Rename objc_lifetime -> objc_ownership, and modify diagnostics to talk about 'ownersh...
[clang/stm8.git] / lib / Sema / SemaChecking.cpp
blob6a09bf0e40c628251061066507a8b85b4057e826
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Sema/Sema.h"
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Analysis/Analyses/FormatString.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "clang/Basic/TargetBuiltins.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Basic/ConvertUTF.h"
36 #include <limits>
37 using namespace clang;
38 using namespace sema;
40 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
41 unsigned ByteNo) const {
42 return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
43 PP.getLangOptions(), PP.getTargetInfo());
47 /// CheckablePrintfAttr - does a function call have a "printf" attribute
48 /// and arguments that merit checking?
49 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
50 if (Format->getType() == "printf") return true;
51 if (Format->getType() == "printf0") {
52 // printf0 allows null "format" string; if so don't check format/args
53 unsigned format_idx = Format->getFormatIdx() - 1;
54 // Does the index refer to the implicit object argument?
55 if (isa<CXXMemberCallExpr>(TheCall)) {
56 if (format_idx == 0)
57 return false;
58 --format_idx;
60 if (format_idx < TheCall->getNumArgs()) {
61 Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
62 if (!Format->isNullPointerConstant(Context,
63 Expr::NPC_ValueDependentIsNull))
64 return true;
67 return false;
70 /// Checks that a call expression's argument count is the desired number.
71 /// This is useful when doing custom type-checking. Returns true on error.
72 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
73 unsigned argCount = call->getNumArgs();
74 if (argCount == desiredArgCount) return false;
76 if (argCount < desiredArgCount)
77 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
78 << 0 /*function call*/ << desiredArgCount << argCount
79 << call->getSourceRange();
81 // Highlight all the excess arguments.
82 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
83 call->getArg(argCount - 1)->getLocEnd());
85 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
86 << 0 /*function call*/ << desiredArgCount << argCount
87 << call->getArg(1)->getSourceRange();
90 ExprResult
91 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
92 ExprResult TheCallResult(Owned(TheCall));
94 // Find out if any arguments are required to be integer constant expressions.
95 unsigned ICEArguments = 0;
96 ASTContext::GetBuiltinTypeError Error;
97 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
98 if (Error != ASTContext::GE_None)
99 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
101 // If any arguments are required to be ICE's, check and diagnose.
102 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
103 // Skip arguments not required to be ICE's.
104 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
106 llvm::APSInt Result;
107 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
108 return true;
109 ICEArguments &= ~(1 << ArgNo);
112 switch (BuiltinID) {
113 case Builtin::BI__builtin___CFStringMakeConstantString:
114 assert(TheCall->getNumArgs() == 1 &&
115 "Wrong # arguments to builtin CFStringMakeConstantString");
116 if (CheckObjCString(TheCall->getArg(0)))
117 return ExprError();
118 break;
119 case Builtin::BI__builtin_stdarg_start:
120 case Builtin::BI__builtin_va_start:
121 if (SemaBuiltinVAStart(TheCall))
122 return ExprError();
123 break;
124 case Builtin::BI__builtin_isgreater:
125 case Builtin::BI__builtin_isgreaterequal:
126 case Builtin::BI__builtin_isless:
127 case Builtin::BI__builtin_islessequal:
128 case Builtin::BI__builtin_islessgreater:
129 case Builtin::BI__builtin_isunordered:
130 if (SemaBuiltinUnorderedCompare(TheCall))
131 return ExprError();
132 break;
133 case Builtin::BI__builtin_fpclassify:
134 if (SemaBuiltinFPClassification(TheCall, 6))
135 return ExprError();
136 break;
137 case Builtin::BI__builtin_isfinite:
138 case Builtin::BI__builtin_isinf:
139 case Builtin::BI__builtin_isinf_sign:
140 case Builtin::BI__builtin_isnan:
141 case Builtin::BI__builtin_isnormal:
142 if (SemaBuiltinFPClassification(TheCall, 1))
143 return ExprError();
144 break;
145 case Builtin::BI__builtin_shufflevector:
146 return SemaBuiltinShuffleVector(TheCall);
147 // TheCall will be freed by the smart pointer here, but that's fine, since
148 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
149 case Builtin::BI__builtin_prefetch:
150 if (SemaBuiltinPrefetch(TheCall))
151 return ExprError();
152 break;
153 case Builtin::BI__builtin_object_size:
154 if (SemaBuiltinObjectSize(TheCall))
155 return ExprError();
156 break;
157 case Builtin::BI__builtin_longjmp:
158 if (SemaBuiltinLongjmp(TheCall))
159 return ExprError();
160 break;
162 case Builtin::BI__builtin_classify_type:
163 if (checkArgCount(*this, TheCall, 1)) return true;
164 TheCall->setType(Context.IntTy);
165 break;
166 case Builtin::BI__builtin_constant_p:
167 if (checkArgCount(*this, TheCall, 1)) return true;
168 TheCall->setType(Context.IntTy);
169 break;
170 case Builtin::BI__sync_fetch_and_add:
171 case Builtin::BI__sync_fetch_and_sub:
172 case Builtin::BI__sync_fetch_and_or:
173 case Builtin::BI__sync_fetch_and_and:
174 case Builtin::BI__sync_fetch_and_xor:
175 case Builtin::BI__sync_add_and_fetch:
176 case Builtin::BI__sync_sub_and_fetch:
177 case Builtin::BI__sync_and_and_fetch:
178 case Builtin::BI__sync_or_and_fetch:
179 case Builtin::BI__sync_xor_and_fetch:
180 case Builtin::BI__sync_val_compare_and_swap:
181 case Builtin::BI__sync_bool_compare_and_swap:
182 case Builtin::BI__sync_lock_test_and_set:
183 case Builtin::BI__sync_lock_release:
184 case Builtin::BI__sync_swap:
185 return SemaBuiltinAtomicOverloaded(move(TheCallResult));
188 // Since the target specific builtins for each arch overlap, only check those
189 // of the arch we are compiling for.
190 if (BuiltinID >= Builtin::FirstTSBuiltin) {
191 switch (Context.Target.getTriple().getArch()) {
192 case llvm::Triple::arm:
193 case llvm::Triple::thumb:
194 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
195 return ExprError();
196 break;
197 default:
198 break;
202 return move(TheCallResult);
205 // Get the valid immediate range for the specified NEON type code.
206 static unsigned RFT(unsigned t, bool shift = false) {
207 bool quad = t & 0x10;
209 switch (t & 0x7) {
210 case 0: // i8
211 return shift ? 7 : (8 << (int)quad) - 1;
212 case 1: // i16
213 return shift ? 15 : (4 << (int)quad) - 1;
214 case 2: // i32
215 return shift ? 31 : (2 << (int)quad) - 1;
216 case 3: // i64
217 return shift ? 63 : (1 << (int)quad) - 1;
218 case 4: // f32
219 assert(!shift && "cannot shift float types!");
220 return (2 << (int)quad) - 1;
221 case 5: // poly8
222 return shift ? 7 : (8 << (int)quad) - 1;
223 case 6: // poly16
224 return shift ? 15 : (4 << (int)quad) - 1;
225 case 7: // float16
226 assert(!shift && "cannot shift float types!");
227 return (4 << (int)quad) - 1;
229 return 0;
232 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233 llvm::APSInt Result;
235 unsigned mask = 0;
236 unsigned TV = 0;
237 switch (BuiltinID) {
238 #define GET_NEON_OVERLOAD_CHECK
239 #include "clang/Basic/arm_neon.inc"
240 #undef GET_NEON_OVERLOAD_CHECK
243 // For NEON intrinsics which are overloaded on vector element type, validate
244 // the immediate which specifies which variant to emit.
245 if (mask) {
246 unsigned ArgNo = TheCall->getNumArgs()-1;
247 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
248 return true;
250 TV = Result.getLimitedValue(32);
251 if ((TV > 31) || (mask & (1 << TV)) == 0)
252 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
253 << TheCall->getArg(ArgNo)->getSourceRange();
256 // For NEON intrinsics which take an immediate value as part of the
257 // instruction, range check them here.
258 unsigned i = 0, l = 0, u = 0;
259 switch (BuiltinID) {
260 default: return false;
261 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
262 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
263 case ARM::BI__builtin_arm_vcvtr_f:
264 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
265 #define GET_NEON_IMMEDIATE_CHECK
266 #include "clang/Basic/arm_neon.inc"
267 #undef GET_NEON_IMMEDIATE_CHECK
270 // Check that the immediate argument is actually a constant.
271 if (SemaBuiltinConstantArg(TheCall, i, Result))
272 return true;
274 // Range check against the upper/lower values for this isntruction.
275 unsigned Val = Result.getZExtValue();
276 if (Val < l || Val > (u + l))
277 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
278 << l << u+l << TheCall->getArg(i)->getSourceRange();
280 // FIXME: VFP Intrinsics should error if VFP not present.
281 return false;
284 /// CheckFunctionCall - Check a direct function call for various correctness
285 /// and safety properties not strictly enforced by the C type system.
286 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
287 // Get the IdentifierInfo* for the called function.
288 IdentifierInfo *FnInfo = FDecl->getIdentifier();
290 // None of the checks below are needed for functions that don't have
291 // simple names (e.g., C++ conversion functions).
292 if (!FnInfo)
293 return false;
295 // FIXME: This mechanism should be abstracted to be less fragile and
296 // more efficient. For example, just map function ids to custom
297 // handlers.
299 // Printf and scanf checking.
300 for (specific_attr_iterator<FormatAttr>
301 i = FDecl->specific_attr_begin<FormatAttr>(),
302 e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
304 const FormatAttr *Format = *i;
305 const bool b = Format->getType() == "scanf";
306 if (b || CheckablePrintfAttr(Format, TheCall)) {
307 bool HasVAListArg = Format->getFirstArg() == 0;
308 CheckPrintfScanfArguments(TheCall, HasVAListArg,
309 Format->getFormatIdx() - 1,
310 HasVAListArg ? 0 : Format->getFirstArg() - 1,
311 !b);
315 for (specific_attr_iterator<NonNullAttr>
316 i = FDecl->specific_attr_begin<NonNullAttr>(),
317 e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
318 CheckNonNullArguments(*i, TheCall->getArgs(),
319 TheCall->getCallee()->getLocStart());
322 // Memset/memcpy/memmove handling
323 int CMF = -1;
324 switch (FDecl->getBuiltinID()) {
325 case Builtin::BI__builtin_memset:
326 case Builtin::BI__builtin___memset_chk:
327 case Builtin::BImemset:
328 CMF = CMF_Memset;
329 break;
331 case Builtin::BI__builtin_memcpy:
332 case Builtin::BI__builtin___memcpy_chk:
333 case Builtin::BImemcpy:
334 CMF = CMF_Memcpy;
335 break;
337 case Builtin::BI__builtin_memmove:
338 case Builtin::BI__builtin___memmove_chk:
339 case Builtin::BImemmove:
340 CMF = CMF_Memmove;
341 break;
343 default:
344 if (FDecl->getLinkage() == ExternalLinkage &&
345 (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
346 if (FnInfo->isStr("memset"))
347 CMF = CMF_Memset;
348 else if (FnInfo->isStr("memcpy"))
349 CMF = CMF_Memcpy;
350 else if (FnInfo->isStr("memmove"))
351 CMF = CMF_Memmove;
353 break;
356 if (CMF != -1)
357 CheckMemsetcpymoveArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
359 return false;
362 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
363 // Printf checking.
364 const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
365 if (!Format)
366 return false;
368 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
369 if (!V)
370 return false;
372 QualType Ty = V->getType();
373 if (!Ty->isBlockPointerType())
374 return false;
376 const bool b = Format->getType() == "scanf";
377 if (!b && !CheckablePrintfAttr(Format, TheCall))
378 return false;
380 bool HasVAListArg = Format->getFirstArg() == 0;
381 CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
382 HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
384 return false;
387 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
388 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
389 /// type of its first argument. The main ActOnCallExpr routines have already
390 /// promoted the types of arguments because all of these calls are prototyped as
391 /// void(...).
393 /// This function goes through and does final semantic checking for these
394 /// builtins,
395 ExprResult
396 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
397 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
398 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
399 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
401 // Ensure that we have at least one argument to do type inference from.
402 if (TheCall->getNumArgs() < 1) {
403 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
404 << 0 << 1 << TheCall->getNumArgs()
405 << TheCall->getCallee()->getSourceRange();
406 return ExprError();
409 // Inspect the first argument of the atomic builtin. This should always be
410 // a pointer type, whose element is an integral scalar or pointer type.
411 // Because it is a pointer type, we don't have to worry about any implicit
412 // casts here.
413 // FIXME: We don't allow floating point scalars as input.
414 Expr *FirstArg = TheCall->getArg(0);
415 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
416 if (!pointerType) {
417 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
418 << FirstArg->getType() << FirstArg->getSourceRange();
419 return ExprError();
422 QualType ValType = pointerType->getPointeeType();
423 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
424 !ValType->isBlockPointerType()) {
425 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
426 << FirstArg->getType() << FirstArg->getSourceRange();
427 return ExprError();
430 switch (ValType.getObjCLifetime()) {
431 case Qualifiers::OCL_None:
432 case Qualifiers::OCL_ExplicitNone:
433 // okay
434 break;
436 case Qualifiers::OCL_Weak:
437 case Qualifiers::OCL_Strong:
438 case Qualifiers::OCL_Autoreleasing:
439 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
440 << ValType << FirstArg->getSourceRange();
441 return ExprError();
444 // The majority of builtins return a value, but a few have special return
445 // types, so allow them to override appropriately below.
446 QualType ResultType = ValType;
448 // We need to figure out which concrete builtin this maps onto. For example,
449 // __sync_fetch_and_add with a 2 byte object turns into
450 // __sync_fetch_and_add_2.
451 #define BUILTIN_ROW(x) \
452 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
453 Builtin::BI##x##_8, Builtin::BI##x##_16 }
455 static const unsigned BuiltinIndices[][5] = {
456 BUILTIN_ROW(__sync_fetch_and_add),
457 BUILTIN_ROW(__sync_fetch_and_sub),
458 BUILTIN_ROW(__sync_fetch_and_or),
459 BUILTIN_ROW(__sync_fetch_and_and),
460 BUILTIN_ROW(__sync_fetch_and_xor),
462 BUILTIN_ROW(__sync_add_and_fetch),
463 BUILTIN_ROW(__sync_sub_and_fetch),
464 BUILTIN_ROW(__sync_and_and_fetch),
465 BUILTIN_ROW(__sync_or_and_fetch),
466 BUILTIN_ROW(__sync_xor_and_fetch),
468 BUILTIN_ROW(__sync_val_compare_and_swap),
469 BUILTIN_ROW(__sync_bool_compare_and_swap),
470 BUILTIN_ROW(__sync_lock_test_and_set),
471 BUILTIN_ROW(__sync_lock_release),
472 BUILTIN_ROW(__sync_swap)
474 #undef BUILTIN_ROW
476 // Determine the index of the size.
477 unsigned SizeIndex;
478 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
479 case 1: SizeIndex = 0; break;
480 case 2: SizeIndex = 1; break;
481 case 4: SizeIndex = 2; break;
482 case 8: SizeIndex = 3; break;
483 case 16: SizeIndex = 4; break;
484 default:
485 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
486 << FirstArg->getType() << FirstArg->getSourceRange();
487 return ExprError();
490 // Each of these builtins has one pointer argument, followed by some number of
491 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
492 // that we ignore. Find out which row of BuiltinIndices to read from as well
493 // as the number of fixed args.
494 unsigned BuiltinID = FDecl->getBuiltinID();
495 unsigned BuiltinIndex, NumFixed = 1;
496 switch (BuiltinID) {
497 default: assert(0 && "Unknown overloaded atomic builtin!");
498 case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
499 case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
500 case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
501 case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
502 case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
504 case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
505 case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
506 case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
507 case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
508 case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
510 case Builtin::BI__sync_val_compare_and_swap:
511 BuiltinIndex = 10;
512 NumFixed = 2;
513 break;
514 case Builtin::BI__sync_bool_compare_and_swap:
515 BuiltinIndex = 11;
516 NumFixed = 2;
517 ResultType = Context.BoolTy;
518 break;
519 case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
520 case Builtin::BI__sync_lock_release:
521 BuiltinIndex = 13;
522 NumFixed = 0;
523 ResultType = Context.VoidTy;
524 break;
525 case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
528 // Now that we know how many fixed arguments we expect, first check that we
529 // have at least that many.
530 if (TheCall->getNumArgs() < 1+NumFixed) {
531 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
532 << 0 << 1+NumFixed << TheCall->getNumArgs()
533 << TheCall->getCallee()->getSourceRange();
534 return ExprError();
537 // Get the decl for the concrete builtin from this, we can tell what the
538 // concrete integer type we should convert to is.
539 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
540 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
541 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
542 FunctionDecl *NewBuiltinDecl =
543 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
544 TUScope, false, DRE->getLocStart()));
546 // The first argument --- the pointer --- has a fixed type; we
547 // deduce the types of the rest of the arguments accordingly. Walk
548 // the remaining arguments, converting them to the deduced value type.
549 for (unsigned i = 0; i != NumFixed; ++i) {
550 ExprResult Arg = TheCall->getArg(i+1);
552 // If the argument is an implicit cast, then there was a promotion due to
553 // "...", just remove it now.
554 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
555 Arg = ICE->getSubExpr();
556 ICE->setSubExpr(0);
557 TheCall->setArg(i+1, Arg.get());
560 // GCC does an implicit conversion to the pointer or integer ValType. This
561 // can fail in some cases (1i -> int**), check for this error case now.
562 CastKind Kind = CK_Invalid;
563 ExprValueKind VK = VK_RValue;
564 CXXCastPath BasePath;
565 Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
566 ValType, Arg.take(), Kind, VK, BasePath);
567 if (Arg.isInvalid())
568 return ExprError();
570 // Okay, we have something that *can* be converted to the right type. Check
571 // to see if there is a potentially weird extension going on here. This can
572 // happen when you do an atomic operation on something like an char* and
573 // pass in 42. The 42 gets converted to char. This is even more strange
574 // for things like 45.123 -> char, etc.
575 // FIXME: Do this check.
576 Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
577 TheCall->setArg(i+1, Arg.get());
580 // Switch the DeclRefExpr to refer to the new decl.
581 DRE->setDecl(NewBuiltinDecl);
582 DRE->setType(NewBuiltinDecl->getType());
584 // Set the callee in the CallExpr.
585 // FIXME: This leaks the original parens and implicit casts.
586 ExprResult PromotedCall = UsualUnaryConversions(DRE);
587 if (PromotedCall.isInvalid())
588 return ExprError();
589 TheCall->setCallee(PromotedCall.take());
591 // Change the result type of the call to match the original value type. This
592 // is arbitrary, but the codegen for these builtins ins design to handle it
593 // gracefully.
594 TheCall->setType(ResultType);
596 return move(TheCallResult);
600 /// CheckObjCString - Checks that the argument to the builtin
601 /// CFString constructor is correct
602 /// Note: It might also make sense to do the UTF-16 conversion here (would
603 /// simplify the backend).
604 bool Sema::CheckObjCString(Expr *Arg) {
605 Arg = Arg->IgnoreParenCasts();
606 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
608 if (!Literal || Literal->isWide()) {
609 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
610 << Arg->getSourceRange();
611 return true;
614 if (Literal->containsNonAsciiOrNull()) {
615 llvm::StringRef String = Literal->getString();
616 unsigned NumBytes = String.size();
617 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
618 const UTF8 *FromPtr = (UTF8 *)String.data();
619 UTF16 *ToPtr = &ToBuf[0];
621 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
622 &ToPtr, ToPtr + NumBytes,
623 strictConversion);
624 // Check for conversion failure.
625 if (Result != conversionOK)
626 Diag(Arg->getLocStart(),
627 diag::warn_cfstring_truncated) << Arg->getSourceRange();
629 return false;
632 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
633 /// Emit an error and return true on failure, return false on success.
634 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
635 Expr *Fn = TheCall->getCallee();
636 if (TheCall->getNumArgs() > 2) {
637 Diag(TheCall->getArg(2)->getLocStart(),
638 diag::err_typecheck_call_too_many_args)
639 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
640 << Fn->getSourceRange()
641 << SourceRange(TheCall->getArg(2)->getLocStart(),
642 (*(TheCall->arg_end()-1))->getLocEnd());
643 return true;
646 if (TheCall->getNumArgs() < 2) {
647 return Diag(TheCall->getLocEnd(),
648 diag::err_typecheck_call_too_few_args_at_least)
649 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
652 // Determine whether the current function is variadic or not.
653 BlockScopeInfo *CurBlock = getCurBlock();
654 bool isVariadic;
655 if (CurBlock)
656 isVariadic = CurBlock->TheDecl->isVariadic();
657 else if (FunctionDecl *FD = getCurFunctionDecl())
658 isVariadic = FD->isVariadic();
659 else
660 isVariadic = getCurMethodDecl()->isVariadic();
662 if (!isVariadic) {
663 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
664 return true;
667 // Verify that the second argument to the builtin is the last argument of the
668 // current function or method.
669 bool SecondArgIsLastNamedArgument = false;
670 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
672 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
673 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
674 // FIXME: This isn't correct for methods (results in bogus warning).
675 // Get the last formal in the current function.
676 const ParmVarDecl *LastArg;
677 if (CurBlock)
678 LastArg = *(CurBlock->TheDecl->param_end()-1);
679 else if (FunctionDecl *FD = getCurFunctionDecl())
680 LastArg = *(FD->param_end()-1);
681 else
682 LastArg = *(getCurMethodDecl()->param_end()-1);
683 SecondArgIsLastNamedArgument = PV == LastArg;
687 if (!SecondArgIsLastNamedArgument)
688 Diag(TheCall->getArg(1)->getLocStart(),
689 diag::warn_second_parameter_of_va_start_not_last_named_argument);
690 return false;
693 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
694 /// friends. This is declared to take (...), so we have to check everything.
695 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
696 if (TheCall->getNumArgs() < 2)
697 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
698 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
699 if (TheCall->getNumArgs() > 2)
700 return Diag(TheCall->getArg(2)->getLocStart(),
701 diag::err_typecheck_call_too_many_args)
702 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
703 << SourceRange(TheCall->getArg(2)->getLocStart(),
704 (*(TheCall->arg_end()-1))->getLocEnd());
706 ExprResult OrigArg0 = TheCall->getArg(0);
707 ExprResult OrigArg1 = TheCall->getArg(1);
709 // Do standard promotions between the two arguments, returning their common
710 // type.
711 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
712 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
713 return true;
715 // Make sure any conversions are pushed back into the call; this is
716 // type safe since unordered compare builtins are declared as "_Bool
717 // foo(...)".
718 TheCall->setArg(0, OrigArg0.get());
719 TheCall->setArg(1, OrigArg1.get());
721 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
722 return false;
724 // If the common type isn't a real floating type, then the arguments were
725 // invalid for this operation.
726 if (!Res->isRealFloatingType())
727 return Diag(OrigArg0.get()->getLocStart(),
728 diag::err_typecheck_call_invalid_ordered_compare)
729 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
730 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
732 return false;
735 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
736 /// __builtin_isnan and friends. This is declared to take (...), so we have
737 /// to check everything. We expect the last argument to be a floating point
738 /// value.
739 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
740 if (TheCall->getNumArgs() < NumArgs)
741 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
742 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
743 if (TheCall->getNumArgs() > NumArgs)
744 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
745 diag::err_typecheck_call_too_many_args)
746 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
747 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
748 (*(TheCall->arg_end()-1))->getLocEnd());
750 Expr *OrigArg = TheCall->getArg(NumArgs-1);
752 if (OrigArg->isTypeDependent())
753 return false;
755 // This operation requires a non-_Complex floating-point number.
756 if (!OrigArg->getType()->isRealFloatingType())
757 return Diag(OrigArg->getLocStart(),
758 diag::err_typecheck_call_invalid_unary_fp)
759 << OrigArg->getType() << OrigArg->getSourceRange();
761 // If this is an implicit conversion from float -> double, remove it.
762 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
763 Expr *CastArg = Cast->getSubExpr();
764 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
765 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
766 "promotion from float to double is the only expected cast here");
767 Cast->setSubExpr(0);
768 TheCall->setArg(NumArgs-1, CastArg);
769 OrigArg = CastArg;
773 return false;
776 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
777 // This is declared to take (...), so we have to check everything.
778 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
779 if (TheCall->getNumArgs() < 2)
780 return ExprError(Diag(TheCall->getLocEnd(),
781 diag::err_typecheck_call_too_few_args_at_least)
782 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
783 << TheCall->getSourceRange());
785 // Determine which of the following types of shufflevector we're checking:
786 // 1) unary, vector mask: (lhs, mask)
787 // 2) binary, vector mask: (lhs, rhs, mask)
788 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
789 QualType resType = TheCall->getArg(0)->getType();
790 unsigned numElements = 0;
792 if (!TheCall->getArg(0)->isTypeDependent() &&
793 !TheCall->getArg(1)->isTypeDependent()) {
794 QualType LHSType = TheCall->getArg(0)->getType();
795 QualType RHSType = TheCall->getArg(1)->getType();
797 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
798 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
799 << SourceRange(TheCall->getArg(0)->getLocStart(),
800 TheCall->getArg(1)->getLocEnd());
801 return ExprError();
804 numElements = LHSType->getAs<VectorType>()->getNumElements();
805 unsigned numResElements = TheCall->getNumArgs() - 2;
807 // Check to see if we have a call with 2 vector arguments, the unary shuffle
808 // with mask. If so, verify that RHS is an integer vector type with the
809 // same number of elts as lhs.
810 if (TheCall->getNumArgs() == 2) {
811 if (!RHSType->hasIntegerRepresentation() ||
812 RHSType->getAs<VectorType>()->getNumElements() != numElements)
813 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
814 << SourceRange(TheCall->getArg(1)->getLocStart(),
815 TheCall->getArg(1)->getLocEnd());
816 numResElements = numElements;
818 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
819 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
820 << SourceRange(TheCall->getArg(0)->getLocStart(),
821 TheCall->getArg(1)->getLocEnd());
822 return ExprError();
823 } else if (numElements != numResElements) {
824 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
825 resType = Context.getVectorType(eltType, numResElements,
826 VectorType::GenericVector);
830 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
831 if (TheCall->getArg(i)->isTypeDependent() ||
832 TheCall->getArg(i)->isValueDependent())
833 continue;
835 llvm::APSInt Result(32);
836 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
837 return ExprError(Diag(TheCall->getLocStart(),
838 diag::err_shufflevector_nonconstant_argument)
839 << TheCall->getArg(i)->getSourceRange());
841 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
842 return ExprError(Diag(TheCall->getLocStart(),
843 diag::err_shufflevector_argument_too_large)
844 << TheCall->getArg(i)->getSourceRange());
847 llvm::SmallVector<Expr*, 32> exprs;
849 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
850 exprs.push_back(TheCall->getArg(i));
851 TheCall->setArg(i, 0);
854 return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
855 exprs.size(), resType,
856 TheCall->getCallee()->getLocStart(),
857 TheCall->getRParenLoc()));
860 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
861 // This is declared to take (const void*, ...) and can take two
862 // optional constant int args.
863 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
864 unsigned NumArgs = TheCall->getNumArgs();
866 if (NumArgs > 3)
867 return Diag(TheCall->getLocEnd(),
868 diag::err_typecheck_call_too_many_args_at_most)
869 << 0 /*function call*/ << 3 << NumArgs
870 << TheCall->getSourceRange();
872 // Argument 0 is checked for us and the remaining arguments must be
873 // constant integers.
874 for (unsigned i = 1; i != NumArgs; ++i) {
875 Expr *Arg = TheCall->getArg(i);
877 llvm::APSInt Result;
878 if (SemaBuiltinConstantArg(TheCall, i, Result))
879 return true;
881 // FIXME: gcc issues a warning and rewrites these to 0. These
882 // seems especially odd for the third argument since the default
883 // is 3.
884 if (i == 1) {
885 if (Result.getLimitedValue() > 1)
886 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
887 << "0" << "1" << Arg->getSourceRange();
888 } else {
889 if (Result.getLimitedValue() > 3)
890 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
891 << "0" << "3" << Arg->getSourceRange();
895 return false;
898 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
899 /// TheCall is a constant expression.
900 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
901 llvm::APSInt &Result) {
902 Expr *Arg = TheCall->getArg(ArgNum);
903 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
904 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
906 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
908 if (!Arg->isIntegerConstantExpr(Result, Context))
909 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
910 << FDecl->getDeclName() << Arg->getSourceRange();
912 return false;
915 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
916 /// int type). This simply type checks that type is one of the defined
917 /// constants (0-3).
918 // For compatibility check 0-3, llvm only handles 0 and 2.
919 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
920 llvm::APSInt Result;
922 // Check constant-ness first.
923 if (SemaBuiltinConstantArg(TheCall, 1, Result))
924 return true;
926 Expr *Arg = TheCall->getArg(1);
927 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
928 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
929 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
932 return false;
935 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
936 /// This checks that val is a constant 1.
937 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
938 Expr *Arg = TheCall->getArg(1);
939 llvm::APSInt Result;
941 // TODO: This is less than ideal. Overload this to take a value.
942 if (SemaBuiltinConstantArg(TheCall, 1, Result))
943 return true;
945 if (Result != 1)
946 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
947 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
949 return false;
952 // Handle i > 1 ? "x" : "y", recursively.
953 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
954 bool HasVAListArg,
955 unsigned format_idx, unsigned firstDataArg,
956 bool isPrintf) {
957 tryAgain:
958 if (E->isTypeDependent() || E->isValueDependent())
959 return false;
961 E = E->IgnoreParens();
963 switch (E->getStmtClass()) {
964 case Stmt::BinaryConditionalOperatorClass:
965 case Stmt::ConditionalOperatorClass: {
966 const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
967 return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
968 format_idx, firstDataArg, isPrintf)
969 && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
970 format_idx, firstDataArg, isPrintf);
973 case Stmt::IntegerLiteralClass:
974 // Technically -Wformat-nonliteral does not warn about this case.
975 // The behavior of printf and friends in this case is implementation
976 // dependent. Ideally if the format string cannot be null then
977 // it should have a 'nonnull' attribute in the function prototype.
978 return true;
980 case Stmt::ImplicitCastExprClass: {
981 E = cast<ImplicitCastExpr>(E)->getSubExpr();
982 goto tryAgain;
985 case Stmt::OpaqueValueExprClass:
986 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
987 E = src;
988 goto tryAgain;
990 return false;
992 case Stmt::PredefinedExprClass:
993 // While __func__, etc., are technically not string literals, they
994 // cannot contain format specifiers and thus are not a security
995 // liability.
996 return true;
998 case Stmt::DeclRefExprClass: {
999 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1001 // As an exception, do not flag errors for variables binding to
1002 // const string literals.
1003 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1004 bool isConstant = false;
1005 QualType T = DR->getType();
1007 if (const ArrayType *AT = Context.getAsArrayType(T)) {
1008 isConstant = AT->getElementType().isConstant(Context);
1009 } else if (const PointerType *PT = T->getAs<PointerType>()) {
1010 isConstant = T.isConstant(Context) &&
1011 PT->getPointeeType().isConstant(Context);
1014 if (isConstant) {
1015 if (const Expr *Init = VD->getAnyInitializer())
1016 return SemaCheckStringLiteral(Init, TheCall,
1017 HasVAListArg, format_idx, firstDataArg,
1018 isPrintf);
1021 // For vprintf* functions (i.e., HasVAListArg==true), we add a
1022 // special check to see if the format string is a function parameter
1023 // of the function calling the printf function. If the function
1024 // has an attribute indicating it is a printf-like function, then we
1025 // should suppress warnings concerning non-literals being used in a call
1026 // to a vprintf function. For example:
1028 // void
1029 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1030 // va_list ap;
1031 // va_start(ap, fmt);
1032 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
1033 // ...
1036 // FIXME: We don't have full attribute support yet, so just check to see
1037 // if the argument is a DeclRefExpr that references a parameter. We'll
1038 // add proper support for checking the attribute later.
1039 if (HasVAListArg)
1040 if (isa<ParmVarDecl>(VD))
1041 return true;
1044 return false;
1047 case Stmt::CallExprClass: {
1048 const CallExpr *CE = cast<CallExpr>(E);
1049 if (const ImplicitCastExpr *ICE
1050 = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1051 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1052 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1053 if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1054 unsigned ArgIndex = FA->getFormatIdx();
1055 const Expr *Arg = CE->getArg(ArgIndex - 1);
1057 return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1058 format_idx, firstDataArg, isPrintf);
1064 return false;
1066 case Stmt::ObjCStringLiteralClass:
1067 case Stmt::StringLiteralClass: {
1068 const StringLiteral *StrE = NULL;
1070 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1071 StrE = ObjCFExpr->getString();
1072 else
1073 StrE = cast<StringLiteral>(E);
1075 if (StrE) {
1076 CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1077 firstDataArg, isPrintf);
1078 return true;
1081 return false;
1084 default:
1085 return false;
1089 void
1090 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1091 const Expr * const *ExprArgs,
1092 SourceLocation CallSiteLoc) {
1093 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1094 e = NonNull->args_end();
1095 i != e; ++i) {
1096 const Expr *ArgExpr = ExprArgs[*i];
1097 if (ArgExpr->isNullPointerConstant(Context,
1098 Expr::NPC_ValueDependentIsNotNull))
1099 Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1103 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1104 /// functions) for correct use of format strings.
1105 void
1106 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1107 unsigned format_idx, unsigned firstDataArg,
1108 bool isPrintf) {
1110 const Expr *Fn = TheCall->getCallee();
1112 // The way the format attribute works in GCC, the implicit this argument
1113 // of member functions is counted. However, it doesn't appear in our own
1114 // lists, so decrement format_idx in that case.
1115 if (isa<CXXMemberCallExpr>(TheCall)) {
1116 const CXXMethodDecl *method_decl =
1117 dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1118 if (method_decl && method_decl->isInstance()) {
1119 // Catch a format attribute mistakenly referring to the object argument.
1120 if (format_idx == 0)
1121 return;
1122 --format_idx;
1123 if(firstDataArg != 0)
1124 --firstDataArg;
1128 // CHECK: printf/scanf-like function is called with no format string.
1129 if (format_idx >= TheCall->getNumArgs()) {
1130 Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1131 << Fn->getSourceRange();
1132 return;
1135 const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1137 // CHECK: format string is not a string literal.
1139 // Dynamically generated format strings are difficult to
1140 // automatically vet at compile time. Requiring that format strings
1141 // are string literals: (1) permits the checking of format strings by
1142 // the compiler and thereby (2) can practically remove the source of
1143 // many format string exploits.
1145 // Format string can be either ObjC string (e.g. @"%d") or
1146 // C string (e.g. "%d")
1147 // ObjC string uses the same format specifiers as C string, so we can use
1148 // the same format string checking logic for both ObjC and C strings.
1149 if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1150 firstDataArg, isPrintf))
1151 return; // Literal format string found, check done!
1153 // If there are no arguments specified, warn with -Wformat-security, otherwise
1154 // warn only with -Wformat-nonliteral.
1155 if (TheCall->getNumArgs() == format_idx+1)
1156 Diag(TheCall->getArg(format_idx)->getLocStart(),
1157 diag::warn_format_nonliteral_noargs)
1158 << OrigFormatExpr->getSourceRange();
1159 else
1160 Diag(TheCall->getArg(format_idx)->getLocStart(),
1161 diag::warn_format_nonliteral)
1162 << OrigFormatExpr->getSourceRange();
1165 namespace {
1166 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1167 protected:
1168 Sema &S;
1169 const StringLiteral *FExpr;
1170 const Expr *OrigFormatExpr;
1171 const unsigned FirstDataArg;
1172 const unsigned NumDataArgs;
1173 const bool IsObjCLiteral;
1174 const char *Beg; // Start of format string.
1175 const bool HasVAListArg;
1176 const CallExpr *TheCall;
1177 unsigned FormatIdx;
1178 llvm::BitVector CoveredArgs;
1179 bool usesPositionalArgs;
1180 bool atFirstArg;
1181 public:
1182 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1183 const Expr *origFormatExpr, unsigned firstDataArg,
1184 unsigned numDataArgs, bool isObjCLiteral,
1185 const char *beg, bool hasVAListArg,
1186 const CallExpr *theCall, unsigned formatIdx)
1187 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1188 FirstDataArg(firstDataArg),
1189 NumDataArgs(numDataArgs),
1190 IsObjCLiteral(isObjCLiteral), Beg(beg),
1191 HasVAListArg(hasVAListArg),
1192 TheCall(theCall), FormatIdx(formatIdx),
1193 usesPositionalArgs(false), atFirstArg(true) {
1194 CoveredArgs.resize(numDataArgs);
1195 CoveredArgs.reset();
1198 void DoneProcessing();
1200 void HandleIncompleteSpecifier(const char *startSpecifier,
1201 unsigned specifierLen);
1203 virtual void HandleInvalidPosition(const char *startSpecifier,
1204 unsigned specifierLen,
1205 analyze_format_string::PositionContext p);
1207 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1209 void HandleNullChar(const char *nullCharacter);
1211 protected:
1212 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1213 const char *startSpec,
1214 unsigned specifierLen,
1215 const char *csStart, unsigned csLen);
1217 SourceRange getFormatStringRange();
1218 CharSourceRange getSpecifierRange(const char *startSpecifier,
1219 unsigned specifierLen);
1220 SourceLocation getLocationOfByte(const char *x);
1222 const Expr *getDataArg(unsigned i) const;
1224 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1225 const analyze_format_string::ConversionSpecifier &CS,
1226 const char *startSpecifier, unsigned specifierLen,
1227 unsigned argIndex);
1231 SourceRange CheckFormatHandler::getFormatStringRange() {
1232 return OrigFormatExpr->getSourceRange();
1235 CharSourceRange CheckFormatHandler::
1236 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1237 SourceLocation Start = getLocationOfByte(startSpecifier);
1238 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
1240 // Advance the end SourceLocation by one due to half-open ranges.
1241 End = End.getFileLocWithOffset(1);
1243 return CharSourceRange::getCharRange(Start, End);
1246 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1247 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1250 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1251 unsigned specifierLen){
1252 SourceLocation Loc = getLocationOfByte(startSpecifier);
1253 S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1254 << getSpecifierRange(startSpecifier, specifierLen);
1257 void
1258 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1259 analyze_format_string::PositionContext p) {
1260 SourceLocation Loc = getLocationOfByte(startPos);
1261 S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1262 << (unsigned) p << getSpecifierRange(startPos, posLen);
1265 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1266 unsigned posLen) {
1267 SourceLocation Loc = getLocationOfByte(startPos);
1268 S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1269 << getSpecifierRange(startPos, posLen);
1272 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1273 if (!IsObjCLiteral) {
1274 // The presence of a null character is likely an error.
1275 S.Diag(getLocationOfByte(nullCharacter),
1276 diag::warn_printf_format_string_contains_null_char)
1277 << getFormatStringRange();
1281 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1282 return TheCall->getArg(FirstDataArg + i);
1285 void CheckFormatHandler::DoneProcessing() {
1286 // Does the number of data arguments exceed the number of
1287 // format conversions in the format string?
1288 if (!HasVAListArg) {
1289 // Find any arguments that weren't covered.
1290 CoveredArgs.flip();
1291 signed notCoveredArg = CoveredArgs.find_first();
1292 if (notCoveredArg >= 0) {
1293 assert((unsigned)notCoveredArg < NumDataArgs);
1294 S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1295 diag::warn_printf_data_arg_not_used)
1296 << getFormatStringRange();
1301 bool
1302 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1303 SourceLocation Loc,
1304 const char *startSpec,
1305 unsigned specifierLen,
1306 const char *csStart,
1307 unsigned csLen) {
1309 bool keepGoing = true;
1310 if (argIndex < NumDataArgs) {
1311 // Consider the argument coverered, even though the specifier doesn't
1312 // make sense.
1313 CoveredArgs.set(argIndex);
1315 else {
1316 // If argIndex exceeds the number of data arguments we
1317 // don't issue a warning because that is just a cascade of warnings (and
1318 // they may have intended '%%' anyway). We don't want to continue processing
1319 // the format string after this point, however, as we will like just get
1320 // gibberish when trying to match arguments.
1321 keepGoing = false;
1324 S.Diag(Loc, diag::warn_format_invalid_conversion)
1325 << llvm::StringRef(csStart, csLen)
1326 << getSpecifierRange(startSpec, specifierLen);
1328 return keepGoing;
1331 bool
1332 CheckFormatHandler::CheckNumArgs(
1333 const analyze_format_string::FormatSpecifier &FS,
1334 const analyze_format_string::ConversionSpecifier &CS,
1335 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1337 if (argIndex >= NumDataArgs) {
1338 if (FS.usesPositionalArg()) {
1339 S.Diag(getLocationOfByte(CS.getStart()),
1340 diag::warn_printf_positional_arg_exceeds_data_args)
1341 << (argIndex+1) << NumDataArgs
1342 << getSpecifierRange(startSpecifier, specifierLen);
1344 else {
1345 S.Diag(getLocationOfByte(CS.getStart()),
1346 diag::warn_printf_insufficient_data_args)
1347 << getSpecifierRange(startSpecifier, specifierLen);
1350 return false;
1352 return true;
1355 //===--- CHECK: Printf format string checking ------------------------------===//
1357 namespace {
1358 class CheckPrintfHandler : public CheckFormatHandler {
1359 public:
1360 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1361 const Expr *origFormatExpr, unsigned firstDataArg,
1362 unsigned numDataArgs, bool isObjCLiteral,
1363 const char *beg, bool hasVAListArg,
1364 const CallExpr *theCall, unsigned formatIdx)
1365 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1366 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1367 theCall, formatIdx) {}
1370 bool HandleInvalidPrintfConversionSpecifier(
1371 const analyze_printf::PrintfSpecifier &FS,
1372 const char *startSpecifier,
1373 unsigned specifierLen);
1375 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1376 const char *startSpecifier,
1377 unsigned specifierLen);
1379 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1380 const char *startSpecifier, unsigned specifierLen);
1381 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1382 const analyze_printf::OptionalAmount &Amt,
1383 unsigned type,
1384 const char *startSpecifier, unsigned specifierLen);
1385 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1386 const analyze_printf::OptionalFlag &flag,
1387 const char *startSpecifier, unsigned specifierLen);
1388 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1389 const analyze_printf::OptionalFlag &ignoredFlag,
1390 const analyze_printf::OptionalFlag &flag,
1391 const char *startSpecifier, unsigned specifierLen);
1395 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1396 const analyze_printf::PrintfSpecifier &FS,
1397 const char *startSpecifier,
1398 unsigned specifierLen) {
1399 const analyze_printf::PrintfConversionSpecifier &CS =
1400 FS.getConversionSpecifier();
1402 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1403 getLocationOfByte(CS.getStart()),
1404 startSpecifier, specifierLen,
1405 CS.getStart(), CS.getLength());
1408 bool CheckPrintfHandler::HandleAmount(
1409 const analyze_format_string::OptionalAmount &Amt,
1410 unsigned k, const char *startSpecifier,
1411 unsigned specifierLen) {
1413 if (Amt.hasDataArgument()) {
1414 if (!HasVAListArg) {
1415 unsigned argIndex = Amt.getArgIndex();
1416 if (argIndex >= NumDataArgs) {
1417 S.Diag(getLocationOfByte(Amt.getStart()),
1418 diag::warn_printf_asterisk_missing_arg)
1419 << k << getSpecifierRange(startSpecifier, specifierLen);
1420 // Don't do any more checking. We will just emit
1421 // spurious errors.
1422 return false;
1425 // Type check the data argument. It should be an 'int'.
1426 // Although not in conformance with C99, we also allow the argument to be
1427 // an 'unsigned int' as that is a reasonably safe case. GCC also
1428 // doesn't emit a warning for that case.
1429 CoveredArgs.set(argIndex);
1430 const Expr *Arg = getDataArg(argIndex);
1431 QualType T = Arg->getType();
1433 const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1434 assert(ATR.isValid());
1436 if (!ATR.matchesType(S.Context, T)) {
1437 S.Diag(getLocationOfByte(Amt.getStart()),
1438 diag::warn_printf_asterisk_wrong_type)
1439 << k
1440 << ATR.getRepresentativeType(S.Context) << T
1441 << getSpecifierRange(startSpecifier, specifierLen)
1442 << Arg->getSourceRange();
1443 // Don't do any more checking. We will just emit
1444 // spurious errors.
1445 return false;
1449 return true;
1452 void CheckPrintfHandler::HandleInvalidAmount(
1453 const analyze_printf::PrintfSpecifier &FS,
1454 const analyze_printf::OptionalAmount &Amt,
1455 unsigned type,
1456 const char *startSpecifier,
1457 unsigned specifierLen) {
1458 const analyze_printf::PrintfConversionSpecifier &CS =
1459 FS.getConversionSpecifier();
1460 switch (Amt.getHowSpecified()) {
1461 case analyze_printf::OptionalAmount::Constant:
1462 S.Diag(getLocationOfByte(Amt.getStart()),
1463 diag::warn_printf_nonsensical_optional_amount)
1464 << type
1465 << CS.toString()
1466 << getSpecifierRange(startSpecifier, specifierLen)
1467 << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1468 Amt.getConstantLength()));
1469 break;
1471 default:
1472 S.Diag(getLocationOfByte(Amt.getStart()),
1473 diag::warn_printf_nonsensical_optional_amount)
1474 << type
1475 << CS.toString()
1476 << getSpecifierRange(startSpecifier, specifierLen);
1477 break;
1481 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1482 const analyze_printf::OptionalFlag &flag,
1483 const char *startSpecifier,
1484 unsigned specifierLen) {
1485 // Warn about pointless flag with a fixit removal.
1486 const analyze_printf::PrintfConversionSpecifier &CS =
1487 FS.getConversionSpecifier();
1488 S.Diag(getLocationOfByte(flag.getPosition()),
1489 diag::warn_printf_nonsensical_flag)
1490 << flag.toString() << CS.toString()
1491 << getSpecifierRange(startSpecifier, specifierLen)
1492 << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1495 void CheckPrintfHandler::HandleIgnoredFlag(
1496 const analyze_printf::PrintfSpecifier &FS,
1497 const analyze_printf::OptionalFlag &ignoredFlag,
1498 const analyze_printf::OptionalFlag &flag,
1499 const char *startSpecifier,
1500 unsigned specifierLen) {
1501 // Warn about ignored flag with a fixit removal.
1502 S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1503 diag::warn_printf_ignored_flag)
1504 << ignoredFlag.toString() << flag.toString()
1505 << getSpecifierRange(startSpecifier, specifierLen)
1506 << FixItHint::CreateRemoval(getSpecifierRange(
1507 ignoredFlag.getPosition(), 1));
1510 bool
1511 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1512 &FS,
1513 const char *startSpecifier,
1514 unsigned specifierLen) {
1516 using namespace analyze_format_string;
1517 using namespace analyze_printf;
1518 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1520 if (FS.consumesDataArgument()) {
1521 if (atFirstArg) {
1522 atFirstArg = false;
1523 usesPositionalArgs = FS.usesPositionalArg();
1525 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1526 // Cannot mix-and-match positional and non-positional arguments.
1527 S.Diag(getLocationOfByte(CS.getStart()),
1528 diag::warn_format_mix_positional_nonpositional_args)
1529 << getSpecifierRange(startSpecifier, specifierLen);
1530 return false;
1534 // First check if the field width, precision, and conversion specifier
1535 // have matching data arguments.
1536 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1537 startSpecifier, specifierLen)) {
1538 return false;
1541 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1542 startSpecifier, specifierLen)) {
1543 return false;
1546 if (!CS.consumesDataArgument()) {
1547 // FIXME: Technically specifying a precision or field width here
1548 // makes no sense. Worth issuing a warning at some point.
1549 return true;
1552 // Consume the argument.
1553 unsigned argIndex = FS.getArgIndex();
1554 if (argIndex < NumDataArgs) {
1555 // The check to see if the argIndex is valid will come later.
1556 // We set the bit here because we may exit early from this
1557 // function if we encounter some other error.
1558 CoveredArgs.set(argIndex);
1561 // Check for using an Objective-C specific conversion specifier
1562 // in a non-ObjC literal.
1563 if (!IsObjCLiteral && CS.isObjCArg()) {
1564 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1565 specifierLen);
1568 // Check for invalid use of field width
1569 if (!FS.hasValidFieldWidth()) {
1570 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1571 startSpecifier, specifierLen);
1574 // Check for invalid use of precision
1575 if (!FS.hasValidPrecision()) {
1576 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1577 startSpecifier, specifierLen);
1580 // Check each flag does not conflict with any other component.
1581 if (!FS.hasValidThousandsGroupingPrefix())
1582 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1583 if (!FS.hasValidLeadingZeros())
1584 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1585 if (!FS.hasValidPlusPrefix())
1586 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1587 if (!FS.hasValidSpacePrefix())
1588 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1589 if (!FS.hasValidAlternativeForm())
1590 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1591 if (!FS.hasValidLeftJustified())
1592 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1594 // Check that flags are not ignored by another flag
1595 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1596 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1597 startSpecifier, specifierLen);
1598 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1599 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1600 startSpecifier, specifierLen);
1602 // Check the length modifier is valid with the given conversion specifier.
1603 const LengthModifier &LM = FS.getLengthModifier();
1604 if (!FS.hasValidLengthModifier())
1605 S.Diag(getLocationOfByte(LM.getStart()),
1606 diag::warn_format_nonsensical_length)
1607 << LM.toString() << CS.toString()
1608 << getSpecifierRange(startSpecifier, specifierLen)
1609 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1610 LM.getLength()));
1612 // Are we using '%n'?
1613 if (CS.getKind() == ConversionSpecifier::nArg) {
1614 // Issue a warning about this being a possible security issue.
1615 S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1616 << getSpecifierRange(startSpecifier, specifierLen);
1617 // Continue checking the other format specifiers.
1618 return true;
1621 // The remaining checks depend on the data arguments.
1622 if (HasVAListArg)
1623 return true;
1625 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1626 return false;
1628 // Now type check the data expression that matches the
1629 // format specifier.
1630 const Expr *Ex = getDataArg(argIndex);
1631 const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1632 if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1633 // Check if we didn't match because of an implicit cast from a 'char'
1634 // or 'short' to an 'int'. This is done because printf is a varargs
1635 // function.
1636 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1637 if (ICE->getType() == S.Context.IntTy) {
1638 // All further checking is done on the subexpression.
1639 Ex = ICE->getSubExpr();
1640 if (ATR.matchesType(S.Context, Ex->getType()))
1641 return true;
1644 // We may be able to offer a FixItHint if it is a supported type.
1645 PrintfSpecifier fixedFS = FS;
1646 bool success = fixedFS.fixType(Ex->getType());
1648 if (success) {
1649 // Get the fix string from the fixed format specifier
1650 llvm::SmallString<128> buf;
1651 llvm::raw_svector_ostream os(buf);
1652 fixedFS.toString(os);
1654 // FIXME: getRepresentativeType() perhaps should return a string
1655 // instead of a QualType to better handle when the representative
1656 // type is 'wint_t' (which is defined in the system headers).
1657 S.Diag(getLocationOfByte(CS.getStart()),
1658 diag::warn_printf_conversion_argument_type_mismatch)
1659 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1660 << getSpecifierRange(startSpecifier, specifierLen)
1661 << Ex->getSourceRange()
1662 << FixItHint::CreateReplacement(
1663 getSpecifierRange(startSpecifier, specifierLen),
1664 os.str());
1666 else {
1667 S.Diag(getLocationOfByte(CS.getStart()),
1668 diag::warn_printf_conversion_argument_type_mismatch)
1669 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1670 << getSpecifierRange(startSpecifier, specifierLen)
1671 << Ex->getSourceRange();
1675 return true;
1678 //===--- CHECK: Scanf format string checking ------------------------------===//
1680 namespace {
1681 class CheckScanfHandler : public CheckFormatHandler {
1682 public:
1683 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1684 const Expr *origFormatExpr, unsigned firstDataArg,
1685 unsigned numDataArgs, bool isObjCLiteral,
1686 const char *beg, bool hasVAListArg,
1687 const CallExpr *theCall, unsigned formatIdx)
1688 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1689 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1690 theCall, formatIdx) {}
1692 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1693 const char *startSpecifier,
1694 unsigned specifierLen);
1696 bool HandleInvalidScanfConversionSpecifier(
1697 const analyze_scanf::ScanfSpecifier &FS,
1698 const char *startSpecifier,
1699 unsigned specifierLen);
1701 void HandleIncompleteScanList(const char *start, const char *end);
1705 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1706 const char *end) {
1707 S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1708 << getSpecifierRange(start, end - start);
1711 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1712 const analyze_scanf::ScanfSpecifier &FS,
1713 const char *startSpecifier,
1714 unsigned specifierLen) {
1716 const analyze_scanf::ScanfConversionSpecifier &CS =
1717 FS.getConversionSpecifier();
1719 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1720 getLocationOfByte(CS.getStart()),
1721 startSpecifier, specifierLen,
1722 CS.getStart(), CS.getLength());
1725 bool CheckScanfHandler::HandleScanfSpecifier(
1726 const analyze_scanf::ScanfSpecifier &FS,
1727 const char *startSpecifier,
1728 unsigned specifierLen) {
1730 using namespace analyze_scanf;
1731 using namespace analyze_format_string;
1733 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1735 // Handle case where '%' and '*' don't consume an argument. These shouldn't
1736 // be used to decide if we are using positional arguments consistently.
1737 if (FS.consumesDataArgument()) {
1738 if (atFirstArg) {
1739 atFirstArg = false;
1740 usesPositionalArgs = FS.usesPositionalArg();
1742 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1743 // Cannot mix-and-match positional and non-positional arguments.
1744 S.Diag(getLocationOfByte(CS.getStart()),
1745 diag::warn_format_mix_positional_nonpositional_args)
1746 << getSpecifierRange(startSpecifier, specifierLen);
1747 return false;
1751 // Check if the field with is non-zero.
1752 const OptionalAmount &Amt = FS.getFieldWidth();
1753 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1754 if (Amt.getConstantAmount() == 0) {
1755 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1756 Amt.getConstantLength());
1757 S.Diag(getLocationOfByte(Amt.getStart()),
1758 diag::warn_scanf_nonzero_width)
1759 << R << FixItHint::CreateRemoval(R);
1763 if (!FS.consumesDataArgument()) {
1764 // FIXME: Technically specifying a precision or field width here
1765 // makes no sense. Worth issuing a warning at some point.
1766 return true;
1769 // Consume the argument.
1770 unsigned argIndex = FS.getArgIndex();
1771 if (argIndex < NumDataArgs) {
1772 // The check to see if the argIndex is valid will come later.
1773 // We set the bit here because we may exit early from this
1774 // function if we encounter some other error.
1775 CoveredArgs.set(argIndex);
1778 // Check the length modifier is valid with the given conversion specifier.
1779 const LengthModifier &LM = FS.getLengthModifier();
1780 if (!FS.hasValidLengthModifier()) {
1781 S.Diag(getLocationOfByte(LM.getStart()),
1782 diag::warn_format_nonsensical_length)
1783 << LM.toString() << CS.toString()
1784 << getSpecifierRange(startSpecifier, specifierLen)
1785 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1786 LM.getLength()));
1789 // The remaining checks depend on the data arguments.
1790 if (HasVAListArg)
1791 return true;
1793 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1794 return false;
1796 // FIXME: Check that the argument type matches the format specifier.
1798 return true;
1801 void Sema::CheckFormatString(const StringLiteral *FExpr,
1802 const Expr *OrigFormatExpr,
1803 const CallExpr *TheCall, bool HasVAListArg,
1804 unsigned format_idx, unsigned firstDataArg,
1805 bool isPrintf) {
1807 // CHECK: is the format string a wide literal?
1808 if (FExpr->isWide()) {
1809 Diag(FExpr->getLocStart(),
1810 diag::warn_format_string_is_wide_literal)
1811 << OrigFormatExpr->getSourceRange();
1812 return;
1815 // Str - The format string. NOTE: this is NOT null-terminated!
1816 llvm::StringRef StrRef = FExpr->getString();
1817 const char *Str = StrRef.data();
1818 unsigned StrLen = StrRef.size();
1820 // CHECK: empty format string?
1821 if (StrLen == 0) {
1822 Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1823 << OrigFormatExpr->getSourceRange();
1824 return;
1827 if (isPrintf) {
1828 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1829 TheCall->getNumArgs() - firstDataArg,
1830 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1831 HasVAListArg, TheCall, format_idx);
1833 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1834 H.DoneProcessing();
1836 else {
1837 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1838 TheCall->getNumArgs() - firstDataArg,
1839 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1840 HasVAListArg, TheCall, format_idx);
1842 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1843 H.DoneProcessing();
1847 //===--- CHECK: Standard memory functions ---------------------------------===//
1849 /// \brief Determine whether the given type is a dynamic class type (e.g.,
1850 /// whether it has a vtable).
1851 static bool isDynamicClassType(QualType T) {
1852 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1853 if (CXXRecordDecl *Definition = Record->getDefinition())
1854 if (Definition->isDynamicClass())
1855 return true;
1857 return false;
1860 /// \brief If E is a sizeof expression, returns its argument expression,
1861 /// otherwise returns NULL.
1862 static const Expr *getSizeOfExprArg(const Expr* E) {
1863 if (const UnaryExprOrTypeTraitExpr *SizeOf =
1864 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1865 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1866 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1868 return 0;
1871 /// \brief If E is a sizeof expression, returns its argument type.
1872 static QualType getSizeOfArgType(const Expr* E) {
1873 if (const UnaryExprOrTypeTraitExpr *SizeOf =
1874 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1875 if (SizeOf->getKind() == clang::UETT_SizeOf)
1876 return SizeOf->getTypeOfArgument();
1878 return QualType();
1881 /// \brief Check for dangerous or invalid arguments to memset().
1883 /// This issues warnings on known problematic, dangerous or unspecified
1884 /// arguments to the standard 'memset', 'memcpy', and 'memmove' function calls.
1886 /// \param Call The call expression to diagnose.
1887 void Sema::CheckMemsetcpymoveArguments(const CallExpr *Call,
1888 CheckedMemoryFunction CMF,
1889 IdentifierInfo *FnName) {
1890 // It is possible to have a non-standard definition of memset. Validate
1891 // we have enough arguments, and if not, abort further checking.
1892 if (Call->getNumArgs() < 3)
1893 return;
1895 unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1896 const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1898 // We have special checking when the length is a sizeof expression.
1899 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1900 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1901 llvm::FoldingSetNodeID SizeOfArgID;
1903 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1904 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1905 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1907 QualType DestTy = Dest->getType();
1908 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1909 QualType PointeeTy = DestPtrTy->getPointeeType();
1911 // Never warn about void type pointers. This can be used to suppress
1912 // false positives.
1913 if (PointeeTy->isVoidType())
1914 continue;
1916 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1917 // actually comparing the expressions for equality. Because computing the
1918 // expression IDs can be expensive, we only do this if the diagnostic is
1919 // enabled.
1920 if (SizeOfArg &&
1921 Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1922 SizeOfArg->getExprLoc())) {
1923 // We only compute IDs for expressions if the warning is enabled, and
1924 // cache the sizeof arg's ID.
1925 if (SizeOfArgID == llvm::FoldingSetNodeID())
1926 SizeOfArg->Profile(SizeOfArgID, Context, true);
1927 llvm::FoldingSetNodeID DestID;
1928 Dest->Profile(DestID, Context, true);
1929 if (DestID == SizeOfArgID) {
1930 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1931 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1932 if (UnaryOp->getOpcode() == UO_AddrOf)
1933 ActionIdx = 1; // If its an address-of operator, just remove it.
1934 if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
1935 ActionIdx = 2; // If the pointee's size is sizeof(char),
1936 // suggest an explicit length.
1937 DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
1938 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
1939 << FnName << ArgIdx << ActionIdx
1940 << Dest->getSourceRange()
1941 << SizeOfArg->getSourceRange());
1942 break;
1946 // Also check for cases where the sizeof argument is the exact same
1947 // type as the memory argument, and where it points to a user-defined
1948 // record type.
1949 if (SizeOfArgTy != QualType()) {
1950 if (PointeeTy->isRecordType() &&
1951 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
1952 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
1953 PDiag(diag::warn_sizeof_pointer_type_memaccess)
1954 << FnName << SizeOfArgTy << ArgIdx
1955 << PointeeTy << Dest->getSourceRange()
1956 << LenExpr->getSourceRange());
1957 break;
1961 unsigned DiagID;
1963 // Always complain about dynamic classes.
1964 if (isDynamicClassType(PointeeTy))
1965 DiagID = diag::warn_dyn_class_memaccess;
1966 else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
1967 DiagID = diag::warn_arc_object_memaccess;
1968 else
1969 continue;
1971 DiagRuntimeBehavior(
1972 Dest->getExprLoc(), Dest,
1973 PDiag(DiagID)
1974 << ArgIdx << FnName << PointeeTy
1975 << Call->getCallee()->getSourceRange());
1977 DiagRuntimeBehavior(
1978 Dest->getExprLoc(), Dest,
1979 PDiag(diag::note_bad_memaccess_silence)
1980 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
1981 break;
1986 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1988 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1989 static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1991 /// CheckReturnStackAddr - Check if a return statement returns the address
1992 /// of a stack variable.
1993 void
1994 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1995 SourceLocation ReturnLoc) {
1997 Expr *stackE = 0;
1998 llvm::SmallVector<DeclRefExpr *, 8> refVars;
2000 // Perform checking for returned stack addresses, local blocks,
2001 // label addresses or references to temporaries.
2002 if (lhsType->isPointerType() ||
2003 (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2004 stackE = EvalAddr(RetValExp, refVars);
2005 } else if (lhsType->isReferenceType()) {
2006 stackE = EvalVal(RetValExp, refVars);
2009 if (stackE == 0)
2010 return; // Nothing suspicious was found.
2012 SourceLocation diagLoc;
2013 SourceRange diagRange;
2014 if (refVars.empty()) {
2015 diagLoc = stackE->getLocStart();
2016 diagRange = stackE->getSourceRange();
2017 } else {
2018 // We followed through a reference variable. 'stackE' contains the
2019 // problematic expression but we will warn at the return statement pointing
2020 // at the reference variable. We will later display the "trail" of
2021 // reference variables using notes.
2022 diagLoc = refVars[0]->getLocStart();
2023 diagRange = refVars[0]->getSourceRange();
2026 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2027 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2028 : diag::warn_ret_stack_addr)
2029 << DR->getDecl()->getDeclName() << diagRange;
2030 } else if (isa<BlockExpr>(stackE)) { // local block.
2031 Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2032 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2033 Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2034 } else { // local temporary.
2035 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2036 : diag::warn_ret_local_temp_addr)
2037 << diagRange;
2040 // Display the "trail" of reference variables that we followed until we
2041 // found the problematic expression using notes.
2042 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2043 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2044 // If this var binds to another reference var, show the range of the next
2045 // var, otherwise the var binds to the problematic expression, in which case
2046 // show the range of the expression.
2047 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2048 : stackE->getSourceRange();
2049 Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2050 << VD->getDeclName() << range;
2054 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2055 /// check if the expression in a return statement evaluates to an address
2056 /// to a location on the stack, a local block, an address of a label, or a
2057 /// reference to local temporary. The recursion is used to traverse the
2058 /// AST of the return expression, with recursion backtracking when we
2059 /// encounter a subexpression that (1) clearly does not lead to one of the
2060 /// above problematic expressions (2) is something we cannot determine leads to
2061 /// a problematic expression based on such local checking.
2063 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
2064 /// the expression that they point to. Such variables are added to the
2065 /// 'refVars' vector so that we know what the reference variable "trail" was.
2067 /// EvalAddr processes expressions that are pointers that are used as
2068 /// references (and not L-values). EvalVal handles all other values.
2069 /// At the base case of the recursion is a check for the above problematic
2070 /// expressions.
2072 /// This implementation handles:
2074 /// * pointer-to-pointer casts
2075 /// * implicit conversions from array references to pointers
2076 /// * taking the address of fields
2077 /// * arbitrary interplay between "&" and "*" operators
2078 /// * pointer arithmetic from an address of a stack variable
2079 /// * taking the address of an array element where the array is on the stack
2080 static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2081 if (E->isTypeDependent())
2082 return NULL;
2084 // We should only be called for evaluating pointer expressions.
2085 assert((E->getType()->isAnyPointerType() ||
2086 E->getType()->isBlockPointerType() ||
2087 E->getType()->isObjCQualifiedIdType()) &&
2088 "EvalAddr only works on pointers");
2090 E = E->IgnoreParens();
2092 // Our "symbolic interpreter" is just a dispatch off the currently
2093 // viewed AST node. We then recursively traverse the AST by calling
2094 // EvalAddr and EvalVal appropriately.
2095 switch (E->getStmtClass()) {
2096 case Stmt::DeclRefExprClass: {
2097 DeclRefExpr *DR = cast<DeclRefExpr>(E);
2099 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2100 // If this is a reference variable, follow through to the expression that
2101 // it points to.
2102 if (V->hasLocalStorage() &&
2103 V->getType()->isReferenceType() && V->hasInit()) {
2104 // Add the reference variable to the "trail".
2105 refVars.push_back(DR);
2106 return EvalAddr(V->getInit(), refVars);
2109 return NULL;
2112 case Stmt::UnaryOperatorClass: {
2113 // The only unary operator that make sense to handle here
2114 // is AddrOf. All others don't make sense as pointers.
2115 UnaryOperator *U = cast<UnaryOperator>(E);
2117 if (U->getOpcode() == UO_AddrOf)
2118 return EvalVal(U->getSubExpr(), refVars);
2119 else
2120 return NULL;
2123 case Stmt::BinaryOperatorClass: {
2124 // Handle pointer arithmetic. All other binary operators are not valid
2125 // in this context.
2126 BinaryOperator *B = cast<BinaryOperator>(E);
2127 BinaryOperatorKind op = B->getOpcode();
2129 if (op != BO_Add && op != BO_Sub)
2130 return NULL;
2132 Expr *Base = B->getLHS();
2134 // Determine which argument is the real pointer base. It could be
2135 // the RHS argument instead of the LHS.
2136 if (!Base->getType()->isPointerType()) Base = B->getRHS();
2138 assert (Base->getType()->isPointerType());
2139 return EvalAddr(Base, refVars);
2142 // For conditional operators we need to see if either the LHS or RHS are
2143 // valid DeclRefExpr*s. If one of them is valid, we return it.
2144 case Stmt::ConditionalOperatorClass: {
2145 ConditionalOperator *C = cast<ConditionalOperator>(E);
2147 // Handle the GNU extension for missing LHS.
2148 if (Expr *lhsExpr = C->getLHS()) {
2149 // In C++, we can have a throw-expression, which has 'void' type.
2150 if (!lhsExpr->getType()->isVoidType())
2151 if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2152 return LHS;
2155 // In C++, we can have a throw-expression, which has 'void' type.
2156 if (C->getRHS()->getType()->isVoidType())
2157 return NULL;
2159 return EvalAddr(C->getRHS(), refVars);
2162 case Stmt::BlockExprClass:
2163 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2164 return E; // local block.
2165 return NULL;
2167 case Stmt::AddrLabelExprClass:
2168 return E; // address of label.
2170 // For casts, we need to handle conversions from arrays to
2171 // pointer values, and pointer-to-pointer conversions.
2172 case Stmt::ImplicitCastExprClass:
2173 case Stmt::CStyleCastExprClass:
2174 case Stmt::CXXFunctionalCastExprClass:
2175 case Stmt::ObjCBridgedCastExprClass: {
2176 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2177 QualType T = SubExpr->getType();
2179 if (SubExpr->getType()->isPointerType() ||
2180 SubExpr->getType()->isBlockPointerType() ||
2181 SubExpr->getType()->isObjCQualifiedIdType())
2182 return EvalAddr(SubExpr, refVars);
2183 else if (T->isArrayType())
2184 return EvalVal(SubExpr, refVars);
2185 else
2186 return 0;
2189 // C++ casts. For dynamic casts, static casts, and const casts, we
2190 // are always converting from a pointer-to-pointer, so we just blow
2191 // through the cast. In the case the dynamic cast doesn't fail (and
2192 // return NULL), we take the conservative route and report cases
2193 // where we return the address of a stack variable. For Reinterpre
2194 // FIXME: The comment about is wrong; we're not always converting
2195 // from pointer to pointer. I'm guessing that this code should also
2196 // handle references to objects.
2197 case Stmt::CXXStaticCastExprClass:
2198 case Stmt::CXXDynamicCastExprClass:
2199 case Stmt::CXXConstCastExprClass:
2200 case Stmt::CXXReinterpretCastExprClass: {
2201 Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2202 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2203 return EvalAddr(S, refVars);
2204 else
2205 return NULL;
2208 case Stmt::MaterializeTemporaryExprClass:
2209 if (Expr *Result = EvalAddr(
2210 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2211 refVars))
2212 return Result;
2214 return E;
2216 // Everything else: we simply don't reason about them.
2217 default:
2218 return NULL;
2223 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
2224 /// See the comments for EvalAddr for more details.
2225 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2226 do {
2227 // We should only be called for evaluating non-pointer expressions, or
2228 // expressions with a pointer type that are not used as references but instead
2229 // are l-values (e.g., DeclRefExpr with a pointer type).
2231 // Our "symbolic interpreter" is just a dispatch off the currently
2232 // viewed AST node. We then recursively traverse the AST by calling
2233 // EvalAddr and EvalVal appropriately.
2235 E = E->IgnoreParens();
2236 switch (E->getStmtClass()) {
2237 case Stmt::ImplicitCastExprClass: {
2238 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2239 if (IE->getValueKind() == VK_LValue) {
2240 E = IE->getSubExpr();
2241 continue;
2243 return NULL;
2246 case Stmt::DeclRefExprClass: {
2247 // When we hit a DeclRefExpr we are looking at code that refers to a
2248 // variable's name. If it's not a reference variable we check if it has
2249 // local storage within the function, and if so, return the expression.
2250 DeclRefExpr *DR = cast<DeclRefExpr>(E);
2252 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2253 if (V->hasLocalStorage()) {
2254 if (!V->getType()->isReferenceType())
2255 return DR;
2257 // Reference variable, follow through to the expression that
2258 // it points to.
2259 if (V->hasInit()) {
2260 // Add the reference variable to the "trail".
2261 refVars.push_back(DR);
2262 return EvalVal(V->getInit(), refVars);
2266 return NULL;
2269 case Stmt::UnaryOperatorClass: {
2270 // The only unary operator that make sense to handle here
2271 // is Deref. All others don't resolve to a "name." This includes
2272 // handling all sorts of rvalues passed to a unary operator.
2273 UnaryOperator *U = cast<UnaryOperator>(E);
2275 if (U->getOpcode() == UO_Deref)
2276 return EvalAddr(U->getSubExpr(), refVars);
2278 return NULL;
2281 case Stmt::ArraySubscriptExprClass: {
2282 // Array subscripts are potential references to data on the stack. We
2283 // retrieve the DeclRefExpr* for the array variable if it indeed
2284 // has local storage.
2285 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2288 case Stmt::ConditionalOperatorClass: {
2289 // For conditional operators we need to see if either the LHS or RHS are
2290 // non-NULL Expr's. If one is non-NULL, we return it.
2291 ConditionalOperator *C = cast<ConditionalOperator>(E);
2293 // Handle the GNU extension for missing LHS.
2294 if (Expr *lhsExpr = C->getLHS())
2295 if (Expr *LHS = EvalVal(lhsExpr, refVars))
2296 return LHS;
2298 return EvalVal(C->getRHS(), refVars);
2301 // Accesses to members are potential references to data on the stack.
2302 case Stmt::MemberExprClass: {
2303 MemberExpr *M = cast<MemberExpr>(E);
2305 // Check for indirect access. We only want direct field accesses.
2306 if (M->isArrow())
2307 return NULL;
2309 // Check whether the member type is itself a reference, in which case
2310 // we're not going to refer to the member, but to what the member refers to.
2311 if (M->getMemberDecl()->getType()->isReferenceType())
2312 return NULL;
2314 return EvalVal(M->getBase(), refVars);
2317 case Stmt::MaterializeTemporaryExprClass:
2318 if (Expr *Result = EvalVal(
2319 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2320 refVars))
2321 return Result;
2323 return E;
2325 default:
2326 // Check that we don't return or take the address of a reference to a
2327 // temporary. This is only useful in C++.
2328 if (!E->isTypeDependent() && E->isRValue())
2329 return E;
2331 // Everything else: we simply don't reason about them.
2332 return NULL;
2334 } while (true);
2337 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2339 /// Check for comparisons of floating point operands using != and ==.
2340 /// Issue a warning if these are no self-comparisons, as they are not likely
2341 /// to do what the programmer intended.
2342 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2343 bool EmitWarning = true;
2345 Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2346 Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2348 // Special case: check for x == x (which is OK).
2349 // Do not emit warnings for such cases.
2350 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2351 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2352 if (DRL->getDecl() == DRR->getDecl())
2353 EmitWarning = false;
2356 // Special case: check for comparisons against literals that can be exactly
2357 // represented by APFloat. In such cases, do not emit a warning. This
2358 // is a heuristic: often comparison against such literals are used to
2359 // detect if a value in a variable has not changed. This clearly can
2360 // lead to false negatives.
2361 if (EmitWarning) {
2362 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2363 if (FLL->isExact())
2364 EmitWarning = false;
2365 } else
2366 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2367 if (FLR->isExact())
2368 EmitWarning = false;
2372 // Check for comparisons with builtin types.
2373 if (EmitWarning)
2374 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2375 if (CL->isBuiltinCall(Context))
2376 EmitWarning = false;
2378 if (EmitWarning)
2379 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2380 if (CR->isBuiltinCall(Context))
2381 EmitWarning = false;
2383 // Emit the diagnostic.
2384 if (EmitWarning)
2385 Diag(loc, diag::warn_floatingpoint_eq)
2386 << lex->getSourceRange() << rex->getSourceRange();
2389 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2390 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2392 namespace {
2394 /// Structure recording the 'active' range of an integer-valued
2395 /// expression.
2396 struct IntRange {
2397 /// The number of bits active in the int.
2398 unsigned Width;
2400 /// True if the int is known not to have negative values.
2401 bool NonNegative;
2403 IntRange(unsigned Width, bool NonNegative)
2404 : Width(Width), NonNegative(NonNegative)
2407 /// Returns the range of the bool type.
2408 static IntRange forBoolType() {
2409 return IntRange(1, true);
2412 /// Returns the range of an opaque value of the given integral type.
2413 static IntRange forValueOfType(ASTContext &C, QualType T) {
2414 return forValueOfCanonicalType(C,
2415 T->getCanonicalTypeInternal().getTypePtr());
2418 /// Returns the range of an opaque value of a canonical integral type.
2419 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2420 assert(T->isCanonicalUnqualified());
2422 if (const VectorType *VT = dyn_cast<VectorType>(T))
2423 T = VT->getElementType().getTypePtr();
2424 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2425 T = CT->getElementType().getTypePtr();
2427 // For enum types, use the known bit width of the enumerators.
2428 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2429 EnumDecl *Enum = ET->getDecl();
2430 if (!Enum->isDefinition())
2431 return IntRange(C.getIntWidth(QualType(T, 0)), false);
2433 unsigned NumPositive = Enum->getNumPositiveBits();
2434 unsigned NumNegative = Enum->getNumNegativeBits();
2436 return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2439 const BuiltinType *BT = cast<BuiltinType>(T);
2440 assert(BT->isInteger());
2442 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2445 /// Returns the "target" range of a canonical integral type, i.e.
2446 /// the range of values expressible in the type.
2448 /// This matches forValueOfCanonicalType except that enums have the
2449 /// full range of their type, not the range of their enumerators.
2450 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2451 assert(T->isCanonicalUnqualified());
2453 if (const VectorType *VT = dyn_cast<VectorType>(T))
2454 T = VT->getElementType().getTypePtr();
2455 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2456 T = CT->getElementType().getTypePtr();
2457 if (const EnumType *ET = dyn_cast<EnumType>(T))
2458 T = ET->getDecl()->getIntegerType().getTypePtr();
2460 const BuiltinType *BT = cast<BuiltinType>(T);
2461 assert(BT->isInteger());
2463 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2466 /// Returns the supremum of two ranges: i.e. their conservative merge.
2467 static IntRange join(IntRange L, IntRange R) {
2468 return IntRange(std::max(L.Width, R.Width),
2469 L.NonNegative && R.NonNegative);
2472 /// Returns the infinum of two ranges: i.e. their aggressive merge.
2473 static IntRange meet(IntRange L, IntRange R) {
2474 return IntRange(std::min(L.Width, R.Width),
2475 L.NonNegative || R.NonNegative);
2479 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2480 if (value.isSigned() && value.isNegative())
2481 return IntRange(value.getMinSignedBits(), false);
2483 if (value.getBitWidth() > MaxWidth)
2484 value = value.trunc(MaxWidth);
2486 // isNonNegative() just checks the sign bit without considering
2487 // signedness.
2488 return IntRange(value.getActiveBits(), true);
2491 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2492 unsigned MaxWidth) {
2493 if (result.isInt())
2494 return GetValueRange(C, result.getInt(), MaxWidth);
2496 if (result.isVector()) {
2497 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2498 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2499 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2500 R = IntRange::join(R, El);
2502 return R;
2505 if (result.isComplexInt()) {
2506 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2507 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2508 return IntRange::join(R, I);
2511 // This can happen with lossless casts to intptr_t of "based" lvalues.
2512 // Assume it might use arbitrary bits.
2513 // FIXME: The only reason we need to pass the type in here is to get
2514 // the sign right on this one case. It would be nice if APValue
2515 // preserved this.
2516 assert(result.isLValue());
2517 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2520 /// Pseudo-evaluate the given integer expression, estimating the
2521 /// range of values it might take.
2523 /// \param MaxWidth - the width to which the value will be truncated
2524 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2525 E = E->IgnoreParens();
2527 // Try a full evaluation first.
2528 Expr::EvalResult result;
2529 if (E->Evaluate(result, C))
2530 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2532 // I think we only want to look through implicit casts here; if the
2533 // user has an explicit widening cast, we should treat the value as
2534 // being of the new, wider type.
2535 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2536 if (CE->getCastKind() == CK_NoOp)
2537 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2539 IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2541 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2543 // Assume that non-integer casts can span the full range of the type.
2544 if (!isIntegerCast)
2545 return OutputTypeRange;
2547 IntRange SubRange
2548 = GetExprRange(C, CE->getSubExpr(),
2549 std::min(MaxWidth, OutputTypeRange.Width));
2551 // Bail out if the subexpr's range is as wide as the cast type.
2552 if (SubRange.Width >= OutputTypeRange.Width)
2553 return OutputTypeRange;
2555 // Otherwise, we take the smaller width, and we're non-negative if
2556 // either the output type or the subexpr is.
2557 return IntRange(SubRange.Width,
2558 SubRange.NonNegative || OutputTypeRange.NonNegative);
2561 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2562 // If we can fold the condition, just take that operand.
2563 bool CondResult;
2564 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2565 return GetExprRange(C, CondResult ? CO->getTrueExpr()
2566 : CO->getFalseExpr(),
2567 MaxWidth);
2569 // Otherwise, conservatively merge.
2570 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2571 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2572 return IntRange::join(L, R);
2575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2576 switch (BO->getOpcode()) {
2578 // Boolean-valued operations are single-bit and positive.
2579 case BO_LAnd:
2580 case BO_LOr:
2581 case BO_LT:
2582 case BO_GT:
2583 case BO_LE:
2584 case BO_GE:
2585 case BO_EQ:
2586 case BO_NE:
2587 return IntRange::forBoolType();
2589 // The type of these compound assignments is the type of the LHS,
2590 // so the RHS is not necessarily an integer.
2591 case BO_MulAssign:
2592 case BO_DivAssign:
2593 case BO_RemAssign:
2594 case BO_AddAssign:
2595 case BO_SubAssign:
2596 return IntRange::forValueOfType(C, E->getType());
2598 // Operations with opaque sources are black-listed.
2599 case BO_PtrMemD:
2600 case BO_PtrMemI:
2601 return IntRange::forValueOfType(C, E->getType());
2603 // Bitwise-and uses the *infinum* of the two source ranges.
2604 case BO_And:
2605 case BO_AndAssign:
2606 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2607 GetExprRange(C, BO->getRHS(), MaxWidth));
2609 // Left shift gets black-listed based on a judgement call.
2610 case BO_Shl:
2611 // ...except that we want to treat '1 << (blah)' as logically
2612 // positive. It's an important idiom.
2613 if (IntegerLiteral *I
2614 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2615 if (I->getValue() == 1) {
2616 IntRange R = IntRange::forValueOfType(C, E->getType());
2617 return IntRange(R.Width, /*NonNegative*/ true);
2620 // fallthrough
2622 case BO_ShlAssign:
2623 return IntRange::forValueOfType(C, E->getType());
2625 // Right shift by a constant can narrow its left argument.
2626 case BO_Shr:
2627 case BO_ShrAssign: {
2628 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2630 // If the shift amount is a positive constant, drop the width by
2631 // that much.
2632 llvm::APSInt shift;
2633 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2634 shift.isNonNegative()) {
2635 unsigned zext = shift.getZExtValue();
2636 if (zext >= L.Width)
2637 L.Width = (L.NonNegative ? 0 : 1);
2638 else
2639 L.Width -= zext;
2642 return L;
2645 // Comma acts as its right operand.
2646 case BO_Comma:
2647 return GetExprRange(C, BO->getRHS(), MaxWidth);
2649 // Black-list pointer subtractions.
2650 case BO_Sub:
2651 if (BO->getLHS()->getType()->isPointerType())
2652 return IntRange::forValueOfType(C, E->getType());
2653 // fallthrough
2655 default:
2656 break;
2659 // Treat every other operator as if it were closed on the
2660 // narrowest type that encompasses both operands.
2661 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2662 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2663 return IntRange::join(L, R);
2666 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2667 switch (UO->getOpcode()) {
2668 // Boolean-valued operations are white-listed.
2669 case UO_LNot:
2670 return IntRange::forBoolType();
2672 // Operations with opaque sources are black-listed.
2673 case UO_Deref:
2674 case UO_AddrOf: // should be impossible
2675 return IntRange::forValueOfType(C, E->getType());
2677 default:
2678 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2682 if (dyn_cast<OffsetOfExpr>(E)) {
2683 IntRange::forValueOfType(C, E->getType());
2686 FieldDecl *BitField = E->getBitField();
2687 if (BitField) {
2688 llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2689 unsigned BitWidth = BitWidthAP.getZExtValue();
2691 return IntRange(BitWidth,
2692 BitField->getType()->isUnsignedIntegerOrEnumerationType());
2695 return IntRange::forValueOfType(C, E->getType());
2698 IntRange GetExprRange(ASTContext &C, Expr *E) {
2699 return GetExprRange(C, E, C.getIntWidth(E->getType()));
2702 /// Checks whether the given value, which currently has the given
2703 /// source semantics, has the same value when coerced through the
2704 /// target semantics.
2705 bool IsSameFloatAfterCast(const llvm::APFloat &value,
2706 const llvm::fltSemantics &Src,
2707 const llvm::fltSemantics &Tgt) {
2708 llvm::APFloat truncated = value;
2710 bool ignored;
2711 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2712 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2714 return truncated.bitwiseIsEqual(value);
2717 /// Checks whether the given value, which currently has the given
2718 /// source semantics, has the same value when coerced through the
2719 /// target semantics.
2721 /// The value might be a vector of floats (or a complex number).
2722 bool IsSameFloatAfterCast(const APValue &value,
2723 const llvm::fltSemantics &Src,
2724 const llvm::fltSemantics &Tgt) {
2725 if (value.isFloat())
2726 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2728 if (value.isVector()) {
2729 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2730 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2731 return false;
2732 return true;
2735 assert(value.isComplexFloat());
2736 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2737 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2740 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2742 static bool IsZero(Sema &S, Expr *E) {
2743 // Suppress cases where we are comparing against an enum constant.
2744 if (const DeclRefExpr *DR =
2745 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2746 if (isa<EnumConstantDecl>(DR->getDecl()))
2747 return false;
2749 // Suppress cases where the '0' value is expanded from a macro.
2750 if (E->getLocStart().isMacroID())
2751 return false;
2753 llvm::APSInt Value;
2754 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2757 static bool HasEnumType(Expr *E) {
2758 // Strip off implicit integral promotions.
2759 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2760 if (ICE->getCastKind() != CK_IntegralCast &&
2761 ICE->getCastKind() != CK_NoOp)
2762 break;
2763 E = ICE->getSubExpr();
2766 return E->getType()->isEnumeralType();
2769 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2770 BinaryOperatorKind op = E->getOpcode();
2771 if (E->isValueDependent())
2772 return;
2774 if (op == BO_LT && IsZero(S, E->getRHS())) {
2775 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2776 << "< 0" << "false" << HasEnumType(E->getLHS())
2777 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2778 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2779 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2780 << ">= 0" << "true" << HasEnumType(E->getLHS())
2781 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2782 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2783 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2784 << "0 >" << "false" << HasEnumType(E->getRHS())
2785 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2786 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2787 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2788 << "0 <=" << "true" << HasEnumType(E->getRHS())
2789 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2793 /// Analyze the operands of the given comparison. Implements the
2794 /// fallback case from AnalyzeComparison.
2795 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2796 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2797 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2800 /// \brief Implements -Wsign-compare.
2802 /// \param lex the left-hand expression
2803 /// \param rex the right-hand expression
2804 /// \param OpLoc the location of the joining operator
2805 /// \param BinOpc binary opcode or 0
2806 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2807 // The type the comparison is being performed in.
2808 QualType T = E->getLHS()->getType();
2809 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2810 && "comparison with mismatched types");
2812 // We don't do anything special if this isn't an unsigned integral
2813 // comparison: we're only interested in integral comparisons, and
2814 // signed comparisons only happen in cases we don't care to warn about.
2816 // We also don't care about value-dependent expressions or expressions
2817 // whose result is a constant.
2818 if (!T->hasUnsignedIntegerRepresentation()
2819 || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
2820 return AnalyzeImpConvsInComparison(S, E);
2822 Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2823 Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2825 // Check to see if one of the (unmodified) operands is of different
2826 // signedness.
2827 Expr *signedOperand, *unsignedOperand;
2828 if (lex->getType()->hasSignedIntegerRepresentation()) {
2829 assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2830 "unsigned comparison between two signed integer expressions?");
2831 signedOperand = lex;
2832 unsignedOperand = rex;
2833 } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2834 signedOperand = rex;
2835 unsignedOperand = lex;
2836 } else {
2837 CheckTrivialUnsignedComparison(S, E);
2838 return AnalyzeImpConvsInComparison(S, E);
2841 // Otherwise, calculate the effective range of the signed operand.
2842 IntRange signedRange = GetExprRange(S.Context, signedOperand);
2844 // Go ahead and analyze implicit conversions in the operands. Note
2845 // that we skip the implicit conversions on both sides.
2846 AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2847 AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2849 // If the signed range is non-negative, -Wsign-compare won't fire,
2850 // but we should still check for comparisons which are always true
2851 // or false.
2852 if (signedRange.NonNegative)
2853 return CheckTrivialUnsignedComparison(S, E);
2855 // For (in)equality comparisons, if the unsigned operand is a
2856 // constant which cannot collide with a overflowed signed operand,
2857 // then reinterpreting the signed operand as unsigned will not
2858 // change the result of the comparison.
2859 if (E->isEqualityOp()) {
2860 unsigned comparisonWidth = S.Context.getIntWidth(T);
2861 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2863 // We should never be unable to prove that the unsigned operand is
2864 // non-negative.
2865 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2867 if (unsignedRange.Width < comparisonWidth)
2868 return;
2871 S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2872 << lex->getType() << rex->getType()
2873 << lex->getSourceRange() << rex->getSourceRange();
2876 /// Analyzes an attempt to assign the given value to a bitfield.
2878 /// Returns true if there was something fishy about the attempt.
2879 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2880 SourceLocation InitLoc) {
2881 assert(Bitfield->isBitField());
2882 if (Bitfield->isInvalidDecl())
2883 return false;
2885 // White-list bool bitfields.
2886 if (Bitfield->getType()->isBooleanType())
2887 return false;
2889 // Ignore value- or type-dependent expressions.
2890 if (Bitfield->getBitWidth()->isValueDependent() ||
2891 Bitfield->getBitWidth()->isTypeDependent() ||
2892 Init->isValueDependent() ||
2893 Init->isTypeDependent())
2894 return false;
2896 Expr *OriginalInit = Init->IgnoreParenImpCasts();
2898 llvm::APSInt Width(32);
2899 Expr::EvalResult InitValue;
2900 if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2901 !OriginalInit->Evaluate(InitValue, S.Context) ||
2902 !InitValue.Val.isInt())
2903 return false;
2905 const llvm::APSInt &Value = InitValue.Val.getInt();
2906 unsigned OriginalWidth = Value.getBitWidth();
2907 unsigned FieldWidth = Width.getZExtValue();
2909 if (OriginalWidth <= FieldWidth)
2910 return false;
2912 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
2914 // It's fairly common to write values into signed bitfields
2915 // that, if sign-extended, would end up becoming a different
2916 // value. We don't want to warn about that.
2917 if (Value.isSigned() && Value.isNegative())
2918 TruncatedValue = TruncatedValue.sext(OriginalWidth);
2919 else
2920 TruncatedValue = TruncatedValue.zext(OriginalWidth);
2922 if (Value == TruncatedValue)
2923 return false;
2925 std::string PrettyValue = Value.toString(10);
2926 std::string PrettyTrunc = TruncatedValue.toString(10);
2928 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2929 << PrettyValue << PrettyTrunc << OriginalInit->getType()
2930 << Init->getSourceRange();
2932 return true;
2935 /// Analyze the given simple or compound assignment for warning-worthy
2936 /// operations.
2937 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2938 // Just recurse on the LHS.
2939 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2941 // We want to recurse on the RHS as normal unless we're assigning to
2942 // a bitfield.
2943 if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2944 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2945 E->getOperatorLoc())) {
2946 // Recurse, ignoring any implicit conversions on the RHS.
2947 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2948 E->getOperatorLoc());
2952 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2955 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
2956 void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
2957 SourceLocation CContext, unsigned diag) {
2958 S.Diag(E->getExprLoc(), diag)
2959 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
2962 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
2963 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2964 unsigned diag) {
2965 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
2968 /// Diagnose an implicit cast from a literal expression. Also attemps to supply
2969 /// fixit hints when the cast wouldn't lose information to simply write the
2970 /// expression with the expected type.
2971 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
2972 SourceLocation CContext) {
2973 // Emit the primary warning first, then try to emit a fixit hint note if
2974 // reasonable.
2975 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
2976 << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
2978 const llvm::APFloat &Value = FL->getValue();
2980 // Don't attempt to fix PPC double double literals.
2981 if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
2982 return;
2984 // Try to convert this exactly to an 64-bit integer. FIXME: It would be
2985 // nice to support arbitrarily large integers here.
2986 bool isExact = false;
2987 uint64_t IntegerPart;
2988 if (Value.convertToInteger(&IntegerPart, 64, /*isSigned=*/true,
2989 llvm::APFloat::rmTowardZero, &isExact)
2990 != llvm::APFloat::opOK || !isExact)
2991 return;
2993 llvm::APInt IntegerValue(64, IntegerPart, /*isSigned=*/true);
2995 std::string LiteralValue = IntegerValue.toString(10, /*isSigned=*/true);
2996 S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
2997 << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3000 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3001 if (!Range.Width) return "0";
3003 llvm::APSInt ValueInRange = Value;
3004 ValueInRange.setIsSigned(!Range.NonNegative);
3005 ValueInRange = ValueInRange.trunc(Range.Width);
3006 return ValueInRange.toString(10);
3009 static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3010 SourceManager &smgr = S.Context.getSourceManager();
3011 return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3014 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3015 SourceLocation CC, bool *ICContext = 0) {
3016 if (E->isTypeDependent() || E->isValueDependent()) return;
3018 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3019 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3020 if (Source == Target) return;
3021 if (Target->isDependentType()) return;
3023 // If the conversion context location is invalid don't complain.
3024 // We also don't want to emit a warning if the issue occurs from the
3025 // instantiation of a system macro. The problem is that 'getSpellingLoc()'
3026 // is slow, so we delay this check as long as possible. Once we detect
3027 // we are in that scenario, we just return.
3028 if (CC.isInvalid())
3029 return;
3031 // Never diagnose implicit casts to bool.
3032 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
3033 return;
3035 // Strip vector types.
3036 if (isa<VectorType>(Source)) {
3037 if (!isa<VectorType>(Target)) {
3038 if (isFromSystemMacro(S, CC))
3039 return;
3040 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3043 // If the vector cast is cast between two vectors of the same size, it is
3044 // a bitcast, not a conversion.
3045 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3046 return;
3048 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3049 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3052 // Strip complex types.
3053 if (isa<ComplexType>(Source)) {
3054 if (!isa<ComplexType>(Target)) {
3055 if (isFromSystemMacro(S, CC))
3056 return;
3058 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3061 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3062 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3065 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3066 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3068 // If the source is floating point...
3069 if (SourceBT && SourceBT->isFloatingPoint()) {
3070 // ...and the target is floating point...
3071 if (TargetBT && TargetBT->isFloatingPoint()) {
3072 // ...then warn if we're dropping FP rank.
3074 // Builtin FP kinds are ordered by increasing FP rank.
3075 if (SourceBT->getKind() > TargetBT->getKind()) {
3076 // Don't warn about float constants that are precisely
3077 // representable in the target type.
3078 Expr::EvalResult result;
3079 if (E->Evaluate(result, S.Context)) {
3080 // Value might be a float, a float vector, or a float complex.
3081 if (IsSameFloatAfterCast(result.Val,
3082 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3083 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3084 return;
3087 if (isFromSystemMacro(S, CC))
3088 return;
3090 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3092 return;
3095 // If the target is integral, always warn.
3096 if ((TargetBT && TargetBT->isInteger())) {
3097 if (isFromSystemMacro(S, CC))
3098 return;
3100 Expr *InnerE = E->IgnoreParenImpCasts();
3101 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3102 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3103 } else {
3104 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3108 return;
3111 if (!Source->isIntegerType() || !Target->isIntegerType())
3112 return;
3114 if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3115 == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3116 S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3117 << E->getSourceRange() << clang::SourceRange(CC);
3118 return;
3121 IntRange SourceRange = GetExprRange(S.Context, E);
3122 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3124 if (SourceRange.Width > TargetRange.Width) {
3125 // If the source is a constant, use a default-on diagnostic.
3126 // TODO: this should happen for bitfield stores, too.
3127 llvm::APSInt Value(32);
3128 if (E->isIntegerConstantExpr(Value, S.Context)) {
3129 if (isFromSystemMacro(S, CC))
3130 return;
3132 std::string PrettySourceValue = Value.toString(10);
3133 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3135 S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3136 << PrettySourceValue << PrettyTargetValue
3137 << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3138 return;
3141 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3142 if (isFromSystemMacro(S, CC))
3143 return;
3145 if (SourceRange.Width == 64 && TargetRange.Width == 32)
3146 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3147 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3150 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3151 (!TargetRange.NonNegative && SourceRange.NonNegative &&
3152 SourceRange.Width == TargetRange.Width)) {
3154 if (isFromSystemMacro(S, CC))
3155 return;
3157 unsigned DiagID = diag::warn_impcast_integer_sign;
3159 // Traditionally, gcc has warned about this under -Wsign-compare.
3160 // We also want to warn about it in -Wconversion.
3161 // So if -Wconversion is off, use a completely identical diagnostic
3162 // in the sign-compare group.
3163 // The conditional-checking code will
3164 if (ICContext) {
3165 DiagID = diag::warn_impcast_integer_sign_conditional;
3166 *ICContext = true;
3169 return DiagnoseImpCast(S, E, T, CC, DiagID);
3172 // Diagnose conversions between different enumeration types.
3173 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3174 // type, to give us better diagnostics.
3175 QualType SourceType = E->getType();
3176 if (!S.getLangOptions().CPlusPlus) {
3177 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3178 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3179 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3180 SourceType = S.Context.getTypeDeclType(Enum);
3181 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3185 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3186 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3187 if ((SourceEnum->getDecl()->getIdentifier() ||
3188 SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3189 (TargetEnum->getDecl()->getIdentifier() ||
3190 TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3191 SourceEnum != TargetEnum) {
3192 if (isFromSystemMacro(S, CC))
3193 return;
3195 return DiagnoseImpCast(S, E, SourceType, T, CC,
3196 diag::warn_impcast_different_enum_types);
3199 return;
3202 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3204 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3205 SourceLocation CC, bool &ICContext) {
3206 E = E->IgnoreParenImpCasts();
3208 if (isa<ConditionalOperator>(E))
3209 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3211 AnalyzeImplicitConversions(S, E, CC);
3212 if (E->getType() != T)
3213 return CheckImplicitConversion(S, E, T, CC, &ICContext);
3214 return;
3217 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3218 SourceLocation CC = E->getQuestionLoc();
3220 AnalyzeImplicitConversions(S, E->getCond(), CC);
3222 bool Suspicious = false;
3223 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3224 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3226 // If -Wconversion would have warned about either of the candidates
3227 // for a signedness conversion to the context type...
3228 if (!Suspicious) return;
3230 // ...but it's currently ignored...
3231 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3232 CC))
3233 return;
3235 // ...and -Wsign-compare isn't...
3236 if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
3237 return;
3239 // ...then check whether it would have warned about either of the
3240 // candidates for a signedness conversion to the condition type.
3241 if (E->getType() != T) {
3242 Suspicious = false;
3243 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3244 E->getType(), CC, &Suspicious);
3245 if (!Suspicious)
3246 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3247 E->getType(), CC, &Suspicious);
3248 if (!Suspicious)
3249 return;
3252 // If so, emit a diagnostic under -Wsign-compare.
3253 Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
3254 Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
3255 S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
3256 << lex->getType() << rex->getType()
3257 << lex->getSourceRange() << rex->getSourceRange();
3260 /// AnalyzeImplicitConversions - Find and report any interesting
3261 /// implicit conversions in the given expression. There are a couple
3262 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
3263 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3264 QualType T = OrigE->getType();
3265 Expr *E = OrigE->IgnoreParenImpCasts();
3267 // For conditional operators, we analyze the arguments as if they
3268 // were being fed directly into the output.
3269 if (isa<ConditionalOperator>(E)) {
3270 ConditionalOperator *CO = cast<ConditionalOperator>(E);
3271 CheckConditionalOperator(S, CO, T);
3272 return;
3275 // Go ahead and check any implicit conversions we might have skipped.
3276 // The non-canonical typecheck is just an optimization;
3277 // CheckImplicitConversion will filter out dead implicit conversions.
3278 if (E->getType() != T)
3279 CheckImplicitConversion(S, E, T, CC);
3281 // Now continue drilling into this expression.
3283 // Skip past explicit casts.
3284 if (isa<ExplicitCastExpr>(E)) {
3285 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3286 return AnalyzeImplicitConversions(S, E, CC);
3289 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3290 // Do a somewhat different check with comparison operators.
3291 if (BO->isComparisonOp())
3292 return AnalyzeComparison(S, BO);
3294 // And with assignments and compound assignments.
3295 if (BO->isAssignmentOp())
3296 return AnalyzeAssignment(S, BO);
3299 // These break the otherwise-useful invariant below. Fortunately,
3300 // we don't really need to recurse into them, because any internal
3301 // expressions should have been analyzed already when they were
3302 // built into statements.
3303 if (isa<StmtExpr>(E)) return;
3305 // Don't descend into unevaluated contexts.
3306 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3308 // Now just recurse over the expression's children.
3309 CC = E->getExprLoc();
3310 for (Stmt::child_range I = E->children(); I; ++I)
3311 AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
3314 } // end anonymous namespace
3316 /// Diagnoses "dangerous" implicit conversions within the given
3317 /// expression (which is a full expression). Implements -Wconversion
3318 /// and -Wsign-compare.
3320 /// \param CC the "context" location of the implicit conversion, i.e.
3321 /// the most location of the syntactic entity requiring the implicit
3322 /// conversion
3323 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3324 // Don't diagnose in unevaluated contexts.
3325 if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3326 return;
3328 // Don't diagnose for value- or type-dependent expressions.
3329 if (E->isTypeDependent() || E->isValueDependent())
3330 return;
3332 // This is not the right CC for (e.g.) a variable initialization.
3333 AnalyzeImplicitConversions(*this, E, CC);
3336 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3337 FieldDecl *BitField,
3338 Expr *Init) {
3339 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3342 /// CheckParmsForFunctionDef - Check that the parameters of the given
3343 /// function are appropriate for the definition of a function. This
3344 /// takes care of any checks that cannot be performed on the
3345 /// declaration itself, e.g., that the types of each of the function
3346 /// parameters are complete.
3347 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3348 bool CheckParameterNames) {
3349 bool HasInvalidParm = false;
3350 for (; P != PEnd; ++P) {
3351 ParmVarDecl *Param = *P;
3353 // C99 6.7.5.3p4: the parameters in a parameter type list in a
3354 // function declarator that is part of a function definition of
3355 // that function shall not have incomplete type.
3357 // This is also C++ [dcl.fct]p6.
3358 if (!Param->isInvalidDecl() &&
3359 RequireCompleteType(Param->getLocation(), Param->getType(),
3360 diag::err_typecheck_decl_incomplete_type)) {
3361 Param->setInvalidDecl();
3362 HasInvalidParm = true;
3365 // C99 6.9.1p5: If the declarator includes a parameter type list, the
3366 // declaration of each parameter shall include an identifier.
3367 if (CheckParameterNames &&
3368 Param->getIdentifier() == 0 &&
3369 !Param->isImplicit() &&
3370 !getLangOptions().CPlusPlus)
3371 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3373 // C99 6.7.5.3p12:
3374 // If the function declarator is not part of a definition of that
3375 // function, parameters may have incomplete type and may use the [*]
3376 // notation in their sequences of declarator specifiers to specify
3377 // variable length array types.
3378 QualType PType = Param->getOriginalType();
3379 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3380 if (AT->getSizeModifier() == ArrayType::Star) {
3381 // FIXME: This diagnosic should point the the '[*]' if source-location
3382 // information is added for it.
3383 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3388 return HasInvalidParm;
3391 /// CheckCastAlign - Implements -Wcast-align, which warns when a
3392 /// pointer cast increases the alignment requirements.
3393 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3394 // This is actually a lot of work to potentially be doing on every
3395 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3396 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3397 TRange.getBegin())
3398 == Diagnostic::Ignored)
3399 return;
3401 // Ignore dependent types.
3402 if (T->isDependentType() || Op->getType()->isDependentType())
3403 return;
3405 // Require that the destination be a pointer type.
3406 const PointerType *DestPtr = T->getAs<PointerType>();
3407 if (!DestPtr) return;
3409 // If the destination has alignment 1, we're done.
3410 QualType DestPointee = DestPtr->getPointeeType();
3411 if (DestPointee->isIncompleteType()) return;
3412 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3413 if (DestAlign.isOne()) return;
3415 // Require that the source be a pointer type.
3416 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3417 if (!SrcPtr) return;
3418 QualType SrcPointee = SrcPtr->getPointeeType();
3420 // Whitelist casts from cv void*. We already implicitly
3421 // whitelisted casts to cv void*, since they have alignment 1.
3422 // Also whitelist casts involving incomplete types, which implicitly
3423 // includes 'void'.
3424 if (SrcPointee->isIncompleteType()) return;
3426 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3427 if (SrcAlign >= DestAlign) return;
3429 Diag(TRange.getBegin(), diag::warn_cast_align)
3430 << Op->getType() << T
3431 << static_cast<unsigned>(SrcAlign.getQuantity())
3432 << static_cast<unsigned>(DestAlign.getQuantity())
3433 << TRange << Op->getSourceRange();
3436 static void CheckArrayAccess_Check(Sema &S,
3437 const clang::ArraySubscriptExpr *E) {
3438 const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
3439 const ConstantArrayType *ArrayTy =
3440 S.Context.getAsConstantArrayType(BaseExpr->getType());
3441 if (!ArrayTy)
3442 return;
3444 const Expr *IndexExpr = E->getIdx();
3445 if (IndexExpr->isValueDependent())
3446 return;
3447 llvm::APSInt index;
3448 if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
3449 return;
3451 if (index.isUnsigned() || !index.isNegative()) {
3452 llvm::APInt size = ArrayTy->getSize();
3453 if (!size.isStrictlyPositive())
3454 return;
3455 if (size.getBitWidth() > index.getBitWidth())
3456 index = index.sext(size.getBitWidth());
3457 else if (size.getBitWidth() < index.getBitWidth())
3458 size = size.sext(index.getBitWidth());
3460 if (index.slt(size))
3461 return;
3463 S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3464 S.PDiag(diag::warn_array_index_exceeds_bounds)
3465 << index.toString(10, true)
3466 << size.toString(10, true)
3467 << IndexExpr->getSourceRange());
3468 } else {
3469 S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3470 S.PDiag(diag::warn_array_index_precedes_bounds)
3471 << index.toString(10, true)
3472 << IndexExpr->getSourceRange());
3475 const NamedDecl *ND = NULL;
3476 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3477 ND = dyn_cast<NamedDecl>(DRE->getDecl());
3478 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3479 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3480 if (ND)
3481 S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3482 S.PDiag(diag::note_array_index_out_of_bounds)
3483 << ND->getDeclName());
3486 void Sema::CheckArrayAccess(const Expr *expr) {
3487 while (true) {
3488 expr = expr->IgnoreParens();
3489 switch (expr->getStmtClass()) {
3490 case Stmt::ArraySubscriptExprClass:
3491 CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
3492 return;
3493 case Stmt::ConditionalOperatorClass: {
3494 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3495 if (const Expr *lhs = cond->getLHS())
3496 CheckArrayAccess(lhs);
3497 if (const Expr *rhs = cond->getRHS())
3498 CheckArrayAccess(rhs);
3499 return;
3501 default:
3502 return;
3507 //===--- CHECK: Objective-C retain cycles ----------------------------------//
3509 namespace {
3510 struct RetainCycleOwner {
3511 RetainCycleOwner() : Variable(0), Indirect(false) {}
3512 VarDecl *Variable;
3513 SourceRange Range;
3514 SourceLocation Loc;
3515 bool Indirect;
3517 void setLocsFrom(Expr *e) {
3518 Loc = e->getExprLoc();
3519 Range = e->getSourceRange();
3524 /// Consider whether capturing the given variable can possibly lead to
3525 /// a retain cycle.
3526 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3527 // In ARC, it's captured strongly iff the variable has __strong
3528 // lifetime. In MRR, it's captured strongly if the variable is
3529 // __block and has an appropriate type.
3530 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3531 return false;
3533 owner.Variable = var;
3534 owner.setLocsFrom(ref);
3535 return true;
3538 static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3539 while (true) {
3540 e = e->IgnoreParens();
3541 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3542 switch (cast->getCastKind()) {
3543 case CK_BitCast:
3544 case CK_LValueBitCast:
3545 case CK_LValueToRValue:
3546 e = cast->getSubExpr();
3547 continue;
3549 case CK_GetObjCProperty: {
3550 // Bail out if this isn't a strong explicit property.
3551 const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3552 if (pre->isImplicitProperty()) return false;
3553 ObjCPropertyDecl *property = pre->getExplicitProperty();
3554 if (!(property->getPropertyAttributes() &
3555 (ObjCPropertyDecl::OBJC_PR_retain |
3556 ObjCPropertyDecl::OBJC_PR_copy |
3557 ObjCPropertyDecl::OBJC_PR_strong)) &&
3558 !(property->getPropertyIvarDecl() &&
3559 property->getPropertyIvarDecl()->getType()
3560 .getObjCLifetime() == Qualifiers::OCL_Strong))
3561 return false;
3563 owner.Indirect = true;
3564 e = const_cast<Expr*>(pre->getBase());
3565 continue;
3568 default:
3569 return false;
3573 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3574 ObjCIvarDecl *ivar = ref->getDecl();
3575 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3576 return false;
3578 // Try to find a retain cycle in the base.
3579 if (!findRetainCycleOwner(ref->getBase(), owner))
3580 return false;
3582 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3583 owner.Indirect = true;
3584 return true;
3587 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3588 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3589 if (!var) return false;
3590 return considerVariable(var, ref, owner);
3593 if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3594 owner.Variable = ref->getDecl();
3595 owner.setLocsFrom(ref);
3596 return true;
3599 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3600 if (member->isArrow()) return false;
3602 // Don't count this as an indirect ownership.
3603 e = member->getBase();
3604 continue;
3607 // Array ivars?
3609 return false;
3613 namespace {
3614 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
3615 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3616 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3617 Variable(variable), Capturer(0) {}
3619 VarDecl *Variable;
3620 Expr *Capturer;
3622 void VisitDeclRefExpr(DeclRefExpr *ref) {
3623 if (ref->getDecl() == Variable && !Capturer)
3624 Capturer = ref;
3627 void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3628 if (ref->getDecl() == Variable && !Capturer)
3629 Capturer = ref;
3632 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3633 if (Capturer) return;
3634 Visit(ref->getBase());
3635 if (Capturer && ref->isFreeIvar())
3636 Capturer = ref;
3639 void VisitBlockExpr(BlockExpr *block) {
3640 // Look inside nested blocks
3641 if (block->getBlockDecl()->capturesVariable(Variable))
3642 Visit(block->getBlockDecl()->getBody());
3647 /// Check whether the given argument is a block which captures a
3648 /// variable.
3649 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3650 assert(owner.Variable && owner.Loc.isValid());
3652 e = e->IgnoreParenCasts();
3653 BlockExpr *block = dyn_cast<BlockExpr>(e);
3654 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3655 return 0;
3657 FindCaptureVisitor visitor(S.Context, owner.Variable);
3658 visitor.Visit(block->getBlockDecl()->getBody());
3659 return visitor.Capturer;
3662 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3663 RetainCycleOwner &owner) {
3664 assert(capturer);
3665 assert(owner.Variable && owner.Loc.isValid());
3667 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3668 << owner.Variable << capturer->getSourceRange();
3669 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3670 << owner.Indirect << owner.Range;
3673 /// Check for a keyword selector that starts with the word 'add' or
3674 /// 'set'.
3675 static bool isSetterLikeSelector(Selector sel) {
3676 if (sel.isUnarySelector()) return false;
3678 llvm::StringRef str = sel.getNameForSlot(0);
3679 while (!str.empty() && str.front() == '_') str = str.substr(1);
3680 if (str.startswith("set") || str.startswith("add"))
3681 str = str.substr(3);
3682 else
3683 return false;
3685 if (str.empty()) return true;
3686 return !islower(str.front());
3689 /// Check a message send to see if it's likely to cause a retain cycle.
3690 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
3691 // Only check instance methods whose selector looks like a setter.
3692 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
3693 return;
3695 // Try to find a variable that the receiver is strongly owned by.
3696 RetainCycleOwner owner;
3697 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
3698 if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
3699 return;
3700 } else {
3701 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
3702 owner.Variable = getCurMethodDecl()->getSelfDecl();
3703 owner.Loc = msg->getSuperLoc();
3704 owner.Range = msg->getSuperLoc();
3707 // Check whether the receiver is captured by any of the arguments.
3708 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
3709 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
3710 return diagnoseRetainCycle(*this, capturer, owner);
3713 /// Check a property assign to see if it's likely to cause a retain cycle.
3714 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
3715 RetainCycleOwner owner;
3716 if (!findRetainCycleOwner(receiver, owner))
3717 return;
3719 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
3720 diagnoseRetainCycle(*this, capturer, owner);
3723 void Sema::checkUnsafeAssigns(SourceLocation Loc,
3724 QualType LHS, Expr *RHS) {
3725 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
3726 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
3727 return;
3728 if (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS))
3729 if (cast->getCastKind() == CK_ObjCConsumeObject)
3730 Diag(Loc, diag::warn_arc_retained_assign)
3731 << (LT == Qualifiers::OCL_ExplicitNone)
3732 << RHS->getSourceRange();