the column 'level' is 0).
1749 * 2. The iteration domain of the iterator, given by the constraints in the
1750 * domain depending on the iterator, i.e.:
1751 * * an equality if the iterator has only one value (possibly preceded by
1752 * a guard verifying if this value is integral), *OR*
1753 * * a loop from the minimum possible value of the iterator to the maximum
1754 * possible value.
1755 * 3. The included statement block.
1756 * 4. The inner loops (recursive call).
1757 * 5. The following loops (recursive call).
1758 * - level is the recursion level or the iteration level that we are printing,
1759 * - the infos structure gives the user some options about code printing,
1760 * the number of parameters in domain (nb_par), and the arrays of iterator
1761 * names and parameters (iters and params).
1763 * - November 2nd 2001: first version.
1764 * - March 6th 2003: infinite domain support.
1765 * - April 19th 2003: (debug) NULL loop support.
1766 * - June 29th 2003: non-unit strides support.
1767 * - April 28th 2005: (debug) level is level+equality when print statement!
1768 * - June 16th 2005: (debug) the N. Vasilache normalization step has been
1769 * added to avoid iteration duplication (see DaeGon Kim
1770 * bug in cloog_program_generate). Try vasilache.cloog
1771 * with and without the call to cloog_polylib_matrix_normalize,
1772 * using -f 8 -l 9 options for an idea.
1773 * - September 15th 2005: (debug) don't close equality braces when unnecessary.
1774 * - October 16th 2005: (debug) scalar value is saved for next loops.
1776 static void insert_loop(CloogLoop * loop, int level,
1777 struct clast_stmt ***next, CloogInfos *infos)
1779 int equality = 0;
1780 CloogConstraintSet *constraints, *temp;
1781 struct clast_stmt **top = *next;
1782 CloogConstraint *i, *j;
1783 int empty_loop = 0;
1785 /* It can happen that loop be NULL when an input polyhedron is empty. */
1786 if (loop == NULL)
1787 return;
1789 /* The constraints do not always have a shape that allows us to generate code from it,
1790 * thus we normalize it, we also simplify it with the equalities.
1792 temp = cloog_domain_constraints(loop->domain);
1793 cloog_constraint_set_normalize(temp,level);
1794 constraints = cloog_constraint_set_simplify(temp,infos->equal,level,
1795 infos->names->nb_parameters);
1796 cloog_constraint_set_free(temp);
1797 if (level) {
1798 infos->stride[level - 1] = loop->stride;
1799 infos->stride_level++;
1802 /* First of all we have to print the guard. */
1803 insert_guard(constraints,level, next, infos);
1805 if (level && cloog_constraint_set_contains_level(constraints, level,
1806 infos->names->nb_parameters)) {
1807 /* We scan all the constraints to know in which case we are :
1808 * [[if] equation] or [for].
1810 if (cloog_constraint_is_valid(i =
1811 cloog_constraint_set_defining_equality(constraints, level))) {
1812 empty_loop = !insert_equation(loop->unsimplified, i,
1813 cloog_constraint_invalid(), level, next,
1814 infos);
1815 equality = 1 ;
1816 } else if (cloog_constraint_is_valid(i =
1817 cloog_constraint_set_defining_inequalities(constraints,
1818 level, &j, infos->names->nb_parameters))) {
1819 empty_loop = !insert_equation(loop->unsimplified, i, j, level, next,
1820 infos);
1821 } else
1822 empty_loop = !insert_for(loop->unsimplified, constraints, level,
1823 loop->otl, next, infos);
1826 if (!empty_loop) {
1827 /* Finally, if there is an included statement block, print it. */
1828 insert_block(loop->unsimplified, loop->block, level+equality, next, infos);
1830 /* Go to the next level. */
1831 if (loop->inner != NULL)
1832 insert_loop(loop->inner, level+1, next, infos);
1835 if (level) {
1836 cloog_equal_del(infos->equal,level);
1837 infos->stride_level--;
1839 cloog_constraint_set_free(constraints);
1841 /* Go to the next loop on the same level. */
1842 while (*top)
1843 top = &(*top)->next;
1844 if (loop->next != NULL)
1845 insert_loop(loop->next, level, &top,infos);
1849 struct clast_stmt *cloog_clast_create(CloogProgram *program,
1850 CloogOptions *options)
1852 CloogInfos *infos = ALLOC(CloogInfos);
1853 int nb_levels;
1854 struct clast_stmt *root = &new_clast_root(program->names)->stmt;
1855 struct clast_stmt **next = &root->next;
1857 infos->state = options->state;
1858 infos->names = program->names;
1859 infos->options = options;
1860 infos->scaldims = program->scaldims;
1861 infos->nb_scattdims = program->nb_scattdims;
1863 /* Allocation for the array of strides, there is a +1 since the statement can
1864 * be included inside an external loop without iteration domain.
1866 nb_levels = program->names->nb_scattering+program->names->nb_iterators+1;
1867 infos->stride = ALLOCN(CloogStride *, nb_levels);
1868 infos->stride_level = 0;
1870 infos->equal = cloog_equal_alloc(nb_levels,
1871 nb_levels, program->names->nb_parameters);
1873 insert_loop(program->loop, 0, &next, infos);
1875 cloog_equal_free(infos->equal);
1877 free(infos->stride);
1878 free(infos);
1880 return root;
1884 struct clast_stmt *cloog_clast_create_from_input(CloogInput *input,
1885 CloogOptions *options)
1887 CloogProgram *program;
1888 struct clast_stmt *root;
1890 program = cloog_program_alloc(input->context, input->ud, options);
1891 free(input);
1893 program = cloog_program_generate(program, options);
1895 root = cloog_clast_create(program, options);
1896 cloog_program_free(program);
1898 return root;
1901 /* Adds to the list if not already in it */
1902 static int add_if_new(void **list, int num, void *new, int size)
1904 int i;
1906 for (i=0; i<num; i++) {
1907 if (!memcmp((*list) + i*size, new, size)) break;
1910 if (i==num) {
1911 *list = realloc(*list, (num+1)*size);
1912 memcpy(*list + num*size, new, size);
1913 return 1;
1916 return 0;
1920 /* Concatenates all elements of list2 that are not in list1;
1921 * Returns the new size of the list */
1922 int concat_if_new(void **list1, int num1, void *list2, int num2, int size)
1924 int i, ret;
1926 for (i=0; i<num2; i++) {
1927 ret = add_if_new(list1, num1, (char *)list2 + i*size, size);
1928 if (ret) num1++;
1931 return num1;
1934 /* Compares list1 to list2
1935 * Returns 0 if both have the same elements; returns -1 if all elements of
1936 * list1 are strictly contained in list2; 1 otherwise
1938 int list_compare(const int *list1, int num1, const int *list2, int num2)
1940 int i, j;
1942 for (i=0; i<num1; i++) {
1943 for (j=0; j<num2; j++) {
1944 if (list1[i] == list2[j]) break;
1946 if (j==num2) break;
1948 if (i==num1) {
1949 if (num1 == num2) {
1950 return 0;
1952 return -1;
1955 return 1;
1961 * A multi-purpose function to traverse and get information on Clast
1962 * loops
1964 * node: clast node where processing should start
1966 * Returns:
1967 * A list of loops under clast_stmt 'node' filtered in two ways: (1) it contains
1968 * statements appearing in 'stmts_filter', (2) loop iterator's name is 'iter'
1969 * If iter' is set to NULL, no filtering based on iterator name is done
1971 * iter: loop iterator name
1972 * stmts_filter: list of statement numbers for filtering (1-indexed)
1973 * nstmts_filter: number of statements in stmts_filter
1975 * FilterType: match exact (i.e., loops containing only and all those statements
1976 * in stmts_filter) or subset, i.e., loops which have only those statements
1977 * that appear in stmts_filter
1979 * To disable all filtering, set 'iter' to NULL, provide all statement
1980 * numbers in 'stmts_filter' and set FilterType to subset
1982 * Return fields
1984 * stmts: an array of statement numbers under node
1985 * nstmts: number of stmt numbers pointed to by stmts
1986 * loops: list of clast loops
1987 * nloops: number of clast loops in loops
1990 void clast_filter(struct clast_stmt *node,
1991 ClastFilter filter,
1992 struct clast_for ***loops, int *nloops,
1993 int **stmts, int *nstmts)
1995 int num_next_stmts, num_next_loops, ret, *stmts_next;
1996 struct clast_for **loops_next;
1998 *loops = NULL;
1999 *nloops = 0;
2000 *nstmts = 0;
2001 *stmts = NULL;
2003 if (node == NULL) {
2004 return;
2007 ClastFilterType filter_type = filter.filter_type;
2008 const char *iter = filter.iter;
2009 int nstmts_filter = filter.nstmts_filter;
2010 const int *stmts_filter = filter.stmts_filter;
2012 if (CLAST_STMT_IS_A(node, stmt_root)) {
2013 // printf("root stmt\n");
2014 struct clast_root *root = (struct clast_root *) node;
2015 clast_filter((root->stmt).next, filter, &loops_next,
2016 &num_next_loops, &stmts_next, &num_next_stmts);
2017 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2018 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2019 sizeof(struct clast_stmt *));
2020 free(loops_next);
2021 free(stmts_next);
2024 if (CLAST_STMT_IS_A(node, stmt_guard)) {
2025 // printf("guard stmt\n");
2026 struct clast_guard *guard = (struct clast_guard *) node;
2027 clast_filter(guard->then, filter, &loops_next,
2028 &num_next_loops, &stmts_next, &num_next_stmts);
2029 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2030 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2031 sizeof(struct clast_stmt *));
2032 free(loops_next);
2033 free(stmts_next);
2034 clast_filter((guard->stmt).next, filter, &loops_next,
2035 &num_next_loops, &stmts_next, &num_next_stmts);
2036 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2037 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2038 sizeof(struct clast_stmt *));
2039 free(loops_next);
2040 free(stmts_next);
2043 if (CLAST_STMT_IS_A(node, stmt_user)) {
2044 struct clast_user_stmt *user_stmt = (struct clast_user_stmt *) node;
2045 // printf("user stmt: S%d\n", user_stmt->statement->number);
2046 ret = add_if_new((void **)stmts, *nstmts, &user_stmt->statement->number, sizeof(int));
2047 if (ret) (*nstmts)++;
2048 clast_filter((user_stmt->stmt).next, filter, &loops_next,
2049 &num_next_loops, &stmts_next, &num_next_stmts);
2050 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2051 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2052 sizeof(struct clast_stmt *));
2053 free(loops_next);
2054 free(stmts_next);
2056 if (CLAST_STMT_IS_A(node, stmt_for)) {
2057 struct clast_for *for_stmt = (struct clast_for *) node;
2058 clast_filter(for_stmt->body, filter, &loops_next,
2059 &num_next_loops, &stmts_next, &num_next_stmts);
2060 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2061 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2062 sizeof(struct clast_stmt *));
2064 if (iter == NULL || !strcmp(for_stmt->iterator, iter)) {
2065 if (stmts_filter == NULL ||
2066 (filter_type == subset && list_compare(stmts_next, num_next_stmts,
2067 stmts_filter, nstmts_filter) <= 0)
2068 || (filter_type == exact && list_compare(stmts_next, num_next_stmts,
2069 stmts_filter, nstmts_filter) == 0 )) {
2070 ret = add_if_new((void **)loops, *nloops, &for_stmt, sizeof(struct clast_for *));
2071 if (ret) (*nloops)++;
2074 free(loops_next);
2075 free(stmts_next);
2077 clast_filter((for_stmt->stmt).next, filter, &loops_next,
2078 &num_next_loops, &stmts_next, &num_next_stmts);
2079 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2080 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2081 sizeof(struct clast_stmt *));
2082 free(loops_next);
2083 free(stmts_next);