Rename objc_lifetime -> objc_ownership, and modify diagnostics to talk about 'ownersh...
[clang/stm8.git] / lib / Sema / SemaExprCXX.cpp
blobf8da76bf848e6e36c31faf71dd5815dba3b3f561
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ expressions.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DeclSpec.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace clang;
34 using namespace sema;
36 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
37 IdentifierInfo &II,
38 SourceLocation NameLoc,
39 Scope *S, CXXScopeSpec &SS,
40 ParsedType ObjectTypePtr,
41 bool EnteringContext) {
42 // Determine where to perform name lookup.
44 // FIXME: This area of the standard is very messy, and the current
45 // wording is rather unclear about which scopes we search for the
46 // destructor name; see core issues 399 and 555. Issue 399 in
47 // particular shows where the current description of destructor name
48 // lookup is completely out of line with existing practice, e.g.,
49 // this appears to be ill-formed:
51 // namespace N {
52 // template <typename T> struct S {
53 // ~S();
54 // };
55 // }
57 // void f(N::S<int>* s) {
58 // s->N::S<int>::~S();
59 // }
61 // See also PR6358 and PR6359.
62 // For this reason, we're currently only doing the C++03 version of this
63 // code; the C++0x version has to wait until we get a proper spec.
64 QualType SearchType;
65 DeclContext *LookupCtx = 0;
66 bool isDependent = false;
67 bool LookInScope = false;
69 // If we have an object type, it's because we are in a
70 // pseudo-destructor-expression or a member access expression, and
71 // we know what type we're looking for.
72 if (ObjectTypePtr)
73 SearchType = GetTypeFromParser(ObjectTypePtr);
75 if (SS.isSet()) {
76 NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
78 bool AlreadySearched = false;
79 bool LookAtPrefix = true;
80 // C++ [basic.lookup.qual]p6:
81 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
82 // the type-names are looked up as types in the scope designated by the
83 // nested-name-specifier. In a qualified-id of the form:
85 // ::[opt] nested-name-specifier ~ class-name
87 // where the nested-name-specifier designates a namespace scope, and in
88 // a qualified-id of the form:
90 // ::opt nested-name-specifier class-name :: ~ class-name
92 // the class-names are looked up as types in the scope designated by
93 // the nested-name-specifier.
95 // Here, we check the first case (completely) and determine whether the
96 // code below is permitted to look at the prefix of the
97 // nested-name-specifier.
98 DeclContext *DC = computeDeclContext(SS, EnteringContext);
99 if (DC && DC->isFileContext()) {
100 AlreadySearched = true;
101 LookupCtx = DC;
102 isDependent = false;
103 } else if (DC && isa<CXXRecordDecl>(DC))
104 LookAtPrefix = false;
106 // The second case from the C++03 rules quoted further above.
107 NestedNameSpecifier *Prefix = 0;
108 if (AlreadySearched) {
109 // Nothing left to do.
110 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
111 CXXScopeSpec PrefixSS;
112 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
113 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
114 isDependent = isDependentScopeSpecifier(PrefixSS);
115 } else if (ObjectTypePtr) {
116 LookupCtx = computeDeclContext(SearchType);
117 isDependent = SearchType->isDependentType();
118 } else {
119 LookupCtx = computeDeclContext(SS, EnteringContext);
120 isDependent = LookupCtx && LookupCtx->isDependentContext();
123 LookInScope = false;
124 } else if (ObjectTypePtr) {
125 // C++ [basic.lookup.classref]p3:
126 // If the unqualified-id is ~type-name, the type-name is looked up
127 // in the context of the entire postfix-expression. If the type T
128 // of the object expression is of a class type C, the type-name is
129 // also looked up in the scope of class C. At least one of the
130 // lookups shall find a name that refers to (possibly
131 // cv-qualified) T.
132 LookupCtx = computeDeclContext(SearchType);
133 isDependent = SearchType->isDependentType();
134 assert((isDependent || !SearchType->isIncompleteType()) &&
135 "Caller should have completed object type");
137 LookInScope = true;
138 } else {
139 // Perform lookup into the current scope (only).
140 LookInScope = true;
143 TypeDecl *NonMatchingTypeDecl = 0;
144 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
145 for (unsigned Step = 0; Step != 2; ++Step) {
146 // Look for the name first in the computed lookup context (if we
147 // have one) and, if that fails to find a match, in the scope (if
148 // we're allowed to look there).
149 Found.clear();
150 if (Step == 0 && LookupCtx)
151 LookupQualifiedName(Found, LookupCtx);
152 else if (Step == 1 && LookInScope && S)
153 LookupName(Found, S);
154 else
155 continue;
157 // FIXME: Should we be suppressing ambiguities here?
158 if (Found.isAmbiguous())
159 return ParsedType();
161 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
162 QualType T = Context.getTypeDeclType(Type);
164 if (SearchType.isNull() || SearchType->isDependentType() ||
165 Context.hasSameUnqualifiedType(T, SearchType)) {
166 // We found our type!
168 return ParsedType::make(T);
171 if (!SearchType.isNull())
172 NonMatchingTypeDecl = Type;
175 // If the name that we found is a class template name, and it is
176 // the same name as the template name in the last part of the
177 // nested-name-specifier (if present) or the object type, then
178 // this is the destructor for that class.
179 // FIXME: This is a workaround until we get real drafting for core
180 // issue 399, for which there isn't even an obvious direction.
181 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
182 QualType MemberOfType;
183 if (SS.isSet()) {
184 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
185 // Figure out the type of the context, if it has one.
186 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
187 MemberOfType = Context.getTypeDeclType(Record);
190 if (MemberOfType.isNull())
191 MemberOfType = SearchType;
193 if (MemberOfType.isNull())
194 continue;
196 // We're referring into a class template specialization. If the
197 // class template we found is the same as the template being
198 // specialized, we found what we are looking for.
199 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
200 if (ClassTemplateSpecializationDecl *Spec
201 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
202 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
203 Template->getCanonicalDecl())
204 return ParsedType::make(MemberOfType);
207 continue;
210 // We're referring to an unresolved class template
211 // specialization. Determine whether we class template we found
212 // is the same as the template being specialized or, if we don't
213 // know which template is being specialized, that it at least
214 // has the same name.
215 if (const TemplateSpecializationType *SpecType
216 = MemberOfType->getAs<TemplateSpecializationType>()) {
217 TemplateName SpecName = SpecType->getTemplateName();
219 // The class template we found is the same template being
220 // specialized.
221 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
222 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
223 return ParsedType::make(MemberOfType);
225 continue;
228 // The class template we found has the same name as the
229 // (dependent) template name being specialized.
230 if (DependentTemplateName *DepTemplate
231 = SpecName.getAsDependentTemplateName()) {
232 if (DepTemplate->isIdentifier() &&
233 DepTemplate->getIdentifier() == Template->getIdentifier())
234 return ParsedType::make(MemberOfType);
236 continue;
242 if (isDependent) {
243 // We didn't find our type, but that's okay: it's dependent
244 // anyway.
246 // FIXME: What if we have no nested-name-specifier?
247 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
248 SS.getWithLocInContext(Context),
249 II, NameLoc);
250 return ParsedType::make(T);
253 if (NonMatchingTypeDecl) {
254 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
255 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
256 << T << SearchType;
257 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
258 << T;
259 } else if (ObjectTypePtr)
260 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
261 << &II;
262 else
263 Diag(NameLoc, diag::err_destructor_class_name);
265 return ParsedType();
268 /// \brief Build a C++ typeid expression with a type operand.
269 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
270 SourceLocation TypeidLoc,
271 TypeSourceInfo *Operand,
272 SourceLocation RParenLoc) {
273 // C++ [expr.typeid]p4:
274 // The top-level cv-qualifiers of the lvalue expression or the type-id
275 // that is the operand of typeid are always ignored.
276 // If the type of the type-id is a class type or a reference to a class
277 // type, the class shall be completely-defined.
278 Qualifiers Quals;
279 QualType T
280 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
281 Quals);
282 if (T->getAs<RecordType>() &&
283 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
284 return ExprError();
286 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
287 Operand,
288 SourceRange(TypeidLoc, RParenLoc)));
291 /// \brief Build a C++ typeid expression with an expression operand.
292 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
293 SourceLocation TypeidLoc,
294 Expr *E,
295 SourceLocation RParenLoc) {
296 bool isUnevaluatedOperand = true;
297 if (E && !E->isTypeDependent()) {
298 QualType T = E->getType();
299 if (const RecordType *RecordT = T->getAs<RecordType>()) {
300 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
301 // C++ [expr.typeid]p3:
302 // [...] If the type of the expression is a class type, the class
303 // shall be completely-defined.
304 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305 return ExprError();
307 // C++ [expr.typeid]p3:
308 // When typeid is applied to an expression other than an glvalue of a
309 // polymorphic class type [...] [the] expression is an unevaluated
310 // operand. [...]
311 if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
312 isUnevaluatedOperand = false;
314 // We require a vtable to query the type at run time.
315 MarkVTableUsed(TypeidLoc, RecordD);
319 // C++ [expr.typeid]p4:
320 // [...] If the type of the type-id is a reference to a possibly
321 // cv-qualified type, the result of the typeid expression refers to a
322 // std::type_info object representing the cv-unqualified referenced
323 // type.
324 Qualifiers Quals;
325 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
326 if (!Context.hasSameType(T, UnqualT)) {
327 T = UnqualT;
328 E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
332 // If this is an unevaluated operand, clear out the set of
333 // declaration references we have been computing and eliminate any
334 // temporaries introduced in its computation.
335 if (isUnevaluatedOperand)
336 ExprEvalContexts.back().Context = Unevaluated;
338 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
340 SourceRange(TypeidLoc, RParenLoc)));
343 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
344 ExprResult
345 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
346 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
347 // Find the std::type_info type.
348 if (!getStdNamespace())
349 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
351 if (!CXXTypeInfoDecl) {
352 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
353 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
354 LookupQualifiedName(R, getStdNamespace());
355 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
356 if (!CXXTypeInfoDecl)
357 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
360 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
362 if (isType) {
363 // The operand is a type; handle it as such.
364 TypeSourceInfo *TInfo = 0;
365 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
366 &TInfo);
367 if (T.isNull())
368 return ExprError();
370 if (!TInfo)
371 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
373 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
376 // The operand is an expression.
377 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
380 /// Retrieve the UuidAttr associated with QT.
381 static UuidAttr *GetUuidAttrOfType(QualType QT) {
382 // Optionally remove one level of pointer, reference or array indirection.
383 const Type *Ty = QT.getTypePtr();;
384 if (QT->isPointerType() || QT->isReferenceType())
385 Ty = QT->getPointeeType().getTypePtr();
386 else if (QT->isArrayType())
387 Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
389 // Loop all record redeclaration looking for an uuid attribute.
390 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
391 for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
392 E = RD->redecls_end(); I != E; ++I) {
393 if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
394 return Uuid;
397 return 0;
400 /// \brief Build a Microsoft __uuidof expression with a type operand.
401 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
402 SourceLocation TypeidLoc,
403 TypeSourceInfo *Operand,
404 SourceLocation RParenLoc) {
405 if (!Operand->getType()->isDependentType()) {
406 if (!GetUuidAttrOfType(Operand->getType()))
407 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
410 // FIXME: add __uuidof semantic analysis for type operand.
411 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
412 Operand,
413 SourceRange(TypeidLoc, RParenLoc)));
416 /// \brief Build a Microsoft __uuidof expression with an expression operand.
417 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
418 SourceLocation TypeidLoc,
419 Expr *E,
420 SourceLocation RParenLoc) {
421 if (!E->getType()->isDependentType()) {
422 if (!GetUuidAttrOfType(E->getType()) &&
423 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
424 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
426 // FIXME: add __uuidof semantic analysis for type operand.
427 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
429 SourceRange(TypeidLoc, RParenLoc)));
432 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
433 ExprResult
434 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
435 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
436 // If MSVCGuidDecl has not been cached, do the lookup.
437 if (!MSVCGuidDecl) {
438 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
439 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
440 LookupQualifiedName(R, Context.getTranslationUnitDecl());
441 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
442 if (!MSVCGuidDecl)
443 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
446 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
448 if (isType) {
449 // The operand is a type; handle it as such.
450 TypeSourceInfo *TInfo = 0;
451 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
452 &TInfo);
453 if (T.isNull())
454 return ExprError();
456 if (!TInfo)
457 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
459 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
462 // The operand is an expression.
463 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
466 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
467 ExprResult
468 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
469 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
470 "Unknown C++ Boolean value!");
471 return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
472 Context.BoolTy, OpLoc));
475 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
476 ExprResult
477 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
478 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
481 /// ActOnCXXThrow - Parse throw expressions.
482 ExprResult
483 Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
484 // Don't report an error if 'throw' is used in system headers.
485 if (!getLangOptions().CXXExceptions &&
486 !getSourceManager().isInSystemHeader(OpLoc))
487 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
489 if (Ex && !Ex->isTypeDependent()) {
490 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex);
491 if (ExRes.isInvalid())
492 return ExprError();
493 Ex = ExRes.take();
495 return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
498 /// CheckCXXThrowOperand - Validate the operand of a throw.
499 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E) {
500 // C++ [except.throw]p3:
501 // A throw-expression initializes a temporary object, called the exception
502 // object, the type of which is determined by removing any top-level
503 // cv-qualifiers from the static type of the operand of throw and adjusting
504 // the type from "array of T" or "function returning T" to "pointer to T"
505 // or "pointer to function returning T", [...]
506 if (E->getType().hasQualifiers())
507 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
508 CastCategory(E)).take();
510 ExprResult Res = DefaultFunctionArrayConversion(E);
511 if (Res.isInvalid())
512 return ExprError();
513 E = Res.take();
515 // If the type of the exception would be an incomplete type or a pointer
516 // to an incomplete type other than (cv) void the program is ill-formed.
517 QualType Ty = E->getType();
518 bool isPointer = false;
519 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
520 Ty = Ptr->getPointeeType();
521 isPointer = true;
523 if (!isPointer || !Ty->isVoidType()) {
524 if (RequireCompleteType(ThrowLoc, Ty,
525 PDiag(isPointer ? diag::err_throw_incomplete_ptr
526 : diag::err_throw_incomplete)
527 << E->getSourceRange()))
528 return ExprError();
530 if (RequireNonAbstractType(ThrowLoc, E->getType(),
531 PDiag(diag::err_throw_abstract_type)
532 << E->getSourceRange()))
533 return ExprError();
536 // Initialize the exception result. This implicitly weeds out
537 // abstract types or types with inaccessible copy constructors.
538 const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
540 // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
541 InitializedEntity Entity =
542 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
543 /*NRVO=*/false);
544 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
545 QualType(), E);
546 if (Res.isInvalid())
547 return ExprError();
548 E = Res.take();
550 // If the exception has class type, we need additional handling.
551 const RecordType *RecordTy = Ty->getAs<RecordType>();
552 if (!RecordTy)
553 return Owned(E);
554 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
556 // If we are throwing a polymorphic class type or pointer thereof,
557 // exception handling will make use of the vtable.
558 MarkVTableUsed(ThrowLoc, RD);
560 // If a pointer is thrown, the referenced object will not be destroyed.
561 if (isPointer)
562 return Owned(E);
564 // If the class has a non-trivial destructor, we must be able to call it.
565 if (RD->hasTrivialDestructor())
566 return Owned(E);
568 CXXDestructorDecl *Destructor
569 = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
570 if (!Destructor)
571 return Owned(E);
573 MarkDeclarationReferenced(E->getExprLoc(), Destructor);
574 CheckDestructorAccess(E->getExprLoc(), Destructor,
575 PDiag(diag::err_access_dtor_exception) << Ty);
576 return Owned(E);
579 QualType Sema::getAndCaptureCurrentThisType() {
580 // Ignore block scopes: we can capture through them.
581 // Ignore nested enum scopes: we'll diagnose non-constant expressions
582 // where they're invalid, and other uses are legitimate.
583 // Don't ignore nested class scopes: you can't use 'this' in a local class.
584 DeclContext *DC = CurContext;
585 unsigned NumBlocks = 0;
586 while (true) {
587 if (isa<BlockDecl>(DC)) {
588 DC = cast<BlockDecl>(DC)->getDeclContext();
589 ++NumBlocks;
590 } else if (isa<EnumDecl>(DC))
591 DC = cast<EnumDecl>(DC)->getDeclContext();
592 else break;
595 QualType ThisTy;
596 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
597 if (method && method->isInstance())
598 ThisTy = method->getThisType(Context);
599 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
600 // C++0x [expr.prim]p4:
601 // Otherwise, if a member-declarator declares a non-static data member
602 // of a class X, the expression this is a prvalue of type "pointer to X"
603 // within the optional brace-or-equal-initializer.
604 Scope *S = getScopeForContext(DC);
605 if (!S || S->getFlags() & Scope::ThisScope)
606 ThisTy = Context.getPointerType(Context.getRecordType(RD));
609 // Mark that we're closing on 'this' in all the block scopes we ignored.
610 if (!ThisTy.isNull())
611 for (unsigned idx = FunctionScopes.size() - 1;
612 NumBlocks; --idx, --NumBlocks)
613 cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
615 return ThisTy;
618 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
619 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
620 /// is a non-lvalue expression whose value is the address of the object for
621 /// which the function is called.
623 QualType ThisTy = getAndCaptureCurrentThisType();
624 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
626 return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
629 ExprResult
630 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
631 SourceLocation LParenLoc,
632 MultiExprArg exprs,
633 SourceLocation RParenLoc) {
634 if (!TypeRep)
635 return ExprError();
637 TypeSourceInfo *TInfo;
638 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
639 if (!TInfo)
640 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
642 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
645 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
646 /// Can be interpreted either as function-style casting ("int(x)")
647 /// or class type construction ("ClassType(x,y,z)")
648 /// or creation of a value-initialized type ("int()").
649 ExprResult
650 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
651 SourceLocation LParenLoc,
652 MultiExprArg exprs,
653 SourceLocation RParenLoc) {
654 QualType Ty = TInfo->getType();
655 unsigned NumExprs = exprs.size();
656 Expr **Exprs = (Expr**)exprs.get();
657 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
658 SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
660 if (Ty->isDependentType() ||
661 CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
662 exprs.release();
664 return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
665 LParenLoc,
666 Exprs, NumExprs,
667 RParenLoc));
670 if (Ty->isArrayType())
671 return ExprError(Diag(TyBeginLoc,
672 diag::err_value_init_for_array_type) << FullRange);
673 if (!Ty->isVoidType() &&
674 RequireCompleteType(TyBeginLoc, Ty,
675 PDiag(diag::err_invalid_incomplete_type_use)
676 << FullRange))
677 return ExprError();
679 if (RequireNonAbstractType(TyBeginLoc, Ty,
680 diag::err_allocation_of_abstract_type))
681 return ExprError();
684 // C++ [expr.type.conv]p1:
685 // If the expression list is a single expression, the type conversion
686 // expression is equivalent (in definedness, and if defined in meaning) to the
687 // corresponding cast expression.
689 if (NumExprs == 1) {
690 CastKind Kind = CK_Invalid;
691 ExprValueKind VK = VK_RValue;
692 CXXCastPath BasePath;
693 ExprResult CastExpr =
694 CheckCastTypes(TInfo->getTypeLoc().getBeginLoc(),
695 TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
696 Kind, VK, BasePath,
697 /*FunctionalStyle=*/true);
698 if (CastExpr.isInvalid())
699 return ExprError();
700 Exprs[0] = CastExpr.take();
702 exprs.release();
704 return Owned(CXXFunctionalCastExpr::Create(Context,
705 Ty.getNonLValueExprType(Context),
706 VK, TInfo, TyBeginLoc, Kind,
707 Exprs[0], &BasePath,
708 RParenLoc));
711 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
712 InitializationKind Kind
713 = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
714 LParenLoc, RParenLoc)
715 : InitializationKind::CreateValue(TyBeginLoc,
716 LParenLoc, RParenLoc);
717 InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
718 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
720 // FIXME: Improve AST representation?
721 return move(Result);
724 /// doesUsualArrayDeleteWantSize - Answers whether the usual
725 /// operator delete[] for the given type has a size_t parameter.
726 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
727 QualType allocType) {
728 const RecordType *record =
729 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
730 if (!record) return false;
732 // Try to find an operator delete[] in class scope.
734 DeclarationName deleteName =
735 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
736 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
737 S.LookupQualifiedName(ops, record->getDecl());
739 // We're just doing this for information.
740 ops.suppressDiagnostics();
742 // Very likely: there's no operator delete[].
743 if (ops.empty()) return false;
745 // If it's ambiguous, it should be illegal to call operator delete[]
746 // on this thing, so it doesn't matter if we allocate extra space or not.
747 if (ops.isAmbiguous()) return false;
749 LookupResult::Filter filter = ops.makeFilter();
750 while (filter.hasNext()) {
751 NamedDecl *del = filter.next()->getUnderlyingDecl();
753 // C++0x [basic.stc.dynamic.deallocation]p2:
754 // A template instance is never a usual deallocation function,
755 // regardless of its signature.
756 if (isa<FunctionTemplateDecl>(del)) {
757 filter.erase();
758 continue;
761 // C++0x [basic.stc.dynamic.deallocation]p2:
762 // If class T does not declare [an operator delete[] with one
763 // parameter] but does declare a member deallocation function
764 // named operator delete[] with exactly two parameters, the
765 // second of which has type std::size_t, then this function
766 // is a usual deallocation function.
767 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
768 filter.erase();
769 continue;
772 filter.done();
774 if (!ops.isSingleResult()) return false;
776 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
777 return (del->getNumParams() == 2);
780 /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
781 /// @code new (memory) int[size][4] @endcode
782 /// or
783 /// @code ::new Foo(23, "hello") @endcode
784 /// For the interpretation of this heap of arguments, consult the base version.
785 ExprResult
786 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
787 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
788 SourceLocation PlacementRParen, SourceRange TypeIdParens,
789 Declarator &D, SourceLocation ConstructorLParen,
790 MultiExprArg ConstructorArgs,
791 SourceLocation ConstructorRParen) {
792 bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
794 Expr *ArraySize = 0;
795 // If the specified type is an array, unwrap it and save the expression.
796 if (D.getNumTypeObjects() > 0 &&
797 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
798 DeclaratorChunk &Chunk = D.getTypeObject(0);
799 if (TypeContainsAuto)
800 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
801 << D.getSourceRange());
802 if (Chunk.Arr.hasStatic)
803 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
804 << D.getSourceRange());
805 if (!Chunk.Arr.NumElts)
806 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
807 << D.getSourceRange());
809 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
810 D.DropFirstTypeObject();
813 // Every dimension shall be of constant size.
814 if (ArraySize) {
815 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
816 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
817 break;
819 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
820 if (Expr *NumElts = (Expr *)Array.NumElts) {
821 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
822 !NumElts->isIntegerConstantExpr(Context)) {
823 Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
824 << NumElts->getSourceRange();
825 return ExprError();
831 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
832 /*AllowAuto=*/true);
833 QualType AllocType = TInfo->getType();
834 if (D.isInvalidType())
835 return ExprError();
837 return BuildCXXNew(StartLoc, UseGlobal,
838 PlacementLParen,
839 move(PlacementArgs),
840 PlacementRParen,
841 TypeIdParens,
842 AllocType,
843 TInfo,
844 ArraySize,
845 ConstructorLParen,
846 move(ConstructorArgs),
847 ConstructorRParen,
848 TypeContainsAuto);
851 ExprResult
852 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
853 SourceLocation PlacementLParen,
854 MultiExprArg PlacementArgs,
855 SourceLocation PlacementRParen,
856 SourceRange TypeIdParens,
857 QualType AllocType,
858 TypeSourceInfo *AllocTypeInfo,
859 Expr *ArraySize,
860 SourceLocation ConstructorLParen,
861 MultiExprArg ConstructorArgs,
862 SourceLocation ConstructorRParen,
863 bool TypeMayContainAuto) {
864 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
866 // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
867 if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
868 if (ConstructorArgs.size() == 0)
869 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
870 << AllocType << TypeRange);
871 if (ConstructorArgs.size() != 1) {
872 Expr *FirstBad = ConstructorArgs.get()[1];
873 return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
874 diag::err_auto_new_ctor_multiple_expressions)
875 << AllocType << TypeRange);
877 TypeSourceInfo *DeducedType = 0;
878 if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
879 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
880 << AllocType
881 << ConstructorArgs.get()[0]->getType()
882 << TypeRange
883 << ConstructorArgs.get()[0]->getSourceRange());
884 if (!DeducedType)
885 return ExprError();
887 AllocTypeInfo = DeducedType;
888 AllocType = AllocTypeInfo->getType();
891 // Per C++0x [expr.new]p5, the type being constructed may be a
892 // typedef of an array type.
893 if (!ArraySize) {
894 if (const ConstantArrayType *Array
895 = Context.getAsConstantArrayType(AllocType)) {
896 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
897 Context.getSizeType(),
898 TypeRange.getEnd());
899 AllocType = Array->getElementType();
903 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
904 return ExprError();
906 // In ARC, infer 'retaining' for the allocated
907 if (getLangOptions().ObjCAutoRefCount &&
908 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
909 AllocType->isObjCLifetimeType()) {
910 AllocType = Context.getLifetimeQualifiedType(AllocType,
911 AllocType->getObjCARCImplicitLifetime());
914 QualType ResultType = Context.getPointerType(AllocType);
916 // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
917 // or enumeration type with a non-negative value."
918 if (ArraySize && !ArraySize->isTypeDependent()) {
920 QualType SizeType = ArraySize->getType();
922 ExprResult ConvertedSize
923 = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
924 PDiag(diag::err_array_size_not_integral),
925 PDiag(diag::err_array_size_incomplete_type)
926 << ArraySize->getSourceRange(),
927 PDiag(diag::err_array_size_explicit_conversion),
928 PDiag(diag::note_array_size_conversion),
929 PDiag(diag::err_array_size_ambiguous_conversion),
930 PDiag(diag::note_array_size_conversion),
931 PDiag(getLangOptions().CPlusPlus0x? 0
932 : diag::ext_array_size_conversion));
933 if (ConvertedSize.isInvalid())
934 return ExprError();
936 ArraySize = ConvertedSize.take();
937 SizeType = ArraySize->getType();
938 if (!SizeType->isIntegralOrUnscopedEnumerationType())
939 return ExprError();
941 // Let's see if this is a constant < 0. If so, we reject it out of hand.
942 // We don't care about special rules, so we tell the machinery it's not
943 // evaluated - it gives us a result in more cases.
944 if (!ArraySize->isValueDependent()) {
945 llvm::APSInt Value;
946 if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
947 if (Value < llvm::APSInt(
948 llvm::APInt::getNullValue(Value.getBitWidth()),
949 Value.isUnsigned()))
950 return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
951 diag::err_typecheck_negative_array_size)
952 << ArraySize->getSourceRange());
954 if (!AllocType->isDependentType()) {
955 unsigned ActiveSizeBits
956 = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
957 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
958 Diag(ArraySize->getSourceRange().getBegin(),
959 diag::err_array_too_large)
960 << Value.toString(10)
961 << ArraySize->getSourceRange();
962 return ExprError();
965 } else if (TypeIdParens.isValid()) {
966 // Can't have dynamic array size when the type-id is in parentheses.
967 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
968 << ArraySize->getSourceRange()
969 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
970 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
972 TypeIdParens = SourceRange();
976 // ARC: warn about ABI issues.
977 if (getLangOptions().ObjCAutoRefCount) {
978 QualType BaseAllocType = Context.getBaseElementType(AllocType);
979 if (BaseAllocType.hasStrongOrWeakObjCLifetime())
980 Diag(StartLoc, diag::warn_err_new_delete_object_array)
981 << 0 << BaseAllocType;
984 // Note that we do *not* convert the argument in any way. It can
985 // be signed, larger than size_t, whatever.
988 FunctionDecl *OperatorNew = 0;
989 FunctionDecl *OperatorDelete = 0;
990 Expr **PlaceArgs = (Expr**)PlacementArgs.get();
991 unsigned NumPlaceArgs = PlacementArgs.size();
993 if (!AllocType->isDependentType() &&
994 !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
995 FindAllocationFunctions(StartLoc,
996 SourceRange(PlacementLParen, PlacementRParen),
997 UseGlobal, AllocType, ArraySize, PlaceArgs,
998 NumPlaceArgs, OperatorNew, OperatorDelete))
999 return ExprError();
1001 // If this is an array allocation, compute whether the usual array
1002 // deallocation function for the type has a size_t parameter.
1003 bool UsualArrayDeleteWantsSize = false;
1004 if (ArraySize && !AllocType->isDependentType())
1005 UsualArrayDeleteWantsSize
1006 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1008 llvm::SmallVector<Expr *, 8> AllPlaceArgs;
1009 if (OperatorNew) {
1010 // Add default arguments, if any.
1011 const FunctionProtoType *Proto =
1012 OperatorNew->getType()->getAs<FunctionProtoType>();
1013 VariadicCallType CallType =
1014 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1016 if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1017 Proto, 1, PlaceArgs, NumPlaceArgs,
1018 AllPlaceArgs, CallType))
1019 return ExprError();
1021 NumPlaceArgs = AllPlaceArgs.size();
1022 if (NumPlaceArgs > 0)
1023 PlaceArgs = &AllPlaceArgs[0];
1026 bool Init = ConstructorLParen.isValid();
1027 // --- Choosing a constructor ---
1028 CXXConstructorDecl *Constructor = 0;
1029 Expr **ConsArgs = (Expr**)ConstructorArgs.get();
1030 unsigned NumConsArgs = ConstructorArgs.size();
1031 ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
1033 // Array 'new' can't have any initializers.
1034 if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
1035 SourceRange InitRange(ConsArgs[0]->getLocStart(),
1036 ConsArgs[NumConsArgs - 1]->getLocEnd());
1038 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1039 return ExprError();
1042 if (!AllocType->isDependentType() &&
1043 !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1044 // C++0x [expr.new]p15:
1045 // A new-expression that creates an object of type T initializes that
1046 // object as follows:
1047 InitializationKind Kind
1048 // - If the new-initializer is omitted, the object is default-
1049 // initialized (8.5); if no initialization is performed,
1050 // the object has indeterminate value
1051 = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1052 // - Otherwise, the new-initializer is interpreted according to the
1053 // initialization rules of 8.5 for direct-initialization.
1054 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1055 ConstructorLParen,
1056 ConstructorRParen);
1058 InitializedEntity Entity
1059 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1060 InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1061 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1062 move(ConstructorArgs));
1063 if (FullInit.isInvalid())
1064 return ExprError();
1066 // FullInit is our initializer; walk through it to determine if it's a
1067 // constructor call, which CXXNewExpr handles directly.
1068 if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1069 if (CXXBindTemporaryExpr *Binder
1070 = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1071 FullInitExpr = Binder->getSubExpr();
1072 if (CXXConstructExpr *Construct
1073 = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1074 Constructor = Construct->getConstructor();
1075 for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1076 AEnd = Construct->arg_end();
1077 A != AEnd; ++A)
1078 ConvertedConstructorArgs.push_back(*A);
1079 } else {
1080 // Take the converted initializer.
1081 ConvertedConstructorArgs.push_back(FullInit.release());
1083 } else {
1084 // No initialization required.
1087 // Take the converted arguments and use them for the new expression.
1088 NumConsArgs = ConvertedConstructorArgs.size();
1089 ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1092 // Mark the new and delete operators as referenced.
1093 if (OperatorNew)
1094 MarkDeclarationReferenced(StartLoc, OperatorNew);
1095 if (OperatorDelete)
1096 MarkDeclarationReferenced(StartLoc, OperatorDelete);
1098 // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1100 PlacementArgs.release();
1101 ConstructorArgs.release();
1103 return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1104 PlaceArgs, NumPlaceArgs, TypeIdParens,
1105 ArraySize, Constructor, Init,
1106 ConsArgs, NumConsArgs, OperatorDelete,
1107 UsualArrayDeleteWantsSize,
1108 ResultType, AllocTypeInfo,
1109 StartLoc,
1110 Init ? ConstructorRParen :
1111 TypeRange.getEnd(),
1112 ConstructorLParen, ConstructorRParen));
1115 /// CheckAllocatedType - Checks that a type is suitable as the allocated type
1116 /// in a new-expression.
1117 /// dimension off and stores the size expression in ArraySize.
1118 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1119 SourceRange R) {
1120 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1121 // abstract class type or array thereof.
1122 if (AllocType->isFunctionType())
1123 return Diag(Loc, diag::err_bad_new_type)
1124 << AllocType << 0 << R;
1125 else if (AllocType->isReferenceType())
1126 return Diag(Loc, diag::err_bad_new_type)
1127 << AllocType << 1 << R;
1128 else if (!AllocType->isDependentType() &&
1129 RequireCompleteType(Loc, AllocType,
1130 PDiag(diag::err_new_incomplete_type)
1131 << R))
1132 return true;
1133 else if (RequireNonAbstractType(Loc, AllocType,
1134 diag::err_allocation_of_abstract_type))
1135 return true;
1136 else if (AllocType->isVariablyModifiedType())
1137 return Diag(Loc, diag::err_variably_modified_new_type)
1138 << AllocType;
1139 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1140 return Diag(Loc, diag::err_address_space_qualified_new)
1141 << AllocType.getUnqualifiedType() << AddressSpace;
1142 else if (getLangOptions().ObjCAutoRefCount) {
1143 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1144 QualType BaseAllocType = Context.getBaseElementType(AT);
1145 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1146 BaseAllocType->isObjCLifetimeType())
1147 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1148 << BaseAllocType;
1152 return false;
1155 /// \brief Determine whether the given function is a non-placement
1156 /// deallocation function.
1157 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1158 if (FD->isInvalidDecl())
1159 return false;
1161 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1162 return Method->isUsualDeallocationFunction();
1164 return ((FD->getOverloadedOperator() == OO_Delete ||
1165 FD->getOverloadedOperator() == OO_Array_Delete) &&
1166 FD->getNumParams() == 1);
1169 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1170 /// that are appropriate for the allocation.
1171 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1172 bool UseGlobal, QualType AllocType,
1173 bool IsArray, Expr **PlaceArgs,
1174 unsigned NumPlaceArgs,
1175 FunctionDecl *&OperatorNew,
1176 FunctionDecl *&OperatorDelete) {
1177 // --- Choosing an allocation function ---
1178 // C++ 5.3.4p8 - 14 & 18
1179 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1180 // in the scope of the allocated class.
1181 // 2) If an array size is given, look for operator new[], else look for
1182 // operator new.
1183 // 3) The first argument is always size_t. Append the arguments from the
1184 // placement form.
1186 llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1187 // We don't care about the actual value of this argument.
1188 // FIXME: Should the Sema create the expression and embed it in the syntax
1189 // tree? Or should the consumer just recalculate the value?
1190 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1191 Context.Target.getPointerWidth(0)),
1192 Context.getSizeType(),
1193 SourceLocation());
1194 AllocArgs[0] = &Size;
1195 std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1197 // C++ [expr.new]p8:
1198 // If the allocated type is a non-array type, the allocation
1199 // function's name is operator new and the deallocation function's
1200 // name is operator delete. If the allocated type is an array
1201 // type, the allocation function's name is operator new[] and the
1202 // deallocation function's name is operator delete[].
1203 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1204 IsArray ? OO_Array_New : OO_New);
1205 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1206 IsArray ? OO_Array_Delete : OO_Delete);
1208 QualType AllocElemType = Context.getBaseElementType(AllocType);
1210 if (AllocElemType->isRecordType() && !UseGlobal) {
1211 CXXRecordDecl *Record
1212 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1213 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1214 AllocArgs.size(), Record, /*AllowMissing=*/true,
1215 OperatorNew))
1216 return true;
1218 if (!OperatorNew) {
1219 // Didn't find a member overload. Look for a global one.
1220 DeclareGlobalNewDelete();
1221 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1222 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1223 AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1224 OperatorNew))
1225 return true;
1228 // We don't need an operator delete if we're running under
1229 // -fno-exceptions.
1230 if (!getLangOptions().Exceptions) {
1231 OperatorDelete = 0;
1232 return false;
1235 // FindAllocationOverload can change the passed in arguments, so we need to
1236 // copy them back.
1237 if (NumPlaceArgs > 0)
1238 std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1240 // C++ [expr.new]p19:
1242 // If the new-expression begins with a unary :: operator, the
1243 // deallocation function's name is looked up in the global
1244 // scope. Otherwise, if the allocated type is a class type T or an
1245 // array thereof, the deallocation function's name is looked up in
1246 // the scope of T. If this lookup fails to find the name, or if
1247 // the allocated type is not a class type or array thereof, the
1248 // deallocation function's name is looked up in the global scope.
1249 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1250 if (AllocElemType->isRecordType() && !UseGlobal) {
1251 CXXRecordDecl *RD
1252 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1253 LookupQualifiedName(FoundDelete, RD);
1255 if (FoundDelete.isAmbiguous())
1256 return true; // FIXME: clean up expressions?
1258 if (FoundDelete.empty()) {
1259 DeclareGlobalNewDelete();
1260 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1263 FoundDelete.suppressDiagnostics();
1265 llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1267 // Whether we're looking for a placement operator delete is dictated
1268 // by whether we selected a placement operator new, not by whether
1269 // we had explicit placement arguments. This matters for things like
1270 // struct A { void *operator new(size_t, int = 0); ... };
1271 // A *a = new A()
1272 bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1274 if (isPlacementNew) {
1275 // C++ [expr.new]p20:
1276 // A declaration of a placement deallocation function matches the
1277 // declaration of a placement allocation function if it has the
1278 // same number of parameters and, after parameter transformations
1279 // (8.3.5), all parameter types except the first are
1280 // identical. [...]
1282 // To perform this comparison, we compute the function type that
1283 // the deallocation function should have, and use that type both
1284 // for template argument deduction and for comparison purposes.
1286 // FIXME: this comparison should ignore CC and the like.
1287 QualType ExpectedFunctionType;
1289 const FunctionProtoType *Proto
1290 = OperatorNew->getType()->getAs<FunctionProtoType>();
1292 llvm::SmallVector<QualType, 4> ArgTypes;
1293 ArgTypes.push_back(Context.VoidPtrTy);
1294 for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1295 ArgTypes.push_back(Proto->getArgType(I));
1297 FunctionProtoType::ExtProtoInfo EPI;
1298 EPI.Variadic = Proto->isVariadic();
1300 ExpectedFunctionType
1301 = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1302 ArgTypes.size(), EPI);
1305 for (LookupResult::iterator D = FoundDelete.begin(),
1306 DEnd = FoundDelete.end();
1307 D != DEnd; ++D) {
1308 FunctionDecl *Fn = 0;
1309 if (FunctionTemplateDecl *FnTmpl
1310 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1311 // Perform template argument deduction to try to match the
1312 // expected function type.
1313 TemplateDeductionInfo Info(Context, StartLoc);
1314 if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1315 continue;
1316 } else
1317 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1319 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1320 Matches.push_back(std::make_pair(D.getPair(), Fn));
1322 } else {
1323 // C++ [expr.new]p20:
1324 // [...] Any non-placement deallocation function matches a
1325 // non-placement allocation function. [...]
1326 for (LookupResult::iterator D = FoundDelete.begin(),
1327 DEnd = FoundDelete.end();
1328 D != DEnd; ++D) {
1329 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1330 if (isNonPlacementDeallocationFunction(Fn))
1331 Matches.push_back(std::make_pair(D.getPair(), Fn));
1335 // C++ [expr.new]p20:
1336 // [...] If the lookup finds a single matching deallocation
1337 // function, that function will be called; otherwise, no
1338 // deallocation function will be called.
1339 if (Matches.size() == 1) {
1340 OperatorDelete = Matches[0].second;
1342 // C++0x [expr.new]p20:
1343 // If the lookup finds the two-parameter form of a usual
1344 // deallocation function (3.7.4.2) and that function, considered
1345 // as a placement deallocation function, would have been
1346 // selected as a match for the allocation function, the program
1347 // is ill-formed.
1348 if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1349 isNonPlacementDeallocationFunction(OperatorDelete)) {
1350 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1351 << SourceRange(PlaceArgs[0]->getLocStart(),
1352 PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1353 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1354 << DeleteName;
1355 } else {
1356 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1357 Matches[0].first);
1361 return false;
1364 /// FindAllocationOverload - Find an fitting overload for the allocation
1365 /// function in the specified scope.
1366 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1367 DeclarationName Name, Expr** Args,
1368 unsigned NumArgs, DeclContext *Ctx,
1369 bool AllowMissing, FunctionDecl *&Operator,
1370 bool Diagnose) {
1371 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1372 LookupQualifiedName(R, Ctx);
1373 if (R.empty()) {
1374 if (AllowMissing || !Diagnose)
1375 return false;
1376 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1377 << Name << Range;
1380 if (R.isAmbiguous())
1381 return true;
1383 R.suppressDiagnostics();
1385 OverloadCandidateSet Candidates(StartLoc);
1386 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1387 Alloc != AllocEnd; ++Alloc) {
1388 // Even member operator new/delete are implicitly treated as
1389 // static, so don't use AddMemberCandidate.
1390 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1392 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1393 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1394 /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1395 Candidates,
1396 /*SuppressUserConversions=*/false);
1397 continue;
1400 FunctionDecl *Fn = cast<FunctionDecl>(D);
1401 AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1402 /*SuppressUserConversions=*/false);
1405 // Do the resolution.
1406 OverloadCandidateSet::iterator Best;
1407 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1408 case OR_Success: {
1409 // Got one!
1410 FunctionDecl *FnDecl = Best->Function;
1411 MarkDeclarationReferenced(StartLoc, FnDecl);
1412 // The first argument is size_t, and the first parameter must be size_t,
1413 // too. This is checked on declaration and can be assumed. (It can't be
1414 // asserted on, though, since invalid decls are left in there.)
1415 // Watch out for variadic allocator function.
1416 unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1417 for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1418 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1419 FnDecl->getParamDecl(i));
1421 if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1422 return true;
1424 ExprResult Result
1425 = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1426 if (Result.isInvalid())
1427 return true;
1429 Args[i] = Result.takeAs<Expr>();
1431 Operator = FnDecl;
1432 CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1433 Diagnose);
1434 return false;
1437 case OR_No_Viable_Function:
1438 if (Diagnose) {
1439 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1440 << Name << Range;
1441 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1443 return true;
1445 case OR_Ambiguous:
1446 if (Diagnose) {
1447 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1448 << Name << Range;
1449 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1451 return true;
1453 case OR_Deleted: {
1454 if (Diagnose) {
1455 Diag(StartLoc, diag::err_ovl_deleted_call)
1456 << Best->Function->isDeleted()
1457 << Name
1458 << getDeletedOrUnavailableSuffix(Best->Function)
1459 << Range;
1460 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1462 return true;
1465 assert(false && "Unreachable, bad result from BestViableFunction");
1466 return true;
1470 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1471 /// delete. These are:
1472 /// @code
1473 /// // C++03:
1474 /// void* operator new(std::size_t) throw(std::bad_alloc);
1475 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1476 /// void operator delete(void *) throw();
1477 /// void operator delete[](void *) throw();
1478 /// // C++0x:
1479 /// void* operator new(std::size_t);
1480 /// void* operator new[](std::size_t);
1481 /// void operator delete(void *);
1482 /// void operator delete[](void *);
1483 /// @endcode
1484 /// C++0x operator delete is implicitly noexcept.
1485 /// Note that the placement and nothrow forms of new are *not* implicitly
1486 /// declared. Their use requires including \<new\>.
1487 void Sema::DeclareGlobalNewDelete() {
1488 if (GlobalNewDeleteDeclared)
1489 return;
1491 // C++ [basic.std.dynamic]p2:
1492 // [...] The following allocation and deallocation functions (18.4) are
1493 // implicitly declared in global scope in each translation unit of a
1494 // program
1496 // C++03:
1497 // void* operator new(std::size_t) throw(std::bad_alloc);
1498 // void* operator new[](std::size_t) throw(std::bad_alloc);
1499 // void operator delete(void*) throw();
1500 // void operator delete[](void*) throw();
1501 // C++0x:
1502 // void* operator new(std::size_t);
1503 // void* operator new[](std::size_t);
1504 // void operator delete(void*);
1505 // void operator delete[](void*);
1507 // These implicit declarations introduce only the function names operator
1508 // new, operator new[], operator delete, operator delete[].
1510 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1511 // "std" or "bad_alloc" as necessary to form the exception specification.
1512 // However, we do not make these implicit declarations visible to name
1513 // lookup.
1514 // Note that the C++0x versions of operator delete are deallocation functions,
1515 // and thus are implicitly noexcept.
1516 if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1517 // The "std::bad_alloc" class has not yet been declared, so build it
1518 // implicitly.
1519 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1520 getOrCreateStdNamespace(),
1521 SourceLocation(), SourceLocation(),
1522 &PP.getIdentifierTable().get("bad_alloc"),
1524 getStdBadAlloc()->setImplicit(true);
1527 GlobalNewDeleteDeclared = true;
1529 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1530 QualType SizeT = Context.getSizeType();
1531 bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1533 DeclareGlobalAllocationFunction(
1534 Context.DeclarationNames.getCXXOperatorName(OO_New),
1535 VoidPtr, SizeT, AssumeSaneOperatorNew);
1536 DeclareGlobalAllocationFunction(
1537 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1538 VoidPtr, SizeT, AssumeSaneOperatorNew);
1539 DeclareGlobalAllocationFunction(
1540 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1541 Context.VoidTy, VoidPtr);
1542 DeclareGlobalAllocationFunction(
1543 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1544 Context.VoidTy, VoidPtr);
1547 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1548 /// allocation function if it doesn't already exist.
1549 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1550 QualType Return, QualType Argument,
1551 bool AddMallocAttr) {
1552 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1554 // Check if this function is already declared.
1556 DeclContext::lookup_iterator Alloc, AllocEnd;
1557 for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1558 Alloc != AllocEnd; ++Alloc) {
1559 // Only look at non-template functions, as it is the predefined,
1560 // non-templated allocation function we are trying to declare here.
1561 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1562 QualType InitialParamType =
1563 Context.getCanonicalType(
1564 Func->getParamDecl(0)->getType().getUnqualifiedType());
1565 // FIXME: Do we need to check for default arguments here?
1566 if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1567 if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1568 Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1569 return;
1575 QualType BadAllocType;
1576 bool HasBadAllocExceptionSpec
1577 = (Name.getCXXOverloadedOperator() == OO_New ||
1578 Name.getCXXOverloadedOperator() == OO_Array_New);
1579 if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1580 assert(StdBadAlloc && "Must have std::bad_alloc declared");
1581 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1584 FunctionProtoType::ExtProtoInfo EPI;
1585 if (HasBadAllocExceptionSpec) {
1586 if (!getLangOptions().CPlusPlus0x) {
1587 EPI.ExceptionSpecType = EST_Dynamic;
1588 EPI.NumExceptions = 1;
1589 EPI.Exceptions = &BadAllocType;
1591 } else {
1592 EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1593 EST_BasicNoexcept : EST_DynamicNone;
1596 QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1597 FunctionDecl *Alloc =
1598 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1599 SourceLocation(), Name,
1600 FnType, /*TInfo=*/0, SC_None,
1601 SC_None, false, true);
1602 Alloc->setImplicit();
1604 if (AddMallocAttr)
1605 Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1607 ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1608 SourceLocation(), 0,
1609 Argument, /*TInfo=*/0,
1610 SC_None, SC_None, 0);
1611 Alloc->setParams(&Param, 1);
1613 // FIXME: Also add this declaration to the IdentifierResolver, but
1614 // make sure it is at the end of the chain to coincide with the
1615 // global scope.
1616 Context.getTranslationUnitDecl()->addDecl(Alloc);
1619 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1620 DeclarationName Name,
1621 FunctionDecl* &Operator, bool Diagnose) {
1622 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1623 // Try to find operator delete/operator delete[] in class scope.
1624 LookupQualifiedName(Found, RD);
1626 if (Found.isAmbiguous())
1627 return true;
1629 Found.suppressDiagnostics();
1631 llvm::SmallVector<DeclAccessPair,4> Matches;
1632 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1633 F != FEnd; ++F) {
1634 NamedDecl *ND = (*F)->getUnderlyingDecl();
1636 // Ignore template operator delete members from the check for a usual
1637 // deallocation function.
1638 if (isa<FunctionTemplateDecl>(ND))
1639 continue;
1641 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1642 Matches.push_back(F.getPair());
1645 // There's exactly one suitable operator; pick it.
1646 if (Matches.size() == 1) {
1647 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1649 if (Operator->isDeleted()) {
1650 if (Diagnose) {
1651 Diag(StartLoc, diag::err_deleted_function_use);
1652 Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1654 return true;
1657 CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1658 Matches[0], Diagnose);
1659 return false;
1661 // We found multiple suitable operators; complain about the ambiguity.
1662 } else if (!Matches.empty()) {
1663 if (Diagnose) {
1664 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1665 << Name << RD;
1667 for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1668 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1669 Diag((*F)->getUnderlyingDecl()->getLocation(),
1670 diag::note_member_declared_here) << Name;
1672 return true;
1675 // We did find operator delete/operator delete[] declarations, but
1676 // none of them were suitable.
1677 if (!Found.empty()) {
1678 if (Diagnose) {
1679 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1680 << Name << RD;
1682 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1683 F != FEnd; ++F)
1684 Diag((*F)->getUnderlyingDecl()->getLocation(),
1685 diag::note_member_declared_here) << Name;
1687 return true;
1690 // Look for a global declaration.
1691 DeclareGlobalNewDelete();
1692 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1694 CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1695 Expr* DeallocArgs[1];
1696 DeallocArgs[0] = &Null;
1697 if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1698 DeallocArgs, 1, TUDecl, !Diagnose,
1699 Operator, Diagnose))
1700 return true;
1702 assert(Operator && "Did not find a deallocation function!");
1703 return false;
1706 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1707 /// @code ::delete ptr; @endcode
1708 /// or
1709 /// @code delete [] ptr; @endcode
1710 ExprResult
1711 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1712 bool ArrayForm, Expr *ExE) {
1713 // C++ [expr.delete]p1:
1714 // The operand shall have a pointer type, or a class type having a single
1715 // conversion function to a pointer type. The result has type void.
1717 // DR599 amends "pointer type" to "pointer to object type" in both cases.
1719 ExprResult Ex = Owned(ExE);
1720 FunctionDecl *OperatorDelete = 0;
1721 bool ArrayFormAsWritten = ArrayForm;
1722 bool UsualArrayDeleteWantsSize = false;
1724 if (!Ex.get()->isTypeDependent()) {
1725 QualType Type = Ex.get()->getType();
1727 if (const RecordType *Record = Type->getAs<RecordType>()) {
1728 if (RequireCompleteType(StartLoc, Type,
1729 PDiag(diag::err_delete_incomplete_class_type)))
1730 return ExprError();
1732 llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1734 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1735 const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1736 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1737 E = Conversions->end(); I != E; ++I) {
1738 NamedDecl *D = I.getDecl();
1739 if (isa<UsingShadowDecl>(D))
1740 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1742 // Skip over templated conversion functions; they aren't considered.
1743 if (isa<FunctionTemplateDecl>(D))
1744 continue;
1746 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1748 QualType ConvType = Conv->getConversionType().getNonReferenceType();
1749 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1750 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1751 ObjectPtrConversions.push_back(Conv);
1753 if (ObjectPtrConversions.size() == 1) {
1754 // We have a single conversion to a pointer-to-object type. Perform
1755 // that conversion.
1756 // TODO: don't redo the conversion calculation.
1757 ExprResult Res =
1758 PerformImplicitConversion(Ex.get(),
1759 ObjectPtrConversions.front()->getConversionType(),
1760 AA_Converting);
1761 if (Res.isUsable()) {
1762 Ex = move(Res);
1763 Type = Ex.get()->getType();
1766 else if (ObjectPtrConversions.size() > 1) {
1767 Diag(StartLoc, diag::err_ambiguous_delete_operand)
1768 << Type << Ex.get()->getSourceRange();
1769 for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1770 NoteOverloadCandidate(ObjectPtrConversions[i]);
1771 return ExprError();
1775 if (!Type->isPointerType())
1776 return ExprError(Diag(StartLoc, diag::err_delete_operand)
1777 << Type << Ex.get()->getSourceRange());
1779 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1780 if (Pointee->isVoidType() && !isSFINAEContext()) {
1781 // The C++ standard bans deleting a pointer to a non-object type, which
1782 // effectively bans deletion of "void*". However, most compilers support
1783 // this, so we treat it as a warning unless we're in a SFINAE context.
1784 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1785 << Type << Ex.get()->getSourceRange();
1786 } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1787 return ExprError(Diag(StartLoc, diag::err_delete_operand)
1788 << Type << Ex.get()->getSourceRange());
1789 else if (!Pointee->isDependentType() &&
1790 RequireCompleteType(StartLoc, Pointee,
1791 PDiag(diag::warn_delete_incomplete)
1792 << Ex.get()->getSourceRange()))
1793 return ExprError();
1794 else if (unsigned AddressSpace = Pointee.getAddressSpace())
1795 return Diag(Ex.get()->getLocStart(),
1796 diag::err_address_space_qualified_delete)
1797 << Pointee.getUnqualifiedType() << AddressSpace;
1798 // C++ [expr.delete]p2:
1799 // [Note: a pointer to a const type can be the operand of a
1800 // delete-expression; it is not necessary to cast away the constness
1801 // (5.2.11) of the pointer expression before it is used as the operand
1802 // of the delete-expression. ]
1803 if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
1804 Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_NoOp,
1805 Ex.take(), 0, VK_RValue));
1807 if (Pointee->isArrayType() && !ArrayForm) {
1808 Diag(StartLoc, diag::warn_delete_array_type)
1809 << Type << Ex.get()->getSourceRange()
1810 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1811 ArrayForm = true;
1814 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1815 ArrayForm ? OO_Array_Delete : OO_Delete);
1817 QualType PointeeElem = Context.getBaseElementType(Pointee);
1818 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1819 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1821 if (!UseGlobal &&
1822 FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1823 return ExprError();
1825 // If we're allocating an array of records, check whether the
1826 // usual operator delete[] has a size_t parameter.
1827 if (ArrayForm) {
1828 // If the user specifically asked to use the global allocator,
1829 // we'll need to do the lookup into the class.
1830 if (UseGlobal)
1831 UsualArrayDeleteWantsSize =
1832 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1834 // Otherwise, the usual operator delete[] should be the
1835 // function we just found.
1836 else if (isa<CXXMethodDecl>(OperatorDelete))
1837 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1840 if (!RD->hasTrivialDestructor())
1841 if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1842 MarkDeclarationReferenced(StartLoc,
1843 const_cast<CXXDestructorDecl*>(Dtor));
1844 DiagnoseUseOfDecl(Dtor, StartLoc);
1847 // C++ [expr.delete]p3:
1848 // In the first alternative (delete object), if the static type of the
1849 // object to be deleted is different from its dynamic type, the static
1850 // type shall be a base class of the dynamic type of the object to be
1851 // deleted and the static type shall have a virtual destructor or the
1852 // behavior is undefined.
1854 // Note: a final class cannot be derived from, no issue there
1855 if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
1856 CXXDestructorDecl *dtor = RD->getDestructor();
1857 if (!dtor || !dtor->isVirtual())
1858 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
1861 } else if (getLangOptions().ObjCAutoRefCount &&
1862 PointeeElem->isObjCLifetimeType() &&
1863 (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
1864 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
1865 ArrayForm) {
1866 Diag(StartLoc, diag::warn_err_new_delete_object_array)
1867 << 1 << PointeeElem;
1870 if (!OperatorDelete) {
1871 // Look for a global declaration.
1872 DeclareGlobalNewDelete();
1873 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1874 Expr *Arg = Ex.get();
1875 if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1876 &Arg, 1, TUDecl, /*AllowMissing=*/false,
1877 OperatorDelete))
1878 return ExprError();
1881 MarkDeclarationReferenced(StartLoc, OperatorDelete);
1883 // Check access and ambiguity of operator delete and destructor.
1884 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1885 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1886 if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1887 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
1888 PDiag(diag::err_access_dtor) << PointeeElem);
1894 return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1895 ArrayFormAsWritten,
1896 UsualArrayDeleteWantsSize,
1897 OperatorDelete, Ex.take(), StartLoc));
1900 /// \brief Check the use of the given variable as a C++ condition in an if,
1901 /// while, do-while, or switch statement.
1902 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1903 SourceLocation StmtLoc,
1904 bool ConvertToBoolean) {
1905 QualType T = ConditionVar->getType();
1907 // C++ [stmt.select]p2:
1908 // The declarator shall not specify a function or an array.
1909 if (T->isFunctionType())
1910 return ExprError(Diag(ConditionVar->getLocation(),
1911 diag::err_invalid_use_of_function_type)
1912 << ConditionVar->getSourceRange());
1913 else if (T->isArrayType())
1914 return ExprError(Diag(ConditionVar->getLocation(),
1915 diag::err_invalid_use_of_array_type)
1916 << ConditionVar->getSourceRange());
1918 ExprResult Condition =
1919 Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1920 ConditionVar,
1921 ConditionVar->getLocation(),
1922 ConditionVar->getType().getNonReferenceType(),
1923 VK_LValue));
1924 if (ConvertToBoolean) {
1925 Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
1926 if (Condition.isInvalid())
1927 return ExprError();
1930 return move(Condition);
1933 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1934 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
1935 // C++ 6.4p4:
1936 // The value of a condition that is an initialized declaration in a statement
1937 // other than a switch statement is the value of the declared variable
1938 // implicitly converted to type bool. If that conversion is ill-formed, the
1939 // program is ill-formed.
1940 // The value of a condition that is an expression is the value of the
1941 // expression, implicitly converted to bool.
1943 return PerformContextuallyConvertToBool(CondExpr);
1946 /// Helper function to determine whether this is the (deprecated) C++
1947 /// conversion from a string literal to a pointer to non-const char or
1948 /// non-const wchar_t (for narrow and wide string literals,
1949 /// respectively).
1950 bool
1951 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1952 // Look inside the implicit cast, if it exists.
1953 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1954 From = Cast->getSubExpr();
1956 // A string literal (2.13.4) that is not a wide string literal can
1957 // be converted to an rvalue of type "pointer to char"; a wide
1958 // string literal can be converted to an rvalue of type "pointer
1959 // to wchar_t" (C++ 4.2p2).
1960 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1961 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1962 if (const BuiltinType *ToPointeeType
1963 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1964 // This conversion is considered only when there is an
1965 // explicit appropriate pointer target type (C++ 4.2p2).
1966 if (!ToPtrType->getPointeeType().hasQualifiers() &&
1967 ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1968 (!StrLit->isWide() &&
1969 (ToPointeeType->getKind() == BuiltinType::Char_U ||
1970 ToPointeeType->getKind() == BuiltinType::Char_S))))
1971 return true;
1974 return false;
1977 static ExprResult BuildCXXCastArgument(Sema &S,
1978 SourceLocation CastLoc,
1979 QualType Ty,
1980 CastKind Kind,
1981 CXXMethodDecl *Method,
1982 NamedDecl *FoundDecl,
1983 Expr *From) {
1984 switch (Kind) {
1985 default: assert(0 && "Unhandled cast kind!");
1986 case CK_ConstructorConversion: {
1987 ASTOwningVector<Expr*> ConstructorArgs(S);
1989 if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1990 MultiExprArg(&From, 1),
1991 CastLoc, ConstructorArgs))
1992 return ExprError();
1994 ExprResult Result =
1995 S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1996 move_arg(ConstructorArgs),
1997 /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1998 SourceRange());
1999 if (Result.isInvalid())
2000 return ExprError();
2002 return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2005 case CK_UserDefinedConversion: {
2006 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2008 // Create an implicit call expr that calls it.
2009 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
2010 if (Result.isInvalid())
2011 return ExprError();
2013 return S.MaybeBindToTemporary(Result.get());
2018 /// PerformImplicitConversion - Perform an implicit conversion of the
2019 /// expression From to the type ToType using the pre-computed implicit
2020 /// conversion sequence ICS. Returns the converted
2021 /// expression. Action is the kind of conversion we're performing,
2022 /// used in the error message.
2023 ExprResult
2024 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2025 const ImplicitConversionSequence &ICS,
2026 AssignmentAction Action,
2027 CheckedConversionKind CCK) {
2028 switch (ICS.getKind()) {
2029 case ImplicitConversionSequence::StandardConversion: {
2030 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2031 Action, CCK);
2032 if (Res.isInvalid())
2033 return ExprError();
2034 From = Res.take();
2035 break;
2038 case ImplicitConversionSequence::UserDefinedConversion: {
2040 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2041 CastKind CastKind;
2042 QualType BeforeToType;
2043 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2044 CastKind = CK_UserDefinedConversion;
2046 // If the user-defined conversion is specified by a conversion function,
2047 // the initial standard conversion sequence converts the source type to
2048 // the implicit object parameter of the conversion function.
2049 BeforeToType = Context.getTagDeclType(Conv->getParent());
2050 } else {
2051 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2052 CastKind = CK_ConstructorConversion;
2053 // Do no conversion if dealing with ... for the first conversion.
2054 if (!ICS.UserDefined.EllipsisConversion) {
2055 // If the user-defined conversion is specified by a constructor, the
2056 // initial standard conversion sequence converts the source type to the
2057 // type required by the argument of the constructor
2058 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2061 // Watch out for elipsis conversion.
2062 if (!ICS.UserDefined.EllipsisConversion) {
2063 ExprResult Res =
2064 PerformImplicitConversion(From, BeforeToType,
2065 ICS.UserDefined.Before, AA_Converting,
2066 CCK);
2067 if (Res.isInvalid())
2068 return ExprError();
2069 From = Res.take();
2072 ExprResult CastArg
2073 = BuildCXXCastArgument(*this,
2074 From->getLocStart(),
2075 ToType.getNonReferenceType(),
2076 CastKind, cast<CXXMethodDecl>(FD),
2077 ICS.UserDefined.FoundConversionFunction,
2078 From);
2080 if (CastArg.isInvalid())
2081 return ExprError();
2083 From = CastArg.take();
2085 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2086 AA_Converting, CCK);
2089 case ImplicitConversionSequence::AmbiguousConversion:
2090 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2091 PDiag(diag::err_typecheck_ambiguous_condition)
2092 << From->getSourceRange());
2093 return ExprError();
2095 case ImplicitConversionSequence::EllipsisConversion:
2096 assert(false && "Cannot perform an ellipsis conversion");
2097 return Owned(From);
2099 case ImplicitConversionSequence::BadConversion:
2100 return ExprError();
2103 // Everything went well.
2104 return Owned(From);
2107 /// PerformImplicitConversion - Perform an implicit conversion of the
2108 /// expression From to the type ToType by following the standard
2109 /// conversion sequence SCS. Returns the converted
2110 /// expression. Flavor is the context in which we're performing this
2111 /// conversion, for use in error messages.
2112 ExprResult
2113 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2114 const StandardConversionSequence& SCS,
2115 AssignmentAction Action,
2116 CheckedConversionKind CCK) {
2117 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2119 // Overall FIXME: we are recomputing too many types here and doing far too
2120 // much extra work. What this means is that we need to keep track of more
2121 // information that is computed when we try the implicit conversion initially,
2122 // so that we don't need to recompute anything here.
2123 QualType FromType = From->getType();
2125 if (SCS.CopyConstructor) {
2126 // FIXME: When can ToType be a reference type?
2127 assert(!ToType->isReferenceType());
2128 if (SCS.Second == ICK_Derived_To_Base) {
2129 ASTOwningVector<Expr*> ConstructorArgs(*this);
2130 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2131 MultiExprArg(*this, &From, 1),
2132 /*FIXME:ConstructLoc*/SourceLocation(),
2133 ConstructorArgs))
2134 return ExprError();
2135 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2136 ToType, SCS.CopyConstructor,
2137 move_arg(ConstructorArgs),
2138 /*ZeroInit*/ false,
2139 CXXConstructExpr::CK_Complete,
2140 SourceRange());
2142 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2143 ToType, SCS.CopyConstructor,
2144 MultiExprArg(*this, &From, 1),
2145 /*ZeroInit*/ false,
2146 CXXConstructExpr::CK_Complete,
2147 SourceRange());
2150 // Resolve overloaded function references.
2151 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2152 DeclAccessPair Found;
2153 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2154 true, Found);
2155 if (!Fn)
2156 return ExprError();
2158 if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2159 return ExprError();
2161 From = FixOverloadedFunctionReference(From, Found, Fn);
2162 FromType = From->getType();
2165 // Perform the first implicit conversion.
2166 switch (SCS.First) {
2167 case ICK_Identity:
2168 // Nothing to do.
2169 break;
2171 case ICK_Lvalue_To_Rvalue:
2172 // Should this get its own ICK?
2173 if (From->getObjectKind() == OK_ObjCProperty) {
2174 ExprResult FromRes = ConvertPropertyForRValue(From);
2175 if (FromRes.isInvalid())
2176 return ExprError();
2177 From = FromRes.take();
2178 if (!From->isGLValue()) break;
2181 // Check for trivial buffer overflows.
2182 CheckArrayAccess(From);
2184 FromType = FromType.getUnqualifiedType();
2185 From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2186 From, 0, VK_RValue);
2187 break;
2189 case ICK_Array_To_Pointer:
2190 FromType = Context.getArrayDecayedType(FromType);
2191 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2192 VK_RValue, /*BasePath=*/0, CCK).take();
2193 break;
2195 case ICK_Function_To_Pointer:
2196 FromType = Context.getPointerType(FromType);
2197 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2198 VK_RValue, /*BasePath=*/0, CCK).take();
2199 break;
2201 default:
2202 assert(false && "Improper first standard conversion");
2203 break;
2206 // Perform the second implicit conversion
2207 switch (SCS.Second) {
2208 case ICK_Identity:
2209 // If both sides are functions (or pointers/references to them), there could
2210 // be incompatible exception declarations.
2211 if (CheckExceptionSpecCompatibility(From, ToType))
2212 return ExprError();
2213 // Nothing else to do.
2214 break;
2216 case ICK_NoReturn_Adjustment:
2217 // If both sides are functions (or pointers/references to them), there could
2218 // be incompatible exception declarations.
2219 if (CheckExceptionSpecCompatibility(From, ToType))
2220 return ExprError();
2222 From = ImpCastExprToType(From, ToType, CK_NoOp,
2223 VK_RValue, /*BasePath=*/0, CCK).take();
2224 break;
2226 case ICK_Integral_Promotion:
2227 case ICK_Integral_Conversion:
2228 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2229 VK_RValue, /*BasePath=*/0, CCK).take();
2230 break;
2232 case ICK_Floating_Promotion:
2233 case ICK_Floating_Conversion:
2234 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2235 VK_RValue, /*BasePath=*/0, CCK).take();
2236 break;
2238 case ICK_Complex_Promotion:
2239 case ICK_Complex_Conversion: {
2240 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2241 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2242 CastKind CK;
2243 if (FromEl->isRealFloatingType()) {
2244 if (ToEl->isRealFloatingType())
2245 CK = CK_FloatingComplexCast;
2246 else
2247 CK = CK_FloatingComplexToIntegralComplex;
2248 } else if (ToEl->isRealFloatingType()) {
2249 CK = CK_IntegralComplexToFloatingComplex;
2250 } else {
2251 CK = CK_IntegralComplexCast;
2253 From = ImpCastExprToType(From, ToType, CK,
2254 VK_RValue, /*BasePath=*/0, CCK).take();
2255 break;
2258 case ICK_Floating_Integral:
2259 if (ToType->isRealFloatingType())
2260 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2261 VK_RValue, /*BasePath=*/0, CCK).take();
2262 else
2263 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2264 VK_RValue, /*BasePath=*/0, CCK).take();
2265 break;
2267 case ICK_Compatible_Conversion:
2268 From = ImpCastExprToType(From, ToType, CK_NoOp,
2269 VK_RValue, /*BasePath=*/0, CCK).take();
2270 break;
2272 case ICK_Writeback_Conversion:
2273 case ICK_Pointer_Conversion: {
2274 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2275 // Diagnose incompatible Objective-C conversions
2276 if (Action == AA_Initializing || Action == AA_Assigning)
2277 Diag(From->getSourceRange().getBegin(),
2278 diag::ext_typecheck_convert_incompatible_pointer)
2279 << ToType << From->getType() << Action
2280 << From->getSourceRange();
2281 else
2282 Diag(From->getSourceRange().getBegin(),
2283 diag::ext_typecheck_convert_incompatible_pointer)
2284 << From->getType() << ToType << Action
2285 << From->getSourceRange();
2287 if (From->getType()->isObjCObjectPointerType() &&
2288 ToType->isObjCObjectPointerType())
2289 EmitRelatedResultTypeNote(From);
2292 CastKind Kind = CK_Invalid;
2293 CXXCastPath BasePath;
2294 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2295 return ExprError();
2296 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2297 .take();
2298 break;
2301 case ICK_Pointer_Member: {
2302 CastKind Kind = CK_Invalid;
2303 CXXCastPath BasePath;
2304 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2305 return ExprError();
2306 if (CheckExceptionSpecCompatibility(From, ToType))
2307 return ExprError();
2308 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2309 .take();
2310 break;
2313 case ICK_Boolean_Conversion:
2314 From = ImpCastExprToType(From, Context.BoolTy,
2315 ScalarTypeToBooleanCastKind(FromType),
2316 VK_RValue, /*BasePath=*/0, CCK).take();
2317 break;
2319 case ICK_Derived_To_Base: {
2320 CXXCastPath BasePath;
2321 if (CheckDerivedToBaseConversion(From->getType(),
2322 ToType.getNonReferenceType(),
2323 From->getLocStart(),
2324 From->getSourceRange(),
2325 &BasePath,
2326 CStyle))
2327 return ExprError();
2329 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2330 CK_DerivedToBase, CastCategory(From),
2331 &BasePath, CCK).take();
2332 break;
2335 case ICK_Vector_Conversion:
2336 From = ImpCastExprToType(From, ToType, CK_BitCast,
2337 VK_RValue, /*BasePath=*/0, CCK).take();
2338 break;
2340 case ICK_Vector_Splat:
2341 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2342 VK_RValue, /*BasePath=*/0, CCK).take();
2343 break;
2345 case ICK_Complex_Real:
2346 // Case 1. x -> _Complex y
2347 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2348 QualType ElType = ToComplex->getElementType();
2349 bool isFloatingComplex = ElType->isRealFloatingType();
2351 // x -> y
2352 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2353 // do nothing
2354 } else if (From->getType()->isRealFloatingType()) {
2355 From = ImpCastExprToType(From, ElType,
2356 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2357 } else {
2358 assert(From->getType()->isIntegerType());
2359 From = ImpCastExprToType(From, ElType,
2360 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2362 // y -> _Complex y
2363 From = ImpCastExprToType(From, ToType,
2364 isFloatingComplex ? CK_FloatingRealToComplex
2365 : CK_IntegralRealToComplex).take();
2367 // Case 2. _Complex x -> y
2368 } else {
2369 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2370 assert(FromComplex);
2372 QualType ElType = FromComplex->getElementType();
2373 bool isFloatingComplex = ElType->isRealFloatingType();
2375 // _Complex x -> x
2376 From = ImpCastExprToType(From, ElType,
2377 isFloatingComplex ? CK_FloatingComplexToReal
2378 : CK_IntegralComplexToReal,
2379 VK_RValue, /*BasePath=*/0, CCK).take();
2381 // x -> y
2382 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2383 // do nothing
2384 } else if (ToType->isRealFloatingType()) {
2385 From = ImpCastExprToType(From, ToType,
2386 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2387 VK_RValue, /*BasePath=*/0, CCK).take();
2388 } else {
2389 assert(ToType->isIntegerType());
2390 From = ImpCastExprToType(From, ToType,
2391 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2392 VK_RValue, /*BasePath=*/0, CCK).take();
2395 break;
2397 case ICK_Block_Pointer_Conversion: {
2398 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2399 VK_RValue, /*BasePath=*/0, CCK).take();
2400 break;
2403 case ICK_TransparentUnionConversion: {
2404 ExprResult FromRes = Owned(From);
2405 Sema::AssignConvertType ConvTy =
2406 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2407 if (FromRes.isInvalid())
2408 return ExprError();
2409 From = FromRes.take();
2410 assert ((ConvTy == Sema::Compatible) &&
2411 "Improper transparent union conversion");
2412 (void)ConvTy;
2413 break;
2416 case ICK_Lvalue_To_Rvalue:
2417 case ICK_Array_To_Pointer:
2418 case ICK_Function_To_Pointer:
2419 case ICK_Qualification:
2420 case ICK_Num_Conversion_Kinds:
2421 assert(false && "Improper second standard conversion");
2422 break;
2425 switch (SCS.Third) {
2426 case ICK_Identity:
2427 // Nothing to do.
2428 break;
2430 case ICK_Qualification: {
2431 // The qualification keeps the category of the inner expression, unless the
2432 // target type isn't a reference.
2433 ExprValueKind VK = ToType->isReferenceType() ?
2434 CastCategory(From) : VK_RValue;
2435 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2436 CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2438 if (SCS.DeprecatedStringLiteralToCharPtr &&
2439 !getLangOptions().WritableStrings)
2440 Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2441 << ToType.getNonReferenceType();
2443 break;
2446 default:
2447 assert(false && "Improper third standard conversion");
2448 break;
2451 return Owned(From);
2454 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2455 SourceLocation KWLoc,
2456 ParsedType Ty,
2457 SourceLocation RParen) {
2458 TypeSourceInfo *TSInfo;
2459 QualType T = GetTypeFromParser(Ty, &TSInfo);
2461 if (!TSInfo)
2462 TSInfo = Context.getTrivialTypeSourceInfo(T);
2463 return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2466 /// \brief Check the completeness of a type in a unary type trait.
2468 /// If the particular type trait requires a complete type, tries to complete
2469 /// it. If completing the type fails, a diagnostic is emitted and false
2470 /// returned. If completing the type succeeds or no completion was required,
2471 /// returns true.
2472 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2473 UnaryTypeTrait UTT,
2474 SourceLocation Loc,
2475 QualType ArgTy) {
2476 // C++0x [meta.unary.prop]p3:
2477 // For all of the class templates X declared in this Clause, instantiating
2478 // that template with a template argument that is a class template
2479 // specialization may result in the implicit instantiation of the template
2480 // argument if and only if the semantics of X require that the argument
2481 // must be a complete type.
2482 // We apply this rule to all the type trait expressions used to implement
2483 // these class templates. We also try to follow any GCC documented behavior
2484 // in these expressions to ensure portability of standard libraries.
2485 switch (UTT) {
2486 // is_complete_type somewhat obviously cannot require a complete type.
2487 case UTT_IsCompleteType:
2488 // Fall-through
2490 // These traits are modeled on the type predicates in C++0x
2491 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2492 // requiring a complete type, as whether or not they return true cannot be
2493 // impacted by the completeness of the type.
2494 case UTT_IsVoid:
2495 case UTT_IsIntegral:
2496 case UTT_IsFloatingPoint:
2497 case UTT_IsArray:
2498 case UTT_IsPointer:
2499 case UTT_IsLvalueReference:
2500 case UTT_IsRvalueReference:
2501 case UTT_IsMemberFunctionPointer:
2502 case UTT_IsMemberObjectPointer:
2503 case UTT_IsEnum:
2504 case UTT_IsUnion:
2505 case UTT_IsClass:
2506 case UTT_IsFunction:
2507 case UTT_IsReference:
2508 case UTT_IsArithmetic:
2509 case UTT_IsFundamental:
2510 case UTT_IsObject:
2511 case UTT_IsScalar:
2512 case UTT_IsCompound:
2513 case UTT_IsMemberPointer:
2514 // Fall-through
2516 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2517 // which requires some of its traits to have the complete type. However,
2518 // the completeness of the type cannot impact these traits' semantics, and
2519 // so they don't require it. This matches the comments on these traits in
2520 // Table 49.
2521 case UTT_IsConst:
2522 case UTT_IsVolatile:
2523 case UTT_IsSigned:
2524 case UTT_IsUnsigned:
2525 return true;
2527 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2528 // applied to a complete type.
2529 case UTT_IsTrivial:
2530 case UTT_IsTriviallyCopyable:
2531 case UTT_IsStandardLayout:
2532 case UTT_IsPOD:
2533 case UTT_IsLiteral:
2534 case UTT_IsEmpty:
2535 case UTT_IsPolymorphic:
2536 case UTT_IsAbstract:
2537 // Fall-through
2539 // These trait expressions are designed to help implement predicates in
2540 // [meta.unary.prop] despite not being named the same. They are specified
2541 // by both GCC and the Embarcadero C++ compiler, and require the complete
2542 // type due to the overarching C++0x type predicates being implemented
2543 // requiring the complete type.
2544 case UTT_HasNothrowAssign:
2545 case UTT_HasNothrowConstructor:
2546 case UTT_HasNothrowCopy:
2547 case UTT_HasTrivialAssign:
2548 case UTT_HasTrivialDefaultConstructor:
2549 case UTT_HasTrivialCopy:
2550 case UTT_HasTrivialDestructor:
2551 case UTT_HasVirtualDestructor:
2552 // Arrays of unknown bound are expressly allowed.
2553 QualType ElTy = ArgTy;
2554 if (ArgTy->isIncompleteArrayType())
2555 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2557 // The void type is expressly allowed.
2558 if (ElTy->isVoidType())
2559 return true;
2561 return !S.RequireCompleteType(
2562 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2564 llvm_unreachable("Type trait not handled by switch");
2567 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2568 SourceLocation KeyLoc, QualType T) {
2569 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2571 ASTContext &C = Self.Context;
2572 switch(UTT) {
2573 // Type trait expressions corresponding to the primary type category
2574 // predicates in C++0x [meta.unary.cat].
2575 case UTT_IsVoid:
2576 return T->isVoidType();
2577 case UTT_IsIntegral:
2578 return T->isIntegralType(C);
2579 case UTT_IsFloatingPoint:
2580 return T->isFloatingType();
2581 case UTT_IsArray:
2582 return T->isArrayType();
2583 case UTT_IsPointer:
2584 return T->isPointerType();
2585 case UTT_IsLvalueReference:
2586 return T->isLValueReferenceType();
2587 case UTT_IsRvalueReference:
2588 return T->isRValueReferenceType();
2589 case UTT_IsMemberFunctionPointer:
2590 return T->isMemberFunctionPointerType();
2591 case UTT_IsMemberObjectPointer:
2592 return T->isMemberDataPointerType();
2593 case UTT_IsEnum:
2594 return T->isEnumeralType();
2595 case UTT_IsUnion:
2596 return T->isUnionType();
2597 case UTT_IsClass:
2598 return T->isClassType() || T->isStructureType();
2599 case UTT_IsFunction:
2600 return T->isFunctionType();
2602 // Type trait expressions which correspond to the convenient composition
2603 // predicates in C++0x [meta.unary.comp].
2604 case UTT_IsReference:
2605 return T->isReferenceType();
2606 case UTT_IsArithmetic:
2607 return T->isArithmeticType() && !T->isEnumeralType();
2608 case UTT_IsFundamental:
2609 return T->isFundamentalType();
2610 case UTT_IsObject:
2611 return T->isObjectType();
2612 case UTT_IsScalar:
2613 // Note: semantic analysis depends on Objective-C lifetime types to be
2614 // considered scalar types. However, such types do not actually behave
2615 // like scalar types at run time (since they may require retain/release
2616 // operations), so we report them as non-scalar.
2617 if (T->isObjCLifetimeType()) {
2618 switch (T.getObjCLifetime()) {
2619 case Qualifiers::OCL_None:
2620 case Qualifiers::OCL_ExplicitNone:
2621 return true;
2623 case Qualifiers::OCL_Strong:
2624 case Qualifiers::OCL_Weak:
2625 case Qualifiers::OCL_Autoreleasing:
2626 return false;
2630 return T->isScalarType();
2631 case UTT_IsCompound:
2632 return T->isCompoundType();
2633 case UTT_IsMemberPointer:
2634 return T->isMemberPointerType();
2636 // Type trait expressions which correspond to the type property predicates
2637 // in C++0x [meta.unary.prop].
2638 case UTT_IsConst:
2639 return T.isConstQualified();
2640 case UTT_IsVolatile:
2641 return T.isVolatileQualified();
2642 case UTT_IsTrivial:
2643 return T.isTrivialType(Self.Context);
2644 case UTT_IsTriviallyCopyable:
2645 return T.isTriviallyCopyableType(Self.Context);
2646 case UTT_IsStandardLayout:
2647 return T->isStandardLayoutType();
2648 case UTT_IsPOD:
2649 return T.isPODType(Self.Context);
2650 case UTT_IsLiteral:
2651 return T->isLiteralType();
2652 case UTT_IsEmpty:
2653 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2654 return !RD->isUnion() && RD->isEmpty();
2655 return false;
2656 case UTT_IsPolymorphic:
2657 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2658 return RD->isPolymorphic();
2659 return false;
2660 case UTT_IsAbstract:
2661 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2662 return RD->isAbstract();
2663 return false;
2664 case UTT_IsSigned:
2665 return T->isSignedIntegerType();
2666 case UTT_IsUnsigned:
2667 return T->isUnsignedIntegerType();
2669 // Type trait expressions which query classes regarding their construction,
2670 // destruction, and copying. Rather than being based directly on the
2671 // related type predicates in the standard, they are specified by both
2672 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2673 // specifications.
2675 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2676 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2677 case UTT_HasTrivialDefaultConstructor:
2678 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2679 // If __is_pod (type) is true then the trait is true, else if type is
2680 // a cv class or union type (or array thereof) with a trivial default
2681 // constructor ([class.ctor]) then the trait is true, else it is false.
2682 if (T.isPODType(Self.Context))
2683 return true;
2684 if (const RecordType *RT =
2685 C.getBaseElementType(T)->getAs<RecordType>())
2686 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2687 return false;
2688 case UTT_HasTrivialCopy:
2689 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2690 // If __is_pod (type) is true or type is a reference type then
2691 // the trait is true, else if type is a cv class or union type
2692 // with a trivial copy constructor ([class.copy]) then the trait
2693 // is true, else it is false.
2694 if (T.isPODType(Self.Context) || T->isReferenceType())
2695 return true;
2696 if (const RecordType *RT = T->getAs<RecordType>())
2697 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2698 return false;
2699 case UTT_HasTrivialAssign:
2700 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2701 // If type is const qualified or is a reference type then the
2702 // trait is false. Otherwise if __is_pod (type) is true then the
2703 // trait is true, else if type is a cv class or union type with
2704 // a trivial copy assignment ([class.copy]) then the trait is
2705 // true, else it is false.
2706 // Note: the const and reference restrictions are interesting,
2707 // given that const and reference members don't prevent a class
2708 // from having a trivial copy assignment operator (but do cause
2709 // errors if the copy assignment operator is actually used, q.v.
2710 // [class.copy]p12).
2712 if (C.getBaseElementType(T).isConstQualified())
2713 return false;
2714 if (T.isPODType(Self.Context))
2715 return true;
2716 if (const RecordType *RT = T->getAs<RecordType>())
2717 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2718 return false;
2719 case UTT_HasTrivialDestructor:
2720 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2721 // If __is_pod (type) is true or type is a reference type
2722 // then the trait is true, else if type is a cv class or union
2723 // type (or array thereof) with a trivial destructor
2724 // ([class.dtor]) then the trait is true, else it is
2725 // false.
2726 if (T.isPODType(Self.Context) || T->isReferenceType())
2727 return true;
2729 // Objective-C++ ARC: autorelease types don't require destruction.
2730 if (T->isObjCLifetimeType() &&
2731 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
2732 return true;
2734 if (const RecordType *RT =
2735 C.getBaseElementType(T)->getAs<RecordType>())
2736 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2737 return false;
2738 // TODO: Propagate nothrowness for implicitly declared special members.
2739 case UTT_HasNothrowAssign:
2740 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2741 // If type is const qualified or is a reference type then the
2742 // trait is false. Otherwise if __has_trivial_assign (type)
2743 // is true then the trait is true, else if type is a cv class
2744 // or union type with copy assignment operators that are known
2745 // not to throw an exception then the trait is true, else it is
2746 // false.
2747 if (C.getBaseElementType(T).isConstQualified())
2748 return false;
2749 if (T->isReferenceType())
2750 return false;
2751 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
2752 return true;
2753 if (const RecordType *RT = T->getAs<RecordType>()) {
2754 CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2755 if (RD->hasTrivialCopyAssignment())
2756 return true;
2758 bool FoundAssign = false;
2759 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2760 LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2761 Sema::LookupOrdinaryName);
2762 if (Self.LookupQualifiedName(Res, RD)) {
2763 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2764 Op != OpEnd; ++Op) {
2765 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2766 if (Operator->isCopyAssignmentOperator()) {
2767 FoundAssign = true;
2768 const FunctionProtoType *CPT
2769 = Operator->getType()->getAs<FunctionProtoType>();
2770 if (CPT->getExceptionSpecType() == EST_Delayed)
2771 return false;
2772 if (!CPT->isNothrow(Self.Context))
2773 return false;
2778 return FoundAssign;
2780 return false;
2781 case UTT_HasNothrowCopy:
2782 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2783 // If __has_trivial_copy (type) is true then the trait is true, else
2784 // if type is a cv class or union type with copy constructors that are
2785 // known not to throw an exception then the trait is true, else it is
2786 // false.
2787 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
2788 return true;
2789 if (const RecordType *RT = T->getAs<RecordType>()) {
2790 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2791 if (RD->hasTrivialCopyConstructor())
2792 return true;
2794 bool FoundConstructor = false;
2795 unsigned FoundTQs;
2796 DeclContext::lookup_const_iterator Con, ConEnd;
2797 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2798 Con != ConEnd; ++Con) {
2799 // A template constructor is never a copy constructor.
2800 // FIXME: However, it may actually be selected at the actual overload
2801 // resolution point.
2802 if (isa<FunctionTemplateDecl>(*Con))
2803 continue;
2804 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2805 if (Constructor->isCopyConstructor(FoundTQs)) {
2806 FoundConstructor = true;
2807 const FunctionProtoType *CPT
2808 = Constructor->getType()->getAs<FunctionProtoType>();
2809 if (CPT->getExceptionSpecType() == EST_Delayed)
2810 return false;
2811 // FIXME: check whether evaluating default arguments can throw.
2812 // For now, we'll be conservative and assume that they can throw.
2813 if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
2814 return false;
2818 return FoundConstructor;
2820 return false;
2821 case UTT_HasNothrowConstructor:
2822 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2823 // If __has_trivial_constructor (type) is true then the trait is
2824 // true, else if type is a cv class or union type (or array
2825 // thereof) with a default constructor that is known not to
2826 // throw an exception then the trait is true, else it is false.
2827 if (T.isPODType(C) || T->isObjCLifetimeType())
2828 return true;
2829 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2830 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2831 if (RD->hasTrivialDefaultConstructor())
2832 return true;
2834 DeclContext::lookup_const_iterator Con, ConEnd;
2835 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2836 Con != ConEnd; ++Con) {
2837 // FIXME: In C++0x, a constructor template can be a default constructor.
2838 if (isa<FunctionTemplateDecl>(*Con))
2839 continue;
2840 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2841 if (Constructor->isDefaultConstructor()) {
2842 const FunctionProtoType *CPT
2843 = Constructor->getType()->getAs<FunctionProtoType>();
2844 if (CPT->getExceptionSpecType() == EST_Delayed)
2845 return false;
2846 // TODO: check whether evaluating default arguments can throw.
2847 // For now, we'll be conservative and assume that they can throw.
2848 return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2852 return false;
2853 case UTT_HasVirtualDestructor:
2854 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2855 // If type is a class type with a virtual destructor ([class.dtor])
2856 // then the trait is true, else it is false.
2857 if (const RecordType *Record = T->getAs<RecordType>()) {
2858 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2859 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2860 return Destructor->isVirtual();
2862 return false;
2864 // These type trait expressions are modeled on the specifications for the
2865 // Embarcadero C++0x type trait functions:
2866 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2867 case UTT_IsCompleteType:
2868 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
2869 // Returns True if and only if T is a complete type at the point of the
2870 // function call.
2871 return !T->isIncompleteType();
2873 llvm_unreachable("Type trait not covered by switch");
2876 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2877 SourceLocation KWLoc,
2878 TypeSourceInfo *TSInfo,
2879 SourceLocation RParen) {
2880 QualType T = TSInfo->getType();
2881 if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
2882 return ExprError();
2884 bool Value = false;
2885 if (!T->isDependentType())
2886 Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
2888 return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2889 RParen, Context.BoolTy));
2892 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2893 SourceLocation KWLoc,
2894 ParsedType LhsTy,
2895 ParsedType RhsTy,
2896 SourceLocation RParen) {
2897 TypeSourceInfo *LhsTSInfo;
2898 QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2899 if (!LhsTSInfo)
2900 LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2902 TypeSourceInfo *RhsTSInfo;
2903 QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2904 if (!RhsTSInfo)
2905 RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2907 return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2910 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2911 QualType LhsT, QualType RhsT,
2912 SourceLocation KeyLoc) {
2913 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
2914 "Cannot evaluate traits of dependent types");
2916 switch(BTT) {
2917 case BTT_IsBaseOf: {
2918 // C++0x [meta.rel]p2
2919 // Base is a base class of Derived without regard to cv-qualifiers or
2920 // Base and Derived are not unions and name the same class type without
2921 // regard to cv-qualifiers.
2923 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2924 if (!lhsRecord) return false;
2926 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2927 if (!rhsRecord) return false;
2929 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2930 == (lhsRecord == rhsRecord));
2932 if (lhsRecord == rhsRecord)
2933 return !lhsRecord->getDecl()->isUnion();
2935 // C++0x [meta.rel]p2:
2936 // If Base and Derived are class types and are different types
2937 // (ignoring possible cv-qualifiers) then Derived shall be a
2938 // complete type.
2939 if (Self.RequireCompleteType(KeyLoc, RhsT,
2940 diag::err_incomplete_type_used_in_type_trait_expr))
2941 return false;
2943 return cast<CXXRecordDecl>(rhsRecord->getDecl())
2944 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2946 case BTT_IsSame:
2947 return Self.Context.hasSameType(LhsT, RhsT);
2948 case BTT_TypeCompatible:
2949 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2950 RhsT.getUnqualifiedType());
2951 case BTT_IsConvertible:
2952 case BTT_IsConvertibleTo: {
2953 // C++0x [meta.rel]p4:
2954 // Given the following function prototype:
2956 // template <class T>
2957 // typename add_rvalue_reference<T>::type create();
2959 // the predicate condition for a template specialization
2960 // is_convertible<From, To> shall be satisfied if and only if
2961 // the return expression in the following code would be
2962 // well-formed, including any implicit conversions to the return
2963 // type of the function:
2965 // To test() {
2966 // return create<From>();
2967 // }
2969 // Access checking is performed as if in a context unrelated to To and
2970 // From. Only the validity of the immediate context of the expression
2971 // of the return-statement (including conversions to the return type)
2972 // is considered.
2974 // We model the initialization as a copy-initialization of a temporary
2975 // of the appropriate type, which for this expression is identical to the
2976 // return statement (since NRVO doesn't apply).
2977 if (LhsT->isObjectType() || LhsT->isFunctionType())
2978 LhsT = Self.Context.getRValueReferenceType(LhsT);
2980 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2981 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2982 Expr::getValueKindForType(LhsT));
2983 Expr *FromPtr = &From;
2984 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2985 SourceLocation()));
2987 // Perform the initialization within a SFINAE trap at translation unit
2988 // scope.
2989 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2990 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2991 InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2992 if (Init.Failed())
2993 return false;
2995 ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2996 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2999 llvm_unreachable("Unknown type trait or not implemented");
3002 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3003 SourceLocation KWLoc,
3004 TypeSourceInfo *LhsTSInfo,
3005 TypeSourceInfo *RhsTSInfo,
3006 SourceLocation RParen) {
3007 QualType LhsT = LhsTSInfo->getType();
3008 QualType RhsT = RhsTSInfo->getType();
3010 if (BTT == BTT_TypeCompatible) {
3011 if (getLangOptions().CPlusPlus) {
3012 Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3013 << SourceRange(KWLoc, RParen);
3014 return ExprError();
3018 bool Value = false;
3019 if (!LhsT->isDependentType() && !RhsT->isDependentType())
3020 Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3022 // Select trait result type.
3023 QualType ResultType;
3024 switch (BTT) {
3025 case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
3026 case BTT_IsConvertible: ResultType = Context.BoolTy; break;
3027 case BTT_IsSame: ResultType = Context.BoolTy; break;
3028 case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3029 case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3032 return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3033 RhsTSInfo, Value, RParen,
3034 ResultType));
3037 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3038 SourceLocation KWLoc,
3039 ParsedType Ty,
3040 Expr* DimExpr,
3041 SourceLocation RParen) {
3042 TypeSourceInfo *TSInfo;
3043 QualType T = GetTypeFromParser(Ty, &TSInfo);
3044 if (!TSInfo)
3045 TSInfo = Context.getTrivialTypeSourceInfo(T);
3047 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3050 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3051 QualType T, Expr *DimExpr,
3052 SourceLocation KeyLoc) {
3053 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3055 switch(ATT) {
3056 case ATT_ArrayRank:
3057 if (T->isArrayType()) {
3058 unsigned Dim = 0;
3059 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3060 ++Dim;
3061 T = AT->getElementType();
3063 return Dim;
3065 return 0;
3067 case ATT_ArrayExtent: {
3068 llvm::APSInt Value;
3069 uint64_t Dim;
3070 if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
3071 if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
3072 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3073 DimExpr->getSourceRange();
3074 return false;
3076 Dim = Value.getLimitedValue();
3077 } else {
3078 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3079 DimExpr->getSourceRange();
3080 return false;
3083 if (T->isArrayType()) {
3084 unsigned D = 0;
3085 bool Matched = false;
3086 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3087 if (Dim == D) {
3088 Matched = true;
3089 break;
3091 ++D;
3092 T = AT->getElementType();
3095 if (Matched && T->isArrayType()) {
3096 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3097 return CAT->getSize().getLimitedValue();
3100 return 0;
3103 llvm_unreachable("Unknown type trait or not implemented");
3106 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3107 SourceLocation KWLoc,
3108 TypeSourceInfo *TSInfo,
3109 Expr* DimExpr,
3110 SourceLocation RParen) {
3111 QualType T = TSInfo->getType();
3113 // FIXME: This should likely be tracked as an APInt to remove any host
3114 // assumptions about the width of size_t on the target.
3115 uint64_t Value = 0;
3116 if (!T->isDependentType())
3117 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3119 // While the specification for these traits from the Embarcadero C++
3120 // compiler's documentation says the return type is 'unsigned int', Clang
3121 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3122 // compiler, there is no difference. On several other platforms this is an
3123 // important distinction.
3124 return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3125 DimExpr, RParen,
3126 Context.getSizeType()));
3129 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3130 SourceLocation KWLoc,
3131 Expr *Queried,
3132 SourceLocation RParen) {
3133 // If error parsing the expression, ignore.
3134 if (!Queried)
3135 return ExprError();
3137 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3139 return move(Result);
3142 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3143 switch (ET) {
3144 case ET_IsLValueExpr: return E->isLValue();
3145 case ET_IsRValueExpr: return E->isRValue();
3147 llvm_unreachable("Expression trait not covered by switch");
3150 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3151 SourceLocation KWLoc,
3152 Expr *Queried,
3153 SourceLocation RParen) {
3154 if (Queried->isTypeDependent()) {
3155 // Delay type-checking for type-dependent expressions.
3156 } else if (Queried->getType()->isPlaceholderType()) {
3157 ExprResult PE = CheckPlaceholderExpr(Queried);
3158 if (PE.isInvalid()) return ExprError();
3159 return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3162 bool Value = EvaluateExpressionTrait(ET, Queried);
3164 return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3165 RParen, Context.BoolTy));
3168 QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
3169 ExprValueKind &VK,
3170 SourceLocation Loc,
3171 bool isIndirect) {
3172 const char *OpSpelling = isIndirect ? "->*" : ".*";
3173 // C++ 5.5p2
3174 // The binary operator .* [p3: ->*] binds its second operand, which shall
3175 // be of type "pointer to member of T" (where T is a completely-defined
3176 // class type) [...]
3177 QualType RType = rex.get()->getType();
3178 const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
3179 if (!MemPtr) {
3180 Diag(Loc, diag::err_bad_memptr_rhs)
3181 << OpSpelling << RType << rex.get()->getSourceRange();
3182 return QualType();
3185 QualType Class(MemPtr->getClass(), 0);
3187 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3188 // member pointer points must be completely-defined. However, there is no
3189 // reason for this semantic distinction, and the rule is not enforced by
3190 // other compilers. Therefore, we do not check this property, as it is
3191 // likely to be considered a defect.
3193 // C++ 5.5p2
3194 // [...] to its first operand, which shall be of class T or of a class of
3195 // which T is an unambiguous and accessible base class. [p3: a pointer to
3196 // such a class]
3197 QualType LType = lex.get()->getType();
3198 if (isIndirect) {
3199 if (const PointerType *Ptr = LType->getAs<PointerType>())
3200 LType = Ptr->getPointeeType();
3201 else {
3202 Diag(Loc, diag::err_bad_memptr_lhs)
3203 << OpSpelling << 1 << LType
3204 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3205 return QualType();
3209 if (!Context.hasSameUnqualifiedType(Class, LType)) {
3210 // If we want to check the hierarchy, we need a complete type.
3211 if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
3212 << OpSpelling << (int)isIndirect)) {
3213 return QualType();
3215 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3216 /*DetectVirtual=*/false);
3217 // FIXME: Would it be useful to print full ambiguity paths, or is that
3218 // overkill?
3219 if (!IsDerivedFrom(LType, Class, Paths) ||
3220 Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3221 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3222 << (int)isIndirect << lex.get()->getType();
3223 return QualType();
3225 // Cast LHS to type of use.
3226 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3227 ExprValueKind VK =
3228 isIndirect ? VK_RValue : CastCategory(lex.get());
3230 CXXCastPath BasePath;
3231 BuildBasePathArray(Paths, BasePath);
3232 lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
3235 if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
3236 // Diagnose use of pointer-to-member type which when used as
3237 // the functional cast in a pointer-to-member expression.
3238 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3239 return QualType();
3242 // C++ 5.5p2
3243 // The result is an object or a function of the type specified by the
3244 // second operand.
3245 // The cv qualifiers are the union of those in the pointer and the left side,
3246 // in accordance with 5.5p5 and 5.2.5.
3247 QualType Result = MemPtr->getPointeeType();
3248 Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
3250 // C++0x [expr.mptr.oper]p6:
3251 // In a .* expression whose object expression is an rvalue, the program is
3252 // ill-formed if the second operand is a pointer to member function with
3253 // ref-qualifier &. In a ->* expression or in a .* expression whose object
3254 // expression is an lvalue, the program is ill-formed if the second operand
3255 // is a pointer to member function with ref-qualifier &&.
3256 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3257 switch (Proto->getRefQualifier()) {
3258 case RQ_None:
3259 // Do nothing
3260 break;
3262 case RQ_LValue:
3263 if (!isIndirect && !lex.get()->Classify(Context).isLValue())
3264 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3265 << RType << 1 << lex.get()->getSourceRange();
3266 break;
3268 case RQ_RValue:
3269 if (isIndirect || !lex.get()->Classify(Context).isRValue())
3270 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3271 << RType << 0 << lex.get()->getSourceRange();
3272 break;
3276 // C++ [expr.mptr.oper]p6:
3277 // The result of a .* expression whose second operand is a pointer
3278 // to a data member is of the same value category as its
3279 // first operand. The result of a .* expression whose second
3280 // operand is a pointer to a member function is a prvalue. The
3281 // result of an ->* expression is an lvalue if its second operand
3282 // is a pointer to data member and a prvalue otherwise.
3283 if (Result->isFunctionType()) {
3284 VK = VK_RValue;
3285 return Context.BoundMemberTy;
3286 } else if (isIndirect) {
3287 VK = VK_LValue;
3288 } else {
3289 VK = lex.get()->getValueKind();
3292 return Result;
3295 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3297 /// This is part of the parameter validation for the ? operator. If either
3298 /// value operand is a class type, the two operands are attempted to be
3299 /// converted to each other. This function does the conversion in one direction.
3300 /// It returns true if the program is ill-formed and has already been diagnosed
3301 /// as such.
3302 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3303 SourceLocation QuestionLoc,
3304 bool &HaveConversion,
3305 QualType &ToType) {
3306 HaveConversion = false;
3307 ToType = To->getType();
3309 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3310 SourceLocation());
3311 // C++0x 5.16p3
3312 // The process for determining whether an operand expression E1 of type T1
3313 // can be converted to match an operand expression E2 of type T2 is defined
3314 // as follows:
3315 // -- If E2 is an lvalue:
3316 bool ToIsLvalue = To->isLValue();
3317 if (ToIsLvalue) {
3318 // E1 can be converted to match E2 if E1 can be implicitly converted to
3319 // type "lvalue reference to T2", subject to the constraint that in the
3320 // conversion the reference must bind directly to E1.
3321 QualType T = Self.Context.getLValueReferenceType(ToType);
3322 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3324 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3325 if (InitSeq.isDirectReferenceBinding()) {
3326 ToType = T;
3327 HaveConversion = true;
3328 return false;
3331 if (InitSeq.isAmbiguous())
3332 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3335 // -- If E2 is an rvalue, or if the conversion above cannot be done:
3336 // -- if E1 and E2 have class type, and the underlying class types are
3337 // the same or one is a base class of the other:
3338 QualType FTy = From->getType();
3339 QualType TTy = To->getType();
3340 const RecordType *FRec = FTy->getAs<RecordType>();
3341 const RecordType *TRec = TTy->getAs<RecordType>();
3342 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3343 Self.IsDerivedFrom(FTy, TTy);
3344 if (FRec && TRec &&
3345 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3346 // E1 can be converted to match E2 if the class of T2 is the
3347 // same type as, or a base class of, the class of T1, and
3348 // [cv2 > cv1].
3349 if (FRec == TRec || FDerivedFromT) {
3350 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3351 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3352 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3353 if (InitSeq) {
3354 HaveConversion = true;
3355 return false;
3358 if (InitSeq.isAmbiguous())
3359 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3363 return false;
3366 // -- Otherwise: E1 can be converted to match E2 if E1 can be
3367 // implicitly converted to the type that expression E2 would have
3368 // if E2 were converted to an rvalue (or the type it has, if E2 is
3369 // an rvalue).
3371 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3372 // to the array-to-pointer or function-to-pointer conversions.
3373 if (!TTy->getAs<TagType>())
3374 TTy = TTy.getUnqualifiedType();
3376 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3377 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3378 HaveConversion = !InitSeq.Failed();
3379 ToType = TTy;
3380 if (InitSeq.isAmbiguous())
3381 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3383 return false;
3386 /// \brief Try to find a common type for two according to C++0x 5.16p5.
3388 /// This is part of the parameter validation for the ? operator. If either
3389 /// value operand is a class type, overload resolution is used to find a
3390 /// conversion to a common type.
3391 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3392 SourceLocation QuestionLoc) {
3393 Expr *Args[2] = { LHS.get(), RHS.get() };
3394 OverloadCandidateSet CandidateSet(QuestionLoc);
3395 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3396 CandidateSet);
3398 OverloadCandidateSet::iterator Best;
3399 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3400 case OR_Success: {
3401 // We found a match. Perform the conversions on the arguments and move on.
3402 ExprResult LHSRes =
3403 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3404 Best->Conversions[0], Sema::AA_Converting);
3405 if (LHSRes.isInvalid())
3406 break;
3407 LHS = move(LHSRes);
3409 ExprResult RHSRes =
3410 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3411 Best->Conversions[1], Sema::AA_Converting);
3412 if (RHSRes.isInvalid())
3413 break;
3414 RHS = move(RHSRes);
3415 if (Best->Function)
3416 Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
3417 return false;
3420 case OR_No_Viable_Function:
3422 // Emit a better diagnostic if one of the expressions is a null pointer
3423 // constant and the other is a pointer type. In this case, the user most
3424 // likely forgot to take the address of the other expression.
3425 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3426 return true;
3428 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3429 << LHS.get()->getType() << RHS.get()->getType()
3430 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3431 return true;
3433 case OR_Ambiguous:
3434 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3435 << LHS.get()->getType() << RHS.get()->getType()
3436 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3437 // FIXME: Print the possible common types by printing the return types of
3438 // the viable candidates.
3439 break;
3441 case OR_Deleted:
3442 assert(false && "Conditional operator has only built-in overloads");
3443 break;
3445 return true;
3448 /// \brief Perform an "extended" implicit conversion as returned by
3449 /// TryClassUnification.
3450 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3451 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3452 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3453 SourceLocation());
3454 Expr *Arg = E.take();
3455 InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3456 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3457 if (Result.isInvalid())
3458 return true;
3460 E = Result;
3461 return false;
3464 /// \brief Check the operands of ?: under C++ semantics.
3466 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3467 /// extension. In this case, LHS == Cond. (But they're not aliases.)
3468 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3469 ExprValueKind &VK, ExprObjectKind &OK,
3470 SourceLocation QuestionLoc) {
3471 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3472 // interface pointers.
3474 // C++0x 5.16p1
3475 // The first expression is contextually converted to bool.
3476 if (!Cond.get()->isTypeDependent()) {
3477 ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3478 if (CondRes.isInvalid())
3479 return QualType();
3480 Cond = move(CondRes);
3483 // Assume r-value.
3484 VK = VK_RValue;
3485 OK = OK_Ordinary;
3487 // Either of the arguments dependent?
3488 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3489 return Context.DependentTy;
3491 // C++0x 5.16p2
3492 // If either the second or the third operand has type (cv) void, ...
3493 QualType LTy = LHS.get()->getType();
3494 QualType RTy = RHS.get()->getType();
3495 bool LVoid = LTy->isVoidType();
3496 bool RVoid = RTy->isVoidType();
3497 if (LVoid || RVoid) {
3498 // ... then the [l2r] conversions are performed on the second and third
3499 // operands ...
3500 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3501 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3502 if (LHS.isInvalid() || RHS.isInvalid())
3503 return QualType();
3504 LTy = LHS.get()->getType();
3505 RTy = RHS.get()->getType();
3507 // ... and one of the following shall hold:
3508 // -- The second or the third operand (but not both) is a throw-
3509 // expression; the result is of the type of the other and is an rvalue.
3510 bool LThrow = isa<CXXThrowExpr>(LHS.get());
3511 bool RThrow = isa<CXXThrowExpr>(RHS.get());
3512 if (LThrow && !RThrow)
3513 return RTy;
3514 if (RThrow && !LThrow)
3515 return LTy;
3517 // -- Both the second and third operands have type void; the result is of
3518 // type void and is an rvalue.
3519 if (LVoid && RVoid)
3520 return Context.VoidTy;
3522 // Neither holds, error.
3523 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3524 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3525 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3526 return QualType();
3529 // Neither is void.
3531 // C++0x 5.16p3
3532 // Otherwise, if the second and third operand have different types, and
3533 // either has (cv) class type, and attempt is made to convert each of those
3534 // operands to the other.
3535 if (!Context.hasSameType(LTy, RTy) &&
3536 (LTy->isRecordType() || RTy->isRecordType())) {
3537 ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3538 // These return true if a single direction is already ambiguous.
3539 QualType L2RType, R2LType;
3540 bool HaveL2R, HaveR2L;
3541 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3542 return QualType();
3543 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3544 return QualType();
3546 // If both can be converted, [...] the program is ill-formed.
3547 if (HaveL2R && HaveR2L) {
3548 Diag(QuestionLoc, diag::err_conditional_ambiguous)
3549 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3550 return QualType();
3553 // If exactly one conversion is possible, that conversion is applied to
3554 // the chosen operand and the converted operands are used in place of the
3555 // original operands for the remainder of this section.
3556 if (HaveL2R) {
3557 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3558 return QualType();
3559 LTy = LHS.get()->getType();
3560 } else if (HaveR2L) {
3561 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3562 return QualType();
3563 RTy = RHS.get()->getType();
3567 // C++0x 5.16p4
3568 // If the second and third operands are glvalues of the same value
3569 // category and have the same type, the result is of that type and
3570 // value category and it is a bit-field if the second or the third
3571 // operand is a bit-field, or if both are bit-fields.
3572 // We only extend this to bitfields, not to the crazy other kinds of
3573 // l-values.
3574 bool Same = Context.hasSameType(LTy, RTy);
3575 if (Same &&
3576 LHS.get()->isGLValue() &&
3577 LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3578 LHS.get()->isOrdinaryOrBitFieldObject() &&
3579 RHS.get()->isOrdinaryOrBitFieldObject()) {
3580 VK = LHS.get()->getValueKind();
3581 if (LHS.get()->getObjectKind() == OK_BitField ||
3582 RHS.get()->getObjectKind() == OK_BitField)
3583 OK = OK_BitField;
3584 return LTy;
3587 // C++0x 5.16p5
3588 // Otherwise, the result is an rvalue. If the second and third operands
3589 // do not have the same type, and either has (cv) class type, ...
3590 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3591 // ... overload resolution is used to determine the conversions (if any)
3592 // to be applied to the operands. If the overload resolution fails, the
3593 // program is ill-formed.
3594 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3595 return QualType();
3598 // C++0x 5.16p6
3599 // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3600 // conversions are performed on the second and third operands.
3601 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3602 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3603 if (LHS.isInvalid() || RHS.isInvalid())
3604 return QualType();
3605 LTy = LHS.get()->getType();
3606 RTy = RHS.get()->getType();
3608 // After those conversions, one of the following shall hold:
3609 // -- The second and third operands have the same type; the result
3610 // is of that type. If the operands have class type, the result
3611 // is a prvalue temporary of the result type, which is
3612 // copy-initialized from either the second operand or the third
3613 // operand depending on the value of the first operand.
3614 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3615 if (LTy->isRecordType()) {
3616 // The operands have class type. Make a temporary copy.
3617 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3618 ExprResult LHSCopy = PerformCopyInitialization(Entity,
3619 SourceLocation(),
3620 LHS);
3621 if (LHSCopy.isInvalid())
3622 return QualType();
3624 ExprResult RHSCopy = PerformCopyInitialization(Entity,
3625 SourceLocation(),
3626 RHS);
3627 if (RHSCopy.isInvalid())
3628 return QualType();
3630 LHS = LHSCopy;
3631 RHS = RHSCopy;
3634 return LTy;
3637 // Extension: conditional operator involving vector types.
3638 if (LTy->isVectorType() || RTy->isVectorType())
3639 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
3641 // -- The second and third operands have arithmetic or enumeration type;
3642 // the usual arithmetic conversions are performed to bring them to a
3643 // common type, and the result is of that type.
3644 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3645 UsualArithmeticConversions(LHS, RHS);
3646 if (LHS.isInvalid() || RHS.isInvalid())
3647 return QualType();
3648 return LHS.get()->getType();
3651 // -- The second and third operands have pointer type, or one has pointer
3652 // type and the other is a null pointer constant; pointer conversions
3653 // and qualification conversions are performed to bring them to their
3654 // composite pointer type. The result is of the composite pointer type.
3655 // -- The second and third operands have pointer to member type, or one has
3656 // pointer to member type and the other is a null pointer constant;
3657 // pointer to member conversions and qualification conversions are
3658 // performed to bring them to a common type, whose cv-qualification
3659 // shall match the cv-qualification of either the second or the third
3660 // operand. The result is of the common type.
3661 bool NonStandardCompositeType = false;
3662 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3663 isSFINAEContext()? 0 : &NonStandardCompositeType);
3664 if (!Composite.isNull()) {
3665 if (NonStandardCompositeType)
3666 Diag(QuestionLoc,
3667 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3668 << LTy << RTy << Composite
3669 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3671 return Composite;
3674 // Similarly, attempt to find composite type of two objective-c pointers.
3675 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3676 if (!Composite.isNull())
3677 return Composite;
3679 // Check if we are using a null with a non-pointer type.
3680 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3681 return QualType();
3683 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3684 << LHS.get()->getType() << RHS.get()->getType()
3685 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3686 return QualType();
3689 /// \brief Find a merged pointer type and convert the two expressions to it.
3691 /// This finds the composite pointer type (or member pointer type) for @p E1
3692 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3693 /// type and returns it.
3694 /// It does not emit diagnostics.
3696 /// \param Loc The location of the operator requiring these two expressions to
3697 /// be converted to the composite pointer type.
3699 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3700 /// a non-standard (but still sane) composite type to which both expressions
3701 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3702 /// will be set true.
3703 QualType Sema::FindCompositePointerType(SourceLocation Loc,
3704 Expr *&E1, Expr *&E2,
3705 bool *NonStandardCompositeType) {
3706 if (NonStandardCompositeType)
3707 *NonStandardCompositeType = false;
3709 assert(getLangOptions().CPlusPlus && "This function assumes C++");
3710 QualType T1 = E1->getType(), T2 = E2->getType();
3712 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3713 !T2->isAnyPointerType() && !T2->isMemberPointerType())
3714 return QualType();
3716 // C++0x 5.9p2
3717 // Pointer conversions and qualification conversions are performed on
3718 // pointer operands to bring them to their composite pointer type. If
3719 // one operand is a null pointer constant, the composite pointer type is
3720 // the type of the other operand.
3721 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3722 if (T2->isMemberPointerType())
3723 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
3724 else
3725 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
3726 return T2;
3728 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3729 if (T1->isMemberPointerType())
3730 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
3731 else
3732 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
3733 return T1;
3736 // Now both have to be pointers or member pointers.
3737 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3738 (!T2->isPointerType() && !T2->isMemberPointerType()))
3739 return QualType();
3741 // Otherwise, of one of the operands has type "pointer to cv1 void," then
3742 // the other has type "pointer to cv2 T" and the composite pointer type is
3743 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3744 // Otherwise, the composite pointer type is a pointer type similar to the
3745 // type of one of the operands, with a cv-qualification signature that is
3746 // the union of the cv-qualification signatures of the operand types.
3747 // In practice, the first part here is redundant; it's subsumed by the second.
3748 // What we do here is, we build the two possible composite types, and try the
3749 // conversions in both directions. If only one works, or if the two composite
3750 // types are the same, we have succeeded.
3751 // FIXME: extended qualifiers?
3752 typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3753 QualifierVector QualifierUnion;
3754 typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3755 ContainingClassVector;
3756 ContainingClassVector MemberOfClass;
3757 QualType Composite1 = Context.getCanonicalType(T1),
3758 Composite2 = Context.getCanonicalType(T2);
3759 unsigned NeedConstBefore = 0;
3760 do {
3761 const PointerType *Ptr1, *Ptr2;
3762 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3763 (Ptr2 = Composite2->getAs<PointerType>())) {
3764 Composite1 = Ptr1->getPointeeType();
3765 Composite2 = Ptr2->getPointeeType();
3767 // If we're allowed to create a non-standard composite type, keep track
3768 // of where we need to fill in additional 'const' qualifiers.
3769 if (NonStandardCompositeType &&
3770 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3771 NeedConstBefore = QualifierUnion.size();
3773 QualifierUnion.push_back(
3774 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3775 MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3776 continue;
3779 const MemberPointerType *MemPtr1, *MemPtr2;
3780 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3781 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3782 Composite1 = MemPtr1->getPointeeType();
3783 Composite2 = MemPtr2->getPointeeType();
3785 // If we're allowed to create a non-standard composite type, keep track
3786 // of where we need to fill in additional 'const' qualifiers.
3787 if (NonStandardCompositeType &&
3788 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3789 NeedConstBefore = QualifierUnion.size();
3791 QualifierUnion.push_back(
3792 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3793 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3794 MemPtr2->getClass()));
3795 continue;
3798 // FIXME: block pointer types?
3800 // Cannot unwrap any more types.
3801 break;
3802 } while (true);
3804 if (NeedConstBefore && NonStandardCompositeType) {
3805 // Extension: Add 'const' to qualifiers that come before the first qualifier
3806 // mismatch, so that our (non-standard!) composite type meets the
3807 // requirements of C++ [conv.qual]p4 bullet 3.
3808 for (unsigned I = 0; I != NeedConstBefore; ++I) {
3809 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3810 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3811 *NonStandardCompositeType = true;
3816 // Rewrap the composites as pointers or member pointers with the union CVRs.
3817 ContainingClassVector::reverse_iterator MOC
3818 = MemberOfClass.rbegin();
3819 for (QualifierVector::reverse_iterator
3820 I = QualifierUnion.rbegin(),
3821 E = QualifierUnion.rend();
3822 I != E; (void)++I, ++MOC) {
3823 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3824 if (MOC->first && MOC->second) {
3825 // Rebuild member pointer type
3826 Composite1 = Context.getMemberPointerType(
3827 Context.getQualifiedType(Composite1, Quals),
3828 MOC->first);
3829 Composite2 = Context.getMemberPointerType(
3830 Context.getQualifiedType(Composite2, Quals),
3831 MOC->second);
3832 } else {
3833 // Rebuild pointer type
3834 Composite1
3835 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3836 Composite2
3837 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3841 // Try to convert to the first composite pointer type.
3842 InitializedEntity Entity1
3843 = InitializedEntity::InitializeTemporary(Composite1);
3844 InitializationKind Kind
3845 = InitializationKind::CreateCopy(Loc, SourceLocation());
3846 InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3847 InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3849 if (E1ToC1 && E2ToC1) {
3850 // Conversion to Composite1 is viable.
3851 if (!Context.hasSameType(Composite1, Composite2)) {
3852 // Composite2 is a different type from Composite1. Check whether
3853 // Composite2 is also viable.
3854 InitializedEntity Entity2
3855 = InitializedEntity::InitializeTemporary(Composite2);
3856 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3857 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3858 if (E1ToC2 && E2ToC2) {
3859 // Both Composite1 and Composite2 are viable and are different;
3860 // this is an ambiguity.
3861 return QualType();
3865 // Convert E1 to Composite1
3866 ExprResult E1Result
3867 = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3868 if (E1Result.isInvalid())
3869 return QualType();
3870 E1 = E1Result.takeAs<Expr>();
3872 // Convert E2 to Composite1
3873 ExprResult E2Result
3874 = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3875 if (E2Result.isInvalid())
3876 return QualType();
3877 E2 = E2Result.takeAs<Expr>();
3879 return Composite1;
3882 // Check whether Composite2 is viable.
3883 InitializedEntity Entity2
3884 = InitializedEntity::InitializeTemporary(Composite2);
3885 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3886 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3887 if (!E1ToC2 || !E2ToC2)
3888 return QualType();
3890 // Convert E1 to Composite2
3891 ExprResult E1Result
3892 = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3893 if (E1Result.isInvalid())
3894 return QualType();
3895 E1 = E1Result.takeAs<Expr>();
3897 // Convert E2 to Composite2
3898 ExprResult E2Result
3899 = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3900 if (E2Result.isInvalid())
3901 return QualType();
3902 E2 = E2Result.takeAs<Expr>();
3904 return Composite2;
3907 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3908 if (!E)
3909 return ExprError();
3911 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3913 // If the result is a glvalue, we shouldn't bind it.
3914 if (!E->isRValue())
3915 return Owned(E);
3917 // In ARC, calls that return a retainable type can return retained,
3918 // in which case we have to insert a consuming cast.
3919 if (getLangOptions().ObjCAutoRefCount &&
3920 E->getType()->isObjCRetainableType()) {
3922 bool ReturnsRetained;
3924 // For actual calls, we compute this by examining the type of the
3925 // called value.
3926 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
3927 Expr *Callee = Call->getCallee()->IgnoreParens();
3928 QualType T = Callee->getType();
3930 if (T == Context.BoundMemberTy) {
3931 // Handle pointer-to-members.
3932 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
3933 T = BinOp->getRHS()->getType();
3934 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
3935 T = Mem->getMemberDecl()->getType();
3938 if (const PointerType *Ptr = T->getAs<PointerType>())
3939 T = Ptr->getPointeeType();
3940 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
3941 T = Ptr->getPointeeType();
3942 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
3943 T = MemPtr->getPointeeType();
3945 const FunctionType *FTy = T->getAs<FunctionType>();
3946 assert(FTy && "call to value not of function type?");
3947 ReturnsRetained = FTy->getExtInfo().getProducesResult();
3949 // ActOnStmtExpr arranges things so that StmtExprs of retainable
3950 // type always produce a +1 object.
3951 } else if (isa<StmtExpr>(E)) {
3952 ReturnsRetained = true;
3954 // For message sends and property references, we try to find an
3955 // actual method. FIXME: we should infer retention by selector in
3956 // cases where we don't have an actual method.
3957 } else {
3958 Decl *D = 0;
3959 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
3960 D = Send->getMethodDecl();
3961 } else {
3962 CastExpr *CE = cast<CastExpr>(E);
3963 // FIXME. What other cast kinds to check for?
3964 if (CE->getCastKind() == CK_ObjCProduceObject ||
3965 CE->getCastKind() == CK_LValueToRValue)
3966 return MaybeBindToTemporary(CE->getSubExpr());
3967 assert(CE->getCastKind() == CK_GetObjCProperty);
3968 const ObjCPropertyRefExpr *PRE = CE->getSubExpr()->getObjCProperty();
3969 D = (PRE->isImplicitProperty() ? PRE->getImplicitPropertyGetter() : 0);
3972 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
3975 if (ReturnsRetained) {
3976 ExprNeedsCleanups = true;
3977 E = ImplicitCastExpr::Create(Context, E->getType(),
3978 CK_ObjCConsumeObject, E, 0,
3979 VK_RValue);
3981 return Owned(E);
3984 if (!getLangOptions().CPlusPlus)
3985 return Owned(E);
3987 const RecordType *RT = E->getType()->getAs<RecordType>();
3988 if (!RT)
3989 return Owned(E);
3991 // That should be enough to guarantee that this type is complete.
3992 // If it has a trivial destructor, we can avoid the extra copy.
3993 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3994 if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3995 return Owned(E);
3997 CXXDestructorDecl *Destructor = LookupDestructor(RD);
3999 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4000 if (Destructor) {
4001 MarkDeclarationReferenced(E->getExprLoc(), Destructor);
4002 CheckDestructorAccess(E->getExprLoc(), Destructor,
4003 PDiag(diag::err_access_dtor_temp)
4004 << E->getType());
4006 ExprTemporaries.push_back(Temp);
4007 ExprNeedsCleanups = true;
4009 return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
4012 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4013 assert(SubExpr && "sub expression can't be null!");
4015 unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
4016 assert(ExprTemporaries.size() >= FirstTemporary);
4017 assert(ExprNeedsCleanups || ExprTemporaries.size() == FirstTemporary);
4018 if (!ExprNeedsCleanups)
4019 return SubExpr;
4021 Expr *E = ExprWithCleanups::Create(Context, SubExpr,
4022 ExprTemporaries.begin() + FirstTemporary,
4023 ExprTemporaries.size() - FirstTemporary);
4024 ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
4025 ExprTemporaries.end());
4026 ExprNeedsCleanups = false;
4028 return E;
4031 ExprResult
4032 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4033 if (SubExpr.isInvalid())
4034 return ExprError();
4036 return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4039 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4040 assert(SubStmt && "sub statement can't be null!");
4042 if (!ExprNeedsCleanups)
4043 return SubStmt;
4045 // FIXME: In order to attach the temporaries, wrap the statement into
4046 // a StmtExpr; currently this is only used for asm statements.
4047 // This is hacky, either create a new CXXStmtWithTemporaries statement or
4048 // a new AsmStmtWithTemporaries.
4049 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4050 SourceLocation(),
4051 SourceLocation());
4052 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4053 SourceLocation());
4054 return MaybeCreateExprWithCleanups(E);
4057 ExprResult
4058 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4059 tok::TokenKind OpKind, ParsedType &ObjectType,
4060 bool &MayBePseudoDestructor) {
4061 // Since this might be a postfix expression, get rid of ParenListExprs.
4062 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4063 if (Result.isInvalid()) return ExprError();
4064 Base = Result.get();
4066 QualType BaseType = Base->getType();
4067 MayBePseudoDestructor = false;
4068 if (BaseType->isDependentType()) {
4069 // If we have a pointer to a dependent type and are using the -> operator,
4070 // the object type is the type that the pointer points to. We might still
4071 // have enough information about that type to do something useful.
4072 if (OpKind == tok::arrow)
4073 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4074 BaseType = Ptr->getPointeeType();
4076 ObjectType = ParsedType::make(BaseType);
4077 MayBePseudoDestructor = true;
4078 return Owned(Base);
4081 // C++ [over.match.oper]p8:
4082 // [...] When operator->returns, the operator-> is applied to the value
4083 // returned, with the original second operand.
4084 if (OpKind == tok::arrow) {
4085 // The set of types we've considered so far.
4086 llvm::SmallPtrSet<CanQualType,8> CTypes;
4087 llvm::SmallVector<SourceLocation, 8> Locations;
4088 CTypes.insert(Context.getCanonicalType(BaseType));
4090 while (BaseType->isRecordType()) {
4091 Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4092 if (Result.isInvalid())
4093 return ExprError();
4094 Base = Result.get();
4095 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4096 Locations.push_back(OpCall->getDirectCallee()->getLocation());
4097 BaseType = Base->getType();
4098 CanQualType CBaseType = Context.getCanonicalType(BaseType);
4099 if (!CTypes.insert(CBaseType)) {
4100 Diag(OpLoc, diag::err_operator_arrow_circular);
4101 for (unsigned i = 0; i < Locations.size(); i++)
4102 Diag(Locations[i], diag::note_declared_at);
4103 return ExprError();
4107 if (BaseType->isPointerType())
4108 BaseType = BaseType->getPointeeType();
4111 // We could end up with various non-record types here, such as extended
4112 // vector types or Objective-C interfaces. Just return early and let
4113 // ActOnMemberReferenceExpr do the work.
4114 if (!BaseType->isRecordType()) {
4115 // C++ [basic.lookup.classref]p2:
4116 // [...] If the type of the object expression is of pointer to scalar
4117 // type, the unqualified-id is looked up in the context of the complete
4118 // postfix-expression.
4120 // This also indicates that we should be parsing a
4121 // pseudo-destructor-name.
4122 ObjectType = ParsedType();
4123 MayBePseudoDestructor = true;
4124 return Owned(Base);
4127 // The object type must be complete (or dependent).
4128 if (!BaseType->isDependentType() &&
4129 RequireCompleteType(OpLoc, BaseType,
4130 PDiag(diag::err_incomplete_member_access)))
4131 return ExprError();
4133 // C++ [basic.lookup.classref]p2:
4134 // If the id-expression in a class member access (5.2.5) is an
4135 // unqualified-id, and the type of the object expression is of a class
4136 // type C (or of pointer to a class type C), the unqualified-id is looked
4137 // up in the scope of class C. [...]
4138 ObjectType = ParsedType::make(BaseType);
4139 return move(Base);
4142 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4143 Expr *MemExpr) {
4144 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4145 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4146 << isa<CXXPseudoDestructorExpr>(MemExpr)
4147 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4149 return ActOnCallExpr(/*Scope*/ 0,
4150 MemExpr,
4151 /*LPLoc*/ ExpectedLParenLoc,
4152 MultiExprArg(),
4153 /*RPLoc*/ ExpectedLParenLoc);
4156 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4157 SourceLocation OpLoc,
4158 tok::TokenKind OpKind,
4159 const CXXScopeSpec &SS,
4160 TypeSourceInfo *ScopeTypeInfo,
4161 SourceLocation CCLoc,
4162 SourceLocation TildeLoc,
4163 PseudoDestructorTypeStorage Destructed,
4164 bool HasTrailingLParen) {
4165 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4167 // C++ [expr.pseudo]p2:
4168 // The left-hand side of the dot operator shall be of scalar type. The
4169 // left-hand side of the arrow operator shall be of pointer to scalar type.
4170 // This scalar type is the object type.
4171 QualType ObjectType = Base->getType();
4172 if (OpKind == tok::arrow) {
4173 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4174 ObjectType = Ptr->getPointeeType();
4175 } else if (!Base->isTypeDependent()) {
4176 // The user wrote "p->" when she probably meant "p."; fix it.
4177 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4178 << ObjectType << true
4179 << FixItHint::CreateReplacement(OpLoc, ".");
4180 if (isSFINAEContext())
4181 return ExprError();
4183 OpKind = tok::period;
4187 if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4188 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4189 << ObjectType << Base->getSourceRange();
4190 return ExprError();
4193 // C++ [expr.pseudo]p2:
4194 // [...] The cv-unqualified versions of the object type and of the type
4195 // designated by the pseudo-destructor-name shall be the same type.
4196 if (DestructedTypeInfo) {
4197 QualType DestructedType = DestructedTypeInfo->getType();
4198 SourceLocation DestructedTypeStart
4199 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4200 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4201 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4202 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4203 << ObjectType << DestructedType << Base->getSourceRange()
4204 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4206 // Recover by setting the destructed type to the object type.
4207 DestructedType = ObjectType;
4208 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4209 DestructedTypeStart);
4210 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4211 } else if (DestructedType.getObjCLifetime() !=
4212 ObjectType.getObjCLifetime()) {
4214 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4215 // Okay: just pretend that the user provided the correctly-qualified
4216 // type.
4217 } else {
4218 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4219 << ObjectType << DestructedType << Base->getSourceRange()
4220 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4223 // Recover by setting the destructed type to the object type.
4224 DestructedType = ObjectType;
4225 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4226 DestructedTypeStart);
4227 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4232 // C++ [expr.pseudo]p2:
4233 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4234 // form
4236 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4238 // shall designate the same scalar type.
4239 if (ScopeTypeInfo) {
4240 QualType ScopeType = ScopeTypeInfo->getType();
4241 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4242 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4244 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4245 diag::err_pseudo_dtor_type_mismatch)
4246 << ObjectType << ScopeType << Base->getSourceRange()
4247 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4249 ScopeType = QualType();
4250 ScopeTypeInfo = 0;
4254 Expr *Result
4255 = new (Context) CXXPseudoDestructorExpr(Context, Base,
4256 OpKind == tok::arrow, OpLoc,
4257 SS.getWithLocInContext(Context),
4258 ScopeTypeInfo,
4259 CCLoc,
4260 TildeLoc,
4261 Destructed);
4263 if (HasTrailingLParen)
4264 return Owned(Result);
4266 return DiagnoseDtorReference(Destructed.getLocation(), Result);
4269 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4270 SourceLocation OpLoc,
4271 tok::TokenKind OpKind,
4272 CXXScopeSpec &SS,
4273 UnqualifiedId &FirstTypeName,
4274 SourceLocation CCLoc,
4275 SourceLocation TildeLoc,
4276 UnqualifiedId &SecondTypeName,
4277 bool HasTrailingLParen) {
4278 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4279 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4280 "Invalid first type name in pseudo-destructor");
4281 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4282 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4283 "Invalid second type name in pseudo-destructor");
4285 // C++ [expr.pseudo]p2:
4286 // The left-hand side of the dot operator shall be of scalar type. The
4287 // left-hand side of the arrow operator shall be of pointer to scalar type.
4288 // This scalar type is the object type.
4289 QualType ObjectType = Base->getType();
4290 if (OpKind == tok::arrow) {
4291 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4292 ObjectType = Ptr->getPointeeType();
4293 } else if (!ObjectType->isDependentType()) {
4294 // The user wrote "p->" when she probably meant "p."; fix it.
4295 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4296 << ObjectType << true
4297 << FixItHint::CreateReplacement(OpLoc, ".");
4298 if (isSFINAEContext())
4299 return ExprError();
4301 OpKind = tok::period;
4305 // Compute the object type that we should use for name lookup purposes. Only
4306 // record types and dependent types matter.
4307 ParsedType ObjectTypePtrForLookup;
4308 if (!SS.isSet()) {
4309 if (ObjectType->isRecordType())
4310 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4311 else if (ObjectType->isDependentType())
4312 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4315 // Convert the name of the type being destructed (following the ~) into a
4316 // type (with source-location information).
4317 QualType DestructedType;
4318 TypeSourceInfo *DestructedTypeInfo = 0;
4319 PseudoDestructorTypeStorage Destructed;
4320 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4321 ParsedType T = getTypeName(*SecondTypeName.Identifier,
4322 SecondTypeName.StartLocation,
4323 S, &SS, true, false, ObjectTypePtrForLookup);
4324 if (!T &&
4325 ((SS.isSet() && !computeDeclContext(SS, false)) ||
4326 (!SS.isSet() && ObjectType->isDependentType()))) {
4327 // The name of the type being destroyed is a dependent name, and we
4328 // couldn't find anything useful in scope. Just store the identifier and
4329 // it's location, and we'll perform (qualified) name lookup again at
4330 // template instantiation time.
4331 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4332 SecondTypeName.StartLocation);
4333 } else if (!T) {
4334 Diag(SecondTypeName.StartLocation,
4335 diag::err_pseudo_dtor_destructor_non_type)
4336 << SecondTypeName.Identifier << ObjectType;
4337 if (isSFINAEContext())
4338 return ExprError();
4340 // Recover by assuming we had the right type all along.
4341 DestructedType = ObjectType;
4342 } else
4343 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4344 } else {
4345 // Resolve the template-id to a type.
4346 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4347 ASTTemplateArgsPtr TemplateArgsPtr(*this,
4348 TemplateId->getTemplateArgs(),
4349 TemplateId->NumArgs);
4350 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4351 TemplateId->Template,
4352 TemplateId->TemplateNameLoc,
4353 TemplateId->LAngleLoc,
4354 TemplateArgsPtr,
4355 TemplateId->RAngleLoc);
4356 if (T.isInvalid() || !T.get()) {
4357 // Recover by assuming we had the right type all along.
4358 DestructedType = ObjectType;
4359 } else
4360 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4363 // If we've performed some kind of recovery, (re-)build the type source
4364 // information.
4365 if (!DestructedType.isNull()) {
4366 if (!DestructedTypeInfo)
4367 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4368 SecondTypeName.StartLocation);
4369 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4372 // Convert the name of the scope type (the type prior to '::') into a type.
4373 TypeSourceInfo *ScopeTypeInfo = 0;
4374 QualType ScopeType;
4375 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4376 FirstTypeName.Identifier) {
4377 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4378 ParsedType T = getTypeName(*FirstTypeName.Identifier,
4379 FirstTypeName.StartLocation,
4380 S, &SS, true, false, ObjectTypePtrForLookup);
4381 if (!T) {
4382 Diag(FirstTypeName.StartLocation,
4383 diag::err_pseudo_dtor_destructor_non_type)
4384 << FirstTypeName.Identifier << ObjectType;
4386 if (isSFINAEContext())
4387 return ExprError();
4389 // Just drop this type. It's unnecessary anyway.
4390 ScopeType = QualType();
4391 } else
4392 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4393 } else {
4394 // Resolve the template-id to a type.
4395 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4396 ASTTemplateArgsPtr TemplateArgsPtr(*this,
4397 TemplateId->getTemplateArgs(),
4398 TemplateId->NumArgs);
4399 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4400 TemplateId->Template,
4401 TemplateId->TemplateNameLoc,
4402 TemplateId->LAngleLoc,
4403 TemplateArgsPtr,
4404 TemplateId->RAngleLoc);
4405 if (T.isInvalid() || !T.get()) {
4406 // Recover by dropping this type.
4407 ScopeType = QualType();
4408 } else
4409 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4413 if (!ScopeType.isNull() && !ScopeTypeInfo)
4414 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4415 FirstTypeName.StartLocation);
4418 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4419 ScopeTypeInfo, CCLoc, TildeLoc,
4420 Destructed, HasTrailingLParen);
4423 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4424 CXXMethodDecl *Method) {
4425 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4426 FoundDecl, Method);
4427 if (Exp.isInvalid())
4428 return true;
4430 MemberExpr *ME =
4431 new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4432 SourceLocation(), Method->getType(),
4433 VK_RValue, OK_Ordinary);
4434 QualType ResultType = Method->getResultType();
4435 ExprValueKind VK = Expr::getValueKindForType(ResultType);
4436 ResultType = ResultType.getNonLValueExprType(Context);
4438 MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
4439 CXXMemberCallExpr *CE =
4440 new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4441 Exp.get()->getLocEnd());
4442 return CE;
4445 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4446 SourceLocation RParen) {
4447 return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4448 Operand->CanThrow(Context),
4449 KeyLoc, RParen));
4452 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4453 Expr *Operand, SourceLocation RParen) {
4454 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4457 /// Perform the conversions required for an expression used in a
4458 /// context that ignores the result.
4459 ExprResult Sema::IgnoredValueConversions(Expr *E) {
4460 // C99 6.3.2.1:
4461 // [Except in specific positions,] an lvalue that does not have
4462 // array type is converted to the value stored in the
4463 // designated object (and is no longer an lvalue).
4464 if (E->isRValue()) return Owned(E);
4466 // We always want to do this on ObjC property references.
4467 if (E->getObjectKind() == OK_ObjCProperty) {
4468 ExprResult Res = ConvertPropertyForRValue(E);
4469 if (Res.isInvalid()) return Owned(E);
4470 E = Res.take();
4471 if (E->isRValue()) return Owned(E);
4474 // Otherwise, this rule does not apply in C++, at least not for the moment.
4475 if (getLangOptions().CPlusPlus) return Owned(E);
4477 // GCC seems to also exclude expressions of incomplete enum type.
4478 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4479 if (!T->getDecl()->isComplete()) {
4480 // FIXME: stupid workaround for a codegen bug!
4481 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4482 return Owned(E);
4486 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4487 if (Res.isInvalid())
4488 return Owned(E);
4489 E = Res.take();
4491 if (!E->getType()->isVoidType())
4492 RequireCompleteType(E->getExprLoc(), E->getType(),
4493 diag::err_incomplete_type);
4494 return Owned(E);
4497 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4498 ExprResult FullExpr = Owned(FE);
4500 if (!FullExpr.get())
4501 return ExprError();
4503 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4504 return ExprError();
4506 FullExpr = CheckPlaceholderExpr(FullExpr.take());
4507 if (FullExpr.isInvalid())
4508 return ExprError();
4510 FullExpr = IgnoredValueConversions(FullExpr.take());
4511 if (FullExpr.isInvalid())
4512 return ExprError();
4514 CheckImplicitConversions(FullExpr.get());
4515 return MaybeCreateExprWithCleanups(FullExpr);
4518 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
4519 if (!FullStmt) return StmtError();
4521 return MaybeCreateStmtWithCleanups(FullStmt);
4524 bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
4525 UnqualifiedId &Name) {
4526 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4527 DeclarationName TargetName = TargetNameInfo.getName();
4528 if (!TargetName)
4529 return false;
4531 // Do the redeclaration lookup in the current scope.
4532 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
4533 Sema::NotForRedeclaration);
4534 R.suppressDiagnostics();
4535 LookupParsedName(R, getCurScope(), &SS);
4536 return !R.empty();