zpu wip: enough to recognize the zpu-none-none target triplet
[clang/zpu.git] / docs / LanguageExtensions.html
blobf27a5705398102a116603b867d8af2d275b4fa5e
1 <html>
2 <head>
3 <title>Clang Language Extensions</title>
4 <link type="text/css" rel="stylesheet" href="../menu.css" />
5 <link type="text/css" rel="stylesheet" href="../content.css" />
6 <style type="text/css">
7 td {
8 vertical-align: top;
10 </style>
11 </head>
12 <body>
14 <!--#include virtual="../menu.html.incl"-->
16 <div id="content">
18 <h1>Clang Language Extensions</h1>
20 <ul>
21 <li><a href="#intro">Introduction</a></li>
22 <li><a href="#feature_check">Feature Checking Macros</a></li>
23 <li><a href="#has_include">Include File Checking Macros</a></li>
24 <li><a href="#builtinmacros">Builtin Macros</a></li>
25 <li><a href="#vectors">Vectors and Extended Vectors</a></li>
26 <li><a href="#deprecated">Deprecated and Unavailable attribute with Message</a></li>
27 <li><a href="#checking_language_features">Checks for Standard Language Features</a></li>
28 <ul>
29 <li><a href="#cxx_exceptions">C++ exceptions</a></li>
30 <li><a href="#cxx_rtti">C++ RTTI</a></li>
31 </ul>
32 <li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li>
33 <ul>
34 <li><a href="#cxx_attributes">C++0x attributes</a></li>
35 <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li>
36 <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li>
37 <li><a href="#cxx_concepts">C++ TR concepts</a></li>
38 <li><a href="#cxx_lambdas">C++0x lambdas</a></li>
39 <li><a href="#cxx_nullptr">C++0x nullptr</a></li>
40 <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li>
41 <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li>
42 <li><a href="#cxx_auto_type">C++0x type inference</a></li>
43 <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li>
44 <li><a href="#cxx_inline_namespaces">C++0x inline namespaces</a></li>
45 <li><a href="#cxx_strong_enums">C++0x strongly-typed enumerations</a></li>
46 <li><a href="#cxx_trailing_return">C++0x trailing return type</a></li>
47 </ul>
48 <li><a href="#blocks">Blocks</a></li>
49 <li><a href="#overloading-in-c">Function Overloading in C</a></li>
50 <li><a href="#builtins">Builtin Functions</a>
51 <ul>
52 <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
53 <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
54 </ul>
55 </li>
56 <li><a href="#targetspecific">Target-Specific Extensions</a>
57 <ul>
58 <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
59 </ul>
60 </li>
61 <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a>
62 <ul>
63 <li><a href="#analyzerattributes">Analyzer Attributes</a></li>
64 </ul>
65 </li>
66 </ul>
68 <!-- ======================================================================= -->
69 <h2 id="intro">Introduction</h2>
70 <!-- ======================================================================= -->
72 <p>This document describes the language extensions provided by Clang. In
73 addition to the language extensions listed here, Clang aims to support a broad
74 range of GCC extensions. Please see the <a
75 href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
76 more information on these extensions.</p>
78 <!-- ======================================================================= -->
79 <h2 id="feature_check">Feature Checking Macros</h2>
80 <!-- ======================================================================= -->
82 <p>Language extensions can be very useful, but only if you know you can depend
83 on them. In order to allow fine-grain features checks, we support two builtin
84 function-like macros. This allows you to directly test for a feature in your
85 code without having to resort to something like autoconf or fragile "compiler
86 version checks".</p>
88 <!-- ======================================================================= -->
89 <h3 id="__has_builtin">__has_builtin</h3>
90 <!-- ======================================================================= -->
92 <p>This function-like macro takes a single identifier argument that is the name
93 of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
94 not. It can be used like this:</p>
96 <blockquote>
97 <pre>
98 #ifndef __has_builtin // Optional of course.
99 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
100 #endif
103 #if __has_builtin(__builtin_trap)
104 __builtin_trap();
105 #else
106 abort();
107 #endif
109 </pre>
110 </blockquote>
113 <!-- ======================================================================= -->
114 <h3 id="__has_feature">__has_feature</h3>
115 <!-- ======================================================================= -->
117 <p>This function-like macro takes a single identifier argument that is the name
118 of a feature. It evaluates to 1 if the feature is supported or 0 if not. It
119 can be used like this:</p>
121 <blockquote>
122 <pre>
123 #ifndef __has_feature // Optional of course.
124 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
125 #endif
128 #if __has_feature(attribute_overloadable) || \
129 __has_feature(blocks)
131 #endif
133 </pre>
134 </blockquote>
136 <p>The feature tag is described along with the language feature below.</p>
138 <!-- ======================================================================= -->
139 <h3 id="__has_attribute">__has_attribute</h3>
140 <!-- ======================================================================= -->
142 <p>This function-like macro takes a single identifier argument that is the name
143 of an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
144 can be used like this:</p>
146 <blockquote>
147 <pre>
148 #ifndef __has_attribute // Optional of course.
149 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
150 #endif
153 #if __has_attribute(override) || \
154 #define OVERRIDE __attribute__((override))
155 #else
156 #define OVERRIDE
157 #endif
159 </pre>
160 </blockquote>
162 <!-- ======================================================================= -->
163 <h2 id="has_include">Include File Checking Macros</h2>
164 <!-- ======================================================================= -->
166 <p>Not all developments systems have the same include files.
167 The <a href="#__has_include">__has_include</a> and
168 <a href="#__has_include_next">__has_include_next</a> macros allow you to
169 check for the existence of an include file before doing
170 a possibly failing #include directive.</p>
172 <!-- ======================================================================= -->
173 <h3 id="__has_include">__has_include</h3>
174 <!-- ======================================================================= -->
176 <p>This function-like macro takes a single file name string argument that
177 is the name of an include file. It evaluates to 1 if the file can
178 be found using the include paths, or 0 otherwise:</p>
180 <blockquote>
181 <pre>
182 // Note the two possible file name string formats.
183 #if __has_include("myinclude.h") && __has_include(&lt;stdint.h&gt;)
184 # include "myinclude.h"
185 #endif
187 // To avoid problem with non-clang compilers not having this macro.
188 #if defined(__has_include) && __has_include("myinclude.h")
189 # include "myinclude.h"
190 #endif
191 </pre>
192 </blockquote>
194 <p>To test for this feature, use #if defined(__has_include).</p>
196 <!-- ======================================================================= -->
197 <h3 id="__has_include_next">__has_include_next</h3>
198 <!-- ======================================================================= -->
200 <p>This function-like macro takes a single file name string argument that
201 is the name of an include file. It is like __has_include except that it
202 looks for the second instance of the given file found in the include
203 paths. It evaluates to 1 if the second instance of the file can
204 be found using the include paths, or 0 otherwise:</p>
206 <blockquote>
207 <pre>
208 // Note the two possible file name string formats.
209 #if __has_include_next("myinclude.h") && __has_include_next(&lt;stdint.h&gt;)
210 # include_next "myinclude.h"
211 #endif
213 // To avoid problem with non-clang compilers not having this macro.
214 #if defined(__has_include_next) && __has_include_next("myinclude.h")
215 # include_next "myinclude.h"
216 #endif
217 </pre>
218 </blockquote>
220 <p>Note that __has_include_next, like the GNU extension
221 #include_next directive, is intended for use in headers only,
222 and will issue a warning if used in the top-level compilation
223 file. A warning will also be issued if an absolute path
224 is used in the file argument.</p>
226 <!-- ======================================================================= -->
227 <h2 id="builtinmacros">Builtin Macros</h2>
228 <!-- ======================================================================= -->
230 <dl>
231 <dt><code>__BASE_FILE__</code></dt>
232 <dd>Defined to a string that contains the name of the main input
233 file passed to Clang.</dd>
235 <dt><code>__COUNTER__</code></dt>
236 <dd>Defined to an integer value that starts at zero and is
237 incremented each time the <code>__COUNTER__</code> macro is
238 expanded.</dd>
240 <dt><code>__INCLUDE_LEVEL__</code></dt>
241 <dd>Defined to an integral value that is the include depth of the
242 file currently being translated. For the main file, this value is
243 zero.</dd>
245 <dt><code>__TIMESTAMP__</code></dt>
246 <dd>Defined to the date and time of the last modification of the
247 current source file.</dd>
249 <dt><code>__clang__</code></dt>
250 <dd>Defined when compiling with Clang</dd>
252 <dt><code>__clang_major__</code></dt>
253 <dd>Defined to the major version number of Clang (e.g., the 2 in
254 2.0.1).</dd>
256 <dt><code>__clang_minor__</code></dt>
257 <dd>Defined to the minor version number of Clang (e.g., the 0 in
258 2.0.1).</dd>
260 <dt><code>__clang_patchlevel__</code></dt>
261 <dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd>
263 <dt><code>__clang_version__</code></dt>
264 <dd>Defined to a string that captures the Clang version, including
265 the Subversion tag or revision number, e.g., "1.5 (trunk
266 102332)".</dd>
267 </dl>
269 <!-- ======================================================================= -->
270 <h2 id="vectors">Vectors and Extended Vectors</h2>
271 <!-- ======================================================================= -->
273 <p>Supports the GCC vector extensions, plus some stuff like V[1].</p>
275 <p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw
276 syntax and other tidbits as seen in OpenCL. An example is:</p>
278 <blockquote>
279 <pre>
280 typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
281 typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
283 float4 foo(float2 a, float2 b) {
284 float4 c;
285 c.xz = a;
286 c.yw = b;
287 return c;
289 </blockquote>
291 <p>Query for this feature with __has_feature(attribute_ext_vector_type).</p>
293 <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
295 <!-- ======================================================================= -->
296 <h2 id="deprecated">Deprecated and Unavailable attribute with Message</h2>
297 <!-- ======================================================================= -->
299 <p> Optional string message can be added to Deprecated and Available attributes. </p>
301 <p> Message will be added to deprecated warning or unavailable error if present. </p>
303 <!-- ======================================================================= -->
304 <h2 id="checking_language_features">Checks for Standard Language Features</h2>
305 <!-- ======================================================================= -->
307 <p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are
308 enabled. Those features are listed here.</p>
310 <h3 id="cxx_exceptions">C++ exceptions</h3>
312 <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
313 example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p>
315 <h3 id="cxx_rtti">C++ RTTI</h3>
317 <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
318 compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
320 <!-- ======================================================================= -->
321 <h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2>
322 <!-- ======================================================================= -->
324 <p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming
325 standard language features are enabled. Those features are listed here.</p>
327 <p>Currently, all features listed here are slated for inclusion in the upcoming
328 C++0x standard. As a result, all the features that clang supports are enabled
329 with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are
330 not yet implemented will be noted.</p>
332 <h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3>
334 <p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the
335 <tt>decltype()</tt> specifier is enabled.</p>
337 <h3 id="cxx_attributes">C++0x attributes</h3>
339 <p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for
340 attribute parsing with C++0x's square bracket notation is enabled.</p>
342 <h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3>
344 <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for
345 deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
347 <h3 id="cxx_concepts">C++ TR concepts</h3>
349 <p>Use <tt>__has_feature(cxx_concepts)</tt> to determine if support for
350 concepts is enabled. clang does not currently implement this feature.</p>
352 <h3 id="cxx_lambdas">C++0x lambdas</h3>
354 <p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for
355 lambdas is enabled. clang does not currently implement this feature.</p>
357 <h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3>
359 <p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for
360 <tt>nullptr</tt> is enabled. clang does not yet fully implement this
361 feature.</p>
363 <h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3>
365 <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for
366 rvalue references is enabled. clang does not yet fully implement this
367 feature.</p>
369 <h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3>
371 <p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for
372 compile-time assertions using <tt>static_assert</tt> is enabled.</p>
374 <h3 id="cxx_auto_type">C++0x type inference</h3>
376 <p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference
377 is supported using the <tt>auto</tt> specifier. If this is disabled,
378 <tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p>
380 <h3 id="cxx_variadic_templates">C++0x variadic templates</h3>
382 <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support
383 for templates taking any number of arguments with the ellipsis notation is
384 enabled. clang does not yet fully implement this feature.</p>
386 <h3 id="cxx_inline_namespaces">C++0x inline namespaces</h3>
388 <p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> to determine if support for
389 inline namespaces is enabled.</p>
391 <h3 id="cxx_trailing_return">C++0x trailing return type</h3>
393 <p>Use <tt>__has_feature(cxx_trailing_return)</tt> to determine if support for
394 the alternate function declaration syntax with trailing return type is enabled.</p>
396 <h3 id="cxx_strong_enums">C++0x strongly typed enumerations</h3>
398 <p>Use <tt>__has_feature(cxx_strong_enums)</tt> to determine if support for
399 strongly typed, scoped enumerations is enabled.</p>
401 <!-- ======================================================================= -->
402 <h2 id="blocks">Blocks</h2>
403 <!-- ======================================================================= -->
405 <p>The syntax and high level language feature description is in <a
406 href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
407 details for the clang implementation are in <a
408 href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
411 <p>Query for this feature with __has_feature(blocks).</p>
413 <!-- ======================================================================= -->
414 <h2 id="overloading-in-c">Function Overloading in C</h2>
415 <!-- ======================================================================= -->
417 <p>Clang provides support for C++ function overloading in C. Function
418 overloading in C is introduced using the <tt>overloadable</tt> attribute. For
419 example, one might provide several overloaded versions of a <tt>tgsin</tt>
420 function that invokes the appropriate standard function computing the sine of a
421 value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
422 precision:</p>
424 <blockquote>
425 <pre>
426 #include &lt;math.h&gt;
427 float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
428 double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
429 long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
430 </pre>
431 </blockquote>
433 <p>Given these declarations, one can call <tt>tgsin</tt> with a
434 <tt>float</tt> value to receive a <tt>float</tt> result, with a
435 <tt>double</tt> to receive a <tt>double</tt> result, etc. Function
436 overloading in C follows the rules of C++ function overloading to pick
437 the best overload given the call arguments, with a few C-specific
438 semantics:</p>
439 <ul>
440 <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
441 double</tt> is ranked as a floating-point promotion (per C99) rather
442 than as a floating-point conversion (as in C++).</li>
444 <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
445 <tt>U*</tt> is considered a pointer conversion (with conversion
446 rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
448 <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
449 is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
450 conversion is given "conversion" rank.</li>
451 </ul>
453 <p>The declaration of <tt>overloadable</tt> functions is restricted to
454 function declarations and definitions. Most importantly, if any
455 function with a given name is given the <tt>overloadable</tt>
456 attribute, then all function declarations and definitions with that
457 name (and in that scope) must have the <tt>overloadable</tt>
458 attribute. This rule even applies to redeclarations of functions whose original
459 declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
461 <blockquote>
462 <pre>
463 int f(int) __attribute__((overloadable));
464 float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
466 int g(int) __attribute__((overloadable));
467 int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
468 </pre>
469 </blockquote>
471 <p>Functions marked <tt>overloadable</tt> must have
472 prototypes. Therefore, the following code is ill-formed:</p>
474 <blockquote>
475 <pre>
476 int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
477 </pre>
478 </blockquote>
480 <p>However, <tt>overloadable</tt> functions are allowed to use a
481 ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
483 <blockquote>
484 <pre>
485 void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
486 </pre>
487 </blockquote>
489 <p>Functions declared with the <tt>overloadable</tt> attribute have
490 their names mangled according to the same rules as C++ function
491 names. For example, the three <tt>tgsin</tt> functions in our
492 motivating example get the mangled names <tt>_Z5tgsinf</tt>,
493 <tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two
494 caveats to this use of name mangling:</p>
496 <ul>
498 <li>Future versions of Clang may change the name mangling of
499 functions overloaded in C, so you should not depend on an specific
500 mangling. To be completely safe, we strongly urge the use of
501 <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
503 <li>The <tt>overloadable</tt> attribute has almost no meaning when
504 used in C++, because names will already be mangled and functions are
505 already overloadable. However, when an <tt>overloadable</tt>
506 function occurs within an <tt>extern "C"</tt> linkage specification,
507 it's name <i>will</i> be mangled in the same way as it would in
508 C.</li>
509 </ul>
511 <p>Query for this feature with __has_feature(attribute_overloadable).</p>
514 <!-- ======================================================================= -->
515 <h2 id="builtins">Builtin Functions</h2>
516 <!-- ======================================================================= -->
518 <p>Clang supports a number of builtin library functions with the same syntax as
519 GCC, including things like <tt>__builtin_nan</tt>,
520 <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
521 <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
522 addition to the GCC builtins, Clang supports a number of builtins that GCC does
523 not, which are listed here.</p>
525 <p>Please note that Clang does not and will not support all of the GCC builtins
526 for vector operations. Instead of using builtins, you should use the functions
527 defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
528 define portable wrappers for these. Many of the Clang versions of these
529 functions are implemented directly in terms of <a href="#vectors">extended
530 vector support</a> instead of builtins, in order to reduce the number of
531 builtins that we need to implement.</p>
533 <!-- ======================================================================= -->
534 <h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
535 <!-- ======================================================================= -->
537 <p><tt>__builtin_shufflevector</tt> is used to express generic vector
538 permutation/shuffle/swizzle operations. This builtin is also very important for
539 the implementation of various target-specific header files like
540 <tt>&lt;xmmintrin.h&gt;</tt>.
541 </p>
543 <p><b>Syntax:</b></p>
545 <pre>
546 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
547 </pre>
549 <p><b>Examples:</b></p>
551 <pre>
552 // Identity operation - return 4-element vector V1.
553 __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
555 // "Splat" element 0 of V1 into a 4-element result.
556 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
558 // Reverse 4-element vector V1.
559 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
561 // Concatenate every other element of 4-element vectors V1 and V2.
562 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
564 // Concatenate every other element of 8-element vectors V1 and V2.
565 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
566 </pre>
568 <p><b>Description:</b></p>
570 <p>The first two arguments to __builtin_shufflevector are vectors that have the
571 same element type. The remaining arguments are a list of integers that specify
572 the elements indices of the first two vectors that should be extracted and
573 returned in a new vector. These element indices are numbered sequentially
574 starting with the first vector, continuing into the second vector. Thus, if
575 vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
576 </p>
578 <p>The result of __builtin_shufflevector is a vector
579 with the same element type as vec1/vec2 but that has an element count equal to
580 the number of indices specified.
581 </p>
583 <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
585 <!-- ======================================================================= -->
586 <h3 id="__builtin_unreachable">__builtin_unreachable</h3>
587 <!-- ======================================================================= -->
589 <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
590 the program cannot be reached, even if the compiler might otherwise think it
591 can. This is useful to improve optimization and eliminates certain warnings.
592 For example, without the <tt>__builtin_unreachable</tt> in the example below,
593 the compiler assumes that the inline asm can fall through and prints a "function
594 declared 'noreturn' should not return" warning.
595 </p>
597 <p><b>Syntax:</b></p>
599 <pre>
600 __builtin_unreachable()
601 </pre>
603 <p><b>Example of Use:</b></p>
605 <pre>
606 void myabort(void) __attribute__((noreturn));
607 void myabort(void) {
608 asm("int3");
609 __builtin_unreachable();
611 </pre>
613 <p><b>Description:</b></p>
615 <p>The __builtin_unreachable() builtin has completely undefined behavior. Since
616 it has undefined behavior, it is a statement that it is never reached and the
617 optimizer can take advantage of this to produce better code. This builtin takes
618 no arguments and produces a void result.
619 </p>
621 <p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
624 <!-- ======================================================================= -->
625 <h2 id="targetspecific">Target-Specific Extensions</h2>
626 <!-- ======================================================================= -->
628 <p>Clang supports some language features conditionally on some targets.</p>
630 <!-- ======================================================================= -->
631 <h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
632 <!-- ======================================================================= -->
634 <p>The X86 backend has these language extensions:</p>
636 <!-- ======================================================================= -->
637 <h4 id="x86-gs-segment">Memory references off the GS segment</h4>
638 <!-- ======================================================================= -->
640 <p>Annotating a pointer with address space #256 causes it to be code generated
641 relative to the X86 GS segment register, and address space #257 causes it to be
642 relative to the X86 FS segment. Note that this is a very very low-level
643 feature that should only be used if you know what you're doing (for example in
644 an OS kernel).</p>
646 <p>Here is an example:</p>
648 <pre>
649 #define GS_RELATIVE __attribute__((address_space(256)))
650 int foo(int GS_RELATIVE *P) {
651 return *P;
653 </pre>
655 <p>Which compiles to (on X86-32):</p>
657 <pre>
658 _foo:
659 movl 4(%esp), %eax
660 movl %gs:(%eax), %eax
662 </pre>
664 <!-- ======================================================================= -->
665 <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
666 <!-- ======================================================================= -->
668 <p>Clang supports additional attributes that are useful for documenting program
669 invariants and rules for static analysis tools. The extensions documented here
670 are used by the <a
671 href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
672 engine</a> that is part of Clang's Analysis library.</p>
674 <!-- ======================================================================= -->
675 <h3 id="analyzerattributes">Analyzer Attributes</h3>
676 <!-- ======================================================================= -->
678 <h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4>
680 <p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
681 attribute. This attribute, which is typically affixed to a function prototype,
682 indicates that a call to a given function never returns. Function prototypes for
683 common functions like <tt>exit</tt> are typically annotated with this attribute,
684 as well as a variety of common assertion handlers. Users can educate the static
685 analyzer about their own custom assertion handles (thus cutting down on false
686 positives due to false paths) by marking their own &quot;panic&quot; functions
687 with this attribute.</p>
689 <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
690 there are special functions that for all intents and purposes should be
691 considered panic functions (i.e., they are only called when an internal program
692 error occurs) but may actually return so that the program can fail gracefully.
693 The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
694 as being interpreted as &quot;no return&quot; functions by the analyzer (thus
695 pruning bogus paths) but will not affect compilation (as in the case of
696 <tt>noreturn</tt>).</p>
698 <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
699 same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
700 placed at the end of function prototypes:</p>
702 <pre>
703 void foo() <b>__attribute__((analyzer_noreturn))</b>;
704 </pre>
706 <p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p>
709 </div>
710 </body>
711 </html>