2 /**-------------------------------------------------------------------**
4 **-------------------------------------------------------------------**
6 **-------------------------------------------------------------------**
7 ** First version: october 28th 2001 **
8 **-------------------------------------------------------------------**/
11 /******************************************************************************
12 * CLooG : the Chunky Loop Generator (experimental) *
13 ******************************************************************************
15 * Copyright (C) 2001-2005 Cedric Bastoul *
17 * This is free software; you can redistribute it and/or modify it under the *
18 * terms of the GNU General Public License as published by the Free Software *
19 * Foundation; either version 2 of the License, or (at your option) any later *
22 * This software is distributed in the hope that it will be useful, but *
23 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
24 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
27 * You should have received a copy of the GNU General Public License along *
28 * with software; if not, write to the Free Software Foundation, Inc., *
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *
31 * CLooG, the Chunky Loop Generator *
32 * Written by Cedric Bastoul, Cedric.Bastoul@inria.fr *
34 ******************************************************************************/
35 /* CAUTION: the english used for comments is probably the worst you ever read,
36 * please feel free to correct and improve it !
43 # include "../include/cloog/cloog.h"
47 * The maximal number of rays allowed to be allocated by PolyLib. In fact since
48 * version 5.20, PolyLib automatically tune the number of rays by multiplying
49 * by 2 this number each time the maximum is reached. For unknown reasons
50 * PolyLib makes a segmentation fault if this number is too small. If this
51 * number is too small, performances will be reduced, if it is too high, memory
52 * will be saturated. Note that the option "-rays X" set this number to X.
57 /******************************************************************************
58 * Memory leaks hunting *
59 ******************************************************************************/
63 * These functions and global variables are devoted to memory leaks hunting: we
64 * want to know at each moment how many Polyhedron structures had been allocated
65 * (cloog_domain_allocated) and how many had been freed (cloog_domain_freed).
66 * Each time a Polyhedron structure is allocated, a call to the function
67 * cloog_domain_leak_up() must be carried out, and respectively
68 * cloog_domain_leak_down() when a Polyhedron structure is freed. The special
69 * variable cloog_domain_max gives the maximal number of Polyhedron structures
70 * simultaneously alive (i.e. allocated and non-freed) in memory.
71 * - July 3rd->11th 2003: first version (memory leaks hunt and correction).
75 int cloog_domain_allocated
= 0 ;
76 int cloog_domain_freed
= 0 ;
77 int cloog_domain_max
= 0 ;
80 static void cloog_domain_leak_up()
81 { cloog_domain_allocated
++ ;
82 if ((cloog_domain_allocated
-cloog_domain_freed
) > cloog_domain_max
)
83 cloog_domain_max
= cloog_domain_allocated
- cloog_domain_freed
;
87 static void cloog_domain_leak_down()
88 { cloog_domain_freed
++ ;
92 /* The same for Value variables since in GMP mode they have to be freed. */
93 int cloog_value_allocated
= 0 ;
94 int cloog_value_freed
= 0 ;
95 int cloog_value_max
= 0 ;
98 void cloog_value_leak_up()
99 { cloog_value_allocated
++ ;
100 if ((cloog_value_allocated
-cloog_value_freed
) > cloog_value_max
)
101 cloog_value_max
= cloog_value_allocated
- cloog_value_freed
;
105 void cloog_value_leak_down()
106 { cloog_value_freed
++ ;
110 /******************************************************************************
111 * PolyLib interface *
112 ******************************************************************************/
115 /* CLooG makes an intensive use of polyhedral operations and the PolyLib do
116 * the job. Here are the interfaces to all the PolyLib calls (CLooG uses 19
117 * PolyLib functions), with or without some adaptations. If another polyhedral
118 * library can be used, only these functions have to be changed.
119 * - April 16th 2005: Since PolyLib 5.20, compacting is no more useful and have
120 * been removed. The direct use of the PolyLib's Polyhedron
121 * data structure is also replaced with the CloogDomain data
122 * structure that includes the Polyhedron and an additional
123 * counter on how many pointers point on this structure.
124 * This allows to save memory (cloog_domain_copy now only
125 * increment the counter) while memory leaks are avoided (the
126 * function cloog_domain_free decrements the counter and
127 * actually frees the data structure only when its value
133 * cloog_domain_matrix2domain function:
134 * Given a matrix of constraints (matrix), this function constructs and returns
135 * the corresponding domain (i.e. the CloogDomain structure including the
136 * polyhedron with its double representation: constraint matrix and the set of
139 CloogDomain
* cloog_domain_matrix2domain(CloogMatrix
* matrix
)
140 { return (cloog_domain_alloc(Constraints2Polyhedron(matrix
,MAX_RAYS
))) ;
145 * cloog_domain_domain2matrix function:
146 * Given a polyhedron (in domain), this function returns its corresponding
147 * matrix of constraints.
149 CloogMatrix
* cloog_domain_domain2matrix(CloogDomain
* domain
)
151 return cloog_matrix_matrix(Polyhedron2Constraints(domain
->polyhedron
));
156 * cloog_domain_print function:
157 * This function prints the content of a CloogDomain structure (domain) into
158 * a file (foo, possibly stdout).
160 void cloog_domain_print(FILE * foo
, CloogDomain
* domain
)
161 { Polyhedron_Print(foo
,P_VALUE_FMT
,domain
->polyhedron
) ;
162 fprintf(foo
,"Number of active references: %d\n",domain
->references
) ;
167 * cloog_polyhedron_print function:
168 * This function prints the content of a Polyhedron structure (polyhedron) into
169 * a file (foo, possibly stdout). Just there as a development facility.
171 void cloog_polyhedron_print(FILE * foo
, Polyhedron
* polyhedron
)
172 { Polyhedron_Print(foo
,P_VALUE_FMT
,polyhedron
) ;
177 * cloog_domain_free function:
178 * This function frees the allocated memory for a CloogDomain structure
179 * (domain). It decrements the number of active references to this structure,
180 * if there are no more references on the structure, it frees it (with the
181 * included list of polyhedra).
183 void cloog_domain_free(CloogDomain
* domain
)
184 { if (domain
!= NULL
)
185 { domain
->references
-- ;
187 if (domain
->references
== 0)
188 { if (domain
->polyhedron
!= NULL
)
189 { cloog_domain_leak_down() ;
190 Domain_Free(domain
->polyhedron
) ;
199 * cloog_domain_copy function:
200 * This function returns a copy of a CloogDomain structure (domain). To save
201 * memory this is not a memory copy but we increment a counter of active
202 * references inside the structure, then return a pointer to that structure.
204 CloogDomain
* cloog_domain_copy(CloogDomain
* domain
)
205 { domain
->references
++ ;
211 * cloog_domain_image function:
212 * This function returns a CloogDomain structure such that the included
213 * polyhedral domain is computed from the former one into another
214 * domain according to a given affine mapping function (mapping).
216 CloogDomain
* cloog_domain_image(CloogDomain
* domain
, CloogMatrix
* mapping
)
217 { return (cloog_domain_alloc(DomainImage(domain
->polyhedron
,mapping
,MAX_RAYS
)));
222 * cloog_domain_preimage function:
223 * Given a polyhedral domain (polyhedron) inside a CloogDomain structure and a
224 * mapping function (mapping), this function returns a new CloogDomain structure
225 * with a polyhedral domain which when transformed by mapping function (mapping)
226 * gives (polyhedron).
228 CloogDomain
* cloog_domain_preimage(CloogDomain
* domain
, CloogMatrix
* mapping
)
229 { return (cloog_domain_alloc(DomainPreimage(domain
->polyhedron
,
230 mapping
,MAX_RAYS
))) ;
235 * cloog_domain_convex function:
236 * Given a polyhedral domain (polyhedron), this function concatenates the lists
237 * of rays and lines of the two (or more) polyhedra in the domain into one
238 * combined list, and find the set of constraints which tightly bound all of
239 * those objects. It returns the corresponding polyhedron.
241 CloogDomain
* cloog_domain_convex(CloogDomain
* domain
)
242 { return (cloog_domain_alloc(DomainConvex(domain
->polyhedron
,MAX_RAYS
)));
247 * cloog_domain_simplified_hull:
248 * Given a list (union) of polyhedra, this function returns a single
249 * polyhedron that contains this union and uses only contraints that
250 * appear in one or more of the polyhedra in the list.
252 * We simply iterate over all constraints of all polyhedra and test
253 * whether all rays of the other polyhedra satisfy/saturate the constraint.
255 static CloogDomain
*cloog_domain_simplified_hull(CloogDomain
* domain
)
257 int dim
= cloog_domain_dimension(domain
);
259 int nb_pol
= 0, nb_constraints
= 0;
261 CloogMatrix
**rays
, *matrix
;
266 for (P
= domain
->polyhedron
; P
; P
= P
->next
) {
268 nb_constraints
+= P
->NbConstraints
;
270 matrix
= cloog_matrix_alloc(nb_constraints
, 1 + dim
+ 1);
272 rays
= (CloogMatrix
**)malloc(nb_pol
* sizeof(CloogMatrix
*));
273 for (P
= domain
->polyhedron
, i
= 0; P
; P
= P
->next
, ++i
)
274 rays
[i
] = Polyhedron2Rays(P
);
276 for (P
= domain
->polyhedron
, i
= 0; P
; P
= P
->next
, ++i
) {
277 CloogMatrix
*constraints
= Polyhedron2Constraints(P
);
278 for (j
= 0; j
< constraints
->NbRows
; ++j
) {
279 for (k
= 0; k
< nb_pol
; ++k
) {
282 for (l
= 0; l
< rays
[k
]->NbRows
; ++l
) {
283 Inner_Product(constraints
->p
[j
]+1, rays
[k
]->p
[l
]+1, dim
+1, &tmp
);
284 if (value_neg_p(tmp
))
286 if ((value_zero_p(constraints
->p
[j
][0]) ||
287 value_zero_p(rays
[k
]->p
[l
][0])) && value_pos_p(tmp
))
290 if (l
< rays
[k
]->NbRows
)
294 Vector_Copy(constraints
->p
[j
], matrix
->p
[nb_constraints
++], 1+dim
+1);
296 Matrix_Free(constraints
);
299 for (P
= domain
->polyhedron
, i
= 0; P
; P
= P
->next
, ++i
)
300 Matrix_Free(rays
[i
]);
304 matrix
->NbRows
= nb_constraints
;
305 bounds
= cloog_domain_matrix2domain(matrix
);
306 cloog_matrix_free(matrix
);
313 * cloog_domain_simple_convex:
314 * Given a list (union) of polyhedra, this function returns a "simple"
315 * convex hull of this union. In particular, the constraints of the
316 * the returned polyhedron consist of (parametric) lower and upper
317 * bounds on individual variables and constraints that appear in the
318 * original polyhedra.
320 * nb_par is the number of parameters of the domain.
322 CloogDomain
* cloog_domain_simple_convex(CloogDomain
* domain
, int nb_par
)
325 int dim
= cloog_domain_dimension(domain
) - nb_par
;
326 CloogDomain
*convex
= NULL
;
328 if (cloog_domain_isconvex(domain
))
329 return cloog_domain_copy(domain
);
331 for (i
= 0; i
< dim
; ++i
) {
332 CloogDomain
*bounds
= cloog_domain_bounds(domain
, i
, nb_par
);
337 CloogDomain
*temp
= cloog_domain_intersection(convex
, bounds
);
338 cloog_domain_free(bounds
);
339 cloog_domain_free(convex
);
344 CloogDomain
*temp
, *bounds
;
346 bounds
= cloog_domain_simplified_hull(domain
);
347 temp
= cloog_domain_intersection(convex
, bounds
);
348 cloog_domain_free(bounds
);
349 cloog_domain_free(convex
);
358 * cloog_domain_simplify function:
359 * Given two polyhedral domains (pol1) and (pol2) inside two CloogDomain
360 * structures, this function finds the largest domain set (or the smallest list
361 * of non-redundant constraints), that when intersected with polyhedral
362 * domain (pol2) equals (Pol1)intersect(Pol2). The output is a new CloogDomain
363 * structure with a polyhedral domain with the "redundant" constraints removed.
364 * NB: this function do not work as expected with unions of polyhedra...
366 CloogDomain
* cloog_domain_simplify(CloogDomain
* dom1
, CloogDomain
* dom2
)
370 Polyhedron
*P
= dom1
->polyhedron
;
372 /* DomainSimplify doesn't remove all redundant equalities,
373 * so we remove them here first in case both dom1 and dom2
374 * are single polyhedra (i.e., not unions of polyhedra).
376 if (!dom1
->polyhedron
->next
&& !dom2
->polyhedron
->next
&&
377 P
->NbEq
&& dom2
->polyhedron
->NbEq
) {
379 int rows
= P
->NbEq
+ dom2
->polyhedron
->NbEq
;
380 int cols
= P
->Dimension
+2;
382 M
= cloog_matrix_alloc(rows
, cols
);
383 M2
= cloog_matrix_alloc(P
->NbConstraints
, cols
);
384 Vector_Copy(dom2
->polyhedron
->Constraint
[0], M
->p
[0],
385 dom2
->polyhedron
->NbEq
* cols
);
386 rank
= dom2
->polyhedron
->NbEq
;
388 for (i
= 0; i
< P
->NbEq
; ++i
) {
389 Vector_Copy(P
->Constraint
[i
], M
->p
[rank
], cols
);
390 if (Gauss(M
, rank
+1, cols
-1) > rank
) {
391 Vector_Copy(P
->Constraint
[i
], M2
->p
[row
++], cols
);
396 Vector_Copy(P
->Constraint
[P
->NbEq
], M2
->p
[row
],
397 (P
->NbConstraints
- P
->NbEq
) * cols
);
398 P
= Constraints2Polyhedron(M2
, MAX_RAYS
);
400 cloog_matrix_free(M2
);
401 cloog_matrix_free(M
);
403 dom
= cloog_domain_alloc(DomainSimplify(P
, dom2
->polyhedron
,MAX_RAYS
));
404 if (P
!= dom1
->polyhedron
)
411 * cloog_domain_union function:
412 * This function returns a new CloogDomain structure including a polyhedral
413 * domain which is the union of two polyhedral domains (pol1) U (pol2) inside
414 * two CloogDomain structures.
416 CloogDomain
* cloog_domain_union(CloogDomain
* dom1
, CloogDomain
* dom2
)
417 { return (cloog_domain_alloc(DomainUnion(dom1
->polyhedron
,
418 dom2
->polyhedron
,MAX_RAYS
))) ;
423 * cloog_domain_disjoint function:
424 * This function returns a new CloogDomain structure including a polyhedral
425 * domain represented using union of *disjoint* polyhedra (no intersection
426 * between the different union components).
428 CloogDomain
* cloog_domain_disjoint(CloogDomain
* dom
)
429 { return (cloog_domain_alloc(Disjoint_Domain(dom
->polyhedron
,0,MAX_RAYS
))) ;
434 * cloog_domain_intersection function:
435 * This function returns a new CloogDomain structure including a polyhedral
436 * domain which is the intersection of two polyhedral domains (pol1)inter(pol2)
437 * inside two CloogDomain structures.
439 CloogDomain
* cloog_domain_intersection(CloogDomain
* dom1
, CloogDomain
* dom2
)
440 { return (cloog_domain_alloc(DomainIntersection(dom1
->polyhedron
,
441 dom2
->polyhedron
,MAX_RAYS
))) ;
446 * cloog_domain_difference function:
447 * This function returns a new CloogDomain structure including a polyhedral
448 * domain which is the difference of two polyhedral domains domain \ minus
449 * inside two CloogDomain structures.
450 * - November 8th 2001: first version.
452 CloogDomain
* cloog_domain_difference(CloogDomain
* domain
, CloogDomain
* minus
)
453 { if (cloog_domain_isempty(minus
))
454 return(cloog_domain_copy(domain
)) ;
456 return (cloog_domain_alloc(DomainDifference(domain
->polyhedron
,
457 minus
->polyhedron
,MAX_RAYS
))) ;
462 * cloog_domain_includes function:
463 * This function returns 1 if the polyhedral domain inside 'container' includes
464 * the polyhedral domain inside 'contents', 0 otherwise.
465 * - September 14th 2002: first version.
467 int cloog_domain_includes(CloogDomain
* container
, CloogDomain
* contents
)
469 Polyhedron
* p1
, * p2
;
471 for (p1
=container
->polyhedron
; p1
; p1
=p1
->next
)
474 for (p2
=contents
->polyhedron
; p2
; p2
=p2
->next
)
475 if (PolyhedronIncludes(p1
,p2
))
489 * cloog_domain_addconstraints function :
490 * This function adds source's polyhedron constraints to target polyhedron: for
491 * each element of the polyhedron inside 'target' (i.e. element of the union
492 * of polyhedra) it adds the constraints of the corresponding element in
494 * - August 10th 2002: first version.
495 * Nota bene for future : it is possible that source and target don't have the
496 * same number of elements (try iftest2 without non-shared constraint
497 * elimination in cloog_loop_separate !). This function is yet another part
498 * of the DomainSimplify patching problem...
500 CloogDomain
* cloog_domain_addconstraints(domain_source
, domain_target
)
501 CloogDomain
* domain_source
, * domain_target
;
502 { unsigned nb_constraint
;
503 Value
* constraints
;
504 Polyhedron
* source
, * target
, * new, * next
, * last
;
506 source
= domain_source
->polyhedron
;
507 target
= domain_target
->polyhedron
;
509 constraints
= source
->p_Init
;
510 nb_constraint
= source
->NbConstraints
;
511 source
= source
->next
;
512 new = AddConstraints(constraints
,nb_constraint
,target
,MAX_RAYS
) ;
514 next
= target
->next
;
517 { /* BUG !!! This is actually a bug. I don't know yet how to cleanly avoid
518 * the situation where source and target do not have the same number of
519 * elements. So this 'if' is an awful trick, waiting for better.
522 { constraints
= source
->p_Init
;
523 nb_constraint
= source
->NbConstraints
;
524 source
= source
->next
;
526 last
->next
= AddConstraints(constraints
,nb_constraint
,next
,MAX_RAYS
) ;
531 return (cloog_domain_alloc(new)) ;
536 * cloog_domain_sort function:
537 * This function topologically sorts (nb_pols) polyhedra. Here (pols) is a an
538 * array of pointers to polyhedra, (nb_pols) is the number of polyhedra,
539 * (level) is the level to consider for partial ordering (nb_par) is the
540 * parameter space dimension, (permut) if not NULL, is an array of (nb_pols)
541 * integers that contains a permutation specification after call in order to
542 * apply the topological sorting.
544 void cloog_domain_sort(pols
, nb_pols
, level
, nb_par
, permut
)
546 unsigned nb_pols
, level
, nb_par
;
550 /* time is an array of (nb_pols) integers to store logical time values. We
551 * do not use it, but it is compulsory for PolyhedronTSort.
553 time
= (int *)malloc(nb_pols
*sizeof(int)) ;
555 /* PolyhedronTSort will fill up permut (and time). */
556 PolyhedronTSort(pols
,nb_pols
,level
,nb_par
,time
,permut
,MAX_RAYS
) ;
563 * cloog_domain_empty function:
564 * This function allocates the memory space for a CloogDomain structure and
565 * sets its polyhedron to an empty polyhedron with 'dimension' dimensions.
566 * Then it returns a pointer to the allocated space.
567 * - June 10th 2005: first version.
569 CloogDomain
* cloog_domain_empty(int dimension
)
570 { return (cloog_domain_alloc(Empty_Polyhedron(dimension
))) ;
574 /******************************************************************************
575 * Structure display function *
576 ******************************************************************************/
580 * cloog_domain_print_structure :
581 * this function is a more human-friendly way to display the CloogDomain data
582 * structure, it only shows the constraint system and includes an indentation
583 * level (level) in order to work with others print_structure functions.
584 * Written by Olivier Chorier, Luc Marchaud, Pierre Martin and Romain Tartiere.
585 * - April 24th 2005: Initial version.
586 * - May 26th 2005: Memory leak hunt.
587 * - June 16th 2005: (Ced) Integration in domain.c.
589 void cloog_domain_print_structure(FILE * file
, CloogDomain
* domain
, int level
)
591 CloogMatrix
* matrix
;
593 /* Go to the right level. */
594 for(i
=0; i
<level
; i
++)
595 fprintf(file
,"|\t") ;
598 { fprintf(file
,"+-- CloogDomain\n") ;
600 /* Print the matrix. */
601 matrix
= cloog_domain_domain2matrix(domain
) ;
602 cloog_matrix_print_structure(file
,matrix
,level
) ;
603 cloog_matrix_free(matrix
) ;
606 for (i
=0; i
<level
+1; i
++)
607 fprintf(file
,"|\t") ;
611 fprintf(file
,"+-- Null CloogDomain\n") ;
617 * cloog_domain_list_print function:
618 * This function prints the content of a CloogDomainList structure into a
619 * file (foo, possibly stdout).
620 * - November 6th 2001: first version.
622 void cloog_domain_list_print(FILE * foo
, CloogDomainList
* list
)
623 { while (list
!= NULL
)
624 { cloog_domain_print(foo
,list
->domain
) ;
630 /******************************************************************************
631 * Memory deallocation function *
632 ******************************************************************************/
636 * cloog_domain_list_free function:
637 * This function frees the allocated memory for a CloogDomainList structure.
638 * - November 6th 2001: first version.
640 void cloog_domain_list_free(CloogDomainList
* list
)
641 { CloogDomainList
* temp
;
644 { temp
= list
->next
;
645 cloog_domain_free(list
->domain
) ;
652 /******************************************************************************
654 ******************************************************************************/
658 * cloog_domain_read function:
659 * Adaptation from the PolyLib. This function reads a matrix into a file (foo,
660 * posibly stdin) and returns a pointer to a polyhedron containing the read
662 * - October 18th 2001: first version.
664 CloogDomain
* cloog_domain_read(FILE * foo
)
665 { CloogMatrix
* matrix
;
666 CloogDomain
* domain
;
668 matrix
= cloog_matrix_read(foo
) ;
669 domain
= cloog_domain_matrix2domain(matrix
) ;
670 cloog_matrix_free(matrix
) ;
677 * cloog_domain_union_read function:
678 * This function reads a union of polyhedra into a file (foo, posibly stdin) and
679 * returns a pointer to a Polyhedron containing the read information.
680 * - September 9th 2002: first version.
681 * - October 29th 2005: (debug) removal of a leak counting "correction" that
682 * was just false since ages.
684 CloogDomain
* cloog_domain_union_read(FILE * foo
)
685 { int i
, nb_components
;
687 CloogDomain
* domain
, * temp
, * old
;
689 /* domain reading: nb_components (constraint matrices). */
690 while (fgets(s
,MAX_STRING
,foo
) == 0) ;
691 while ((*s
=='#' || *s
=='\n') || (sscanf(s
," %d",&nb_components
)<1))
692 fgets(s
,MAX_STRING
,foo
) ;
694 if (nb_components
> 0)
695 { /* 1. first part of the polyhedra union, */
696 domain
= cloog_domain_read(foo
) ;
697 /* 2. and the nexts. */
698 for (i
=1;i
<nb_components
;i
++)
699 { /* Leak counting is OK since next allocated domain is freed here. */
700 temp
= cloog_domain_read(foo
) ;
702 domain
= cloog_domain_union(temp
,old
) ;
703 cloog_domain_free(temp
) ;
704 cloog_domain_free(old
) ;
714 * cloog_domain_list_read function:
715 * This function reads a list of polyhedra into a file (foo, posibly stdin) and
716 * returns a pointer to a CloogDomainList containing the read information.
717 * - November 6th 2001: first version.
719 CloogDomainList
* cloog_domain_list_read(FILE * foo
)
722 CloogDomainList
* list
, * now
, * next
;
725 /* We read first the number of polyhedra in the list. */
726 while (fgets(s
,MAX_STRING
,foo
) == 0) ;
727 while ((*s
=='#' || *s
=='\n') || (sscanf(s
," %d",&nb_pols
)<1))
728 fgets(s
,MAX_STRING
,foo
) ;
730 /* Then we read the polyhedra. */
733 { list
= (CloogDomainList
*)malloc(sizeof(CloogDomainList
)) ;
734 list
->domain
= cloog_domain_read(foo
) ;
737 for (i
=1;i
<nb_pols
;i
++)
738 { next
= (CloogDomainList
*)malloc(sizeof(CloogDomainList
)) ;
739 next
->domain
= cloog_domain_read(foo
) ;
749 /******************************************************************************
750 * Processing functions *
751 ******************************************************************************/
755 * cloog_domain_malloc function:
756 * This function allocates the memory space for a CloogDomain structure and
757 * sets its fields with default values. Then it returns a pointer to the
759 * - November 21th 2005: first version.
761 CloogDomain
* cloog_domain_malloc()
762 { CloogDomain
* domain
;
764 domain
= (CloogDomain
*)malloc(sizeof(CloogDomain
)) ;
766 { fprintf(stderr
, "[CLooG]ERROR: memory overflow.\n") ;
769 cloog_domain_leak_up() ;
771 /* We set the various fields with default values. */
772 domain
->polyhedron
= NULL
;
773 domain
->references
= 1 ;
780 * cloog_domain_alloc function:
781 * This function allocates the memory space for a CloogDomain structure and
782 * sets its fields with those given as input. Then it returns a pointer to the
784 * - April 19th 2005: first version.
785 * - November 21th 2005: cloog_domain_malloc use.
787 CloogDomain
* cloog_domain_alloc(Polyhedron
* polyhedron
)
788 { CloogDomain
* domain
;
790 if (polyhedron
== NULL
)
793 { domain
= cloog_domain_malloc() ;
794 domain
->polyhedron
= polyhedron
;
802 * cloog_domain_isempty function:
803 * This function returns 1 if the polyhedron given as input is empty, 0
805 * - October 28th 2001: first version.
807 int cloog_domain_isempty(CloogDomain
* domain
)
808 { if (domain
->polyhedron
== NULL
)
811 if (domain
->polyhedron
->next
)
813 return((domain
->polyhedron
->Dimension
< domain
->polyhedron
->NbEq
) ? 1 : 0) ;
818 * cloog_domain_universe function:
819 * This function returns 1 if the polyhedron given as input describe the
820 * universe of its dimension, 0 otherwise. Nb: the NbBid field of a polyhedron
821 * gives the number of bidirectionnal rays.
822 * - November 19th 2001: first version.
824 int cloog_domain_universe(CloogDomain
* domain
)
825 { if (domain
->polyhedron
->next
)
827 return((domain
->polyhedron
->Dimension
== domain
->polyhedron
->NbBid
) ? 1 : 0) ;
832 * cloog_domain_project function:
833 * From Quillere's LoopGen 0.4. This function returns the projection of
834 * (domain) on the (level) first dimensions (i.e. outer loops). It returns a
835 * pointer to the projected Polyhedron.
836 * - nb_par is the number of parameters.
838 * - October 27th 2001: first version.
839 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
842 CloogDomain
* cloog_domain_project(CloogDomain
* domain
, int level
, int nb_par
)
843 { int row
, column
, nb_rows
, nb_columns
, difference
;
844 CloogDomain
* projected_domain
;
845 CloogMatrix
* matrix
;
847 nb_rows
= level
+ nb_par
+ 1 ;
848 nb_columns
= domain
->polyhedron
->Dimension
+ 1 ;
849 difference
= nb_columns
- nb_rows
;
852 return(cloog_domain_copy(domain
)) ;
854 matrix
= cloog_matrix_alloc(nb_rows
,nb_columns
) ;
856 for (row
=0;row
<level
;row
++)
857 for (column
=0;column
<nb_columns
; column
++)
858 value_set_si(matrix
->p
[row
][column
],(row
== column
? 1 : 0)) ;
860 for (;row
<nb_rows
;row
++)
861 for (column
=0;column
<nb_columns
;column
++)
862 value_set_si(matrix
->p
[row
][column
],(row
+difference
== column
? 1 : 0)) ;
864 projected_domain
= cloog_domain_image(domain
,matrix
) ;
865 cloog_matrix_free(matrix
) ;
867 return(projected_domain
) ;
872 * cloog_domain_bounds:
873 * Given a list (union) of polyhedra "domain", this function returns a single
874 * polyhedron with constraints that reflect the (parametric) lower and
875 * upper bound on dimension "dim".
877 * nb_par is the number of parameters of the domain.
879 CloogDomain
* cloog_domain_bounds(CloogDomain
* domain
, int dim
, int nb_par
)
881 int row
, nb_rows
, nb_columns
, difference
;
882 CloogDomain
* projected_domain
, *extended_domain
, *bounds
;
883 CloogMatrix
* matrix
;
885 nb_rows
= 1 + nb_par
+ 1;
886 nb_columns
= domain
->polyhedron
->Dimension
+ 1 ;
887 difference
= nb_columns
- nb_rows
;
890 return(cloog_domain_convex(domain
));
892 matrix
= cloog_matrix_alloc(nb_rows
, nb_columns
);
894 value_set_si(matrix
->p
[0][dim
], 1);
895 for (row
= 1; row
< nb_rows
; row
++)
896 value_set_si(matrix
->p
[row
][row
+difference
], 1);
898 projected_domain
= cloog_domain_image(domain
,matrix
) ;
899 extended_domain
= cloog_domain_preimage(projected_domain
, matrix
);
900 cloog_domain_free(projected_domain
);
901 cloog_matrix_free(matrix
) ;
902 bounds
= cloog_domain_convex(extended_domain
);
903 cloog_domain_free(extended_domain
);
910 * cloog_domain_extend function:
911 * From Quillere's LoopGen 0.4. This function returns the (domain) given as
912 * input with (dim)+(nb_par) dimensions. The new dimensions are added before
913 * the (nb_par) parameters. This function does not free (domain), and returns
915 * - nb_par is the number of parameters.
917 * - October 27th 2001: first version.
918 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
921 CloogDomain
* cloog_domain_extend(CloogDomain
* domain
, int dim
, int nb_par
)
922 { int row
, column
, nb_rows
, nb_columns
, difference
;
923 CloogDomain
* extended_domain
;
924 CloogMatrix
* matrix
;
926 nb_rows
= 1 + domain
->polyhedron
->Dimension
;
927 nb_columns
= dim
+ nb_par
+ 1 ;
928 difference
= nb_columns
- nb_rows
;
931 return(cloog_domain_copy(domain
)) ;
933 matrix
= cloog_matrix_alloc(nb_rows
,nb_columns
) ;
935 for (row
=0;row
<domain
->polyhedron
->Dimension
-nb_par
;row
++)
936 for (column
=0;column
<nb_columns
;column
++)
937 value_set_si(matrix
->p
[row
][column
],(row
== column
? 1 : 0)) ;
939 for (;row
<=domain
->polyhedron
->Dimension
;row
++)
940 for (column
=0;column
<nb_columns
;column
++)
941 value_set_si(matrix
->p
[row
][column
],(row
+difference
== column
? 1 : 0)) ;
943 extended_domain
= cloog_domain_preimage(domain
,matrix
) ;
944 cloog_matrix_free(matrix
) ;
946 return(extended_domain
) ;
951 * cloog_domain_never_integral function:
952 * For us, an equality like 3*i -4 = 0 is always false since 4%3 != 0. This
953 * function returns a boolean set to 1 if there is this kind of 'never true'
954 * constraint inside a polyhedron, 0 otherwise.
955 * - domain is the polyhedron to check,
957 * - November 28th 2001: first version.
958 * - June 26th 2003: for iterators, more 'never true' constraints are found
959 * (compare cholesky2 and vivien with a previous version),
960 * checking for the parameters created (compare using vivien).
961 * - June 28th 2003: Previously in loop.c and called
962 * cloog_loop_simplify_nevertrue, now here !
963 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
965 * - October 14th 2005: Complete rewriting, not faster but code quite shorter.
967 int cloog_domain_never_integral(CloogDomain
* domain
)
970 Polyhedron
* polyhedron
;
972 if ((domain
== NULL
) || (domain
->polyhedron
== NULL
))
976 value_init_c(modulo
) ;
977 polyhedron
= domain
->polyhedron
;
978 dimension
= polyhedron
->Dimension
+ 2 ;
980 /* For each constraint... */
981 for (i
=0; i
<polyhedron
->NbConstraints
; i
++)
982 { /* If we have an equality and the scalar part is not zero... */
983 if (value_zero_p(polyhedron
->Constraint
[i
][0]) &&
984 value_notzero_p(polyhedron
->Constraint
[i
][dimension
-1]))
985 { /* Then we check whether the scalar can be divided by the gcd of the
986 * unknown vector (including iterators and parameters) or not. If not,
987 * there is no integer point in the polyhedron and we return 1.
989 Vector_Gcd(&(polyhedron
->Constraint
[i
][1]),dimension
-2,&gcd
) ;
990 value_modulus(modulo
,polyhedron
->Constraint
[i
][dimension
-1],gcd
) ;
992 if (value_notzero_p(modulo
))
993 { value_clear_c(gcd
) ;
994 value_clear_c(modulo
) ;
1000 value_clear_c(gcd
) ;
1001 value_clear_c(modulo
) ;
1007 * cloog_domain_stride function:
1008 * This function finds the stride imposed to unknown with the column number
1009 * 'strided_level' in order to be integral. For instance, if we have a
1010 * constraint like -i - 2j + 2k = 0, and we consider k, then k can be integral
1011 * only if (i + 2j)%2 = 0. Then only if i%2 = 0. Then k imposes a stride 2 to
1012 * the unknown i. The function returns the imposed stride in a parameter field.
1013 * - domain is the set of constraint we have to consider,
1014 * - strided_level is the column number of the unknown for which a stride have
1016 * - looking_level is the column number of the unknown that impose a stride to
1017 * the first unknown.
1018 * - stride is the stride that is returned back as a function parameter.
1019 * - offset is the value of the constant c if the condition is of the shape
1020 * (i + c)%s = 0, s being the stride.
1022 * - June 28th 2003: first version.
1023 * - July 14th 2003: can now look for multiple striding constraints and returns
1024 * the GCD of the strides and the common offset.
1025 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
1028 void cloog_domain_stride(domain
, strided_level
, nb_par
, stride
, offset
)
1029 CloogDomain
* domain
;
1030 int strided_level
, nb_par
;
1031 Value
* stride
, * offset
;
1033 Polyhedron
* polyhedron
;
1034 int n_col
, n_row
, rank
;
1039 polyhedron
= domain
->polyhedron
;
1040 dimension
= polyhedron
->Dimension
;
1042 /* Look at all equalities involving strided_level and the inner
1043 * iterators. We can ignore the outer iterators and the parameters
1044 * here because the lower bound on strided_level is assumed to
1047 n_col
= (1+dimension
-nb_par
) - strided_level
;
1048 for (i
=0, n_row
=0; i
< polyhedron
->NbEq
; i
++)
1049 if (First_Non_Zero(polyhedron
->Constraint
[i
]+strided_level
, n_col
) != -1)
1052 M
= cloog_matrix_alloc(n_row
+1, n_col
+1);
1053 for (i
=0, n_row
= 0; i
< polyhedron
->NbEq
; i
++) {
1054 if (First_Non_Zero(polyhedron
->Constraint
[i
]+strided_level
, n_col
) == -1)
1056 Vector_Copy(polyhedron
->Constraint
[i
]+strided_level
, M
->p
[n_row
], n_col
);
1057 value_assign(M
->p
[n_row
][n_col
], polyhedron
->Constraint
[i
][1+dimension
]);
1060 value_set_si(M
->p
[n_row
][n_col
], 1);
1062 /* Then look at the general solution to the above equalities. */
1063 rank
= SolveDiophantine(M
, &U
, &V
);
1064 cloog_matrix_free(M
);
1067 /* There is no solution, so the body of this loop will
1068 * never execute. We just leave the constraints alone here so
1069 * that they will ensure the body will not be executed.
1070 * We should probably propagate this information up so that
1071 * the loop can be removed entirely.
1073 value_set_si(*offset
, 0);
1074 value_set_si(*stride
, 1);
1076 /* Compute the gcd of the coefficients defining strided_level. */
1077 Vector_Gcd(U
->p
[0], U
->NbColumns
, stride
);
1078 value_oppose(*offset
, V
->p
[0]);
1079 value_pmodulus(*offset
, *offset
, *stride
);
1089 * cloog_domain_integral_lowerbound function:
1090 * This function returns 1 if the lower bound of an iterator (such as its
1091 * column rank in the constraint set 'domain' is 'level') is integral,
1092 * 0 otherwise. If the lower bound is actually integral, the function fills
1093 * the 'lower' field with the lower bound value.
1094 * - June 29th 2003: first version.
1095 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
1098 int cloog_domain_integral_lowerbound(domain
, level
, lower
)
1099 CloogDomain
* domain
;
1102 { int i
, first_lower
=1, dimension
, lower_constraint
=-1 ;
1103 Value iterator
, constant
, tmp
;
1104 Polyhedron
* polyhedron
;
1106 polyhedron
= domain
->polyhedron
;
1107 dimension
= polyhedron
->Dimension
;
1109 /* We want one and only one lower bound (e.g. no equality, no maximum
1112 for (i
=0; i
<polyhedron
->NbConstraints
; i
++)
1113 if (value_zero_p(polyhedron
->Constraint
[i
][0]) &&
1114 value_notzero_p(polyhedron
->Constraint
[i
][level
]))
1117 for (i
=0; i
<polyhedron
->NbConstraints
; i
++)
1118 if (value_pos_p(polyhedron
->Constraint
[i
][level
]))
1121 lower_constraint
= i
;
1129 /* We want an integral lower bound: no other non-zero entry except the
1130 * iterator coefficient and the constant.
1132 for (i
=1; i
<level
; i
++)
1133 if (value_notzero_p(polyhedron
->Constraint
[lower_constraint
][i
]))
1135 for (i
=level
+1; i
<=polyhedron
->Dimension
; i
++)
1136 if (value_notzero_p(polyhedron
->Constraint
[lower_constraint
][i
]))
1139 value_init_c(iterator
) ;
1140 value_init_c(constant
) ;
1143 /* If all is passed, then find the lower bound and return 1. */
1144 value_assign(iterator
, polyhedron
->Constraint
[lower_constraint
][level
]) ;
1145 value_oppose(constant
, polyhedron
->Constraint
[lower_constraint
][dimension
+1]);
1147 value_modulus(tmp
, constant
, iterator
) ;
1148 value_division(*lower
, constant
, iterator
) ;
1150 if (!(value_zero_p(tmp
) || value_neg_p(constant
)))
1151 value_increment(*lower
, *lower
) ;
1153 value_clear_c(iterator
) ;
1154 value_clear_c(constant
) ;
1155 value_clear_c(tmp
) ;
1162 * cloog_domain_lowerbound_update function:
1163 * This function updates the integral lower bound of an iterator (such as its
1164 * column rank in the constraint set 'domain' is 'level') into 'lower'.
1165 * - Jun 29th 2003: first version.
1166 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
1169 void cloog_domain_lowerbound_update(domain
, level
, lower
)
1170 CloogDomain
* domain
;
1174 Polyhedron
* polyhedron
;
1176 polyhedron
= domain
->polyhedron
;
1178 /* There is only one lower bound, the first one is the good one. */
1179 for (i
=0; i
<polyhedron
->NbConstraints
; i
++)
1180 if (value_pos_p(polyhedron
->Constraint
[i
][level
]))
1181 { value_set_si(polyhedron
->Constraint
[i
][level
], 1) ;
1182 value_oppose(polyhedron
->Constraint
[i
][polyhedron
->Dimension
+1], lower
) ;
1189 * cloog_domain_lazy_equal function:
1190 * This function returns 1 if the domains given as input are the same, 0 if it
1191 * is unable to decide. This function makes an entry-to-entry comparison between
1192 * the constraint systems, if all the entries are the same, the domains are
1193 * obviously the same and it returns 1, at the first difference, it returns 0.
1194 * This is a very fast way to verify this property. It has been shown (with the
1195 * CLooG benchmarks) that operations on equal domains are 17% of all the
1196 * polyhedral computations. For 75% of the actually identical domains, this
1197 * function answer that they are the same and allow to give immediately the
1198 * trivial solution instead of calling the heavy general functions of PolyLib.
1199 * - August 22th 2003: first version.
1200 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
1203 int cloog_domain_lazy_equal(CloogDomain
* d1
, CloogDomain
* d2
)
1204 { int i
, nb_elements
;
1205 Polyhedron
* p1
, * p2
;
1207 p1
= d1
->polyhedron
;
1208 p2
= d2
->polyhedron
;
1210 while ((p1
!= NULL
) && (p2
!= NULL
))
1211 { if ((p1
->NbConstraints
!= p2
->NbConstraints
) ||
1212 (p1
->Dimension
!= p2
->Dimension
))
1215 nb_elements
= p1
->NbConstraints
* (p1
->Dimension
+ 2) ;
1217 for (i
=0;i
<nb_elements
;i
++)
1218 if (value_ne(p1
->p_Init
[i
], p2
->p_Init
[i
]))
1225 if ((p1
!= NULL
) || (p2
!= NULL
))
1233 * cloog_domain_lazy_block function:
1234 * This function returns 1 if the two domains d1 and d2 given as input are the
1235 * same (possibly except for a dimension equal to a constant where we accept
1236 * a difference of 1) AND if we are sure that there are no other domain in
1237 * the code generation problem that may put integral points between those of
1238 * d1 and d2 (0 otherwise). In fact this function answers the question "can I
1239 * safely consider the two domains as only one with two statements (a block) ?".
1240 * This function is lazy: it asks for very standard scattering representation
1241 * (only one constraint per dimension which is an equality, and the constraints
1242 * are ordered per dimension depth: the left hand side of the constraint matrix
1243 * is the identity) and will answer NO at the very first problem.
1244 * - d1 and d2 are the two domains to check for blocking,
1245 * - scattering is the linked list of all domains,
1246 * - scattdims is the total number of scattering dimentions.
1248 * - April 30th 2005: beginning
1249 * - June 9th 2005: first working version.
1250 * - June 10th 2005: debugging.
1251 * - June 21rd 2005: Adaptation for GMP.
1252 * - October 16th 2005: (debug) some false blocks have been removed.
1254 int cloog_domain_lazy_block(d1
, d2
, scattering
, scattdims
)
1255 CloogDomain
* d1
, * d2
;
1256 CloogDomainList
* scattering
;
1258 { int i
, j
, difference
=0, different_constraint
=0 ;
1259 Value date1
, date2
, date3
, temp
;
1260 Polyhedron
* p1
, * p2
, * p3
;
1262 p1
= d1
->polyhedron
;
1263 p2
= d2
->polyhedron
;
1265 /* Some basic checks: we only accept convex domains, with same constraint
1266 * and dimension numbers.
1268 if ((p1
->next
!= NULL
) || (p2
->next
!= NULL
) ||
1269 (p1
->NbConstraints
!= p2
->NbConstraints
) ||
1270 (p1
->Dimension
!= p2
->Dimension
))
1273 /* There should be only one difference between the two domains, it
1274 * has to be at the constant level and the difference must be of +1,
1275 * moreover, after the difference all domain coefficient has to be 0.
1276 * The matrix shape is:
1278 * |===========|=====|<- 0 line
1279 * |===========|=====|
1280 * |===========|====?|<- different_constraint line (found here)
1281 * |===========|0000=|
1282 * |===========|0000=|<- pX->NbConstraints line
1285 * | | (pX->Dimension + 2) column
1286 * | scattdims column
1290 value_init_c(temp
) ;
1291 for (i
=0;i
<p1
->NbConstraints
;i
++)
1292 { if (difference
== 0)
1293 { /* All elements except scalar must be equal. */
1294 for (j
=0;j
<(p1
->Dimension
+ 1);j
++)
1295 if (value_ne(p1
->Constraint
[i
][j
],p2
->Constraint
[i
][j
]))
1296 { value_clear_c(temp
) ;
1299 /* The scalar may differ from +1 (now j=(p1->Dimension + 1)). */
1300 if (value_ne(p1
->Constraint
[i
][j
],p2
->Constraint
[i
][j
]))
1301 { value_increment(temp
,p2
->Constraint
[i
][j
]) ;
1302 if (value_ne(p1
->Constraint
[i
][j
],temp
))
1303 { value_clear_c(temp
) ;
1308 different_constraint
= i
;
1313 { /* Scattering coefficients must be equal. */
1314 for (j
=0;j
<(scattdims
+1);j
++)
1315 if (value_ne(p1
->Constraint
[i
][j
],p2
->Constraint
[i
][j
]))
1316 { value_clear_c(temp
) ;
1320 /* Domain coefficients must be 0. */
1321 for (;j
<(p1
->Dimension
+ 1);j
++)
1322 if (value_notzero_p(p1
->Constraint
[i
][j
]) ||
1323 value_notzero_p(p2
->Constraint
[i
][j
]))
1324 { value_clear_c(temp
) ;
1328 /* Scalar must be equal. */
1329 if (value_ne(p1
->Constraint
[i
][j
],p2
->Constraint
[i
][j
]))
1330 { value_clear_c(temp
) ;
1335 value_clear_c(temp
) ;
1337 /* If the domains are exactly the same, this is a block. */
1338 if (difference
== 0)
1341 /* Now a basic check that the constraint with the difference is an
1342 * equality of a dimension with a constant.
1344 for (i
=0;i
<=different_constraint
;i
++)
1345 if (value_notzero_p(p1
->Constraint
[different_constraint
][i
]))
1348 if (value_notone_p(p1
->Constraint
[different_constraint
]
1349 [different_constraint
+1]))
1352 for (i
=different_constraint
+2;i
<(p1
->Dimension
+ 1);i
++)
1353 if (value_notzero_p(p1
->Constraint
[different_constraint
][i
]))
1356 /* For the moment, d1 and d2 are a block candidate. There remains to check
1357 * that there is no other domain that may put an integral point between
1358 * them. In our lazy test we ensure this property by verifying that the
1359 * constraint matrices have a very strict shape: let us consider that the
1360 * dimension with the difference is d. Then the first d dimensions are
1361 * defined in their depth order using equalities (thus the first column begins
1362 * with d zeroes, there is a d*d identity matrix and a zero-matrix for
1363 * the remaining simensions). If a domain can put integral points between the
1364 * domains of the block candidate, this means that the other entries on the
1365 * first d constraints are equal to those of d1 or d2. Thus we are looking for
1366 * such a constraint system, if it exists d1 and d2 is considered to not be
1367 * a block, it is a bock otherwise.
1369 * 1. Only equalities (for the first different_constraint+1 lines).
1370 * | 2. Must be the identity.
1371 * | | 3. Must be zero.
1372 * | | | 4. Elements are equal, the last one is either date1 or 2.
1375 * |0|100|00000|=====|<- 0 line
1376 * |0|010|00000|=====|
1377 * |0|001|00000|====?|<- different_constraint line
1378 * |*|***|*****|*****|
1379 * |*|***|*****|*****|<- pX->NbConstraints line
1382 * | | | (pX->Dimension + 2) column
1383 * | | scattdims column
1384 * | different_constraint+1 column
1388 /* Step 1 and 2. This is only necessary to check one domain because
1389 * we checked that they are equal on this part before.
1391 for (i
=0;i
<=different_constraint
;i
++)
1392 { for (j
=0;j
<i
+1;j
++)
1393 if (value_notzero_p(p1
->Constraint
[i
][j
]))
1396 if (value_notone_p(p1
->Constraint
[i
][i
+1]))
1399 for (j
=i
+2;j
<=different_constraint
+1;j
++)
1400 if (value_notzero_p(p1
->Constraint
[i
][j
]))
1405 for (i
=0;i
<=different_constraint
;i
++)
1406 for (j
=different_constraint
+2;j
<=scattdims
;j
++)
1407 if (value_notzero_p(p1
->Constraint
[i
][j
]))
1410 value_init_c(date1
) ;
1411 value_init_c(date2
) ;
1412 value_init_c(date3
) ;
1414 /* Now we have to check that the two different dates are unique. */
1415 value_assign(date1
, p1
->Constraint
[different_constraint
][p1
->Dimension
+ 1]) ;
1416 value_assign(date2
, p2
->Constraint
[different_constraint
][p2
->Dimension
+ 1]) ;
1418 /* Step 4. We check all domains except d1 and d2 and we look for at least
1419 * a difference with d1 or d2 on the first different_constraint+1 dimensions.
1421 while (scattering
!= NULL
)
1422 { if ((scattering
->domain
!= d1
) && (scattering
->domain
!= d2
))
1423 { p3
= scattering
->domain
->polyhedron
;
1424 value_assign(date3
,p3
->Constraint
[different_constraint
][p3
->Dimension
+1]);
1427 if (value_ne(date3
,date2
) && value_ne(date3
,date1
))
1430 for (i
=0;(i
<different_constraint
)&&(!difference
);i
++)
1431 for (j
=0;(j
<(p3
->Dimension
+ 2))&&(!difference
);j
++)
1432 if (value_ne(p1
->Constraint
[i
][j
],p3
->Constraint
[i
][j
]))
1435 for (j
=0;(j
<(p3
->Dimension
+ 1))&&(!difference
);j
++)
1436 if (value_ne(p1
->Constraint
[different_constraint
][j
],
1437 p3
->Constraint
[different_constraint
][j
]))
1441 { value_clear_c(date1
) ;
1442 value_clear_c(date2
) ;
1443 value_clear_c(date3
) ;
1448 scattering
= scattering
->next
;
1451 value_clear_c(date1
) ;
1452 value_clear_c(date2
) ;
1453 value_clear_c(date3
) ;
1459 * cloog_domain_lazy_disjoint function:
1460 * This function returns 1 if the domains given as input are disjoint, 0 if it
1461 * is unable to decide. This function finds the unknown with fixed values in
1462 * both domains (on a given constraint, their column entry is not zero and
1463 * only the constant coefficient can be different from zero) and verify that
1464 * their values are the same. If not, the domains are obviously disjoint and
1465 * it returns 1, if there is not such case it returns 0. This is a very fast
1466 * way to verify this property. It has been shown (with the CLooG benchmarks)
1467 * that operations on disjoint domains are 36% of all the polyhedral
1468 * computations. For 94% of the actually identical domains, this
1469 * function answer that they are disjoint and allow to give immediately the
1470 * trivial solution instead of calling the heavy general functions of PolyLib.
1471 * - August 22th 2003: first version.
1472 * - June 21rd 2005: Adaptation for GMP (based on S. Verdoolaege's version of
1475 int cloog_domain_lazy_disjoint(CloogDomain
* d1
, CloogDomain
* d2
)
1476 { int i1
, j1
, i2
, j2
, scat_dim
;
1478 Polyhedron
* p1
, * p2
;
1480 p1
= d1
->polyhedron
;
1481 p2
= d2
->polyhedron
;
1483 if ((p1
->next
!= NULL
) || (p2
->next
!= NULL
))
1486 value_init_c(scat_val
) ;
1488 for (i1
=0; i1
<p1
->NbConstraints
; i1
++)
1489 { if (value_notzero_p(p1
->Constraint
[i1
][0]))
1493 while (value_zero_p(p1
->Constraint
[i1
][scat_dim
]) &&
1494 (scat_dim
< p1
->Dimension
))
1497 if (value_notone_p(p1
->Constraint
[i1
][scat_dim
]))
1500 { for (j1
=scat_dim
+1; j1
<=p1
->Dimension
; j1
++)
1501 if (value_notzero_p(p1
->Constraint
[i1
][j1
]))
1504 if (j1
!= p1
->Dimension
+1)
1507 value_assign(scat_val
,p1
->Constraint
[i1
][p1
->Dimension
+1]) ;
1509 for (i2
=0; i2
<p2
->NbConstraints
; i2
++)
1510 { for (j2
=0;j2
<scat_dim
;j2
++)
1511 if (value_notzero_p(p2
->Constraint
[i2
][j2
]))
1514 if ((j2
!= scat_dim
) || value_notone_p(p2
->Constraint
[i2
][scat_dim
]))
1517 for (j2
=scat_dim
+1; j2
<=p2
->Dimension
; j2
++)
1518 if (value_notzero_p(p2
->Constraint
[i2
][j2
]))
1521 if (j2
!= p2
->Dimension
+1)
1524 if (value_ne(p2
->Constraint
[i2
][p2
->Dimension
+1],scat_val
))
1525 { value_clear_c(scat_val
) ;
1532 value_clear_c(scat_val
) ;
1538 * cloog_domain_list_lazy_same function:
1539 * This function returns 1 if two domains in the list are the same, 0 if it
1540 * is unable to decide.
1541 * - February 9th 2004: first version.
1543 int cloog_domain_list_lazy_same(CloogDomainList
* list
)
1544 { /*int i=1, j=1 ;*/
1545 CloogDomainList
* current
, * next
;
1548 while (current
!= NULL
)
1549 { next
= current
->next
;
1551 while (next
!= NULL
)
1552 { if (cloog_domain_lazy_equal(current
->domain
,next
->domain
))
1553 { /*printf("Same domains: %d and %d\n",i,j) ;*/
1560 current
= current
->next
;
1568 * cloog_domain_grow function:
1569 * This function extend the polyhedron (domain) onto the dimension (level) by a
1570 * step of 1, if (lower) is 1 then the lower bound of the dimension is the same
1571 * minus one, if (lower) is 0 then the upper bound of the dimension is the
1572 * same plus one. This function frees the Polyhedron structure given as input
1573 * and returns the extended one.
1574 * - March 27th 2004: first version.
1575 * - June 21rd 2005: Adaptation for GMP.
1577 CloogDomain
* cloog_domain_grow(CloogDomain
* domain
, int level
, int lower
)
1578 { int i
, scalar_dim
;
1579 CloogMatrix
* matrix
;
1580 CloogDomain
* grow
;
1582 matrix
= cloog_domain_domain2matrix(domain
) ;
1583 cloog_domain_free(domain
) ;
1584 scalar_dim
= matrix
->NbColumns
- 1 ;
1586 for (i
=0;i
<matrix
->NbRows
;i
++)
1587 if (value_one_p(matrix
->p
[i
][0]))
1588 { if (((lower
== 1) && value_pos_p(matrix
->p
[i
][level
])) ||
1589 ((lower
== 0) && value_neg_p(matrix
->p
[i
][level
])))
1590 value_increment(matrix
->p
[i
][scalar_dim
],matrix
->p
[i
][scalar_dim
]) ;
1593 grow
= cloog_domain_matrix2domain(matrix
) ;
1594 cloog_matrix_free(matrix
) ;
1600 * Those functions are provided for "object encapsulation", to separate as much
1601 * as possible the inside of the CloogDomain structure from the rest of the
1602 * program, in order to ease the change of polyhedral library. For efficiency
1603 * reasons, they are defined and used as macros in domain.h.
1604 * - April 20th 2005: setting.
1606 Polyhedron * cloog_domain_polyhedron(CloogDomain * domain)
1607 { return domain->polyhedron ;
1610 int cloog_domain_dimension(CloogDomain * domain)
1611 { return domain->polyhedron->Dimension ;
1614 int cloog_domain_nbconstraints(CloogDomain * domain)
1615 { return domain->polyhedron->NbConstraints ;
1618 int cloog_domain_isconvex(CloogDomain * domain)
1619 { return (domain->polyhedron->next == NULL)? 1 : 0 ;
1625 * cloog_domain_cut_first function:
1626 * this function returns a CloogDomain structure with everything except the
1627 * first part of the polyhedra union of the input domain as domain. After a call
1628 * to this function, there remains in the CloogDomain structure provided as
1629 * input only the first part of the original polyhedra union.
1630 * - April 20th 2005: first version, extracted from different part of loop.c.
1632 CloogDomain
* cloog_domain_cut_first(CloogDomain
* domain
)
1633 { CloogDomain
* rest
;
1635 if ((domain
!= NULL
) && (domain
->polyhedron
!= NULL
))
1636 { rest
= cloog_domain_alloc(domain
->polyhedron
->next
) ;
1637 domain
->polyhedron
->next
= NULL
;
1647 * cloog_domain_lazy_isscalar function:
1648 * this function returns 1 if the dimension 'dimension' in the domain 'domain'
1649 * is scalar, this means that the only constraint on this dimension must have
1650 * the shape "x.dimension + scalar = 0" with x an integral variable. This
1651 * function is lazy since we only accept x=1 (further calculations are easier
1653 * - June 14th 2005: first version.
1654 * - June 21rd 2005: Adaptation for GMP.
1656 int cloog_domain_lazy_isscalar(CloogDomain
* domain
, int dimension
)
1658 Polyhedron
* polyhedron
;
1660 polyhedron
= domain
->polyhedron
;
1661 /* For each constraint... */
1662 for (i
=0;i
<polyhedron
->NbConstraints
;i
++)
1663 { /* ...if it is concerned by the potentially scalar dimension... */
1664 if (value_notzero_p(polyhedron
->Constraint
[i
][dimension
+1]))
1665 { /* ...check that the constraint has the shape "dimension + scalar = 0". */
1666 for (j
=0;j
<=dimension
;j
++)
1667 if (value_notzero_p(polyhedron
->Constraint
[i
][j
]))
1670 if (value_notone_p(polyhedron
->Constraint
[i
][dimension
+1]))
1673 for (j
=dimension
+2;j
<(polyhedron
->Dimension
+ 1);j
++)
1674 if (value_notzero_p(polyhedron
->Constraint
[i
][j
]))
1684 * cloog_domain_scalar function:
1685 * when we call this function, we know that "dimension" is a scalar dimension,
1686 * this function finds the scalar value in "domain" and returns it in "value".
1687 * - June 30th 2005: first version.
1689 void cloog_domain_scalar(CloogDomain
* domain
, int dimension
, Value
* value
)
1691 Polyhedron
* polyhedron
;
1693 polyhedron
= domain
->polyhedron
;
1694 /* For each constraint... */
1695 for (i
=0;i
<polyhedron
->NbConstraints
;i
++)
1696 { /* ...if it is the equality defining the scalar dimension... */
1697 if (value_notzero_p(polyhedron
->Constraint
[i
][dimension
+1]) &&
1698 value_zero_p(polyhedron
->Constraint
[i
][0]))
1699 { /* ...Then send the scalar value. */
1700 value_assign(*value
,polyhedron
->Constraint
[i
][polyhedron
->Dimension
+1]) ;
1701 value_oppose(*value
,*value
) ;
1706 /* We should have found a scalar value: if not, there is an error. */
1707 fprintf(stderr
, "[CLooG]ERROR: dimension %d is not scalar as expected.\n",
1714 * cloog_domain_erase_dimension function:
1715 * this function returns a CloogDomain structure builds from 'domain' where
1716 * we removed the dimension 'dimension' and every constraint considering this
1717 * dimension. This is not a projection ! Every data concerning the
1718 * considered dimension is simply erased.
1719 * - June 14th 2005: first version.
1720 * - June 21rd 2005: Adaptation for GMP.
1722 CloogDomain
* cloog_domain_erase_dimension(CloogDomain
* domain
, int dimension
)
1723 { int i
, j
, mi
, nb_dim
;
1724 CloogMatrix
* matrix
;
1725 CloogDomain
* erased
;
1726 Polyhedron
* polyhedron
;
1728 polyhedron
= domain
->polyhedron
;
1729 nb_dim
= polyhedron
->Dimension
;
1731 /* The matrix is one column less and at least one constraint less. */
1732 matrix
= cloog_matrix_alloc(polyhedron
->NbConstraints
-1,nb_dim
+1) ;
1734 /* mi is the constraint counter for the matrix. */
1736 for (i
=0;i
<polyhedron
->NbConstraints
;i
++)
1737 if (value_zero_p(polyhedron
->Constraint
[i
][dimension
+1]))
1738 { for (j
=0;j
<=dimension
;j
++)
1739 value_assign(matrix
->p
[mi
][j
],polyhedron
->Constraint
[i
][j
]) ;
1741 for (j
=dimension
+2;j
<nb_dim
+2;j
++)
1742 value_assign(matrix
->p
[mi
][j
-1],polyhedron
->Constraint
[i
][j
]) ;
1747 erased
= cloog_domain_matrix2domain(matrix
) ;
1748 cloog_matrix_free(matrix
) ;
1755 * To change the order of the part of a polyhedral union, for funny results !
1756 * - September 10th 2005.
1758 void cloog_domain_reverse(CloogDomain
* domain
)
1759 { Polyhedron
* polyhedron
, * p
, * q
,* r
;
1761 polyhedron
= domain
->polyhedron
;
1763 if ((polyhedron
== NULL
)||(polyhedron
->next
== NULL
))
1766 q
= polyhedron
->next
;
1767 polyhedron
->next
= NULL
;
1769 q
->next
= polyhedron
;
1776 domain
->polyhedron
= q
;